الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي والبحث العلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Centre Universitaire Abdelhafid Boussouf - Mila Institut des Sciences et de Technologie Département de Sciences et Technologie

Nº Ref :.....

Projet de Fin d'Etude préparé En vue de l'obtention du diplôme de MASTER

Spécialité: Hydraulique Urbaine

Contribution à la caractérisation hydrochimique et qualité des eaux dans le sous bassin du Rhumel Amon, (Bassin Hammam Grouz), Bassin Haut Rhumel. Wilaya de Mila.

Réalisé par :

- -Chelli Marwa
- -Belkadri Nahla

Soutenu devant le jury :

Mme. DIB Imen M.MEHELLOU Ahmed Mme. ALLIA Zineb Président Examinateur Promoteur

Année universitaire : 2019/2020

Remerciement

Avant tout nous remercions le bon dieu (Allah) tout puissant qui nous a donné la force, la santé, le courage et la volonté pour la réalisation de ce travail.

Nous tenons à exprimer notre gratitude à notre encadreur:

Meme Allia Zineb, pour nous avoir accompagnés tout au long de ce travail. Nous lui sommes reconnaissants pour sa contribution et pour la confiance qu'elle nous sommes accordés.

Nous remercions par ailleurs vivement les examinateurs:

Mme. Díb Imene

M.MEHELLOU Ahmed

Nous remercions également, tous les enseignants, qui nous ont donné les bases de la science.

Finalement, Nous remercions également toutes les personnes qui ont contribué directement ou indirectement à ce travail. Qu'ils trouvent tous ici l'expression de notre gratitude.

C'est à l'aide de Allah le clément, le tout puissant, que j'ai arrivé à recueillir le fruit de mes 18 bougies d'étude, que je dédie :

A mon très cher père (Abd el madjide) et ma très chère mère (Fatiha).

Toutes les lettres ne sauraient trouver les mots qu'il Faut...

Tous les mots ne sauraient exprimer la gratitude, l'amour

Le respect, la reconnaissance...

Aussi, c'est tout simplement que

Je souhaite que Dieu vous préserve une longue vie.

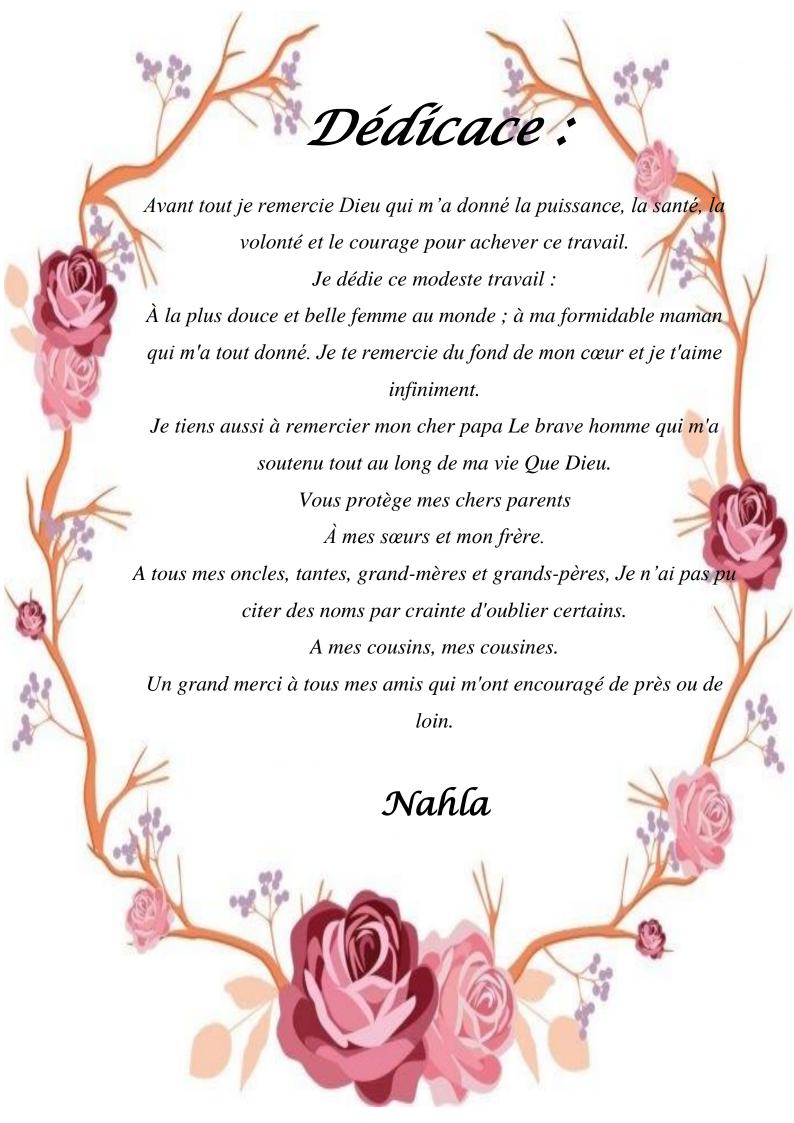
A toute ma famille

Mes soeurs (Asmaa, Fatima et Hanane) et mes frères (Ahmed, Badreddine et Salmane) et ces enfants.

Mes oncles et mes tantes

A toute mes amies

Enfin mon plus profond respect va tout droit à mes aimables


Professeurs dans tous les cycles de ma scolarité qui mon éclairé la

voie du savoir, en particulier mon oncle et mon professeur chelli abd

elmalek, qui m'a accompagné tout au long des six années de ma

scolarité primaire.

Marwa

Sommaire

Résumé.

Introduction générale.

Synthèse bibliographique :

Cadre geographique :	
----------------------	--

Introduction	01
1. localisation géographique	01
2. Description du bassin versant Rhumel	02
2.1.Orographie	03
2.2.Réseau hydrographique	04
2.3.Climatologie	05
2.3.1. La pluviométrie	05
2.3.2. La température	05
2.4.Végétation	05
2.5.Habitat	06
2.6.L'agriculture	06
Conclusion	06
Cadre géologique :	
Introduction	07
1. Cadre géologique régional	07
1.1. Domaine interne	07
1.2. Domaine externe	
1.3. Domaine de l'avant pays	
1.4. Les formations post-nappes	09
2. Cadre géologie locale	09
2.1. Les formations quaternaires	09
2.2. Les formations tertiaires	10
2.3. Les formations Secondaires	10
3 Tectonique	11

Conclusion	12
Cadre hydro climatologique :	
Introduction	14
1. L'équipement hydro-pluviométrique de l'Oued Rhumel amont	14
2. Etude des paramètres climatiques	15
2.1.Précipitations	15
2.1.1. Précipitations annuelles moyennes	15
2.1.2. Précipitations mensuelles et saisonnières moyennes	18
2.2. La température	24
2.3. Relation température-précipitation	25
2.3.1. Diagramme Ombro-Thermique	25
2.3.2. Détermination de l'humidité du sol (Méthode de G.Euverte)	26
2.3.3. Détermination de l'aridité (indice de De Martonne)	27
2.3.4. Climagramme d'Emberger(1955)	28
2.4. Le vent	29
2.5. L'Humidité	30
3. Etude de l'évapotranspiration	31
3.1. Evapotranspiration potentielle (ETP)	31
3.2. L'évapotranspiration réelle (ETR)	32
4. Paramètre du bilan hydrologique	36
4.1. Ruissellement superficiel	36
4.2. Infiltration (I)	36
Conclusion	36
Cadre hydrogéologique	
Introduction	37
1. Description des aquifères	37
1.1. L'aquifère poreux	37
1.1.1. L'aquifère des alluvions quaternaire	37
1.1.2. L'aquifère du Moi-Pliocène a accumulation fluvio-locustre	38
1.2. L'aquifère fissuré et karstifié	38

2. La classification hydrogéologique des formations lithologiques	38
3. Inventaire des points d'eau	40
4. Cartographie de l'aquifère	41
4.1. Carte d'iso-profondeur	41
4.2. Carte piézométrique	42
4.2.1. Interprétation des cartes piézométriques	43
Conclusion	44
Partie expérimentale :	
Etude Hydro chimique.	
Introduction	45
I. Caractéristiques des paramètres physico-chimiques	46
1. Echantillonnage et méthodes d'analyses des eaux	46
1.1. Echantillonnage	46
1.2. Méthodes d'analyses	46
1.3. Contrôle de qualité des données	52
2. Analyses des résultats	52
2.1. Les paramètres physiques	52
2.1.1. La température	52
2.1.2. Potentiel d'hydrogène (Ph)	52
2.1.3. Conductivité électrique (CE)	53
2.1.4. L'oxygène dissous	54
2.1.5. La salinité	55
2.2. Les paramètres chimiques	56
2.2.1. Calcium (Ca ²⁺) et Magnésium (Mg ²⁺)	56
2.2.2. Sodium et potassium (Na ⁺ et K ⁺)	57
2.2.3. Chlorures (Cl ⁻)	58
2.2.4. Bicarbonate (HCO ₃ -)	59
2.2.5. Alcalinité	60
2.2.6. La Dureté totale	61
II. Aptitude des eaux à l'alimentation en eau potable	62
1. Calcul de l'indice de qualité des eaux souterraine GQWI	62

Référence bibliographiques.	
Conclusion générale.	
Conclusion	74
6. Classification selon Cl	74
5. Classification selon le TH	73
4. Classification selon Carbonate de sodium résiduel (RSC)	71
3. Classification selon la conductivité électrique (CE)	70
2.1. Calcul le Pourcentage en Sodium (Na%)	69
2. Classification selon le Pourcentage en Sodium (Na%)	69
1. Classification selon le SAR	66
III. Aptitude des eaux à l'irrigation	66

Annexes.

Liste de tableau :

Tableau 01: Coordonnées des stations et données disponibles	14
Tableau 02: Précipitations annuelles moyennes aux différentes stations	16
Tableau 03: Précipitations moyenne mensuelles et saisonnières	18
Tableau 04: Répartition des températures moyennes mensuelles et saisonnières station	
de Hammam Grouz	24
Tableau 05: Valeurs moyennes mensuelles des précipitations et de température à la	
station de Hmmam Grouz (1987/88-2007/08)	25
Tableau 06: Rapport P/T (Station de Hammam Grouz) d'après la méthode d'Euverte	26
Tableau 07: vitesse moyenne mensuelle des vents à la station de chelghoume laid	29
Tableau08: Humidités moyennes mensuelles à la station de chelghoume laid pour la	
période : 2001-2010	30
Tableau 09: L'évapotranspiration potentielle E.T.P selon Thornthwaite	32
Tableau10: Bilan hydrique selon la méthode de thornthwaite de la station de H-Grouz	
(1987/88-2007/08)	35
Tableau 11: Les résultats des différentes méthodes	36
Tableau 12 : inventaire des points d'eau	40
Tableau13: Poids w _i des paramètres utilisés dans le calcul de l'indice GWQI	64
Tableau 14: les classifications des eaux par l'indice de GWQI	64
Tableau 15: Classification de la qualité des eaux souterraines basée sur l'indice GWQI	65
Tableau 16: les classifications des eaux par le SAR	67
Tableau 17: Classification de l'eau basée sur le pourcentage en Sodium	69
Tableau 18: Classification de l'eau basée sur le pourcentage en Sodium	70
Tableau 19: Classification de l'eau basée sur la conductivité électrique (CE)	70
Tableau 20: Classification de l'eau basée sur RSC	72
Tableau 21: Classification de l'eau basée sur RSC	73
Tableau 22: Classification de l'eau basée sur TH	73
Tableau 23: Classification de l'eau basée sur Cl	74

Liste de figure :

Figure 01: Carte de découpage administratif de l'Est Algérien (in : ATMANIA, Thèse de	
doctorat, 2010)	01
Figure 02: Localisation du de la zone d'étude ; Bassin hammam Grouz	02
Figure 03: Profil en long de l'Oued Kébir-Rhumel (d'après Mebarki A., 1982)	03
Figure 04: le bassin Rhumel-amont, vu à traverse le modèle numérique de terrain	
(d'après Mihoubi Naouel et Mebarki Azzedine juin 2017	04
Figure 05: Réseau hydrographique du Haut Rhumel à O.Atménia (d'après Mihoubi	
Naouel.2009)	04
Figure 06: Carte géologique du sous bassin versant Rhumel Amont extraite des cartes	
géologiques au 1/200000 Sétif-Constantine (Vila, 1977)	11
Figure 07: Situation des stations hydro-pluviométriques dans le bassin versant de l'Oued	
Rhumel-amont	15
Figure 08: Station de Tadjenanet (1976/77 -2006-07)	17
Figure 09: Station de Bir El Arche (1976/77 -2006-07)	17
Figure 10: station de Chelghoum Laid (1976/77 -2006-07)	. 17
Figure 11: station de Belaa (1976/77 -2006-07)	. 17
Figure 12: Station H-Grouz (1976/77 -2006-07)	. 18
Figure 13: Station de Tadjenanet (1976/77 – 2006/07)	. 20
Figure 14: Station de Bir Al arch (1976/77 – 2006/07)	20
Figure 15: Station de Chalghoum laid. (1976/77 – 2006/07)	21
Figure 16: Station de Belaa (1976/77 – 2006/07)	22
Figure 17: Période de 30 ans (1976/77-2006/07)	22
Figure 18: Période de 20 ans (1987/88-2006/07)	23
Figure 19: variation mensuelle de la température au niveau de la station de Hammam	
Grouz (1987/88-2007/08)	24
Figure 20: Diagramme Ombro-thermique de la station de Hammam Grouz (1987/88-	
2007/08)	26
Figure 21: Evaluation de l'humidité du sol par la méthode d'Euverte Station de	
Hammam Grouz	27
Figure 22: L'indice d'aridité annuel de De Martonne	28
Figure 23: Climagramme d'Emberger	29

Figure 24. Discremme de la vitagge movenne manguelle des vents à la station de	
Figure 24: Diagramme de la vitesse moyenne mensuelle des vents à la station de	
chelghoume laid	
Figure 25: Evolution de l'humidité moyenne mensuelle à la station de chelghoume laid	
pour la période : 2001-2010	31
Figure 26: Abaque pour le calcul du déficit d'écoulement en sous bassin Hmmam grouz,	
d'après : P.Verdeil	34
Figure 27: Représentation graphique du bilan hydrologique de la station de H-Grouz	35
Figure 28: Colonne litho-stratigraphique et hydrogéologique (d'après MIHOUBI. N,	
2009)	39
Figure 29: carte d'inventaire des points d'eau (Février 2020)	41
Figure 30: courbe iso-profondeur des points d'eau (Février 2020)	42
Figure 31: Carte piézométrique des points d'eau (Février 2020)	43
Figure 32: l'appareil de Multi-paramètre .	47
Figure 33 : Photometre MD600 (mesure de TH, alcalinité m et p)	50
Figure 34 : Photomètre Palintest 7500 (mesure de Chlorures)	51
Figure 35 : Carte de répartition du pH dans la zone d'étude	53
Figure 36: Carte de répartition de la conductivité électrique (CE) de la zone d'étude	54
Figure 37: Carte de répartition de l'O ₂ dissous de la zone d'étude	55
Figure 38: Carte de répartition de la salinité de la zone d'étude	56
Figure 39: Carte d'iso-teneur en (Na ⁺) de la zone d'étude	58
Figure 40: Carte d'iso-teneur en (Cl') de la zone d'étude	59
Figure 41: Carte d'iso-teneur en (HCO3 ⁻) de la zone d'étude	60
Figure 42: Carte de répartition de l'alcalinité de la zone d'étude	61
Figure 43: Carte de répartition de TH de la zone d'étude	62
Figure 44: carte de l'indice GWQI	66
Figure 45: Diagramme de Richards des eaux de la région d'étude	68
Figure 46: Diagramme de Wilcox	71

ملخص:

تواجه ولاية ميلة تحديات مستمرة في إدارة موارد المياه الجوفية المحدودة ، والتي تستخدم بشكل رئيسي للري والاستخدام التجاري والإمداد المحلي لمياه الشرب. تختلف كمية ونوعية المياه المتاحة للاستخدامات المختلفة من مكان إلى آخر ، وسيتم تقييم جودة المياه الجوفية في الحوض الفرعي لحمام قروز عن طريق دراسة الخرائط لتحديد التوزيع المكاني للمعلمات الكيميائية للمياه الجوفية.

من أجل تقييم الجودة الفيزيائية والكيميائية لمياه الحوض الفرعي، تم أخذ 24 عينة من المياه الجوفية وقياس المعلمات الفيزيائية والكيميائية المختلفة (درجة الحرارة، الناقلية الكهربائي، O_{2diss} ، PH ، O_{2diss} ، الملوحة، O_{2diss} ، الماقلية الكرارة، الناقلية الكهربائي، O_{2diss} ، O_{2d

تم اختبار مدى ملاءمة المياه الجوفية للاستخدام في إمدادات مياه الشرب والري باستخدام التقنيات القياسية. وأخيرا، تم استخدام تقنيات نظم المعلومات الجغرافية لمعالجة البيانات.

تم حساب مؤشر جودة المياه الجوفية (GWQI) على أساس المعابير الجزائرية لمواصفات مياه الشرب.

تم حساب GWQI لمحطات أخذ العينات، على أساس هذا المؤشر، تم تضمين معظم عينات المياه الجوفية في فئة المياه الجيدة إلى النوعية الرديئة.

الكلمات المفتاحية: حمام قروز ، الري ، الكيمياء المائية ، مؤشر جودة المياه.

Résumé:

La willaya de Mila est confrontée à des défis permanents dans la gestion de ses ressources limitées en eaux souterraines, qui sont principalement utilisées pour l'irrigation et les usages commerciaux, et l'approvisionnement domestique en eau potable. La quantité et la qualité de l'eau disponible pour les différents usages varient d'un endroit à l'autre, la qualité des eaux souterraines dans Le sous bassin de hammam Grouz sera évaluée au moyen d'une étude cartographique pour déterminer la distribution spatiale des paramètres chimiques des eaux souterraines.

Afin d'évaluer la qualité physique et chimiques des eaux de sous bassin ,24 échantillons d'eau souterraine ont été prélevés et différent paramètre physico-chimiques ont été mesurés (la température, la conductivité électrique, le pH, O_{2diss}, la salinité, Ca²⁺ Na⁺, Mg ²⁺, HCO₃ et Cl⁻). L'aptitude des eaux souterraines à être utilisées pour l'alimentation en eau potable et l'irrigation a été testée à l'aide de techniques standard. Enfin, des techniques SIG ont été utilisées pour traiter les données.

L'indice de qualité des eaux souterraines (GWQI) a été calculé sur la base des normes Algériennes de spécification de l'eau potable.

L'GWQI calculé pour les stations d'échantillonnages, sur la base de cet indice, la plupart des échantillons d'eau souterraine ont été inclus dans la catégorie des eaux de bonne à médiocre qualité.

Mots clés: Hammam Grouz, AEP, Irrigation, hydrochimie, indice de qualité de l'eau.

Summary:

The Mila willaya faces ongoing challenges in managing its limited groundwater resources, which are mainly used for irrigation and commercial use, and the domestic supply of potable water. The quantity and the quality of the water available for the different uses vary from one place to another; the quality of the groundwater in the sub-basin of hammam Grouz will be evaluated by means of a cartographic study to determine the spatial distribution chemical parameters of groundwater.

In order to assess the physical and chemical quality of the sub-basin waters, 24 groundwater samples were taken and different physic-chemical parameters were measured (temperature, electrical conductivity, pH, O_{2diss}, salinity, Ca²⁺, Na⁺, Mg²⁺, HCO₃⁻ and Cl⁻).

The suitability of groundwater for use in drinking water supply and irrigation has been tested using standard techniques. Finally, GIS techniques were used to process the data.

The groundwater quality index (GWQI) was calculated on the basis of the Algerian standards for the specification of drinking water.

The GWQI calculated for the sampling stations, on the basis of this index, most of the groundwater samples were included in the category of good to poor quality water.

Keywords: Hammam Grouz, DWS, Irrigation, hydrochemistry, water quality index.

Introduction générale :

Les eaux souterraines sont l'une des ressources naturelles limitées les plus importantes pour l'eau douce sur terre, son importance s'est accrue car les gens en dépendent pour l'agriculture, l'industrie et la consommation domestiques.

La qualité des eaux souterraines devient une préoccupation majeure de différents secteurs d'hydraulique afin de bien gérer et protéger cette source vitale et pour cette raison plusieurs études sur la qualité des eaux souterraine ont été faites par des chercheurs et des spécialistes qui ont essayé de quantifier la qualité de ces eaux et ont étudié l'hydrogéologie et l'influence de différentes formations géologiques sur la qualité des eaux souterraines.

L'approvisionnement des habitants du bassin de Hammam Grouz dépend principalement des ressources en eaux souterraines et du fait d'être une zone rurale. Il est également consommé en irrigation. Pour mieux connaître la qualité de l'eau, nous avons réalisé une étude hydrochimique où cette étude est basée sur la réalisation des analyses physiques et chimiques. L'étude que nous présentons dans ce mémoire s'articule sur deux grandes parties:

La première partie est une synthèse bibliographique contient :

Le cadre géographique dans lequel nous avons commencé par une description de notre région d'étude ou nous avons présenté la situation géographique.

En deuxième lieu Le cadre géologique qui présenter les caractéristiques géologiques. Un cadre hydro climatologique qui sera consacré à l'étude des différents facteurs climatologiques qui nous donnerons une idée sur le climat qui règne notre région d'étude, par la suit un bilan hydrique sera calculé en s'appuyant essentiellement sur les relevés pluviométriques et les températures.

Le cadre hydrogéologique fera l'objet de la quatrième étape de présentation de ce mémoire qui sera consacré à la présentation des caractéristiques de la nappe Mio-Plio-Quaternaire ,et particulièrement le sens d'écoulement des eaux souterraines .

La deuxième partie est la partie expérimentale dans laquelle nous avons présenté les trois grands axes de notre étude proprement-dit

Une étude hydrochimique sera présentée sur la base des analyses physico-chimiques qui ont été réalisé durant une compagne d'échantillonnage en Février 2020, une étude détaillée de ces paramètres et des résultats ferons l'objet de ce chapitre.

La deuxième étape de présentation dans cette partie est l'aptitude des eaux du bassin de hammam grouz à l'alimentation en eaux potable et l'irrigation et cela sur la base des différents paramètres et analyses que nous présenterons avec une clarté.

Le calcul de l'indice de qualité des eaux souterraines est un paramètre très important qui nous donne une idée sur la possibilité de l'utilisation des eaux souterraines pour l'AEP.

Synthèse bibliographie

Cadre Géographique

Introduction:

Ce chapitre vise essentiellement à mettre en exergue les caractéristiques géographiques de la région de Mila et notre zone d'étude le sous bassin de hammam Grouz.

1. Localisation géographique :

> de la région de Mila :

La wilaya de Mila est située à l'Est algérien, à 400 km de la capitale Alger. Elle s'étend sur une superficie de 3407,60 km². Elle est limitée au nord par les wilayas de Jijel et Skikda, à l'Est par la wilaya de Constantine, à l'Ouest par la wilaya de Sétif et au Sud par la wilaya de Batna et d'Oum El Bouaghi [1].

Figure 01 : Carte de découpage administratif de l'Est Algérien (in : ATMANIA, Thèse de doctorat, 2010).

> De la zone d'étude :

Le sous bassin du barrage de Hammam Grouz, partie intégrante du bassain kebir Rhumel s'étale sur une superficie de 1130 km² est drainé par la haute vallée du Rhumel. Le sous bassin est caractérisé par l'existence du barrage Grouz qui est un barrage de type-poids, est implanté dans une cluse calcaire karstique, à l'aval de laquelle exultent les sources du Hammam, à proximité de l'agglomération d'Oued Athmania.

1

Le secteur étudié situé dans le Nord-Est algérien, fait partie de la zone amont du grand bassin versant de kébir-Rhumel (code : 10), portant le code (10-03). Il est limité par le sous bassin de l'Oued Kebir-Endja au Nord (code : 10-02), le sous bassin de l'Oued Rhumel Seguin à l'Est (code : 10-04), le bassin versant Soummam à l'Ouest (code : 15) et le bassin versant des Hautes plaines sétifo-constantinoises au Sud (code : 07) [2].

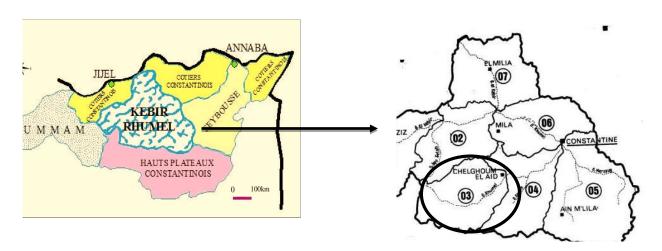


Figure 02 : Localisation du de la zone d'étude ; Bassin hammam Grouz.

2. Description du bassin versant Rhumel :

Un bassin est défini comme une entité topographique et hydrologique dans laquelle se produisent des entrées d'eau (sous forme de précipitation et des apports souterrains issus d'autres bassins où l'écoulement s'effectue suivant un système de pentes et de drains naturels en direction de l'exutoire ou embouchure du cours d'eau collecteur [3].

Ouest de Belaa. Il draine, suivant une orientation Sud-Ouest—Nord-Est, les sous-bassins semiarides des Hautes Plaines (Tadjenanet, Chelghoum Laid) puis franchit le Rocher de Constantine en s'encaissant profondément (200 m de dénivellation) dans des gorges calcaires (profil en long, figure 03). Ensuite, il s'écoule en direction Nord-Ouest et plus au Nord, aux environs de Sidi Merouane, il conflue avec oued Enndja qui draine la partie occidentale du bassin. L'oued Kébir résultant de la jonction des deux cours d'eau (Rhumel et Enndja), franchit vigoureusement la chaîne numidique, bien exposée aux vents pluvieux en provenance de la Méditerranée. Puis, il traverse les massifs très arrosés de la Petite Kabylie d'El Milia, avant de s'écouler dans une large vallée vers la mer [4].

2

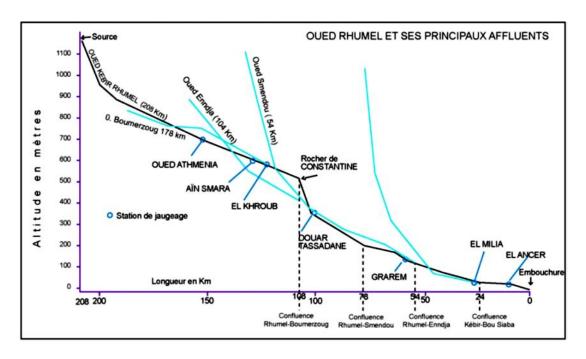
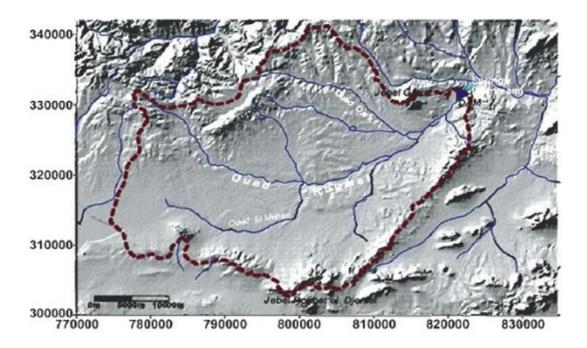



Figure 03: Profil en long de l'Oued Kébir-Rhumel (d'après Mebarki A., 1982).

2.1. Orographie:

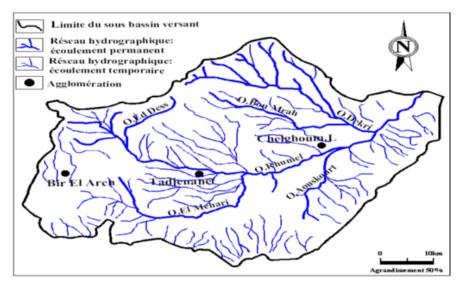

Les reliefs du secteur sont abrupts et isolés, avec à l'extrême Est djebel Grouz qui culmine à 1187 m, au Sud Est Dj Toukouia (1192m), au Sud-Ouest Dj Tnoutit (1092m) et au Nord – Ouest Dj Ed Dess (1212m). Quant aux plaines de Tadjenanet et Chelghoum Laid, elles ont une altitude moyenne se situant autour de 850 à 900 m, et elles sont souvent marécageuses au centre des dépressions (présence de merdjas) attestant de la présence d'eau souterraine épidermique [5].

Figure 04 : le bassin Rhumel-amont, vue à traverse le modèle numérique de terrain (d'après Mihoubi Naouel et Mebarki Azzedine juin 2017).

2.2. Réseau hydrographique :

Le long de son parcours et avant d'atteindre la cluse de Hammam Grouz, Oued Rhumel reçoit plusieurs affluents : Oued-Dekri, Oued El Mehari, Oued Timeslit, Oued Aouskourt, (tous ces oueds sont caractérisés par un écoulement permanant, la relation nappe oued est certainement possible).

Figure 05: Réseau hydrographique du sous bassin du Haut Rhumel à Oued .Atménia (d'après Mihoubi Naouel.2009).

Oued Rhumel prend sa source dans les monts de Ferdjioua (Mila), puis pénètre sur les plateaux de Constantine, où sa vallée décrit une série de sinuosités. Il se resserre ensuite très

sensiblement au nord de Aïn Smara où il forme alors une boucle presque fermée et s'infiltre entre les tables calcaires du Djebel El Hadjar et du plateau de Aïn El Bey en conservant une direction générale sud-ouest/nord-est.

Son principal affluent est oued-Boumerzoug qui prend sa source dans la région d'Aïn M' lila dont les eaux sont largement utilisées pour l'irrigation, et l'important groupement thermal d'Ain Fesguia situé vers la tête de la vallée. Il a été capté pour alimenter en eau potable la ville de Constantine, bâtie au confluent de Boumerzoug et du Rhumel.

Autre affluent, Oued Dekri, au niveau de la ville de Chelghoum Laïd, à 50 km au sud-ouest de Constantine [39].

2.3. Climatologie:

Les facteurs climatologiques sont dans l'ensemble des variables aléatoires permettant d'expliquer quantitativement les variations du régime hydrologique.

La région d'étude, est soumise à des influences méditerranéennes et sahariennes, Le climat de cette zone est de type continental, semi-aride avec un hiver pluvieux et un été sec et chaud.

2.3.1. La pluviométrie :

La pluviométrie est faible et irrégulière durant l'année, elle est l'ordre de 213mm /an, sur le bassin, la pluviométrie croit du sud au nord, les pluies varient en moyenne de 318mm au sud du bassin à 1000 mm au nord (ANBT-CSM, 2004).

2.3.2. La température :

La température est parmi les facteurs écologiques les plus importants du climat. Contrairement aux précipitations, les températures varient généralement peu. En 2013, la température moyenne mensuelle la plus élevée est enregistrée au mois de juillet (26°C), pendant que la plus faible est celle de février (5,9°C). Ces valeurs sont données par l' ANRH de Constantine.

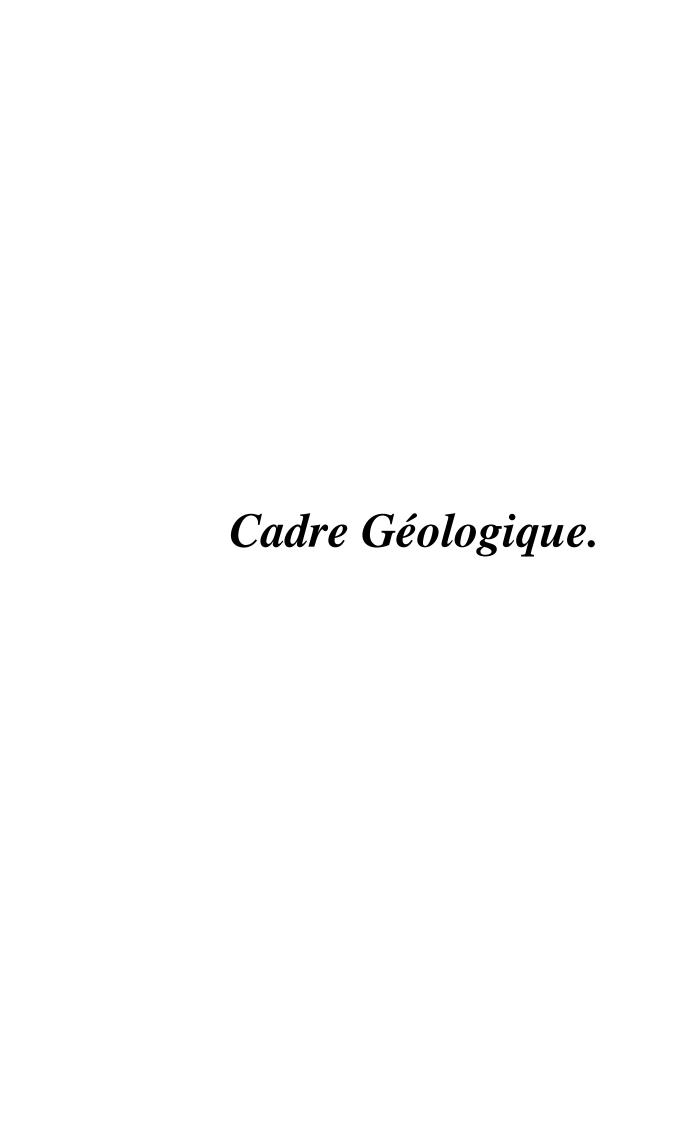
2.4. Végétation :

Le caractère continental du climat conditionne le couvert végétal : les plaines sont Vouées aux céréales (orge et blé) et aux cultures maraichères (en irrigué) ; la zone de prairies naturelles se réduit à la vallée du Rhumel, alors que les sommets des massifs sont complètement dénudés seuls quelques maquis et broussailles couvrent les piémonts des Djebels.

2.5. Habitat :

La région montre une répartition irrégulière des habitations celles-ci sont liées aux conditions de vie, en particulier la présence de l'eau qui est une source de vie pour les êtres vivants. Pour cela on trouve des différents types de répartitions d'habitats :

- ✓ Un habitat condensé au niveau des villes et des villages comme la ville de Tadjenanet; Chelghoum laid…etc.
- ✓ Un habitat semi disposé situé au niveau des plaines nous forme des Mechtas et douars.
- ✓ Un habitat dispersé sous forme des fermes ou des maisons isolées.


2.6. L'agriculture :

La région est connue par une irrigation mixte, traditionnelle (gravitaire) et irrigation moderne (par canaux d'aspersion) selon le type des cultures .les plus cultivés sont les Céréales et les cultures maraîchères sont les principales activités des périmètres irrigués.

Conclusion:

Le secteur d'étude appartient en grande partie au bassin du Kébir Rhumel avec :

- Une topographie assez plane dans le sous bassin Rhumel amont et des reliefs plus ou moins élevés représentés par les djebels : Ed Dess, Grouz...
- Un climat semi-aride marqué par deux saisons bien distinguées.
- Un réseau hydrographique dense de type exoréique drainé principalement par Oued Rhumel et ses affluents (Oued Dekri, Oued El Mehari ...) pouvant alimenter la nappe d'eau en période de crue.

Introduction:

L'étude géologique d'une région donnée permet de reconnaitre et de préciser les différentes formations rencontrées ainsi que leur contexte structural et par conséquent de délimiter l'extension des formations perméables et imperméables, à partir de l'étude des affleurements ainsi que les données des sondages (logs litho stratigraphiques, logs géophysiques, sismique...).

1. Cadre géologique régional :

Le bassin du Haut Rhumel (ou Khébir amont) appartient au domaine externe de la chaine Alpine d'Algérie Nord Orientale qui se subdivise en trois domaines paléogéographiques distincts qui sont du Nord au Sud :

- Le domaine interne.
- Le domaine externe.
- le domaine de l'avant pays.

1.1. Domaine interne:

Il correspond au socle cristallophyllien et sa couverture sédimentaire carbonatée (dorsale kabyle).

Socle kabyle : correspondant à un ensemble des formations cristallophylliennes d'âge paléozoïque comprenant deux principaux ensembles : Un ensemble Gneissique à la base et un ensemble schisteux au sommet [6].

- ✓ Les formations de l'Oligo-Miocène kabyle (OMK) qui forment la couverture sédimentaire transgressive du socle kabyle constituées, surtout, formations détritiques (Conglomérat, Grès micacés et Pélites) [7].
- ✓ **Dorsale kabyle :** Elle forme la couverture méridionale du socle kabyle. Il s'agit d'une chaîne calcaire marquant la limite entre le socle kabyle au Nord et les Zones telliennes au Sud. Elle est subdivisée en trois unités [6] qui sont du Nord au Sud :
- **Dorsale interne :** elle comporte des séries allant de Permo-Trias au Néocomien et représentée par des calcaires néritiques massifs et fossilifères.
- **Dorsale médiane :** elle est caractérisée surtout par la constance des dépôts marneux du Turonien du Lutétien et une lacune stratigraphique du Crétacé moyen.
- **Dorsale externe :** elle est constituée essentiellement de calcaire dolomitique du Jurassique inférieur et par un Crétacé supérieur et Eocène inférieur détritique.

- ✓ Les formations de types flysch : Ce sont des formations sédimentaires allochtones d'âge Crétacé à Eocène [8]. Elles sont classiquement subdivisées en:
 - Flysch Mauritanien : Les formations du flysch mauritanien sont épaisses, elles sont caractérisées par des formations allant du Néocomien au Lutétien.
 - Flysch Massylien : Ces flyschs comportent une série qui va du Crétacé inférieur à l'Eocène.
- Flysch Numidien : Le Flysch Numidien occupe une position structurale allochtone la plus haute de l'édifice alpin, il est représenté par une série argilo-gréseuse d'âge Oligocène – Miocène basal. Il est formé par des argiles à la base surmontées par des grès et se termine par des marnes.

1.2. Domaine externe :

Constitue la partie de la zone d'étude au Nord :

- Les unités ultra-telliennes : Les unités ultra-telliennes sont largement développées dans le Constantinois. Elles sont déposées sur sa marge septentrionale et sont caractérisées par des faciès micritiques (fins) clairs à dominante marneuse et marnocalcaire d'âge Crétacé à Eocène.

- Les unités telliennes senso-stricto :

Elles regroupent d'après Keiken, les unités épi, méso et infra telliennes et qui correspondent à des formations carbonatées et marneuses allant du Jurassique à l'Oligocène [9].

- les unités pénitelliennes : Caractérisées par des faciès intermédiaires entre les dépôts de plateforme (calcaire et marno-calcaire du néritique) et des dépôts de bassins (marnes du domaine tellien) et sont surtout d'âge crétacé.

1.3. Domaine de l'avant pays :

Il correspond principalement aux formations calcaires et marneuses de la plate-forme néritique constantinoise. Il comporte l'avant pays allochtones de l'avant pays autochtones.

Série de l'avant pays Allochtone : D'Ouest à l'Est, il comporte :
 Les unités Sud-Sétifiennes (ensemble Allochtone Sud sétifièn) : Ces unités ont été décrites par Vila (1980), elles sont caractérisées par des séries sédimentaires mésozoïques de plate-forme [10].

- Les unités néritiques constantinoises (nappe néritique Constantinoise) : Ces unités sont caractérisées par des séries carbonatées épaisses, déposées sur une plate-forme faiblement subsidence (nappe du Djebel Sattor et unités éocènes).
- Les unités de Sellaoua : Elles affleurent au pied des séries néritiques constantinoises chevauchantes. Et sont surtout constituées d'une épaisse série d'argiles, de marnes et de grès fins datant du crétacé inférieur jusqu'à l'Eocène inférieur [11].

> Série de l'avant pays autochtone :

Elle est représentée par des séries sédimentaires Mésozoïques épaisses et très plissées plus au sud.

1.4. Les formations post-nappes :

Elles regroupent l'ensemble des dépôts postérieurs au Burdigalien (Miocène inférieur). Il s'agit des formations continentales et marines transgressives et discordantes sur les formations et les structures anté-Burdigaliennes.

Elles regroupent deux ensembles:

- Un ensemble Nord, représenté par les bassins côtiers dont le bassin de Mila représentants les bassins les plus méridionaux qui se caractérisent par des formations marines au Nord et des formations laguno-lacustre au Sud.
- **Un ensemble Sud,** représenté par des bassins situés au-delà des limites méridionales et orientales actuelles des massifs calcaires de la plate-forme constantinoise dont on trouve, le bassin du haut Rhummel, et qui surtout comblés de formations détritiques mio-plio-quaternaires.

2. Cadre géologie locale :

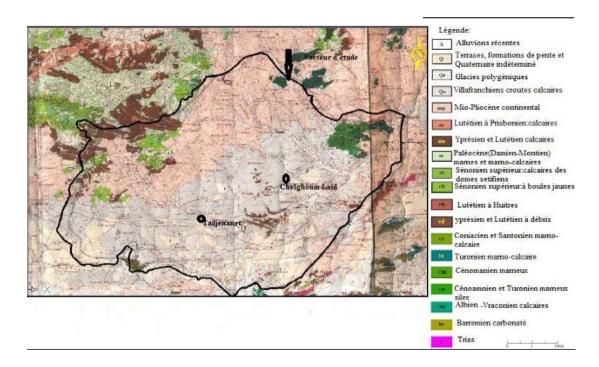
2.1. Les formations quaternaires :

➤ Alluvions récentes et anciennes (A): Les alluvions récentes et anciennes formées de banquettes de limons gris de graviers souvent inondés en dehors de la période d'étiage pour les premières, et des alluvions caillouteuses anciennes pour les secondes, sont souvent bien développées tout au long de la vallée du Rhumel et de l'oued Dekri mais elle sont très peu épaisses (<10m).

➤ Villafranchien (Qc):

Il s'agit d'une couverture limoneuse mélangée de fragments calcaire, résultant de la décalcification de l'assise pliocène par ruissèlement des eaux superficielles ; il est associé au Pliocène [12].

2.2. Les formations tertiaires :


Les formations tertiaires sont de faible épaisseur (20 à 40m) et sont surtout, détritiques (marnes noires, calcaires gréso-glauconieux à niveau microbréchique). Notant que le passage du secondaire au Tertiaire est continu.

- ➤ Le Mio-Pliocène continental (mp) : Les terrains du Mio-Pliocène occupent de vastes espaces et sont représentées par des dépôts détritiques (conglomératiques et cailloutis, sables et limons rougeâtres). Sur l'axe du bassin néogène Mila-Constantine l'épaisseur de ces formations est d'environ 500 à 600 m, alors que sur la périphérie de ce bassin, les épaisseurs dépassent rarement les 300m.
- **Eocène moyen et supérieur (Lutétien supérieur Priabonien (es))**: Il est représenté par des marnes jaunes à banc calcaires marneux d'une épaisseur d'environ 300 m.
- Eocène inférieur et moyen (Yprésien supérieur-Lutétien (em)) : il est formé de calcaires marneux à lits de silex et de calcaires cristallins en plaquettes très fracturés et atteignant environ 280 m (en particulier dans les synclinaux ou ils constituent des aquifères très productifs).
- ➤ Paléocène (Danien-Montien (d, ec)) : Concordant sur le Maastrichtien, il comporte des marnes noires ou jaune avec des alternances des marnes grises et des marnes calcaires ou calcaires marneux [12].

2.3. Les formations Secondaires :

- ➤ Crétacé : La série du Crétacé est très épaisse (environ de 2000 m), elle comporte :
 - Sénonien (C6c): Il comprend essentiellement le Maastrichtien(C6) et le Campanien(C5) et il est formé par des marnes noires, marnes calcaires et de lentilles calcaires avec intercalations de certains niveaux de calcaires lumachélliques. Leur épaisseur ne dépasse pas les 200 m.
 - Cénomanien et Turonien (cn) : sont représenté par des calcaires massifs atteignant les 300 m d'épaisseur au niveau de Dj Grouz. Le sommet de la série appartient au Turonien marno-calcaire.
 - Albien et Vraconie (an): au niveau de Dj Grouz l'Albien et le Vraconien sont représentés sous la barre carbonatée cénomanienne, débutant par des marnes avec intercalations marno-calcaires. Le terme sommital est formé de dolomies macro-cristallines.

- Aptien (n5) : Il est composé de calcaires avec intercalations marneuses en petits bancs. Notant que dans la région d'étude, l'Aptien n'affleure pas.
- Barrémien (n4): Il est constitué d'une série composée de calcaires, de dolomies et de grés avec de minces intercalations argileuses ou marneuses. Il affleure au niveau du Dj Tnoutit, alors qu'au niveau de Dj Grouz il est caché en profondeur.
- **Jurassique** (**J**): Le Jurassique est essentiellement dolomitique et n'affleure pas dans notre terrain d'étude, mais il se situe probablement en profondeur cat on le rencontre au Sud-ouest du Dj Youssef.
- **Trias(t)**: Le Trias est le terrain le plus ancien, il est constitué essentiellement d'argiles rouges, gypses avec quelques cristaux de quartz et des dolomies. Il affleure au niveau de Dj Dess et de Dj Toukouia [12].

Figure 06: Carte géologique du sous bassin versant Rhumel Amont extraite des cartes géologiques au 1/200000 Sétif-Constantine (Vila, 1977).

3. Tectonique:

La chaine alpine d'Algérie s'est surtout structurée au cours des phases tectoniques tertiaires. Deux phases principales se distinguent :

✓ Une phase tectonique anté-miocène de style cassant, Deux phases principales sont reconnues :

La phase Fini Lutétienne :

Elle correspond à la phase atlasique, la plus importante en Algérie [13]. Deux grandes directions d'accidents caractérisent cette phase l'une NS et l'autre NWSE et des plissements de direction NE-SW.

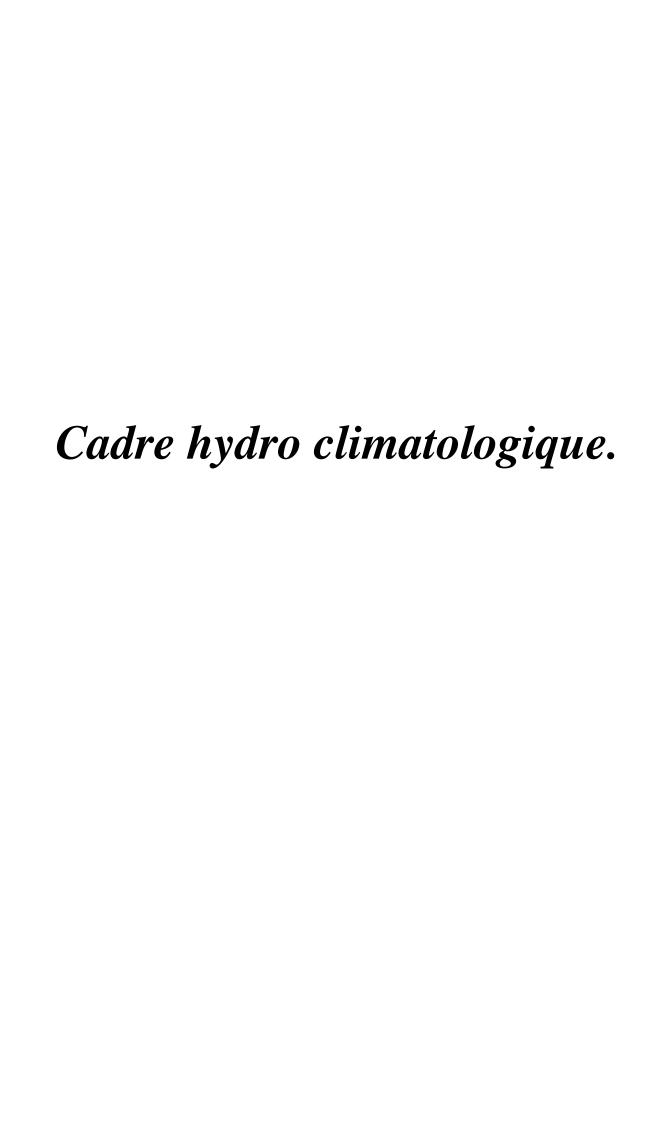
➤ La phase Miocène :

Elle est caractérisée dans toute l'Algérie Nord orientale par un raccourcissement de direction N-S donc phase compressive. Elle est responsable des vastes recouvrements anormaux (nappes de charriage) associés des décrochements NW-SE et NE-SW. Le résultat de cette tectonique a donné lieu à un dispositif structural assez complexe, caractérisé par la superposition du socle kabyle sur la couverture sédimentaire, formé par les nappes de flysch charriés sur les formations telliennes. Selon J. M. Vila (1980), cette phase serait responsable de la genèse de la « nappe néritique Constantinoise », des unités allochtones des Sellaoua et de l'ensemble Sud Sétifien ainsi que, des unités méridionales à nummulites.

✓ Une phase tectonique post-miocène de style souple :

Deux phases tectoniques mésozoïques localisées sont reconnues la première au passage Jurassique-Crétacé et la seconde au Crétacé [14].

- ➤ La phase du Jurassique supérieur : souligne la fin d'une période distensive et subsidente qui caractérisait le Jurassique inférieur et moyen. L'importance de cette phase tectonique est surtout attestée par des discordances angulaires qui marquent la base du Crétacé inférieur [13].
- ➤ La phase Anté-Sénonienne : qui correspond à une phase de compression associée à des plis E-W. Les structures issues de cette phase, sont souvent déversées vers le Sud et sont liées à des discordances, des lacunes et des intercalations détritiques [15].


Conclusion:

A travers l'étude géologique, nous définissons les horizons aquifères suivent :

- Les formations du recouvrement Mio-Plio-Quaternaire : Cailloutis, fragments de calcaire alluvions des plateaux alluvions anciennes des vallées et les alluvions actuelles, c'est l'aquifère superficiel (objet de notre étude) en communication avec les eaux superficielles (oueds-chaabat...) et avec les aquifères sous-jacents.
- Les formations de l'Eocène : Ensemble calcaire marneux à lits du silex et phosphates plus au moins fissurés.

Cadre géologique

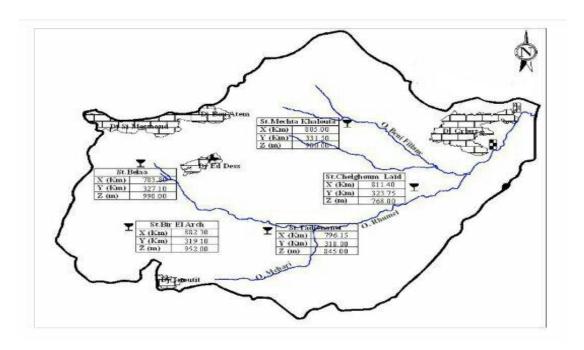
- Formations de Crétacé supérieur : Constitué essentiellement de marnes et de carbonates fissurés qui sont potentiellement aquifère ; avec l'aquifère de l'Eocène (souvent en relation) constituent l'aquifère intermédiaire.
- Formations de Crétacé inférieur : Ensemble généralement calcaire épais découpé en compartiment par de nombreuses failles. Aquifère profond en relation avec le Jurassique dans les hautes plaines Sétifienne.

Introduction:

Les conditions climatiques du bassin sont liées à sa situation géographique, le caractère de circulation atmosphérique, et par le relief de son territoire. La caractérisation du climat est établie en fonction des observations fournies par un réseau de mesures pluviométriques, hydrométriques et climatologiques installé au sein de la région d'étude.

L'étude hydro climatologique, basée sur les données des précipitations et des températures, nous permet de donner un bref aperçu sur leurs répartitions dans le temps et dans l'espace. Elle nous a permet de définir le bilan hydrique en se basant sur l'étude des paramètres climatiques et par conséquent de déterminer le taux d'infiltration nécessaire à l'alimentation et au renouvellement des réserves des aquifères.

1. L'équipement hydro-pluviométrique d'Oued Rhumel amont :


La zone d'étude est équipée par des nombreuses stations météorologiques : station Chelghoum-Laïd, station Belaa, station Tadjenanet, station Bir El Arch et de Hammam Grouz.

Les stations citées, à l'exception de celle de Hammam Grouz, offrent des données de Précipitations d'une période de 30 ans (1976/77-2006/07). La station de Hammam Grouz dispose tant pour les précipitations que pour les températures, d'une période de 21 ans (1987/88-2007/08).

Le tableau 01 présente les différentes stations fonctionnelles retenues. Leur répartition est donnée dans la figure 07.

Tableau 01: Coordonnées des stations et données disponibles.

Stations	Code	Coordonnée Lambert		Altitude (m)	Donnée disponibles	Année d'observation
		X (Km)	Y (km)			
Grouz	100315	821.99	332.08	700	P(mm)/T(°C)	87-88/07-08
Tadjenanet	100303	796.15	318.00	845	P (mm)	76-77/06-07
Chelghoum Laïd	100312	811.40	323.75	768	P (mm)	76-77/06-07
Bir El Arch	100306	782.30	319.10	952	P (mm)	76-77/06-07
Belaa	100302	783.15	327.10	990	P (mm)	76-77/06-07

Figure 07: Situation des stations hydro-pluviométriques dans le bassin versant de l'Oued Rhumel-amont.

2. Etude des paramètres climatiques :

2.1. Précipitations :

Une des principales caractéristiques du cycle hydrologique est l'état du mouvement de l'eau depuis la surface au réservoir. Le début du cycle correspond aux eaux atmosphériques qui précipitent à la surface sous forme liquide et solide. Ainsi la pluie est un facteur climatique important qui conditionne l'écoulement superficiel et l'enrichissement des ressources des aquifères.

2.1.1. Précipitations annuelles moyennes :

Sur la base des données disponibles sur une période de 30 ans (1976/77-2006/07) concernant cinq stations, et malgré les écarts prononcés entre les valeurs des différentes stations, il s'avère que l'année extrêmement pluvieuse est commune à la quasi-totalité des stations : elle correspond à l'année 2002/03, avec une valeur moyenne oscillant autour de 767.38 mm (tableau 2).

L'année extrêmement sèche, commune à la station de Tadjenanet et celle de Belaa, correspond à l'année 2000/01 avec des valeurs de l'ordre de 208.8 mm pour la première et 136.5 mm pour la seconde. Alors que pour les stations de Bir El Arch, de Chelghoum Laïd, il s'agit respectivement des années 1982/83, 1983/84 et 1993/94.

Tableau 02: Précipitations moyennes aux différentes stations.

A NINITETE (CA . 4°	Bir El	Chelghoum	T 1 1	D.1.	TI C
ANNEE/Station	Arch	Laïd	Tadjenanet	Belaa	H.Grouz
1976/77	303.0	374.1	415.8	372.6	//
1977/78	255.2	269.3	254.8	305.8	//
1978/79	289.7	309.7	285.4	363.2	//
1979/80	329.8	299.1	310.3	263.7	//
1980/81	244.3	323.3	291.1	306.6	//
1981/82	230.3	442.4	349.4	389.5	//
1982/83	158.6	267.9	231.4	242.6	//
1983/84	198.0	159.3	290.4	226.8	//
1984/85	468.4	511.4	439.0	404.2	//
1985/86	420.8	390.7	381.2	305.3	//
1986/87	409.0	452.6	363.5	489.2	//
1987/88	185.4	369.2	279.2	230.0	351.0
1988/89	357.0	458.9	379.1	276.7	292.5
1989/90	322.6	369.2	291.0	398.0	273.3
1990/91	250.0	498.2	361.2	534.2	417.5
1991/92	324.6	543.2	433.7	527.4	513.5
1992/93	331.7	358.8	350.8	275.8	147.6
1993/94	196.6	277.9	240.8	192.6	245.2
1994/95	291.1	449.4	332.4	275.5	425.7
1995/96	386.4	503.1	540.4	236.7	512.0
1996/97	198.3	213.0	241.0	181.0	264.8
1997/98	320.7	407.1	417.1	264.6	470.9
1998/99	285.9	394.7	378.2	394.9	278.6
1999/00	315.0	306.6	373.8	478.8	415.5
2000/01	170.4	219.4	208.8	136.5	229.7
2001/02	250.5	262.1	316.1	275.2	278.4
2002/03	541.4	603.1	597.0	636.7	668.8
2003/04	419.7	541.9	547.9	575.1	502.1
2004/05	229.8	391.1	381.8	471.5	550.7
2005/06	311.4	363.0	342.8	407.5	412.4

2006/07	260.2	320.4	331.6	503.4	426.3
2007/08	//	//	//	//	335.4

La variation interannuelle des précipitations dans les différentes stations nous a permis de tracer les diagrammes suivants :

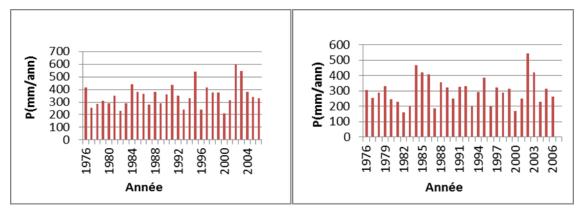


Figure 08: Station de Tadjenanet (1976/77 - 2006 - 07)

Figure 09: Station de Bir El Arche (1976/77 -2006-07)

On remarque, pour la station de Tadjenanet, pour que l'année 2002-2003 enregistre la plus grande valeur de précipitation qui est de l'ordre de 595 mm et pendant la même année 2002-2003 la station de Bir El Arche enregistre la plus grande valeur 541mm.

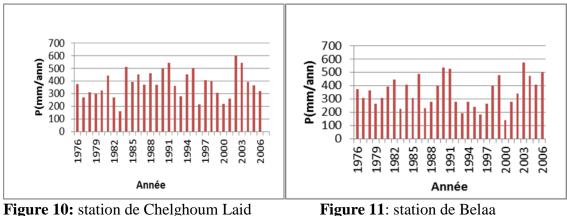


Figure 10: station de Chelghoum Laid

(1976/77 -2006-07).

(1976/77 - 2006 - 07).

Ce qui concernes les valeurs extrêmes de précipitations enregistrées dans la station de Cheghoum Laid on trouve que le maxima des précipitations est observé durant la période 2002-2003 avec une valeur de 603 mm, pour la même période la station de Belaa à enregistré sa valeur extrême qui est de l'ordre de 636 mm par contre les minimas pour les deux stations enregistrés dans la même période 1983-1984 sont respectivement 159.3 mm et 226 mm.

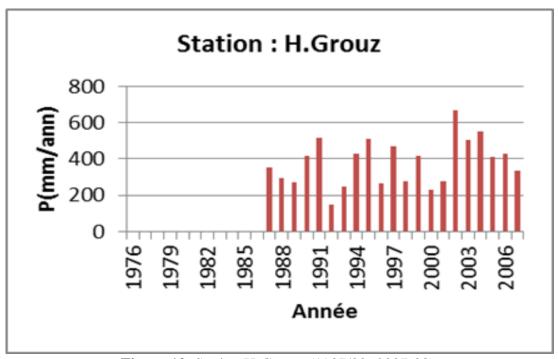


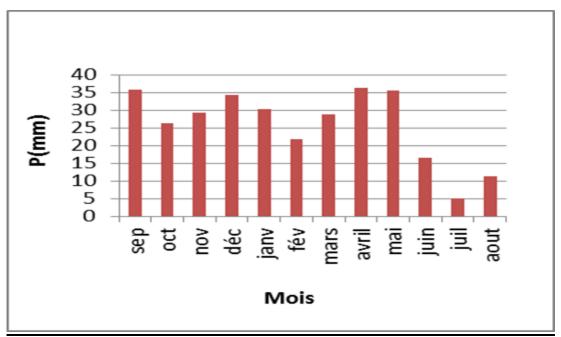
Figure 12: Station H-Grouz (1987/88 -2007-08).

La série d'observation enregistré au niveau de la station de grouz qui s'étale sur une période de 21 ans nous permettrons d'observer les minimas et les maximas des précipitations, donc la plus grande valeur des précipitations a été enregistré en 2002-2003 avec une valeur de 668.8 mm et la plus petite valeur en 1992-19993 avec une valeur de 147,6 mm.

2.1.2. Précipitations mensuelles et saisonnières moyennes :

Le tableau ci-dessous résume les valeurs des précipitations mensuelles et saisonnières pour les cinq stations.

Tableau 03 : Précipitations moyennes mensuelles et saisonnières.


Stations	Unité	Αι	ıtomn	ie	<u> </u>	Hiver		Printemps			Ėté		
Stations	Office	Sept	Oct	Nov	Déc	Janv	Fév	Mars	Avril	Mai	Juin	Juil	Aout
			Pé	riode	de 30 aı	ns (197	6/77-20	006/07))				
	mm	29.73	25.1	32.1	52.0	40.9	29.9	40.8	40.8	44.4	17.5	8.2	12.6
Chelghoum	mm		87.0			122.8			125.97			38.4	
	%	23.2			32.8			33.7			10.3		
	mm	35.8	26.2	29.3	43 ,9	36,1	26	31,74	38,8	40,6	19,2	8,6	14,1
Tadjenanet	mm		91.4			106.0		111.1			44.9		
2 aajonanee	%	25.9			30.0			31.4			12.7		

Cadre hydro climatologique

	mm	33.5	21.1	24.1	34.2	30.2	21.7	28.7	36.2	2 35.6	16.5	5.2	11.3
Bir El Arch	mm		78.7			86.2			100.5	5		33.	1
	%		26.4			28.9			33.7			11.	1
	mm	25.7	26.0	34.4	41.0	44.3	27.6	5 38.4	41.6	5 41.5	12.	3.5	17.0
Belaa	mm		86.1			112.8			121.5	5		32.:	5
Delaa	%		24.4			32.0			34.4			9.2	,
			P	ériode	de 20 a	ans (198	37/88-2	006/07)					
	mm	32.3	24.4	36.3	56.7	45.5	29.2	35.4	40.0	44.7	20.8	8.8	15.7
Chelghou	mm		93.1			131.4			120.0	7		45.4	
m	%		24.9			35.1			32.09)		12.1	2
	mm	38.5	26.4	31.8	47.7	38.7	24.0	28.3	37.8	41.0	23.2	9.7	20.0
Tadiananat	mm		96.7	ı		110.5			107.1	I		52.8	3
Tadjenanet	%		27.4		31.3				30.3			14.9)
	mm	31.8	16.9	23.6	35.74	32.39	21.52	2 26.4	36.0	36.7	17.2	7.2	12.1
Bir El	mm		72.3			89.65	<u> </u>		99.1			36.4	ļ.
Arch	%		24.2			30.03			33.2			12.2	2
	mm	25.5	21.0	36.4	44.49	52.11	27.5	36.5	39.6	45.2	11.4	3.9	19.9
Belaa	mm		82.9			124.1			121.3			35.3	3
Delaa	%		23.5			35.16			34.4			9.99)
	mm	36.8	24.9	38.7	52.45	54.44	29.27	34.7	41.2	42.6	14.2	4.7	11.5
Grouz	mm		100.4			136.16			118			30.4	1
Grouz	%	28.5		38.58				33.6		8.6			
					e de 21 ans (1987/88-20			007/08)					
	mm	37.3	25.0	37.8	52.6	52.6	28.2	35.0	40.6	43.9 1	3.7	5.4	11.5
Grouz	mm	100.1			132.9			119.5			30.6		
GIVUL	%		26.1			34.7			31.2			8.0	
			20.1								•		

Variation mensuelle des précipitations pour chaque station :

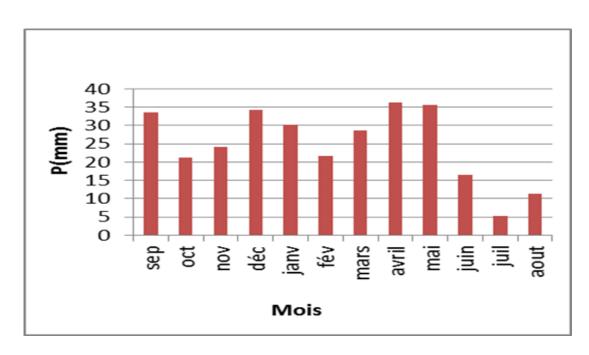

> Station de Tadjenanet :

Figure 13: Station de Tadjenanet (1976/77 – 2006/07).

- La figure 13 montre que le mois le plus pluvieux est celui de Décembre avec une précipitation de 43.9 mm, tandis que le mois le plus sec est celui de Juillet avec une moyenne de précipitation de 8.6mm.

> Station de Bir Al Arch :

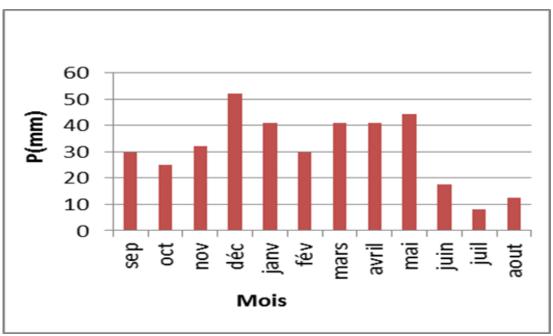


Figure 14: Station de Bir Al arch (1976/77 – 2006/07).

Cadre hydro climatologique

- Selon la figure 14, on remarque que le mois le plus pluvieux est celui de Avril 36.2mm et le mois le plus sec est celui de juillet avec une précipitation de 5.2 mm.

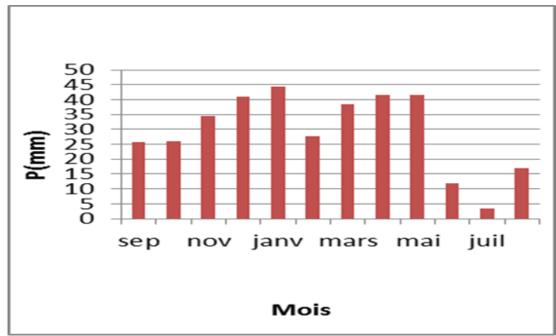

> Station de Chalghoum Laid :

Figure 15: Station de Chalghoum laid. (1976/77 – 2006/07).

D'après la figure 15, on remarque que le mois le plus pluvieux est celui de Décembre avec une moyenne de précipitation de l'ordre de 52.00 mm, et le mois le moins pluvieux dans cette station est celui de Juillet avec une précipitation de 8.20 mm.

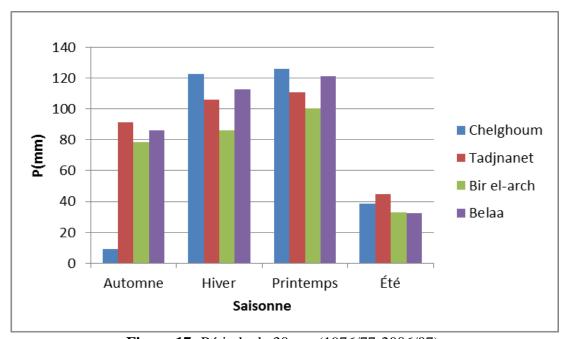

> Station de Belaa :

Figure 16: Station de Belaa (1976/77 – 2006/07).

- figure 16 montre une moyenne de précipitation dans le mois le plus pluvieux qui est le mois de Janvier avec une valeur de 44.3mm, et le mois le plus sec est celui de juillet avec une précipitation de 3.5mm.

Variation saisonnière des précipitations pour chaque station :

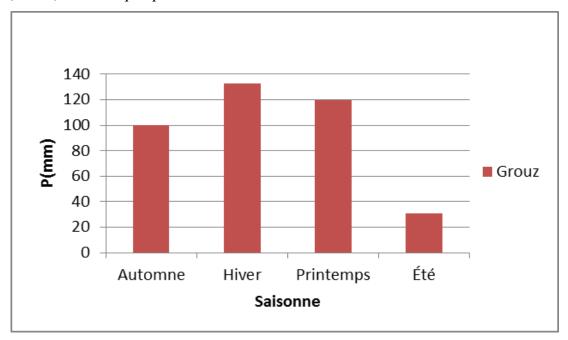


Figure 17: Période de 30 ans (1976/77-2006/07).

- La figure 17 montre la variation saisonnière des précipitations pour chaque station dispersée sur notre bassin, on remarque que :

- En Automne les précipitations les plus élevées ont été enregistrées à la station de tadjnanet, tandis que les plus faibles ont été enregistrées à la station de Chelghoumlaid.
- En Hiver et en Printemps les précipitations les plus élevées ont été enregistrées à la station de Chelghoum-laid, alors que les plus faibles ont été enregistrées à la station de Bir el-arch.
- En Eté les précipitations les plus élevées ont été enregistrées à la station de Tadjenanet, et les plus faibles à la station de Belaa.

Pour la station de Grouz (figure 18) des enregistrements qui s'étalent sur une période de vingt ans (20 ans) on remarque que :

Figure 18: Période de 20 ans (1987/88-2006/07).

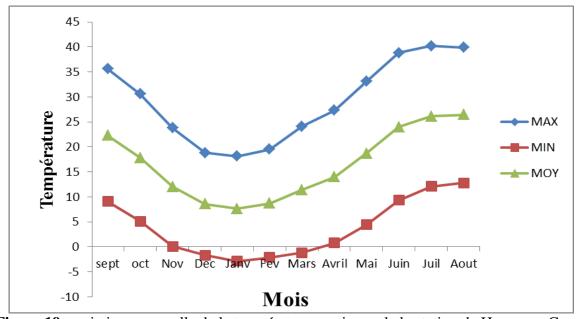
La saison la plus pluvieuse est celui d'Hiver avec une moyenne de précipitation de l'ordre de 132,9 mm, et la saison la plus sèche dans cette station est celui d'Eté avec une précipitation de 30,6 mm.

Enfin, on a élaboré un tableau des précipitations saisonnières (tableau 3), et on a remarqué que pour toutes les stations, la saison la plus pluvieuse est le Printemps pour la période de 30 ans, avec des moyennes de :

- ➤ 125.97 mm pour la station de Chelghoum Laid.
- ➤ 111.1 mm pour la station de Tadjenanet.
- > 100.5 mm pour la station de Bir El Arch.
- ➤ 121.5 mm pour la station de Belaa.

Mais pour la période de 20 ans et de 21 ans, la saison la plus pluvieuse est Hiver.

Donc, on constate que l'alimentation des nappes aquifères par les précipitations se fait principalement en hiver.


2.2. La température :

La température est un facteur qui a une grande influence sur le bilan hydrologique du fait qu'il conditionne le phénomène d'évaporation et par conséquent le déficit d'écoulement. Les données traitées sont issues de la station de Hammam Grouz pour la période de 21 ans (1987/88- 2007/08) et se sont représentées dans le tableau suivant:

***** Variation des températures moyennes mensuelles :

Tableau 04: Répartition des températures moyennes mensuelles et saisonnières de la station de Hammam Grouz.

	A	utomn	ie		Hiver		Pı	rintemp	S	Été			Année
	Sept	Oct	Nov	Dec	Janv	Fev	Mars	Avril	Mai	Juin	Juil	Aout	7 x milec
Max	35.6	30.6	23.8	18.8	18.1	19.5	24.1	27.3	33.1	38.8	40.2	39.9	29.1
Max		30			18.8			28.2			39.6		27.1
Min	9.1	5.1	0.1	-1.7	-2 .9	-2.1	-1.2	0.8	4.4	9.3	12.1	12.8	3.8
14111		4.7			-2.2			1.33			11.4		3.0
Moy	22.3	17.8	12.0	8.6	7.6	8.7	11.4	14.0	18.7	24.0	26.1	26.4	16.5
	1	17.39			8.3			14.7	•		25.5	•	10.5

Figure 19: variation mensuelle de la température au niveau de la station de Hammam Grouz (1987/88-2007/08).

Cadre hydro climatologique

Les températures se distinguent par des variations fortes et importantes pouvant aller jusqu'à 20°C en période hivernale et plus de 40°C en été.

Les moyennes annuelles de la température pour les deux périodes sont comparables et sont de l'ordre de 16,43 °C.

L'analyse des Maxima et des Minima montre que :

- Le mois le plus froid est Janvier avec une température minimale moyenne de l'ordre de -2.2 °C.
- Le mois le plus chaud est Juillet avec une température maximale moyenne de l'ordre de 40.2°C.

2.3. Relation température-précipitation :

2.3.1. Diagramme Ombro-Thermique:

Le diagramme ombro-thermique a été établi selon la méthode de Gaussen et Begnouls et dont les températures sont reportées à l'échelle double des précipitations (Tableau5) Cela permet de déterminer la période sèche laquelle la moyenne mensuelle des précipitations du mois est inférieur ou égale au double de la température ($P \le 2T$).

Tableau 05: Valeurs moyennes mensuelles des précipitations et de température à la station de Hmmam Grouz (1987/88-2007/08).

	Sept	Oct	Nov	Déc	Janv	Fév	Mars	Avril	Mai	Juin	juil	Aout
P (mm)	37.3	25.0	37.8	52.6	52.1	28.2	35.0	40.6	43.9	13.7	5.4	11.5
(°C)	22.3	17.8	12.0	8.6	7.6	8.7	11	14.0	18.7	24.0	26.1	26.4

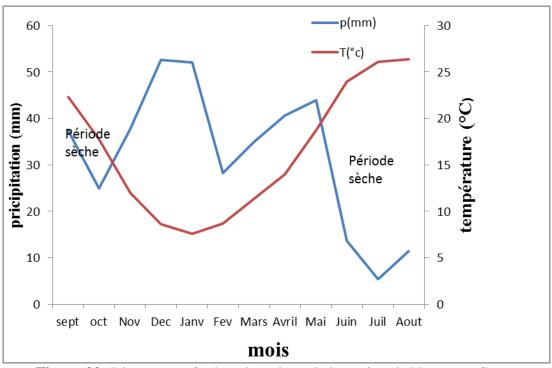
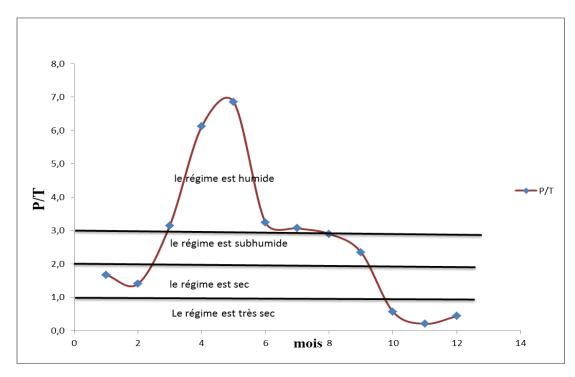


Figure 20: Diagramme Ombro-thermique de la station de Hammam Grouz

(1987/88-2007/08).

D'après le Diagramme Ombro-Thermique la période humide s'étale de la quatrième semaine d'octobre jusqu'à mois de mai et la période sèche s'étale du mois de juin jusqu'à la troisième semaine d'octobre.


2.3.2. Détermination de l'humidité du sol (Méthode de G.Euverte) :

Pour la reconnaissance de l'évolution de l'humidité du sol le rapport P/T établi mensuellement permet de définir quatre types de régime :

- ✓ (P/T) <1 Le régime est très sec.
- ✓ 1 < (P/T) < 2 le régime est sec.
- ✓ 2 < (P/T) < 3 le régime est subhumide.
- ✓ (P/T) > 3 le régime est humide.

Tableau 06: Rapport P/T (Station de Hammam Grouz) d'après la méthode d'Euverte.

Mois	Sept	Oct	Nov	Déc	Jan	Fév	Mar	Avril	Mai	Juin	Juil	Aout
P(mm)	37.3	25.0	37.8	52.6	52.1	28.2	35.0	40.6	43.9	13.7	5.4	11.5
T (°C)	22.3	17.8	12.0	8.6	7.6	8.7	11	14.0	18.7	24.0	26.1	26.4
P/T	1.7	1.4	3.2	6.1	6.8	3.2	3.18	2.9	2.3	0.6	0.2	0.43

Figure 21: Evaluation de l'humidité du sol par la méthode d'Euverte Station de Hammam Grouz.

Les résultats obtenus du rapport (P/T) récapitulés dans le Tableau 06, montrent que la période humide s'étale du mois Novembre jusqu'au mois de Mars alors que la période subhumide correspond au mois d'Avril et mois de Mai, pour la période très sec est du mois Juin au mois d'Aout, et celle sec du Septembre au Octobre.

2.3.3. Détermination de l'aridité (indice de De Martonne) :

Il s'agit de l'indice d'aridité (A) déterminé en 1923 par la relation du géographe De Martonne , et fondé sur le régime des précipitations et les températures selon la formule suivante :

$$A=P/(T+10)$$

P: précipitations moyennes annuelles (mm).

T: température moyenne annuelle (°C).

A: indice de De Martonne.

De Martonne a proposé selon la valeur de (A) la classification suivante :

20<**A**<**30** : le climat est tempéré.

10<A <20 : le climat est semi-aride.

7,5<A<10: le climat est steppique.

5<A<7,5 : le climat est désertique.

A<5 : le climat est hyper aride.

P=383,1 mm T=16.43 °C Donc A=14.49 un climat semi-aride.

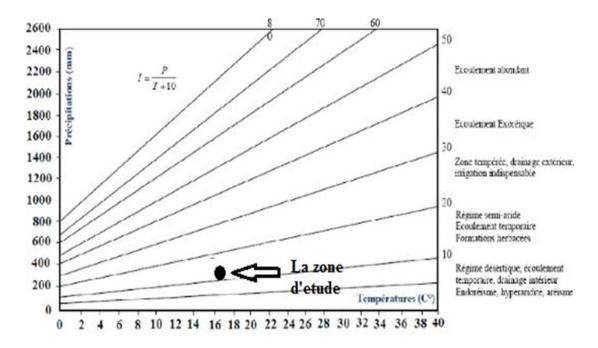


Figure 22: L'abaque de l'indice d'aridité annuel de Martonne.

A partir de l'abaque de Martonne le climat de la zone d'étude est semi-aride.

2.3.4. Climagramme d'Emberger(1955) :

Le Climagramme d'Emberger est un abaque comportant en abscisses la moyenne minimum de la saison froide (hiver noté en °C) En ordonnées la valeur du (Q2) tirée de la formule suivante : $Q2 = 3.43 \, \frac{P}{M-m}$

Q2: quotient pluviométrique d'Emberger.

P: Précipitations moyennes annuelles en (mm).

M: Moyenne des maximas du mois le plus froid en degré absolu (°C).

m: moyenne des minimas du mois le plus froid en degré absolu (°C).

Au niveau de la station de Hammam Grouz:

P= 383.1 mm.

M = 40.1 °C.

m=-2.9°C.

Donc : **Q2= 30.56** La région est caractérisée par un climat semi-aride. Ce qui est confirmé par la méthode de « Martonne ».

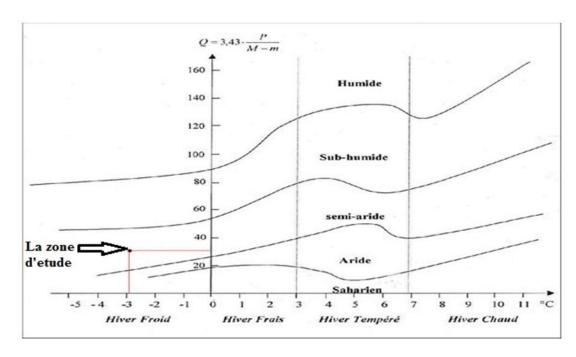
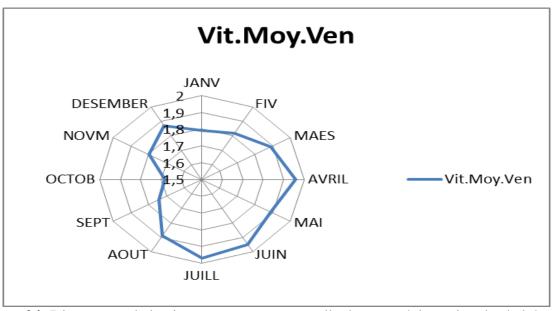


Figure 23: Climagramme d'Emberger.

2.4. Le vent :

Il constitue, dans certaines conditions, un facteur écologique limitant par sa fréquence, sa température et son degré hygrométrique.


Les vents sont caractérisés par leur vitesse et leur intensité. Les vents prédominant sont de direction Nord-est et jouent un rôle important dans les précipitations.

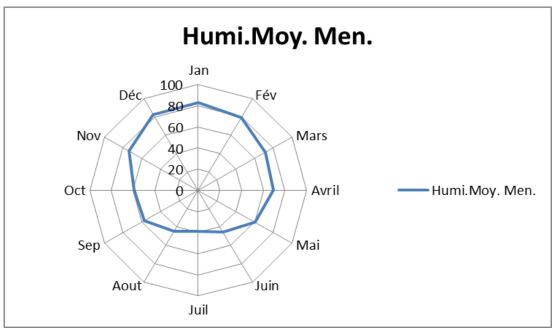
La région d'étude est soumise à des vents dominants avec une vitesse moyenne de 2.57m/s annuellement; les plus importants sont les vents du Sud appelés Sirocco qui peuvent s'observer à n'importe quelle période durant l'année.

D'après les données des moyennes des vents enregistrées dans La station de chelghoume-laid pour la période (1982-2011), on remarque que la fréquence des vitesses des vents atteigne son maximum en printemps (Avril) avec 1,96 m/s et son minimum en octobre avec 1,68 m/s. toutefois, on constate que les vitesses du vent sont presque homogènes pendant plusieurs mois de l'année dont la vitesse moyenne annuelle est de 1,85 m/s.

Tableau 07: vitesse moyenne mensuelle des vents à la station de chelghoume laid.

Mois	Janv	Fev	Mar	Avr	Mai	Jun	Jui	Aou	Sep	Oct	Nov	Dec
Vit.Moy.	1,79	1,82	1,89	1,96	1,89	1,95	1,9	1,89	1,74	1,68	1,8	1,87
Ven.												

Figure 24: Diagramme de la vitesse moyenne mensuelle des vents à la station de chelghoume laid.


2.5. L'Humidité:

C'est le rapport entre la quantité de vapeur d'eau dans un volume d'air donné et la quantité possible dans le même volume à la même température.

Il s'avère selon le Diagramme de Figure 25, que le mois qui représente la plus forte humidité est celui de janvier avec 83,13 % et le mois qui représente la plus faible valeur est celui de juillet avec 39,06% (Tableau 8).

Tableau 08: Humidité moyenne mensuelle à la station de chelghoume laid durant la période : 2001-2010.

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Juil	Aout	Sep	Oct	Nov	Déc
Humi.Moy.	83,13	79,5	71,76	69,21	60,4	45,89	39,06	44,61	57,19	58,96	73,85	82,72
Men.												

Figure 25: Evolution de l'humidité moyenne mensuelle à la station de chelghoume laid pour la période : 2001-2010.

3. Etude de l'évapotranspiration :

L'évapotranspiration est la somme des pertes par transformation de toutes les eaux quel que soit leur nature en vapeur sous l'effet des variations climatiques et par une combinaison de deux phénomènes, l'un physique (évaporation) et l'autre biologique (transpiration).

3.1. Evapotranspiration potentielle (ETP) :

D'après J. Margat l'évapotranspiration potentielle est la quantité d'eau susceptible d'être évaporée par une surface d'eau libre ou par un couvert végétal dont l'alimentation en eau n'est pas le facteur limitant. La valeur limite de l'ETP est fonction de l'énergie disponible.

la méthode de Thornthwaite.

La formule de calcul de l'évapotranspiration potentielle selon G W. Thornthwaite (1944) tient compte de l'indice thermique et de la température moyenne mensuelle.

Avec :
$$I = \Sigma i$$
 et $i = (t/5)^{1.514}$

ETP (mois, non corrigée): est l'évapotranspiration potentielle non corrigée du moi considéré exprimée en mm.

I: Indice thermique annuel égal à la somme des douze indices thermiques mensuels (i).

a : exposant dont la valeur est donnée en adoptant des simplifications de la longue formule de Thornthwaite proposée par Serra par l'expression :

$$a = (1.6 \text{ I}/100) + 0.5 = (16 \text{ I}/1000) + 0.5$$
; Donc: $a = 1,74$.
ETP (mois, corrigée) = $16(10t/\text{I})^a$.K

K : coefficient de correction mensuel fonction de la durée de la journée.

Le tableau ci-dessous montre les résultats des calculs de l'E.T.P et l'E.T.P corr calculés par la méthode de Thornthwaite.

Mois Sept Oct Nov Dec Janv Fév Mars Avril Mai Juin Juill **Aout** Année 37.8 52.6 52.1 28.2 35.0 43.9 37.3 25.0 40.6 13.7 5.4 11.5 P(mm) 383.1 17.8 7.6 8.7 $T(^{\circ}C)$ 22.3 12.0 8.6 11.0 14.0 18.7 24.0 26.1 26.4 16.43 I 3.7 2.3 7.4 9.6 6.9 1.9 2.3 3.5 4.8 10.8 12.2 12.4 I=77.8 100.5 19.1 73.9 67.8 34.1 15.4 19.4 29.3 44.6 114.2 132.2 134.9 E.T.P(mm) 785.3 0.84 1.1 1.21 1.22 1.24 // **K**(36°) 1.03 1.97 0.86 0.87 0.85 1.03 1.16 ETP_{Cor}(mm) 103.5 65.8 29.3 16 13.4 16.5 30.2 49.1 89.4 139.3 164 156.5 872.9

Tableau 09: L'évapotranspiration potentielle E.T.P selon Thornthwaite.

Donc ETPc =872,9mm.

3.2. L'évapotranspiration réelle (ETR):

Elle Correspond à la quantité d'eau effectivement évaporée ou transpirée par les végétaux. Les formules qui donnent l'ETR sont:

- -la formule de Turc.
- -la formule de coutagne.
- -Méthode de P. Verdeil (1988).

> Formule de Turc :

Cette méthode consiste à établir l'E.T.R à partir des données de la précipitation et la température, et la formule appliquée est valable pour tous les climats :

$$ETP_R = \frac{P}{\sqrt{0.9 + (\frac{P}{L})^2}}$$
 Avec : L = 300+25T+0.05T³

E.T.R: désigne l'évapotranspiration réelle (mm).

P : désigne la précipitation annuelle (mm).

T: désigne la température annuelle (°C).

L: désigne un paramètre dépendant de la température.

L=932.51

P=383.10 mm

T= 16.43 °C

L'application de cette formule permet d'avoir un **ETR** de **370.57**mm.

> Formule de Coutagne :

Elle tient compte de la pluviométrie et de la température également et elle à la forme Suivante:

$$D = P - \lambda P^2$$

Avec:
$$\lambda = \frac{1}{0.8 + 0.14T}.$$

 λ : qui est un paramètre dépendant de la température.

Ou:

D: Déficit d'écoulement en (m/an).

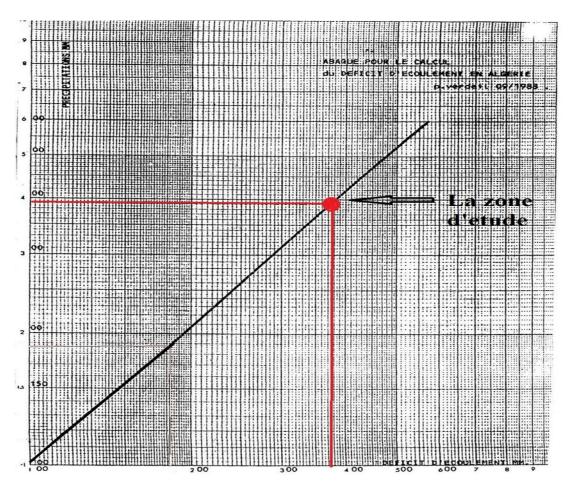
P: précipitation moyenne annuelle en (m) =0. 3831.

T: température moyenne annuelle en (°C) = 16.43 c° et λ =0.3225.

Cette formule n'est valable que des valeurs du P comprise entre :

$$1/8\lambda < P < 1/2\lambda$$

Application numérique:


On a :
$$\lambda = 0.3225$$
 ; $1/2\lambda = 1.5503$; $1/8\lambda = 0.3875$.

La valeur de P n'est pas comprise dans l'intervalle $1/2\lambda$ et $1/8\lambda$; donc la formule de Coutagne n'est pas applicable dans notre cas ;

Donc le déficit d'écoulement égal aux précipitations **D**= 335,76.

> Méthode de P.Verdeil (1988) :

C'est une méthode applicable pour les régions semi-aride en Algérie et dont les précipitations ne dépassent pas les 600 mm, c'est le cas du bassin versant objet de notre étude. La valeur de l'E.T.R déterminée par la projection sur la droite représentée dans l'abaque (Figure 26).

Figure 26: Abaque pour le calcul du déficit d'écoulement au niveau du sous bassin Hmmam grouz, d'après : P.Verdeil.

D'après l'abaque de la figure 26 on trouve que pour une précipitation de valeur de P= 383.1 mm la valeur de **E.T.R**= **372 mm**.

> Méthode de Thornthwaite :

Cette méthode est basée sur la notion de réserve en eau facilement utilisable (RFU). On admit que le sol est capable de stocker une certaine quantité d'eau qui sera utilisable facilement pour les plantes (RFU), cette eau peut être reprise par l'évapotranspiration par l'intermédiaire des plantes.

En utilisant la valeur moyenne des réserves en eau du sol égale à 45mm. (Source DHW de la Wilaya de Mila).

Les résultats du Bilan hydrologique obtenu par la méthode de Thornthwaite sont présentés dans le (Tableau 10).

Cadre hydro climatologique

Tableau 10: Bilan hydrique selon la méthode de thornthwaite de la station de H-Grouz
(1987/88-2007/08).

Mois	Sep	Oct	Nov	Déc	Janv	Fév	Mars	Avr	Mai	Juin	Juill	Aout	Année
P(mm)	37,3	25	37,8	52,6	52,1	28,2	35	40,6	43,9	13,7	5,4	11,5	383,1
ETP _C (mm)	103,5	65,8	29,3	16	13,4	16,5	30,2	49,1	89,4	139,3	164	156,5	872,9
P – ETP _C	-66,2	-40,8	8,5	36,6	38,7	11,7	4,8	-8,5	-45,5	-125,6	-158,6	-145	//
RFU(mm)	0	0	8,5	36,6	38,7	11,7	4,8	0	0	0	0	0	100,3
ETR(mm)	37,3	25	29,3	16	13,4	16,5	30,2	49,1	43,9	13,7	5,4	11,5	291,22

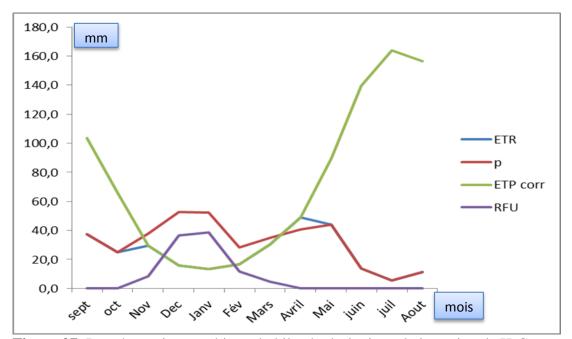


Figure 27: Représentation graphique du bilan hydrologique de la station de H-Grouz.

D'après les thermes du tableau, on a :

- ✓ A partir du mois de Décembre les précipitations sont supérieur à l'ETP donc nous avons une reconstitution de la RFU qui atteint son maximum à 38,7 mm aux mois de Janvier.
- ✓ L'ETR se représente par une valeur annuelle de 291,22 mm (soit 76,01 % des précipitations).

Dans le tableau 11 nous avons récapitulés les différentes valeurs de l'ETR, obtenues par les différentes méthodes ainsi que la valeur de l'ETPc obtenues par la méthode de Thornthwaite et Turc à la station de H-Grouz (1987/88-2007/08).

Tableau 11: Les résultats des différentes méthodes.

Paramètre	Méthode	Résultat
ETPc	Thornthwaite	872,9
ETR	Thornthwaite	291,22
	Turc	370.75

Le tableau 11 récapitule les différentes valeurs de l'ETR, obtenues par les différentes méthodes ainsi que la valeur de l'ETPc obtenues par la méthode de Thornthwaite et Turc à la station de Hmmam grouz en utiliser les résultats de la méthode de Thornthwaite

4. Paramètres du bilan hydrologique :

4.1. Ruissellement superficiel:

C'est un paramètre d'une importance primordiale du point de vue hydrologique, il est estimé à partir de la formule de Tixeront-Berkaloff :

$R = P^3/3(ETPc)^2$

R: Ruissellement de surface en mm.

P : précipitation moyenne annuelle en mm.

ETPc: évaporation potentielle d'après la formule de Thornthwaite.

ETPc= 872,9 mm P= 383,1mm.

Application numérique :

R= 24,6 mm (soit 6,42 % de la hauteur des précipitations).

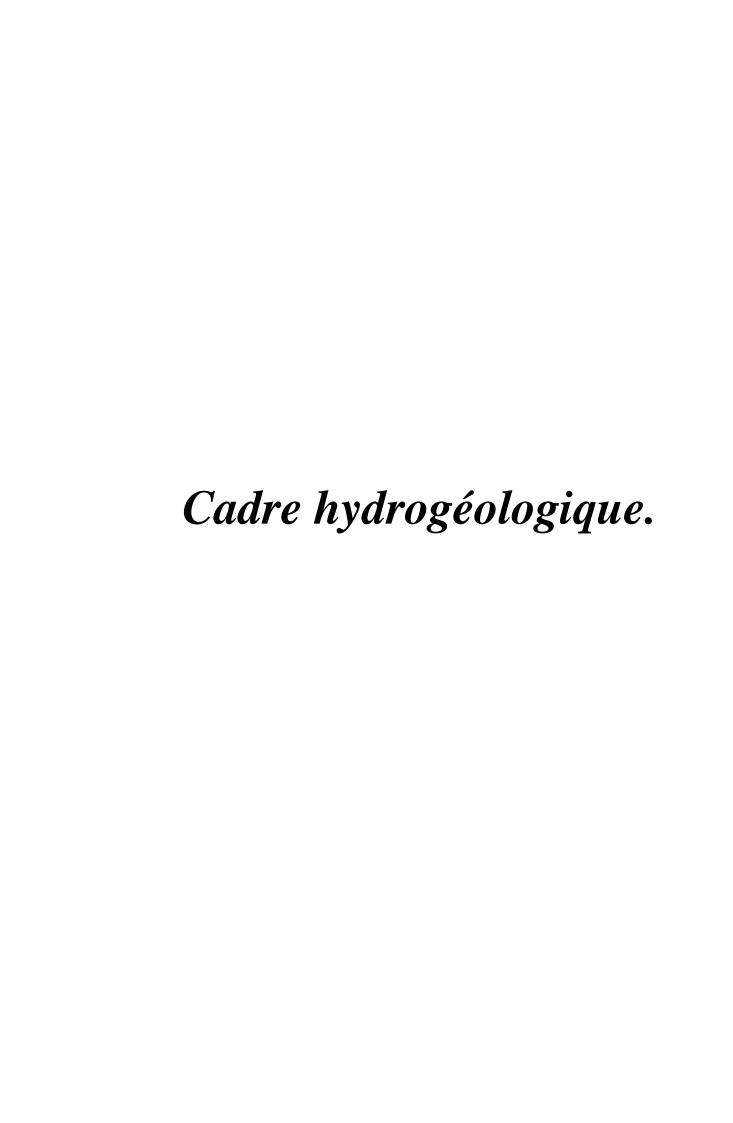
4.2. Infiltration (I):

La lame d'eau infiltrée participe à l'alimentation des nappes d'eau souterraines, elle résulte de la différence entre l'excédent et le ruissellement, c'est un paramètre très important du point de vue hydrogéologique, il est calculé par la formule suivante :

$$P = ETR + R + I \implies I = P - (ETR + R)$$
.

Après le calcul : I= 67,28 mm (soit 17,56 % des précipitations).

Cette infiltration contribue à l'alimentation des nappes souterraines.


Conclusion:

La description de l'étude des différents facteurs climatiques de la série de H Grouz (1987-2008) montre que :

- Le climat qui règne dans la région d'étude est semi-aride, il est caractérisé par une saison chaude et sèche et une saison froide et pluvieuse.

Cadre hydro climatologique

- Le secteur appartient à une zone peu à moyennement pluvieuse, avec une précipitation moyenne annuelle de l'ordre 383.1mm.
- La température moyenne annuelle est de l'ordre de : 16,43°C.
- L'ETR représenté par une valeur annuelle de 291,22 mm (soit 76,01 % des Précipitations).
- Le ruissellement et l'infiltration représentent respectivement 24,6 mm et 67,28 mm ce qui représente près de 6,42 % et 17,56% des précipitations.
- En plus de l'apport des eaux souterraines latéralement et en profondeur par drainance, les valeurs de ruissellement et d'infiltration semblent suffisantes pour l'alimentation des nappes d'eau souterraines.

Introduction:

L'étude hydrogéologique d'une région est nécessaire pour la détermination des caractéristiques hydrogéologique des différents aquifères existants elle permet donc de reconnaitre la direction d'écoulement des eaux souterraines de la région a partir de la carte piézométrique, L'étude hydrogéologique a comme objectif de définir les conditions géologiques et environnementales des eaux souterraines. Elle peut être d'une ampleur régionale, locale ou à l'échelle du site. Elle inclut généralement des travaux de caractérisation des aquifères et des eaux souterraines par la réalisation de sondages et d'installation de puits. Pour mieux comprendre l'hydrogéologie de notre région d'étude, nous avons établis les points

suivants:

- ❖ Inventaire des points d'eau et Mesure piézométrique.
- Elaboration de la carte piézométrique.
- ❖ Interprétation de la carte piézométrique.

1. Description des aquifères :

La région d'étude recélé deux systèmes aquifères l'un poreux contenu dans les formations du Mio-Plio-Quaternaires et l'autre fissuré et karstique contenu dans les formations carbonatées du Jurassique et Crétacé « essentiellement dans les calcaires néritique du jurassique supérieur crétacé inférieur ».

L'hydrogéologie du domaine néritique où se situe le projet de notre étude a permis d'identifier 3 types d'aquifères ayant chacun ses propriétés hydrogéologiques.

Tous les aquifères sont mis en relation indirectement ou directement [16].

1.1. L'aquifère poreux :

Aquifère à nappe libre plus ou moins continu et facilement exploitable assimilés aux formations du recouvrement quaternaire de vallée et de plaine dits « à aquifère drainé ».

1.1.1. L'aquifère des alluvions quaternaires :

Caractérisé par une hétérogénéité lithologique, et il a une extension spatiale considérable constitué d'alluvions récentes qui se sont formées le long d'oueds et les terrasses.

Les formations de pentes et les glacis polygéniques.

Les nappes localisées au niveau des vallées sont étroitement liées aux cours d'eau et ont une influence directe sur le régime hydrogéologique.

Les nappes phréatiques des plaines de remblaiement sont en partie en relation avec les massifs calcaires, mais l'alimentation reste tributaire des précipitations atmosphériques [16].

1.1.2. L'aquifère du Mio-Pliocène a accumulation fluvio-locustre :

Ces formations s'entendent sur de vastes surfaces, est composée essentiellement d'argiles et même parfois par des formations gypsifères, calcaires lacustres, conglomérats, grés et sables. Ce qui va permettre la formation des deux nappes phréatiques libre et captive.

Cette série est très irrégulière à la fois dans son épaisseur et dans ses faciès [16].

1.2. L'aquifère fissuré et karstifié :

Cette série du Crétacé représente un système hydrogéologique plus complexe se rapportant essentiellement aux massifs calcaires néritiques.

Cet aquifère est caractérisé par une perméabilité en grand élevée liée à un réseau de fissures, donc une circulation karstique, ce dernier réservoir présente deux types différents d'aquifères: l'un à eaux froides et l'autre à eau chaudes [16].

2. La classification hydrogéologique des formations lithologiques :

La caractérisation lithologique des formations géologiques affleurant est établie pour la délimitation des différentes zones de perméabilité.

Log		Age	Lithologie	Epaisseur (m)	AMeu- rement	Hydro- Géologie
	QU	ATERNAIRE	Cailloutis, graviers, limons		Au	Permeable
		Néogène	Marnes avec des niveaux	100 à 150	Niveau	Permeable
	Ξ	Continental	Calcaires, conglomérats et marnes	100 à 180	De la	refineable
	IR	Miocène inférieur	Marne et banc de grés Calcaire et marne	50 à 150	Plaine	- Seattle
	RIIA	Lutétien sup Priabonien	Marne à banc de calcaires	300	imperment	
<u> </u>	TEF	Eocène inf et moyen	Calcaire marneuse à la base calcaire critalin	60 à 250	SE, NW et à l'W du S.BV	Permeable
		Danien Montien	70	Au Nord de	Langermende	
		Maestrichtien	Marnes à bancs de lumachelles	150 à 180	Dj Dess et au Sud de	Imperméabl
		Campanien Sénonien inf	Marnes et calcaire massif	100	S.BV	Permeable
			Marnes à bancs de calcaire	50	Dj Dess et au SW de S.BV	jange megale
	IRE	Cénomanien Turonien	Calcaire, dolomie Marno-calcaire et marnes	300	Dj Grouz	Permeable
	D A	Albien et Vraconien	Calcaire avec intercalation marneuse, calcaire massif à dolomies microcristallines	180	Dj Grouz	Permeable
	0 N	Aptien inf et moyen	Calcaire avec intercalation marneuse calcaire bien lité, calcaire marneux	145	/	Permeable
	Ü	Barémien sup	Calcaire	40 à 60		Permeable
	E (Dontonion in C	Calcaire en petit banc, marnes et marno-calcaire	80	Dj Tnoutit et	
		Barémien inf	Dolomies avec intercalation rare de	50	Dj Grouz	Permeable
!!*	S		calcaire dolomitique	250		
		Néocomien	Complexe dolomitique	150	/	Permeable
	supérieur	Dolomie et calcaire dolomitique	150	/	Permeable	
		Argile, gypse à cristaux de quartz		Djs Dess et Toukouïa	Lange Branch	

Figure 28: Colonne litho-stratigraphique et hydrogéologique (d'après MIHOUBI. N, 2009).

Du point de vue stratigraphique, les terrains superficiels rencontrés sont d'origine continentale, en majeure partie lacustre formée dans des bassins bien limités, ainsi que des massifs rocheux carbonatés d'âge Crétacé à Eocène [17].

Au niveau de l'ensemble du sous bassin, les matériaux perméables assimilés aux formations quaternaires de vallée et de plaine dits à aquifère drainé, ont une extension spatiale considérable (plus de 50% de la superficie totale), ce qui détermine la présence d'aquifères à nappe libre plus ou moins continus et facilement exploitables.

Au niveau des massifs Dj Grouz, Dj Dess et Dj Tnoutit affleurent des terrains perméables avec des formations calcaires, calcaires marneux ou à intercalations marneuses. Ces formations possèdent des possibilités d'accumulation en eau souterraine certaines, mais leur dispersion ne leur permet pas de former un réservoir aquifère important, sauf dans le cas où l'existence des interconnections des formations en profondeur.

3. Inventaire des points d'eau :

L'inventaire des points d'eau est la phase préliminaire de toute étude des eaux souterraines dont l'élément essentiel est la cartographie. Sur la carte d'inventaire nous avons matérialisés un ensemble des forages et des puits :

- Les forages sont de nombre **08** exploitants les niveaux aquifères peu profonds.
- Les puits inventoriés sont au nombre de 16 exploitant l'aquifère du recouvrement.

A la base de la carte d'inventaire (figure 29) de la zone étudiée nous avons effectué une campagne en **Février 2020** de nivellement par **G.P.S** d'un ensemble de puits et forages, nous avons mesurés les niveaux piézométriques dans les différents points d'eau. Les résultats sont présentés dans le tableau ci-dessous.

Tableau 12 : inventaire des points d'eau.

	Profondeur de puits	X	Y	Z
Les points d'eau	(Mètre)	(Mètre Lambert)	(Mètre Lambert)	(Mètre)
F1	120	818690	328720	754
P1	7.1	814930	327340	775
P2	12	815450	324860	770
F2	123	817070	325100	771
Р3	6	811290	330300	830
F3	8	812390	335860	847
P4	9	801060	337680	908
P5	9	804490	332710	848
P6	16.2	813460	322790	752
P7	4.6	814970	318510	867
F4	164	820750	316160	833
F5	150	798000	310000	833
P8	6.5	808670	312730	866
P9	13.10	793000	312000	869
P10	8	810610	326600	784
P11	15	797660	334880	940
P12	16	798620	328170	934

P13	25	798170	322970	847
F6	118	806380	324040	811
P14	23.2	788000	319140	912
F7	140	788660	321170	982
P15	28	779420	318620	945
P16	14	784110	324830	992
F8	75	791000	329000	970

Nous avons localisé ces points sur la carte suivante :

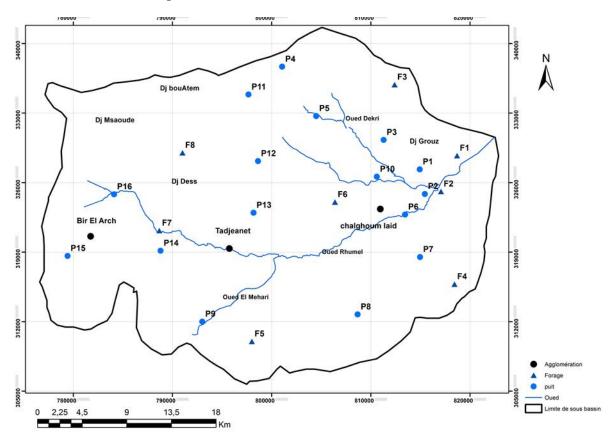


Figure 29: carte d'inventaire des points d'eau (Février 2020).

La région d'étude est couverte par un nombre des puits qui exploitent la nappe superficielle et des forages exploitant la nappe profonde, les eaux sont destinées à l'alimentation en eau potable et à l'irrigation.

4. Cartographie de l'aquifère :

4.1. Carte d'iso-profondeur :

C'est une carte montrant les points de même profondeur, elle indique les profondeurs des eaux et montrent leur relation avec la topographie de la région d'étude [40]. Cette carte réalisée par le logiciel **Arc Gis version 10.3** (Figure 30).

Pour la valeur minimale des profondeurs d'eau nous avons:

- Pour les puits la faible valeur est enregistrée au niveau du puits (P7) avec des valeurs de l'ordre de 1.2 m.
- Pour les forages est enregistré au niveau du forage (F7) avec des valeurs de l'ordre de 1 m.

Concernant la valeur maximale des profondeurs d'eau on trouve que :

- Pour les puits est la valeur maximale est enregistré au niveau du Puits (P15) avec des valeurs de l'ordre de 16 m.
- Pour les forages est enregistré au niveau du point d'eau (F1) avec des valeurs de l'ordre de 90 m.

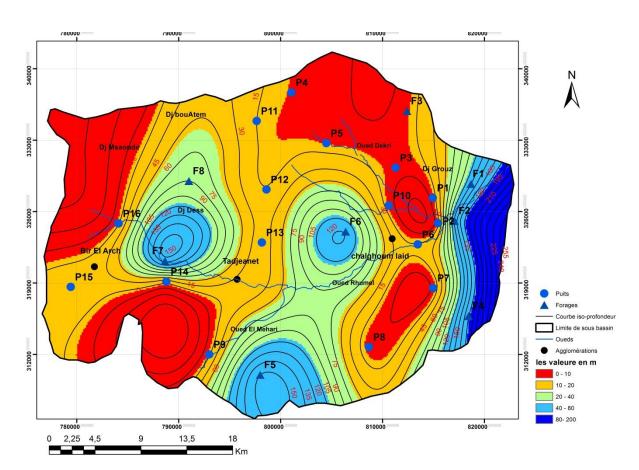


Figure 30: courbe iso-profondeur des points d'eau (Février 2020).

4.2. Carte piézométrique :

Le carte piézométrique est le document de base de l'analyse et de la schématisation des fonctions captatives et conductrices du réservoir et du comportement hydrodynamique de l'aquifère. C'est la synthèse la plus importante d'une étude hydrogéologique. Aussi la carte piézométrique a pour but de connaître l'extension de l'aquifère, la direction de la vitesse de l'écoulement des eaux souterraines et le gradient hydraulique, ainsi que la zone d'accumulation [18]. Dans notre cas, La carte piézométrique a été est établie à partir de prélèvement effectué sur terrain (compagne février 2020) (figure 31 et annexe 01).

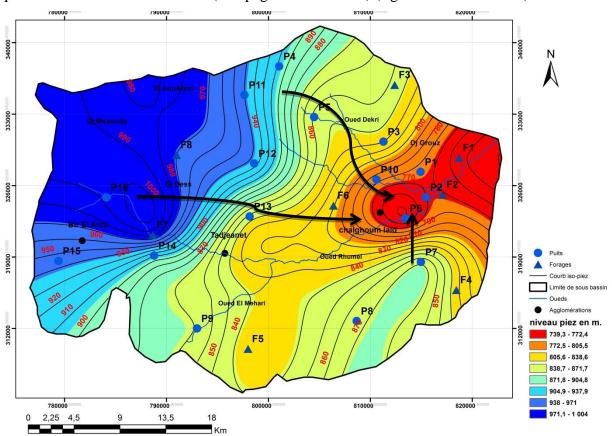


Figure 31: Carte piézométrique des points d'eau (Février 2020).

4.2.1. Interprétation des cartes piézométriques :

L'observation de la carte montre une surface piézométrique irrégulière, la morphologie des courbes indique un écoulement de trois directions (Nord-Est, Sud-Est, ouest - Est).

La région d'étude, est caractérisée par une dépression de la surface piézométrique située à l'Est du bassin de notre zone d'étude.

Cadre hydrogéologique

A l'extrême Est du bassin versant, la courbe iso-pièze fermée met en évidence une dépression due à une surexploitation piézométrique avec des lignes de courant convergeant vers la côte 752 m du point d'eau (P6) (Figure 31).

Conclusion:

L'étude hydrogéologique du sous bassin Hammam Grouz nous a permis de distinguer deux aquifères l'un superficiel connu par les puits et l'autre profond connu par les forages.

La carte d'inventaire des points d'eau a été réalisée à partir de 24 points (puits et forage). D'après l'analyse de la carte piézométrique, nous avons mis en évidence trois grands axes d'écoulement caractérisant l'aquifères superficiel du Mio-Plio-Quaternaire qui sont de direction Sud-Est, Nord-Est - Ouest-Est.

La cartographie piézométrique fait ressortir un axe général de drainage vers l'Oued Rhumel, avec des modalités d'alimentation très variées.

Partie expérimentale

Etude Hydro chimique

Introduction:

La chimie des eaux souterraines est le principal facteur qui détermine leur utilisation. Cependant, l'interaction de ces eaux avec les matériaux de l'aquifère à travers lequel il coule contrôle fortement leur chimie. Aussi, Les processus hydrogéochimiques responsables de la modification de la composition chimique des eaux souterraines varient dans l'espace et dans le temps et sont responsables des variations spatio-temporelles de leur chimie [19], [20], [21], [22], [23].

Les caractéristiques physico-chimiques des eaux souterraines sont complexes, et la composition chimique d'une eau joue un rôle important dans la détermination de sa qualité, et de son utilisation pour l'alimentation en eau potable ou d'autres usages (irrigation, industrie, etc). La température, le pH, la conductivité et les sels dissous se comportent fréquemment comme des marqueurs naturels permettant d'étudier les caractéristiques hydro chimiques des aquifères et leurs natures (superficiel ou profond). L'étude de leur variation dans l'espace et dans le temps donne un aperçu sur l'impact des facteurs endogènes ou exogènes sur les eaux de l'aquifère.

Afin de caractériser les eaux de l'aquifère du Mio-plio-quaternaire dans la région d'étude, une analyse hydrochimique détaillée a été réalisée en utilisant des multiples techniques complémentaires permettant l'évaluation hydrochimique de leur qualité et la détermination des principaux facteurs influençant leur chimie ainsi que leur aptitude à divers utilisation (AEP, irrigation...).

Les analyses ont été réalisées dans Laboratoire de recherche « LSMN » (laboratoire de science de matière naturel) et le laboratoire pédagogique du département des sciences et Technologie, université de Mila.

I. Caractéristiques des paramètres physico-chimiques.

1. Echantillonnage et méthodes d'analyses des eaux :

1.1. Echantillonnage:

Afin de couvrir spatialement toute la zone d'étude (bassin), un nombre de 24 points (puits et forages) a été choisi. Lors d'une compagne d'échantillonnage en Février 2020 (Figure 29).

Lors du prélèvement des échantillons d'eau, afin de renouveler l'eau contenue dans le tubage, le robinet est ouvert jusqu'à ce que l'eau prélevée devienne représentative de la portion d'aquifère en question. Les échantillons d'eau sont prélevés dans des flacons propres, rincés avec l'eau distillée puis avec l'eau à analyser. Après la mise en flacon des échantillons, les flacons sont fermés hermétiquement afin d'éliminer les bulles d'air dans le flacon. Chaque flacon est étiqueter portant le numéro de l'échantillon.

Comme, les eaux sont susceptibles d'être modifier plus ou moins rapidement suite à des réactions physiques et chimiques qui peuvent avoir lieu dans le flacon dans le laps de temps qui sépare le prélèvement de l'analyse. Pour cela, Les flacons doivent sont stockés à l'abri de la lumière et au frais (glacière ou réfrigérateur) et transporter le jour même au laboratoire. Au laboratoire, où ils seront conservés au réfrigérateur entre 3 et 5°C.

1.2. Méthodes d'analyses :

Les mesures et les analyses physico-chimiques effectuées sur les eaux échantillonnées, portent sur deux types des paramètres mesurés sur terrain et ceux mesurés au laboratoire :

Les paramètres physiques qui sont mesurés sur terrain par un **Multi-paramètre**; il s'agit de la température (T°), du potentiel hydrogéne, de l'oxygène dissous, de la conductivité et de la salinité. Le processus en mesurant a été effectué à chaque point d'eau en prélevant un échantillon d'eau dans un récipient et mesurer le paramètre en question après réglage de la sonde de mesure et puis la lecture de la mesure sur l'écran de l'appareil (Figure 32).

Les résultats sont représentés en annexe 02.

Figure 32 : l'appareil de Multi-paramètre.

- Les paramètres analysés au laboratoire sont la dureté, l'alcalinité et les ions majeurs (cations: Ca²⁺+ Mg²⁺et Na⁺) et les anions (Cl⁻et HCO₃⁻).

A cause de la situation sanitaire provoquée par le Covid19.

Ces mesures ont été faites au laboratoire à l'aide de **Photomètres** (**Palintest 7500 et MD600**) en utilisant des pastilles spéciales pour chaque élément (Figure 33 et 34). Dans ce qui suit nous donnerons leurs méthodes d'analyses.

> Dureté totale (TH):

Dureté totale HR avec pastilles : (20 – 500 mg/l CaCo₃).

- 1- Verser 1 ml d'échantillon et 9 ml d'eau déminéralisée dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2- Placer la cuvette dans la chambre de mesure positionnement.
- 3- Appuyer sur la touche **Zéro**.
- 4- Retirer la cuvette de la chambre de mesure.
- 5- Ajouter une pastille de **HARDCHECH P** directement de l'emballage protecteur dans les **10 ml** d'échantillon et écraser à l'aide d'un agitateur propre.
- 6- Refermer le couverte de la cuvette et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.

- 7- Placers la cuvette dans la chambre de mesure.
- 8-Appuyer sur la touche **TEST** attendre **5 minutes** de temps de réaction.
- La mesure s'effectue automatiquement après écoulement du temps de réaction.
- Le résultat de la mesure s'affiche et indique la dureté totale en **mg/l** (annexe 4).

L'Alcalinité

Avec ce photomètre la mesure de l'alcalinité P et M permet de calculer la concentration des carbonates (HCo₃⁻ et Co₃²⁻) dans l'échantillon analysé.

- Alcalinité-P = valeur P avec pastilles : (5 300 mg/l CaCo₃).
- 1-Verser **10 ml** d'échantillon dans une cuvette propre de **24 mm** et fermer le couvercle de la cuvette.
- 2-Placer la cuvette dans la chambre de mesure.
- 3- Appuyer sur la touche **Zéro**.
- 4- Retirer la cuvette de la chambre de mesure.
- 5-Ajouter une pastille de **d'ALKA-P-PHOTOMETRER** directement de l'emballage protecteur dans l'échantillon de 10 ml et écraser à l'aide d'un agitateur propre.
- 6- Refermer le couverte de la cuvette et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 7- Placers la cuvette dans la chambre mesure.
- 8- Appuyer sur la touche **TEST** attendre **5 minutes** de temps de réaction.
 - La mesure s'effectue automatiquement après écoulement du temps de réaction.
 - Le résultat de la mesure s'affiche et indique **l'alcalinité-p** en **mg/l** (annexe 03).
 - Alcalinité-m HR=valeur m HR= alcalinité totale HR avec pastilles :

(5 - 500mg/lCaCo₃).

- 1-Verser 10 ml d'échantillon dans in cuvette propre de **24 mm** et fermer le couvercle de la cuvette.
- 2-Mettre la cuvette dans la chambre de mesure.
- 3-Appuyer sur touche **ZERO**.
- 4-Retirer la cuvette de la chambre de mesure.
- 5-Ajouter une pastille **d'ALKA-M-HR PHOTOMETER** directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- 6-Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 7-Appuyer sur la touche entrée.

Attendre un temps de réaction de 1 min.

- 8-Mélanger à nouveau l'échantillon.
- 9-Mettre la cuvette dans la chambre de mesure.
- 10-Appuyer sur la touche **TEST.**

Le résultat de la mesure s'affiche et indique **l'alcalinité m-HR en mg/l** (annexe 03).

La détermination d'alcalinité **p** et **m** permet de classifier cette alcalinité comme hydroxyde carbonate (bicarbonate : HCo₃) et carbonate d'hydrogène (carbonate : Co₃). Selon les cas on trouve :

Si l'alcalinité P = 0, alors :

Carbonate hydrogène = m

Si l'alcalinité P > 0 et l'alcalinité m > 2P, alors :

Carbonate hydrogène = m - 2P

Si l'alcalinité P > 0 et l'alcalinité m < 2P, alors :

Carbonate hydrogène = 0

Si l'alcalinité P > 0 et m > 2P alors :

Carbonate hydrogène = m - 2P.

Tous nos échantillons tombent dans ce dernier cas et donc les carbonates se trouvent se forme de HCO_3^- .

Le calcul de la concentration en HCO₃⁻ (annexe 03) se fait de la manière suivante en prenant comme exemple F1 :

les Points d'eau	Alcalinité total (m)	Alcalinité total (P)	2*P	[HCO3] mg/l
F 1	240	42	84	156

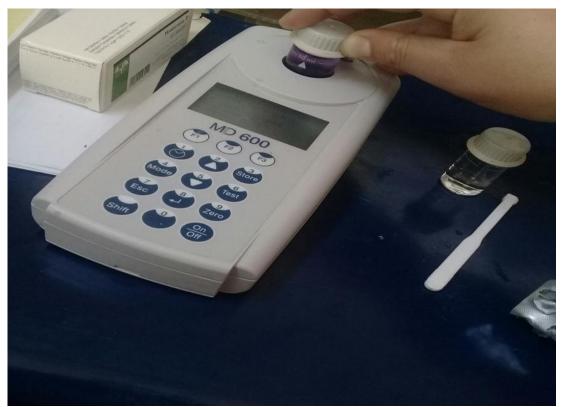


Figure 33 : Photometre MD600 (mesure de TH, alcalinité m et p).

> Chlore HR avec pastilles:

- 1- Verser **10 ml** d'échantillon dans in cuvette propre de **16 mm** et fermer le couvercle de la cuvette.
- 2- Mettre la cuvette dans la chambre de mesure.
- 3- Appuyer sur touche **ZERO**.
- 4- Retirer la cuvette de la chambre de mesure.
- 5- Ajouter une pastille **CHLORIDE ST** directement de l'emballage protecteur dans l'échantillon de **10 ml** et l'écraser à l'aide d'un agitateur propre.
- 6- Ajouter au même échantillon une pastille **d'ACIDEFYING GP** directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 8-Placer la cuvette de la chambre de mesure, fermer le couvercle de la chambre de mesure.
- 9- Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le chlorure en mg/l (annexe 4).

Figure 34 : Photomètre Palintest 7500 (mesure des Chlorures).

➤ Na⁺: Estimation de Na⁺ à partir de dose de Cl⁻ dans une eau :

Si, on considère que le Na⁺ dans une eau provient de la dissolution de l'halite (NaCl), On connaissant la teneur en Cl⁻ dans une eau, on peut estimer la teneur en Na⁺ en utilisant la notion d'équivalent de la manière suivante :

La masse atomique du chlore est de 35,5 g, si une eau contient X g de chlorure par litre, on peut exprimer ce résultat en écrivant :

(X * 1)/35.5 équivalent-gramme de chlorure par litre ((X/35.5)*1000 méq. $L^{-1})$.

Exemple pour le **forage 1(F1)** : la concentration de Cl⁻ est égale 400mg/l. L'équivalent en Cl⁻ est :

((400*1)/35.5) = 11,27 még/L.

L'avantage de cette notation est de permettre le calcul immédiat des concentrations salines. Si, dans l'exemple précédent, une eau contenant **11,27** équivalents de chlorure par litre, il s'agit d'une solution pure de chlorure de sodium, la concentration en **Na**⁺ est :

$$11,27*(23/1) = 259,21 \text{ mg/l}.$$

Les résultats de cette estimation sont dans annexe 04.

1.3. Contrôle de qualité des données :

Avant de traiter et d'interpréter les analyses des eaux prélevées au niveau des différentes stations, il faut analyser la fiabilité des résultats de ces analyses. La méthode utilisée est la Balance Ionique (BI). Il faut rappeler qu'en théorie, une eau naturelle est électriquement neutre. De ce fait, la somme (en équivalents chimiques) des cations devrait être égale à celle des anions (en équivalents chimiques). En réalité, cette égalité est rarement obtenue. De façon générale, la différence est attribuée aux incertitudes, à la présence de certains ions non dosés ou à d'éventuelles erreurs d'analyse. Ainsi, une certaine marge de déséquilibre entre anions et cations est admise. La balance ionique est exprimée sous forme d'un écart relatif par la formule :

Ecart relatif = (abs
$$((\Sigma r^+ - \Sigma r^-)/(\Sigma r^+ + \Sigma r^-))*100)$$
.

Une analyse chimique des eaux n'est considérée comme représentative que lorsque la balance ionique est inférieure à 5%.

Ce paramètre permet de vérifier la précision des méthodes analytiques utilisées et la validité des déterminations chimiques. S'il est inférieur à 5%, les analyses sont considérées comme bonnes ; lorsque sa valeur est comprise entre 5% et 10%, les analyses peuvent être à la rigueur retenues ; Par contre au-delà de 10% les analyses doivent être rejetées.

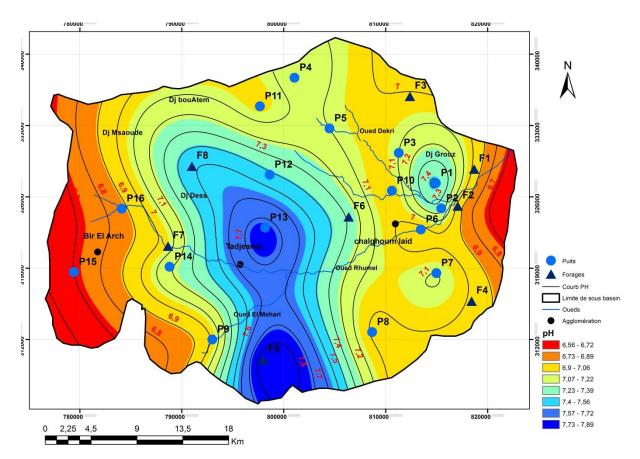
Dans notre cas, comme nous n'avant pas K et SO₄, il nous y pas possible de calculer l'écart relatif [24].

2. Analyses des résultats :

2.1. Les paramètres physiques :

2.1.1. La température :

La température joue un rôle primordial dans la solubilité des sels et des gaz, donc sur la conductibilité. Elle est le facteur cinétique le plus important de toutes les réactions chimiques et biologiques dans les milieux aquatiques, c'est en premier lieu le cas pour l'oxygène dissous indispensable à la vie aquatique puisque sa teneur est fonction de la température. Une température supérieure à 15°C favorise le développement des microorganismes, intensifie la biodégradation et les mauvaises odeurs [25].


La température des eaux (annexe 4) dans la région d'étude varie entre 11.5° et 22.4 °C avec une moyenne de 17.06 °C.

2.1.2. Potentiel d'hydrogène pH:

Le pH est en relation avec la concentration en ions hydrogène H⁺ présent dans une eau. Il sert à quantifier la concentration en ions H⁺ de l'eau qui lui confère son caractère acide ou

basique[26].

La mesure de pH est très importante. Ce paramètre conditionne l'équilibre physicochimique d'eau. Cet équilibre dépend de l'origine de ces eaux qui peuvent être naturelles ou artificielles [27]. Ils diminuent en présence de la matière organique et augmentent en saison sèche, quand l'évaporation est élevée [28]. Le pH varie entre 6.7 et 7.85 avec une moyenne de 7,15, donc les eaux de la nappe sont presque neutres à légèrement basique.

Figure 35 : Carte de répartition du pH dans la zone d'étude.

La carte de PH montre que la valeur maximale est enregistrée au niveau de forage F5(7,85) et la valeur minimale au niveau du puits P15 (6,70).

2.1.3. Conductivité électrique (CE) :

La conductivité électrique d'une eau (capacité à conduire l'électricité), est sa propriété à favoriser le passage d'un courant électrique. Elle fournit une indication précise sur la teneur en sels dissous (salinité de l'eau) et donc, la mesure de la conductivité permet d'évaluer la minéralisation globale de l'eau [29]. Dans les eaux de notre nappe la CE varie entre 630 et 5830 μS/cm avec une moyenne de 2674,63 μS/cm.

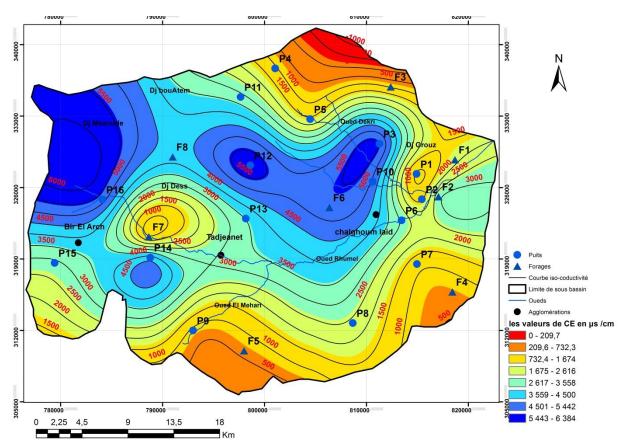


Figure 36 : Carte de répartition de la conductivité électrique (CE) de la zone d'étude.

D'après la carte d'iso-conductivité, la concentration la plus élevée a été enregistré au niveau du puits P12 (5830μs/cm) et la concentration minimale au niveau du forage F5 (630μs/cm).

En comparant la carte d'iso-conductivité (Figure 36) avec la carte piézométrique (Figure 31), il apparait que selon la carte la conductivité est élevée dans la partie amont des oueds les zones qui montrent les valeurs de conductivité les plus élevées, sont les zones de convergence des eaux (zones de dépressions).

2.1.4. L'oxygène dissous :

L'oxygène toujours présent dans l'eau, n'est pas un élément constitutif. Sa solubilité est fonction de la température, de la pression partielle dans l'atmosphère et de la salinité. Il varie entre 0,03 et 8,12 Avec une moyenne de 1,37.

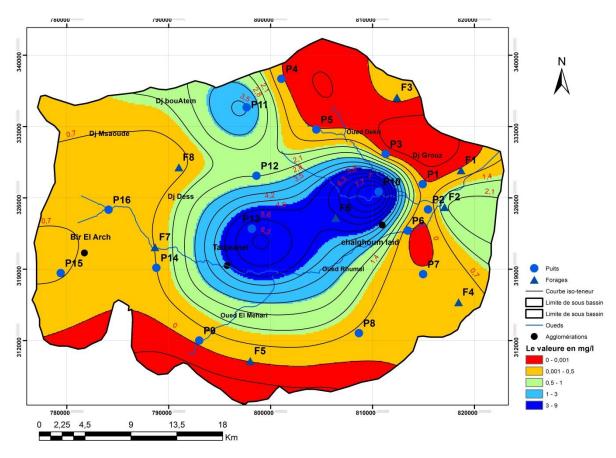


Figure 37 : Carte de répartition de l'O₂ dissous de la zone d'étude.

D'après la carte de l'O₂diss (Figure 37), la zone perméable le centre du sous bassin (P10, P13 et F 6....) et la zone peu perméable l'ouest (P16, P15 et F7) et l'est (P2, F4...) de la zone d'étude.

2.1.5. La salinité:

Elle est définie comme étant la somme des matières solides en solution contenues dans une eau. La salinité totale varie de 300 à 3130 (mg/l) Avec une moyenne de 1374,17 mg/l.

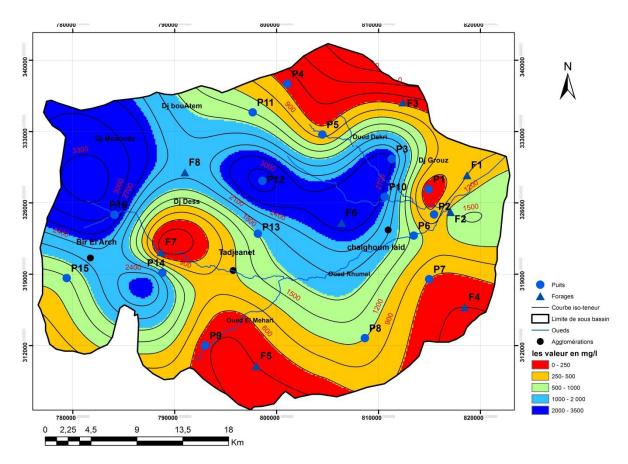


Figure 38 : Carte de répartition de la salinité de la zone d'étude.

D'après la carte de la salinité (Figure 38), la concentration la plus élevée est enregistré au niveau du puits P12 (3130 mg/l) et la concentration minimale au niveau du forage F5 (300 mg/l).

La carte de répartition de la salinité est semblable à celle de conductivité car elles sont liées. La zone de haute salinité est celle de la convergence des eaux comme pour la CE.

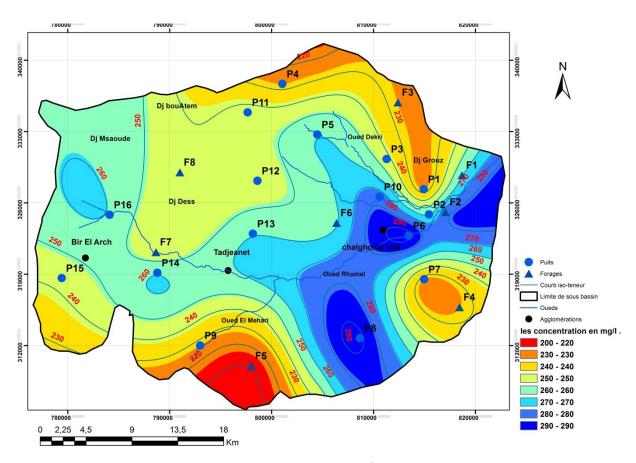
2.2. Les paramètres chimiques :

2.2.1. Calcium (Ca^{2+}) et Magnésium (Mg^{2+}):

Le calcium est le cinquième élément le plus abondant dans la nature. La concentration du calcium dans les eaux est liée principalement à deux origines naturelles :

- la dissolution des formations carbonates ($CaCo_3 = Ca^{2+} + Co_3^{2-}$).
- soit par dissolution des formations sulfatées (CaSo₄, $2(H_2O) = Ca^{2+} + So_4^{2-} + 2(H_2O)$).

Une teneur faible en calcium fait penser à un échange de base contre le sodium ou à l'absence de minéraux riches en calcium faiblement altérables, par contre une teneur élevée en calcium provient de la mise en solution du gypse ou de l'anhydrite ou des calcaires [30].


Etude Hydro chimique

Quant au magnésium, il est le huitième élément le plus abondant dans la nature. Les principales sources du magnésium contenu dans les eaux sont les minéraux ferromagnésiens des roches ignées et les carbonates de magnésium des roches sédimentaires [31].

2.2.2. Sodium et potassium (Na+ et K+):

Le sodium et le potassium, 6ème et 7ème éléments les plus abondants à l'état naturel, sont en proportions très variables. On peut également signaler que le sodium joue un rôle important en agriculture, pour l'irrigation, du fait de son action sur la perméabilité des sols. Le sodium provient du lessivage des formations riches en NaCl, des formations argileuses, argilomarneuses et des rejets des eaux usées d'origine domestique [25]. Le potassium beaucoup moins abondant que le sodium et rarement présent dans l'eau à des teneurs supérieurs à 20 mg/l. Il ne représente aucun inconvénient particulier bien que le potassium soit une des sources possibles de radioactivité de l'eau [32]. On le retrouve dans les roches ignées et dans la nature sous forme de chlorure dans de nombreux minéraux. Certains rejets industriels et d'usines d'engrais peuvent entrainer des quantités de potassium relativement importantes dans l'eau[33].

Les concentrations estimées en Na⁺ dans les eaux de l'aquifère du Mio-plio-quaternaire varient entre 210,56 et 291,55 mg/l avec une moyenne de 249,03 mg/l. La carte des iso-concentrations en Sodium (Figure 39) montre que la forte concentration en Na⁺ est localisée au sud-Est de la région d'étude et donc dans le sens des écoulements des eaux.

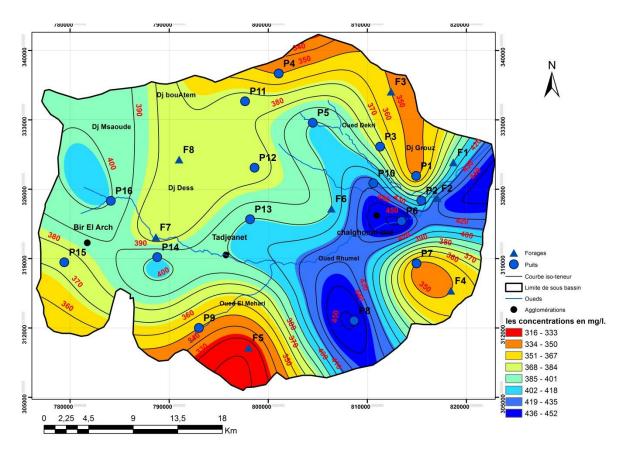


Figure 39: Carte d'iso-teneur en (Na⁺) de la zone d'étude.

2.2.3. Chlorures (Cl⁻):

Les chlorures peuvent avoir plusieurs origines et sont liés principalement à la dissolution des terrains salifères. Ils peuvent provenir également de l'action humaine à partir du salage des routes, ou par contamination par les eaux usées. Les chlorures donnent un goût désagréable et posent le problème de la corrosion dans les canalisations et les réservoirs à partir de 50 mg/l [34]. Dans l'eau potable, la concentration maximale acceptable est de 250 mg/l. Si la teneur est supérieure à cette valeur, elle affecte le goût de l'eau [25].

Les concentrations en Cl dans les eaux de l'aquifère du Mio-pliocène varient entre 325 et 450 mg/l avec une moyenne de 384,37 mg/l. la carte des iso-teneurs en Sodium montre qu'une forte concentration est localisée dans la région sud-Est comme pour le Na⁺. Les deux cartes pour ces deux éléments sont semblables, car ils proviennent des mêmes sources. Ils proviennent essentiellement de la dissolution du NaCl contenus dans les terrains triasiques et marno-argileux.

Figure 40 : Carte d'iso-teneur en (Cl⁻) de la zone d'étude.

2.2.4. Bicarbonate (HCO₃):

Les bicarbonates sont des sels dérivés de l'acide carbonique, à teneur réduite en hydrogène et contiennent deux fois plus d'acide que les carbonates. La présence des bicarbonates dans l'eau est due à la dissolution des formations carbonatées (calcaire, dolomie, cipolin ...) par des eaux chargées en gaz carbonique (CO2) [35].

Les concentrations varient entre 66 mg/l et 292 mg/l avec une moyenne de 151,71 mg/l.

Ils proviennent de la dissolution des roches carbonatées existantes au niveau du secteur d'étude.

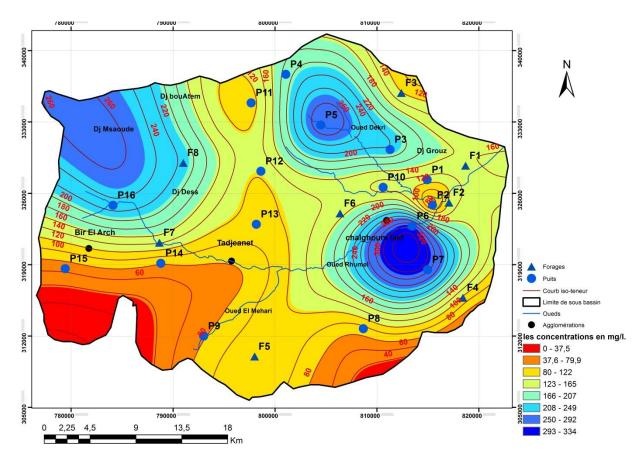


Figure 41 : Carte d'iso-teneur en (HCO3⁻) de la zone d'étude.

2.2.5. Alcalinité:

L'alcalinité de l'eau se définit comme la somme des charges des acides inactifs (conjugués des bases fortes) tels que Na+, Ca²⁺... diminuée de la charge des bases inactives (conjuguées des acides forts) telles que Cl-, NO₃-, SO₄²⁻.

Par suite de la neutralité électrique de la solution, c'est aussi la somme des charges des ba ses faibles (carbonate, hydrogénocarbonate, borate, silicate, phosphate...).

L'alcalinité des eaux naturelles résulte de l'altération des minéraux des roches. Ainsi l'altération des feldspaths des granites libère les cations inactifs Na⁺, K⁺, Ca²⁺ alors que les anions (aluminate et silicate) sont des bases faibles et surtout sont incorporés dans des minéraux argileux. De même, les pyroxènes des basaltes libèrent le cation Mg²⁺ et l'anion silicate. La dissolution de la calcite des calcaires fournit l'ion Ca²⁺ inactif et l'ion carbonate CO3²⁻ base faible ; elle augmente donc l'alcalinité.

Par contre, la dissolution du gypse (sulfate de calcium hydraté), produisant les ions Ca2+ et SO42- tous deux inactifs et de charges opposées, ne la modifie pas [41].

L'alcalinité varie de 154 à 405 (mg/l) avec une moyenne de 238,87 mg/l.

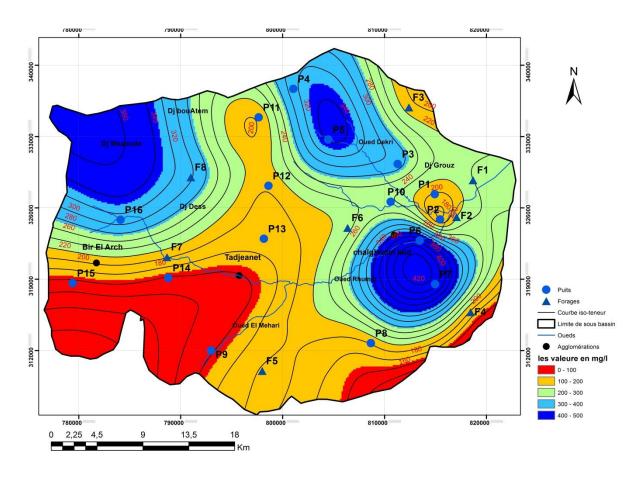


Figure 42 : Carte de répartition de l'alcalinité de la zone d'étude.

2.2.6. La Dureté totale :

Le titre hydrotimétrique (TH) ou dureté de l'eau: est l'indicateur de la minéralisation de l'eau. Elle est due uniquement aux ions calcium et magnésium. La dureté s'exprime en mg/L de CaCO3 ou en degrés français, TH= $Ca^{2+} + Mg^{2+}$ [42].

La dureté totale varie entre 268 et 958 (mg/l) avec une moyenne de 449,83 mg/l.

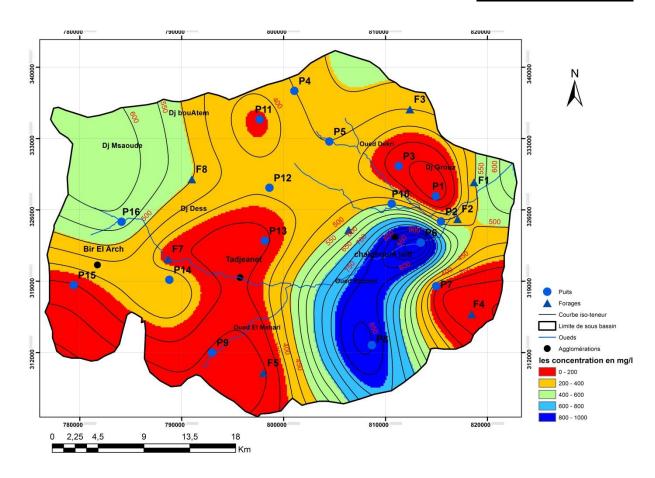


Figure 43 : Carte de répartition de TH de la zone d'étude.

II. Aptitude des eaux à l'alimentation en eau potable.

L'aptitude des eaux à l'alimentation en eau potable peut être évalué par comparaison des valeurs des paramètres physico-chimiques des eaux étudiées avec les normes de potabilité ou en utilisant l'indice de qualité des eaux (GWQI). Dans notre étude nous avons utilisé le GWQI.

1. Calcul de l'indice de qualité des eaux souterraine GWQI :

L'GWQI se calcule en utilisant les normes de qualité de l'eau potable recommandées par l'Organisation mondiale de la santé (OMS).

Neuf paramètres importants (T, pH, O diss, CE, TH, Alcalinité, Cl⁻, Na⁺, HCo₃⁻) ont été pris en compte pour le calcul de l'indice de qualité de l'eau et il est également calculé en utilisant la méthode de l'indice arithmétique pondéré. Cet indice est une technique de classification de la qualité de l'eau qui repose sur la comparaison des paramètres de qualité de l'eau avec les normes internationales ou nationales Algérienne. Le GWQI résume de grandes quantités de

données sur la qualité de l'eau en termes simples (Excellente, Bonne, Mauvaise, Très mauvaise, etc) [36].

La méthode de l'indice de qualité des eaux souterraines (GWQI) reflète l'influence composite des différents paramètres de qualité de l'eau sur sa potabilité.

L'indice est calculé en utilisant l'équation suivante en concordance avec les standards de l'OMS [37]:

$$GWQI = \sum SI_i = \sum W_i q_i = \sum \left[\left(\frac{w_i}{\sum_{i=1}^n w_i} \right) * \left(\frac{C_i}{S_i} * 100 \right) \right]$$

Avec:

Ci : concentration de chaque paramètre.

Si: valeur limite de chaque paramètre fixé par les normes algériennes.

wi : le poids de chaque paramètres selon son importance relative dans la qualité des eaux de boisson (Tableau 13).

qi : notation de qualité pour chaque paramètres.

Wi: le poids relatif.

SIi : le sous-indice du paramètre i.

Trois étapes sont suivies pour calculer l'GWQI. Lors de la première étape, chaque paramètre s'est vu attribuer un poids (wi) en fonction de son importance par rapport à la qualité globale de l'eau destinée à l'AEP. Dans la deuxième étape, le poids relatif est calculé à partir de l'équation suivante :

$$W_i = \frac{w_i}{\sum_{i=1}^n w_i}$$

Wi: le poids relatif.

wi : le poids de chaque paramètre et n est le nombre de paramètres. Les valeurs calculées de Wi sont indiquées dans le tableau 15.

Dans la troisième étape, une échelle de notation de la qualité (qi) de chaque paramètre est attribuée en divisant sa concentration par la concentration standard respective fixée selon les directives énoncées dans le décret exécutif algérien n°11-125 de la norme 17 Rabie Ethani 1432 correspondant au 22 mars 2011 relative à la qualité de l'eau pour la consommation humaine [38]. Et le résultat est multiplié par 100.

$$\mathbf{q_i} = \left(\frac{\mathbf{C_i}}{\mathbf{S_i}}\right) \mathbf{x100}$$

Ci: la concentration de chaque paramètre chimique dans l'échantillon d'eau en mg / L. **Si**: la norme de l'eau potable algérienne pour chaque paramètre chimique en mg / L selon les directives de la norme algérienne fixée dans le décret.

Pour calculer l'GWQI, le **SIi** est d'abord déterminé pour chaque paramètre. La somme des valeurs du SIi donne l'indice de qualité de l'eau pour chaque échantillon (annexe 05).

$$Sli = Wi x qi$$

$$WQI = \sum Sli$$

SIi : le sous-indice du nième paramètre.

qi : la notation basée sur la concentration du nième paramètre.

n : le nombre de paramètres.

 $\label{eq:tableau} \textbf{Tableau 13}: \mbox{Poids } \textbf{w}_i \mbox{ des paramètres utilisés dans le calcul de GWQI.}$ Le tableau suivant donne les GWQI des points d'eaux analysés et leurs classes.

Paramètres	Poids w _i	Poids relatif W _i
Ph	3	0,1154
Conductivité	4	0,1538
Na	3	0,1154
Alcalinité	3	0,1154
Cl	4	0,1538
T°	4	0,1538
TH	2	0,0769
O2 dissous	2	0,0769
HCO3	1	0,0385
Total	26	1

Tableau 14 : les classifications des eaux par l'indice de GWQI.

les Points d'eau	Indice GWQI	Classes
F 1	83,32	Bonne
P 1	64,89	Bonne
P 2	80,98	Bonne
F 2	95,00	Bonne
P 3	96,22	Bonne

Etude Hydro chimique

F 3	74,83	Bonne
P 4	73,72	Bonne
P 5	84,60	Bonne
P 6	115,86	Médiocre
P 7	75,57	Bonne
F 4	65,17	Bonne
F 5	61,91	Bonne
P 8	101,60	Médiocre
P 9	64,21	Bonne
P 10	110,99	Médiocre
P 11	88,28	Bonne
P 12	102,15	Médiocre
P 13	96,00	Bonne
F 6	114,35	Médiocre
P 14	92,78	Bonne
F 7	75,77	Bonne
P 15	79,78	Bonne
P 16	107,37	Médiocre
F 8	99,85	Bonne

Tableau 15 : Classification de la qualité des eaux souterraines basée sur l'indice GWQI

Classes de l'indice GWQI	Nombres d'échantillon et (%)	
Excellente (<50)	//	
Bonne (50 – 100)	18 échantillons (75 %)	
Médiocre (100 – 200)	6 échantillons (25 %)	
Très Médiocre (200 – 300)	//	
Non potable (>300)	//	

Les résultats de calcul donnent une indication sur la qualité générale des eaux du sous bassin de barrage Grouz (annexe 05). La qualité de l'eau est conservée et rarement menacée car on trouve d'après le tableau 15 et la figure 44 que 75 % des échantillons sont de **bonne qualité** et 25 % des échantillons sont des eaux **Médiocres**; donc toutes les eaux sont propres à la boisson.

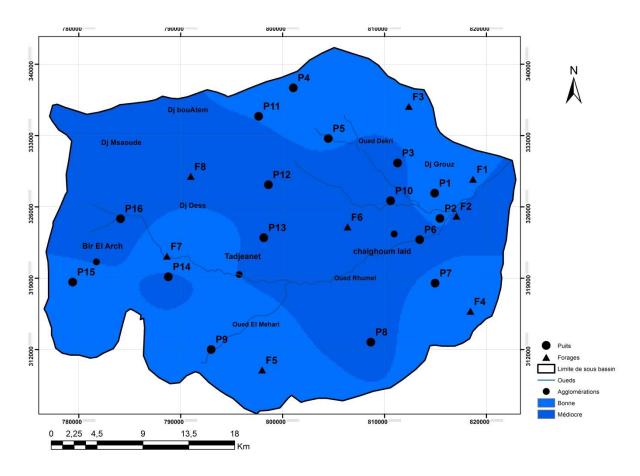


Figure 44 : Carte de répartition du GWQI dans le bassin Hammam Grouz.

III. Aptitude des eaux à l'irrigation.

Les eaux sont utilisées pour l'irrigation des périmètres agricoles, l'évolution des paramètres physico-chimiques des eaux influent sur les caractéristiques du sol ce qui aura des répercussions sur le rendement de l'activité agricole. L'étude chimique des eaux pour l'irrigation est nécessaire pour mettre en évidence le danger que présente certains éléments chimiques, pour les plantes qui supportent mal les sols saturés en sodium, une classification des eaux en fonction du pourcentage du sodium absorbé par l'eau (méthode de Richards) permet de bien classée les eaux en fonction de la conductivité électrique, TH, Cl, RSC et le SAR (Sodium Adsorption Ratio) dans l'eau.

1. Classification selon le SAR:

Défini par la formule suivante :

SAR = Na
$$/\sqrt{(Ca + Mg)}/2$$
, où les concentrations sont en méq/l.

- -SAR < 10 mg/l l'eau est Excellente
- -10<SAR < 18 l'eau est Bonne.

-18<SAR< 26 l'eau est utilisable.

SAR< 26 l'eau est mauvais.

La méthode de calcul du SAR est dans l'annexe 06 et les résultats dans le tableau suivant :

Tableau 16: les classifications des eaux selon le SAR.

Point d'eau	SAR	Classe
F1	5,07	Excellente
P1	5,89	Excellente
P2	5,16	Excellente
F2	5,52	Excellente
P3	5,91	Excellente
F3	4 ,65	Excellente
P4	4,65	Excellente
P5	5,32	Excellente
P6	4,10	Excellente
P7	5,11	Excellente
F4	6,02	Excellente
F5	5,36	Excellente
P8	4, 34	Excellente
P9	5,77	Excellente
P10	5,40	Excellente
P11	5,47	Excellente
P12	5,20	Excellente
P13	6,08	Excellente
F6	4,86	Excellente
P14	5,41	Excellente
F7	5,53	Excellente
P15	5,66	Excellente
P16	4,72	Excellente
F8	4,72	Excellente

Le tableau 16 montre que toutes les eaux sont de Excellente qualité selon le SAR.

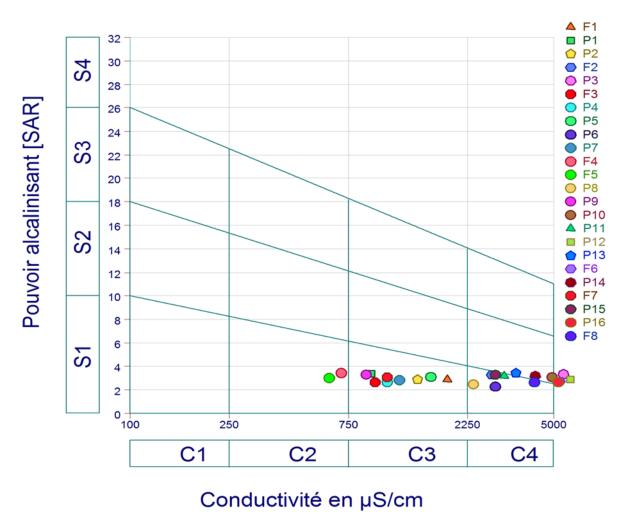


Figure 45: Diagramme de Richards des eaux de la région d'étude.

Les résultats des analyses portés sur le diagramme de Richards (figure 45) montrent la répartition des points d'eau dans différentes classes.

Les quatre classes trouvées représentent les caractéristiques suivantes :

Classe C1-S1 : elles représentent les eaux d'excellente qualité pour l'irrigation de la plupart des cultures sur la plupart des sols. Dans cette classe il n'est y'a pas des points d'eau donc 0%.

Classe C2-S1, C2-S2: elles représentent les eaux de bonne qualité convenable aux plants qui ont une tolérance aux sels cependant son utilisation peut générer des problèmes pour les argiles. Les points d'eau appartenant à cette classe sont F4, F5 donc 8,33%.

Classe C3-S1: représente des eaux de qualité admissibles pour l'irrigation des cultures tolérantes aux sels, sur des sols bien drainés ou de bonne perméabilité. Les points d'eau appartenant à cette classe sont F1, P1, P2, F3, P4, P5, P7, P9 et F7donc 37,5 %.

Classes C4-S1, C4-S2: elles représentent les eaux médiocres fortement minéralisées, susceptibles de convenir à l'irrigation de certaines espèces bien tolérantes aux sels et sur des sols bien drainés et lessivés. Les points d'eau appartenant à cette classe sont F2, P3, P6, P8, P10, P11, P12, P13, P14, P15, P16, F6 et F8donc 54,17 %.

2. Classification selon le Pourcentage en Sodium (Na%) :

2.1. Calcul le Pourcentage en Sodium (Na%):

Le pourcentage en Sodium (Na%) est un paramètre important pour classer les échantillons d'une eau souterraine à des fins d'irrigation. Il est calculé par la formule proposée par Doneen (1962).

$$Na^{+}(\%) = 100 (Na^{+} + K^{+}/Ca^{2+} + Mg^{2+} + Na^{+} + K^{+}).$$

Ou Na⁺, Ca²⁺, Mg²⁺, Na⁺ et K⁺ sont exprimés en méq/l.

Dans notre cas le K^+ est associé au Na^+ et donc est considéré égale à 0 dans le calcul. Les résultats sont présentés dans le tableau suivant :

Tableau 17: Classification des eaux selon le pourcentage en Sodium.

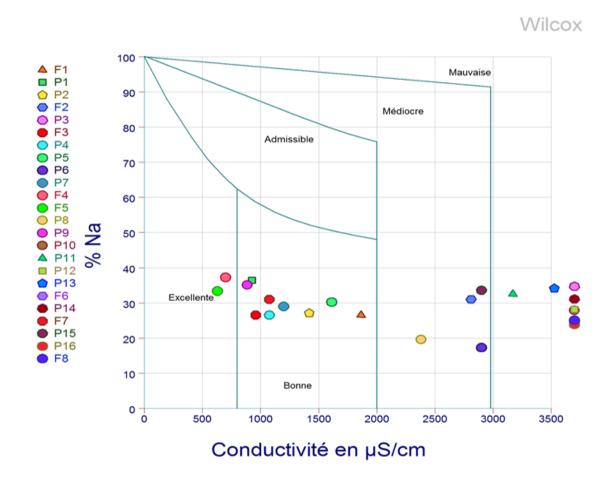
Point d'eau	%Na	Classe
F1	96,33	Mauvaise
P1	97,59	Mauvaise
P2	96,45	Mauvaise
F2	96,70	Mauvaise
Р3	97,43	Mauvaise
F3	96,18	Mauvaise
P4	96,19	Mauvaise
P5	96,65	Mauvaise
P6	93,83	Mauvaise
P7	96,82	Mauvaise
F4	97,69	Mauvaise
F5	97,30	Mauvaise
P8	94,48	Mauvaise
P9	97,49	Mauvaise
P10	96,56	Mauvaise
P11	97,02	Mauvaise

P12	96,72	Mauvaise
P13	97,42	Mauvaise
F6	96,01	Mauvaise
P14	96,77	Mauvaise
F7	97,08	Mauvaise
P15	97,22	Mauvaise
P16	95,79	Mauvaise
F8	96,05	Mauvaise

Le tableau 18 montre que toutes les eaux sont de mauvaise qualité selon le pourcentage en sodium.

Tableau 18: Classification de l'eau basée sur le pourcentage en Sodium.

Sodium Na ² (%)	Classe de l'eau	Nombres d'échantillon et (%)
<20	Excellente	//
20-40	Bonne	//
40-60	Utilisable	//
60-80	Médiocre	//
>80	Mauvaise	Tous les points d'eaux (100%).


3. Classification selon la conductivité électrique (CE) :

Elle mesure la capacité de la substance ou de la solution à conduire le courant électrique. La CE des eaux souterraines augmente avec la température.

Tableau 19: Classification de l'eau basée sur la conductivité électrique (CE).

Cond (µs/cm)	Classe de l'eau	Les échantillons
0-250	Excellente	//
250-750	Bonne	F4 et F5.
750-2000	Utilisable	F1, F3, P1, P2, P4, P5, P7, P9 et P7
2000-3000	Médiocre	F2, P6, P8, P15.
>3000	Mauvaise	P3, P10, P11, P12, P13, F6, P14, P16, F8.

La combinaison du taux de sodium et conductivité électrique a permis d'élaborer le diagramme de Wilcox (1955). Il ressort de ce diagramme que les eaux sont classées dans la catégorie excellente à bonne (Figure 46).

Figure 46 : Diagramme de Wilcox.

La classification de Wilcox est fondée sur la combinaison de la teneur en sodium dans l'eau et la conductivité électrique, généralement connu en %, cette classification définie cinq classes (excellente, bonne, admissible, médiocre et mauvaise) :

- Classe excellente 8,33% des points analysées.
- Classe bonne 37,5% des points analysées.
- Classe admissible 0% des points analysées.
- Classe médiocre 16,67% des points analysées.
- Classe mauvaise 37,5 % des points analysée.

4. Classification selon Carbonate de sodium résiduel (RSC) :

La forte concentration d'ions bicarbonate dans l'eau provoque la précipitation du calcium et du magnésium sous forme de carbonates, ce qui permet l'augmentation de la concentration de sodium dans le sol. La RSC est calculée en utilisant l'équation suivante:

RSC =
$$(HCO_3^- * 0.0333) - (Ca^{2+} + Mg^{2+}).$$

La concentration de valeurs d'alcalinité en mg/l et Ca²⁺+ Mg²⁺ sont en méq /l. Les valeurs de RSC < 1,25 méq/l sont considérées comme sans danger pour l'irrigation, tandis que celles comprises entre 1,25 méq/l à 2,5 méq/l conviennent marginalement à l'irrigation. Si les valeurs de RSC sont> 2,5 méq/l, l'eau souterraine ne convient pas pour l'irrigation selon le classification de Eaton 1950 et de Richards 1954. Les valeurs RSC des échantillons d'eau souterraine de la zone d'étude sont < 1,25 méq/l (annexe 6) donc les eaux sont bonnes et adaptées à l'irrigation.

Tableau 20: Classification de l'eau basée sur RSC.

Les Points d'eau	RSC (meq/l)	Classe
F1	-7,32	Bonne
P1	-3,47	Bonne
P2	-8,23	Bonne
F2	-7,37	Bonne
Р3	-2,86	Bonne
F3	-7,00	Bonne
P4	-5,90	Bonne
P5	-4,55	Bonne
P6	-14,37	Bonne
P7	-2,77	Bonne
F4	-3,46	Bonne
F5	-3,91	Bonne
P8	-15,50	Bonne
P9	-4,56	Bonne
P10	-7,62	Bonne
P11	-5,62	Bonne
P12	-6,21	Bonne
P13	-4,99	Bonne
F6	-8,24	Bonne
P14	-7,32	Bonne
F7	-4,97	Bonne
P15	-5,88	Bonne

P16	-7,63	Bonne
F8	-6,49	Bonne

Tableau 21: Classification de l'eau basée sur RSC.

RSC (meq/l).	Classe de l'eau.	Les échantillons.
<1,25	Bonne	Tous les points d'eaux.
1,25-2,5	Utilisable	//
>2,5	Mauvaise	//

On remarque que, tous les points sont situés dans la classe Bonne.

5. Classification selon le TH:

La dureté ou Titre hydrotimétrique est l'indicateur de la minéralisation de l'eau. Elle est due uniquement aux ions calcium et magnésium. Elle peut être temporaire ou permanente. Une eau dure provoque l'obstruction des canalisations par le dépôt de tarte (sels) et peut nuire à la santé humaine en provoquant des maladies telles que l'insuffisance rénale. Le TH est mesuré:

- -soit par dosage à l'EDTA.
- -soit par calcul à partir de la teneur en Ca et Mg.

$$TH_{caco3}$$
 (mg/l) = $(Ca^{2+}+Mg^{2+})*50$.

Tableau 22: Classification de l'eau basée sur TH.

TH en caco ₃ (mg/l).	Classe de l'eau.	Les échantillons.		
<75	Douce	//		
75-150	Moyennement dure	//		
150-300	Dure	P1, F4, F5, P9		
		F1, P2, F2, P3, F3,P4, P5,P6,P7, P8,		
>300	Très dure	P10, P11, P12,P13 F6, P14 F7, P15,		
		P16, F8.		

A partir de tableau 22 On remarque que :

- -16,67% des échantillons en classe dure.
- 83,33% des échantillons en classe très dure.

6. Classification selon Cl⁻:

Tableau 23: Classification de l'eau basée sur Cl.

Cl ⁻ (mg/l).	Classe de l'eau.	Les échantillons.				
0-142	Excellente	//				
142-355	Bonne	P1, F3, P4, P7, F4, F5, P9.				
>355	Mauvaise	F1, P2, F2, P3, P5, P6, P8, P10, P11,				
		P12, P13, F6, P14, F7, P15, P16, F8.				

A partir du tableau 23 On remarque que :

- -29,17% des échantillons en classe Bonne.
- -70.83% des échantillons en classe mauvaise.

Conclusion:

L'étude hydrochimique des eaux du bassin de Hammam-Grouz basée sur l'analyse et l'interprétation de 24 échantillons d'eau montre que :

- La corrélation température\ profondeur, montre une hétérogénéité entre ces deux paramètres.
- -L'interprétation des cartes hydrochimiques, montre une forte concentration en éléments chimiques tels que la carte de répartition de clore.
- Le PH varie entre la valeur maximale 7,85 et la valeur minimale 6,70, le PH indique que l'eau est basique.
- la salinité augmente généralement avec la conductivité et la zone qui montre ca c'est la région de convergence de l'eau.
- -La potabilité des eaux est très bonne à moyenne et ne représente aucun risque pour la santé humaine.
- La qualité des eaux est mauvaise pour l'irrigation et ne peut être utilisée qu'avec prudence et surtout pour les cultures présentant une très grande tolérance pour les sels.

Conclusion générale:

La Willaya de Mila située à l'Est de l'Algérie dispose des potentialités hydriques importantes caractérisées surtout par des eaux souterraines qui sont captées à travers des forages, puits et sources afin de satisfaire la demande en eau des habitants et de l'agriculture. Pour mieux connaître les différents paramètres physico-chimique des eaux souterraines de la nappe aquifère et sa qualité en vue de leur utilisation en alimentation des eaux potable et l'irrigation de la région de sous bassin **Hammam-Grouz**, nous avons réalisé cette étude qui est basée sur un travail de terrain sous forme d'un compagne d'échantillonnage suivi par un travail au laboratoire pour établir les différentes analyses.

L'étude géologique nous a permis de voir l'ensemble des formations géologiques à partir des coupes géologiques et des logs litho stratigraphiques qui nous a permis de mettre en évidence la succession des couches géologiques dans la zone d'étude.

L'étude hydrogéologique nous a permis de définir deux horizons aquifères principaux :

L'horizon aquifère du Plio-quaternaires.

L'horizon potentiel aquifère du crétacé.

La carte piézométrique de la nappe superficielle et montre que les écoulements des eaux souterraines se font principalement selon trois directions qui sont N-E, O-E, S-E.

L'étude hydro-chimique a été réalisée afin de caractériser la qualité des eaux souterraines. Ces eaux ont des caractéristiques physiques relativement variables ; la température varie entre 11.5 et 22.4°C ce qui signifie des eaux non thermales. Un pH de 6,7 à 7.85 et une conductivité électrique oscillant de 630 à 5830 µs/cm qui signifie que sont des eaux chargées. Et une dureté de 268 mg/l à 958 mg/l qui signifie que sont des eaux dure à très dure.

Dans ce travail, nous avons évalué la qualité des eaux souterraines utilisées en AEP et en irrigation :

- Selon l'indice de qualité de l'eau (GWQI) 75% de l'échantillon sont bonnes (F1, P1, P2, F2, P3, F3, P4, P5, P7, F4, F5, P9, P11, P13, P14, F7, P15, F8) et 25% sont médiocres (P6, P8, P10, P12, F6, P16) donc l'eau elle est utilisable pour AEP.
- Selon le SAR, Na%, RSC, TH et le Cl la qualité des eaux de la majorité des points d'eau est mauvaise pour l'irrigation.

Références bibliographiques :

- [1]. AISSAOUI A., 2013. Evaluation du niveau de contamination des eaux de barrage hammam Grouz de la région de Oued Athmania (wilaya de Mila) par les activités agricoles. Université Mouloud Mammeri De Tizi-Ouzou, Département De Biologie Végétale Et Animale, p29.
- [2]. MIHOUBI N., 2009. Fonctionnement et gestion hydrogéologique et hydrologique des ressources en eau du bassin de Hammam Grouz. Departement des sciences de la terre.
- [3]. MELGHIT M., 2009. Qualité physico-chimique, pollution organique et métallique des compartiments eau / sédiments de l'Oued Rhumel, et des barrages Hammam Grouz et Béni Haroun. Mémoire de Magister. Université Mentouri, Constantine, 132p.
- [4]. MEBARKI A., 1982. Le bassin du Kébir-Rhumel (Algérie). Hydrologie de surface et aménagement des ressources en eau, thèse doctorat de 3 è cycle, Université de Nancy II, 304p
- [5]. MIHOUBI N., 2009. Fonctionnement et gestion hydrogéologique et hydrologique des ressources en eau du bassin de Hammam Grouz. Departement des sciences de la terre, P4.
- [6]. DURAND. DELGA M., 1969. Mise au point sur la structure de NE de Berbérie. Publ Serv. Carte géol. Algérie, n°39, pp.7-12 & pp.129-519. Raoult J.F. (1974) : Géologie de centre de la chaîne numidique (nord de Constantine, Algérie) Thèse, pp.1-163, Paris.
- [7]. RAOULT J.F., 1975. Evolution paléogéographique et structurale de la chaîne alpine entre le golfe de Skikda et Constantine (Algérie orientale). Bull, pp. 394-409.
- [8]. RAOULT J.F., 1972. Précision sur le flysch massylien : série stratigraphique, variations des faciès, nature du matériel remanié (Nord de Constantine). Bull, pp.73-92.
- [9]. KIEKEN M., 1962. Esquisse tectonique de l'Algérie (Algérie du nord). Exposé sur les connaissances actuelle de la structure de l'Algérie et présentation d'un carte tectonique au /1000000. Publ. Carte géol. Algérie, série n°31.
- [10]. Vila J.M., 1980. La chaîne alpine d'algérie orientale et des confins Algéro-Tunisiens I.II.III.Thèse. Es-sciences, pp.139-174, Paris.
- [11]. COIFFAIT P.E., 1992. Un bassin post- nappes dans son cadre structural : l'exemple du bassin de Constantine (Algérie Nord- Orientale). Thèse doctorat. Univ.Nancy. 505p.
- [12]. MIHOUBI N., 2009.Fonctionnement et gestion hydrogéologique et hydrologique des ressources en eau du bassin de Hammam Grouz. Departement des sciences de la terre, P 11, P 14.

- [13]. GUIRAUD R., 1973. Evolution post-triasique de l'Avant pays de la chaîne alpine en Algérie, d'après l'étude du bassin du Hodna et des régions voisines. Thèse ès Sciences, Université de Nice, 270 p.
- [14]. DURAND. DELGA M., 1955. Etude géologique de l'ouest de la chaîne numidique (Algérie). Thèse sciences, Paris Bull. Serv carte géol. Algérie, 2° série, n°24, 533p
- [14]. GUIRAND R., 1973. Evolution post- triasique de l'avant pays de la chaîne alpine en Algérie, d'après l'étude de bassin de Hodna et des régions voisines. Thèse, Nice.
- [14]. LEIKINE M., 1974. Essai d'interprétation structurale d'une transversale au SW de Bejaia (Algérie). Les babors et la région sub-baborienne. Bull.Soc.Hist.nat.Afr.Nord, pp.439-456, Alger.
- [15]. DELEAU P., 1939. Etude géologique des régions de Jemmapes, Hammam Meskoutine et du col des oliviers, n°14, t.1, 551p, Alger
- [16]. BOURBIA Y ., et CHENTI A ., 2017-2018. Carte hydrogeologique au 1/50 000 de oued-Athmenia-Teleghma(Wilaya de Mila) secteur sud.Université fréres mentouri-constantine-1, Faculté de la Science de la Terre, et de la Géographie et de l'Aménagement du Territoire, Département des Sciences Géologiques,.P21.
- [17]. VILLA J.M., 1977. Carte géologique de Constantine au 200 000ème, avec notice explicative, Service de la carte géologique d'Algérie.
- [18]. BOULEGHLEM Z., 2015. Etude Hydrogéologique et Evaluation des ressources en eau dans la région Azzaba-Guerbes. Université Badji Mokhtar-Annaba, Faculté de la Science de la Terre Département De Géologie, P45.
- [19]. MICHARD G., 1989. Equilibres chimiques dans les eaux naturelles. Ed. Published, 357p.
- [20]. KUMAR M., RAMANATHAN AL., RAO MS, Kumar B., 2006. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. J. Environ. Geol. 50:1025-1039
- [21]. SWARNA L., NAGESWARA RAO K., 2011. An integrated approach to assess the quality of groundwater in a coastal aquifer of Andhra Pradesh, India. Earth Sci. 64:1823-1833
- [22]. KULDIP.S, HUNDAL. HS, DHANWINDER S., 2011. Geochemistry and assessment of hydrogeochemical processes in groundwater in the southern part of Bathinda district of Punjab, northwest India. Environ. Earth Sci. 64:1823-1833
- [23]. ALLIA Z., CHEBBAH M., OUOMANE A., 2018. Analyse et Evaluation de la qualité des eaux du systeme aquifere mio-pliocene dans le zab chergui, bas sahara septentrional. Courrier du Savoir N°26, Mars 2018, pp235-244

- [24].BOUDRUD D .,A.R.M.towfiqul Islamb,c,Fahad Ahmeda,Samiran Dasd,Narottam sahae,M.Safiur Rahmanf,g.,2016 .Water science p19-40.
- [25]. BEAUDRY T., Henry T M .,1984. Chimie des eaux, édition. Les griffons d'argiles, 1ère, édition, INC Canada.537 p.
- [26]. REJSEK F., 2002. Analyse des eaux: aspects réglementaires et techniques (Edition CRDP Aquitaine décembre). Bordeaux: Centre régional de documentation pédagogique d'Aquitaine.
- [27]. BREMOND R., VUICHARD .R.1973. Paramètresde la qualité des eaux. Documentation Française, Paris, France.
- [28]. KADDOUCHE M., 2012. « Contribution à l'étude hydro climatologique de la plaine alluviale de l'oued Isser (Willaya de Boumerdès) », Université Abderrahmane Mira « Bejaïa » Faculté des Sciences de la Nature et de la Vie, Département des Sciences Biologiques de l'Environnement, p42.
- [29]. REJSEK F., 2002 .Analyse des eaux: aspects réglementaires et techniques (Edition CRDP Aquitaine décembre). Bordeaux: Centre régional de documentation pédagogique d'Aquitaine.
- [30]. LOUNNAS A., 2008. Amélioration des procèdes de clarification des eaux de la station hamadi-kroma de skikda, Algérie, mémoire de magister. Univ. du 20 Août 1955 Skikda.120 p [31]. Day E.H., 1963. The chemical éléments in nature. London, U.K. Edit. G. George Harrap & co London.
- [32]. POTELON J.L., Zyman K., 1998. Le guide des analyses d'eau potable. Edition, La Lettre du Cadre Territorial, Voiron, France.
- [33]. RODIER J., 1975. L'analyse de l'eau : eaux naturelles, eaux résiduaires, eau de mer. Coll. Dunod Technique, Tome 2. Paris, 1365 p.
- [34]. MARCEL D., 1995. Chimie des oxydants et traitement des eaux. L'université de Poitiers (E.S.I.P), 230 p.
- [35]. BELHADJ M.Z., 2006. Etude de la pollution du barrage de Zit-Emba Commune de Bekkouche Lakhdar Wilaya de Skikda, Mémoire de Magister, Univ. Batna. 107 p.
- [36]. BROWN et al., 1970. BROWN et al., 1972., Yidana, 2010. Assessing water quality using water quality index and multivariate analysis. Environmental Earth Sciences, 59(7) (pp. 1461-1473).
- [37]. BROWN R., McClelland N., DEININGER R., TOZER R., 1970. A Water Quality Index- Do We Dare? Water and Sewage Works, 117, (pp. 339–343).

[38]. le décret exécutif algérien n°11-125 de la norme 17 Rabie Ethani 1432 correspondant au 22 mars 2011 relative à la qualité de l'eau pour la consommation humaine.

Références Web graphiques :

- [39]. Site internet https://fr.wikipedia.org/wiki/Rhummel.
- [40]. Site Internet: <u>WWW.futira-sciences.com</u>.
- [41]. http://www.mediaterre.org/L'alcalinité d'une eau, paramètre à suivre de près (consulté Avril 2020).
- [42]. https://fr.wikipedia.org/wiki/Dureté_de_l'eau.

Annexes:

Annexe 1 : inventaire des points d'eau.

Les		Profondeur			
points	Location	de puits	X	Y	\mathbf{Z}
d'eau					
		(Mètre)	(Mètre	(Mètre	(Mètre)
			Lambert)	Lambert)	
F1	M ^{ta} El Hadj Rahmani	120	818690	328720	754
P1	M ^{ta} Edakhla	7.1	814930	327340	775
P2	M ^{ta} Mezara	12	815450	324860	770
F2	M ^{ta} Boufoula	123	817070	325100	771
P3	M ^{ta} Derfoul	6	811290	330300	830
F3	M ^{ta} Ain El Melouk	8	812390	335860	847
P4	Merdj El Kebir	9	801060	337680	908
P5	M ^{ta} Khalouta	9	804490	332710	848
P6	M ^{ta} Mezdoura	16.2	813460	322790	752
P7	M ^{ta} Ain flousse	4.6	814970	318510	867
F4	M ^{ta} dher mezyout	164	820750	316160	833
F5	M ^{ta} Djehli	150	798000	310000	833
P8	Oualed khlouf	6.5	808670	312730	866
P9	M ^{ta} OUALED HALAL	13.10	793000	312000	869
P10	M ^{ta} OUAD DEKRI	8	810610	326600	784
P11	Oualed aissa	15	797660	334880	940
P12	M ^{ta} El beyar tadjnant	16	798620	328170	934
P13	M ^{ta} Fid nafaa	25	798170	322970	847
F6	M ^{ta} Meryout	118	806380	324040	811
P14	M ^{ta} Lhwa abd elrahman	23.2	788000	319140	912
F7	M ^{ta} El hassi	140	788660	321170	982
P15	M ^{ta} Bourzam	28	779420	318620	945
P16	M ^{ta} Oualed rguig	14	784110	324830	992
F8	M ^{ta} Ain mehboub	75	791000	329000	970

Annexe 2 : paramètres physiques du point d'eau :

Les Points	Température	PH	Cond	\mathbf{O}_2	Salinité
d'eau	(T)	111	Conu	$\bigcup_{i=1}^{n} O_2$	Samme
u eau	°C	//	μs /m	mg/l	mg/l
F 1	15.9	6.97	1865	0.16	900
P1	14.3	7.41	927	0.25	400
P 2	20.3	7 .24	1420	0.24	700
F 2	22.4	6.97	2810	1.88	1300
P 3	15.0	7.10	5460	0.12	2700
F 3	20.3	7.01	960	0.17	500
P 4	19.9	7.15	1075	0.16	500
P 5	16.5	7.10	1609	0.06	800
P 6	16.3	6.97	2900	0.29	1400
P7	13	7.1	1200	0.1	600
F4	18.6	6.98	702	0.34	300
F5	13.9	7.85	630	0.03	300
P8	15	6.99	2380	0.55	1200
P9	16.6	7.02	885	0.16	400
P10	11.5	7.01	4918	8.12	2600
P11	16.55	7.04	3170	3.5	1500
P12	15.4	7.42	5830	2.07	3130
P13	17.7	7.74	3525	6.04	1820
F6	19.6	7.28	5282	5.4	2790
P14	17 .3	7.18	4200	0.7	2220
F7	21.7	7.06	1075	0.716	340
P15	17.3	6.70	2900	0.74	1490
P16	15.5	6.87	5196	0.481	2900
F8	18.9	7.48	4172	0.508	219

Annexe 3 : calcule de concentration de HCO₃⁻.

	Alcalinité	Alcalinité	2*D	IIICO I
les Points d'eau	total (M)	total (P)	2*P	[HCO ₃ ⁻]
	mg/l	mg/l	//	mg/l
F 1	240	42	84	156
P1	198	34	68	130
P2	184	52	104	80
F2	220	48	96	124
Р3	288	36	72	216
F3	210	44	88	122
P4	312	62	124	188
P5	342	36	72	270
P6	376	42	84	292
P7	405	60	120	285
F4	196	40	80	116
F5	202	42	84	118
P8	202	54	108	94
P9	158	40	80	78
P10	242	54	108	134
P11	204	46	92	112
P12	204	40	80	124
P13	190	38	76	114
F6	234	40	80	154
P14	158	38	76	82
F7	202	30	60	142
P15	154	44	88	66
P16	310	40	80	230
F8	302	44	88	214

Annexe 4 : les paramètres chimiques du point d'eau.

Les	Cl ⁻	Na ⁺	Dureté totale	Alcalinité totale	HCO ₃
Points	/I	//	mg/l En		/I
d'eau	mg/l	mg /l	CaCO ₃	mg/l	mg/l
F 1	400	259,15	494	240	156
P1	350	226,76	280	198	130
P 2	400	259,15	477	184	80
F 2	425	275,35	470	220	124
P 3	375	242,96	320	288	216
F 3	350	226,76	450	210	122
P 4	350	226,76	449	312	188
P 5	400	259,15	449	342	270
P 6	450	291,55	958	376	292
P7	350	226,76	372	405	285
F4	350	226,76	268	196	116
F5	325	210,56	292	202	118
P8	450	291,55	852	202	94
P9	350	226,76	292	158	78
P10	425	275,35	491	242	134
P11	375	242,96	373	204	112
P12	375	242,96	412	204	124
P13	400	259,15	343	190	114
F6	400	259,15	538	234	154
P14	400	259,15	433	158	82
F7	375	242,96	365	202	142
P15	375	242,96	348	154	66
P16	400	259,15	570	310	230
F8	375	242,96	500	302	214

Annexe 5 :L'indice de qualité de l'eau.

les Points d'eau	Cl ⁻ (mg/l)	Na ⁺ (mg/l)	HCO ₃ · (mg/l)	РН	CONDU	TH (mg/l)	Alcalinité	T (°C)	02	Les éléments
F 1	400	259,15	156	6,97	1865	494	240	15,9	0,16	cl-
P 1	350	226,76	130	7,41	927	280	198	14,3	0,25	Na+
P 2	400	259,15	80	7,24	1420	477	184	20,3	0,24	НСО3-
F 2	425	275,35	124	6,97	2810	470	220	22,4	1,88	ph
P 3	375	242,96	216	7,1	5460	320	288	15	0,12	conduc
F 3	350	226,76	122	7,01	960	450	210	20,3	0,17	Alcalinité
P 4	350	226,76	188	7,15	175	449	312	19,9	0,16	T
P 5	400	259,15	270	7,1	1609	449	342	16,5	0,06	O2diss
P 6	450	291,55	292	6,97	2900	958	376	16,3	0,29	TH
P 7	350	226,76	285	7,1	1200	372	405	13	0,1	La somme
F 4	350	226,76	116	6,98	702	268	196	18,6	0,34	
F 5	325	210,56	118	7,85	630	292	202	13,9	0,03	
P 8	450	291,55	94	6,99	2380	852	202	15	0,55	
P 9	350	226,76	78	7,02	885	292	158	16,6	0,16	
P 10	425	275,35	134	7,01	4918	491	242	11,5	8,12	
P 11	375	242,96	112	7,04	3170	373	204	16,55	3,5	
P 12	375	242,96	124	7,42	5830	412	204	15,4	2,07	
P 13	400	259,15	114	7,74	3525	343	190	17,7	6,04	
F 6	400	259,15	154	7,28	5282	538	234	19,6	5,4	
P 14	400	259,15	82	7,18	4200	433	158	17,3	0,7	
F 7	375	242,96	142	7,06	1075	365	202	21,7	0,716	
P 15	375	242,96	66	6,7	2900	348	154	17,3	0,74	
P 16	400	259,15	230	6,87	5196	570	310	15,5	0,481	
F 8	375	242,96	214	7,48	4172	500	302	18,9	0,508	

poid

 \mathbf{w} 0,1538

0,1154

0,0385 0,1154

0,1538

0,1154

0,1538

0,0769

0,0769

Poids relative

500

200

260

9 2800

500

25

5

200

4

3

4

2

26

Annexe 5 : L'indice de qualité de l'eau (suite).

les Points d'eau	qi (cl ⁻)	qi (Na ⁺)	qi (HCO3¯)	qi (conduc)	qi (TH)	qi(PH)	qi (Alcalinité)	qi(T)	qi(O2)
F 1	0,64	6,15384	5,750498	0,365973	9,499991	25,64133	1,787185	39,13842	4,923072
P 1	1	5,38461	5,031686	0,181907	5,38461	21,36778	1,900006	35,19996	7,6923
P 2	0,96	6,15384	5,750498	0,27865	9,173068	13,1494	1,856416	49,96918	7,384608
F 2	7,52	6,538455	6,109905	0,551412	9,038453	20,38157	1,787185	55,13841	57,8461
P 3	0,48	5,769225	5,391092	1,071428	6,15384	35,50338	1,820519	36,92304	3,692304
F 3	0,68	5,38461	5,031686	0,188383	8,653838	20,05284	1,797442	49,96918	5,230764
P 4	0,64	5,38461	5,031686	0,034341	8,634607	30,90109	1,833339	48,98457	4,923072
P 5	0,24	6,15384	5,750498	0,315738	8,634607	44,37923	1,820519	40,61534	1,846152
P 6	1,16	6,92307	6,469311	0,569073	18,42306	47,99532	1,787185	40,12304	8,923068
P 7	0,4	5,38461	5,031686	0,235479	7,153839	46,84474	1,820519	31,99997	3,07692
F 4	1,36	5,38461	5,031686	0,137755	5,153841	19,06663	1,78975	45,78457	10,46153
F 5	0,12	4,999995	4,67228	0,123626	5,615379	19,39537	2,012827	34,21535	0,923076
P 8	2,2	6,92307	6,469311	0,467033	16,3846	15,45055	1,792314	36,92304	16,92306
P 9	0,64	5,38461	5,031686	0,173665	5,615379	12,82067	1,800006	40,8615	4,923072
P 10	32,48	6,538455	6,109905	0,96507	9,442298	22,02525	1,797442	28,30766	249,8459
P 11	14	5,769225	5,391092	0,622056	7,17307	18,40916	1,805134	40,73842	107,6922
P 12	8,28	5,769225	5,391092	1,144033	7,923069	20,38157	1,90257	37,90765	63,69224
P 13	24,16	6,15384	5,750498	0,691718	6,596147	18,7379	1,984622	43,56919	185,846
F 6	21,6	6,15384	5,750498	1,036498	10,34614	25,3126	1,866673	48,24611	166,1537
P 14	2,8	6,15384	5,750498	0,824175	8,326915	13,47814	1,841032	42,58457	21,53844
F 7	2,864	5,769225	5,391092	0,21095	7,019224	23,34019	1,810262	53,41533	22,03075
P 15	2,96	5,769225	5,391092	0,569073	6,692301	10,84826	1,717954	42,58457	22,76921
P 16	1,924	6,15384	5,750498	1,019622	10,96153	37,80453	1,761544	38,15381	14,79999
F 8	2,032	5,769225	5,391092	0,818681	9,615375	35,17465	1,917955	46,52303	15,63075

Annexe 5 : L'indice de qualité de l'eau (suite).

les Points d'eau	Sli (cl ⁻)	Sli (Na ⁺)	Sli (HCO ₃ -)	Sli (con)	Sli(TH)	Sli (PH)	Sli (Alcalinité)	Sli (T)	Sli (O2dess)	Indice GWQI	classes
F 1	12,30768	14,9513	2,30772	10,24724	18,99998	8,935927	5,53848	9,784606	0,246154	83,31909	Bonne
P 1	10,76922	13,08238	1,9231	5,093402	10,76922	9,500032	4,569246	8,799991	0,384615	64,89121	Bonne
P 2	12,30768	14,9513	1,183446	7,80219	18,34614	9,282082	4,246168	12,4923	0,36923	80,98052	Bonne
F 2	13,07691	15,88575	1,834342	15,43955	18,07691	8,935927	5,07694	13,7846	2,892305	95,00323	Bonne
P 3	11,53845	14,01684	3,195305	29,99997	12,30768	9,102594	6,646176	9,23076	0,184615	96,22239	Bonne
F 3	10,76922	13,08238	1,804755	5,27472	17,30768	8,987209	4,84617	12,4923	0,261538	74,82597	Bonne
P 4	10,76922	13,08238	2,781098	0,961538	17,26921	9,166697	7,200024	12,24614	0,246154	73,72247	Bonne
P 5	12,30768	14,9513	3,994131	8,840651	17,26921	9,102594	7,892334	10,15384	0,092308	84,60404	Bonne
P 6	13,84614	16,82021	4,319578	15,93405	36,84612	8,935927	8,676952	10,03076	0,446153	115,8559	Médiocre
P 7	10,76922	13,08238	4,216027	6,5934	14,30768	9,102594	9,346185	7,999992	0,153846	75,57133	Bonne
F 4	10,76922	13,08238	1,715997	3,857139	10,30768	8,948748	4,523092	11,44614	0,523076	65,17348	Bonne
F 5	9,99999	12,14793	1,745583	3,461535	11,23076	10,06414	4,661554	8,553838	0,046154	61,91148	Bonne
P 8	13,84614	16,82021	1,390549	13,07691	32,7692	8,961568	4,661554	9,23076	0,846153	101,603	Médiocre
P 9	10,76922	13,08238	1,15386	4,862633	11,23076	9,00003	3,646166	10,21537	0,246154	64,20658	Bonne
P 10	13,07691	15,88575	1,982272	27,02195	18,8846	8,987209	5,584634	7,076916	12,4923	110,9925	Médiocre
P 11	11,53845	14,01684	1,656825	17,41757	14,34614	9,025671	4,707708	10,18461	5,38461	88,27841	Bonne
P 12	11,53845	14,01684	1,834342	32,03294	15,84614	9,512852	4,707708	9,476914	3,184612	102,1508	Médiocre
P 13	12,30768	14,9513	1,686411	19,36811	13,19229	9,92311	4,38463	10,8923	9,292298	95,99813	Bonne
F 6	12,30768	14,9513	2,278134	29,02195	20,69229	9,333364	5,400018	12,06153	8,307684	114,3539	Médiocre
P 14	12,30768	14,9513	1,213032	23,0769	16,65383	9,205159	3,646166	10,64614	1,076922	92,77713	Bonne
F 7	11,53845	14,01684	2,100617	5,906588	14,03845	9,051312	4,661554	13,35383	1,101537	75,76918	Bonne
P 15	11,53845	14,01684	0,976343	15,93405	13,3846	8,589772	3,553858	10,64614	1,13846	79,77852	Bonne
P 16	12,30768	14,9513	3,402408	28,54942	21,92306	8,807722	7,15387	9,538452	0,739999	107,3739	Médiocre
F 8	11,53845	14,01684	3,165718	22,92305	19,23075	9,589776	6,969254	11,63076	0,781538	99,84614	Bonne

Annexe 6 : résultat de SAR, RSC, %Na.

	CI.	Na ⁺	Na ⁺	TH	$(Ca^{2+}+Mg^{2+})$	HCO ₃	HCO ₃	SAR	RSC	NA%
Les										
Points	mg/l	meq/l	mg/l	mg/l	méq/L	mg/l	meq/l		meq/l	
d'eau										
F1	400	259,15	11,27	494	9,88	156	2,56	5,07	-7,32	96,33
P1	350	226,76	9,86	280	5,60	130	2,13	5,89	-3,47	97,59
P2	400	259,15	11,27	477	9,54	80	1,31	5,16	-8,23	96,45
F2	425	275,35	11,97	470	9,40	124	2,03	5,52	-7,37	96,70
P3	375	242,96	10,56	320	6,40	216	3,54	5,91	-2,86	97,43
F3	350	226,76	9,86	450	9,00	122	2,00	4,65	-7,00	96,18
P4	350	226,76	9,86	449	8,98	188	3,08	4,65	-5,90	96,19
P5	400	259,15	11,27	449	8,98	270	4,43	5,32	-4,55	96,65
P6	450	291,55	12,68	958	19,16	292	4,79	4,10	-14,37	93,83
P7	350	226,76	9,86	372	7,44	285	4,67	5,11	-2,77	96,82
F4	350	226,76	9,86	268	5,36	116	1,90	6,02	-3,46	97,69
F5	325	210,56	9,15	292	5,84	118	1,93	5,36	-3,91	97,30
P8	450	291,55	12,68	852	17,04	94	1,54	4,34	-15,50	94,48
P9	350	226,76	9,86	292	5,84	78	1,28	5,77	-4,56	97,49
P10	425	275,35	11,97	491	9,82	134	2,20	5,40	-7,62	96,56
P11	375	242,96	10,56	373	7,46	112	1,84	5,47	-5,62	97,02
P12	375	242,96	10,56	412	8,24	124	2,03	5,20	-6,21	96,72
P13	400	259,15	11,27	343	6,86	114	1,87	6,08	-4,99	97,42
F6	400	259,15	11,27	538	10,76	154	2,52	4,86	-8,24	96,01
P14	400	259,15	11,27	433	8,66	82	1,34	5,41	-7,32	96,77
F7	375	242,96	10,56	365	7,30	142	2,33	5,53	-4,97	97,08
P15	375	242,96	10,56	348	6,96	66	1,08	5,66	-5,88	97,22
P16	400	259,15	11,27	570	11,40	230	3,77	4,72	-7,63	95,79
F8	375	242,96	10,56	500	10,00	214	3,51	4,72	-6,49	96,05