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Résumé

Ce manuscrit, issu du cours d’Algèbre 2 destiné aux étudiants de première année L.M.D.
en mathématiques et informatique, propose un parcours pédagogique cohérent et struc-
turé à travers les concepts fondamentaux de l’algèbre linéaire. Il aborde successivement
les notions essentielles relatives aux espaces vectoriels, aux sous-espaces, aux familles
libres et génératrices, ainsi qu’aux bases et à la dimension. L’étude se poursuit avec
les applications linéaires, leurs principales propriétés, le noyau et l’image, ainsi que les
opérations entre applications et le théorème du rang. Un lien étroit est ensuite établi
entre les applications linéaires et les matrices, incluant la présentation des matrices de
passage, du déterminant et de l’inversion des matrices. Enfin, les notions théoriques sont
appliquées à la résolution des systèmes d’équations linéaires, à l’aide de différentes mé-
thodes telles que la substitution, la méthode de Cramer et le pivot de Gauss. Chaque
section est riche en explications théoriques et en exemples pratiques, ce qui permet aux
étudiants d’acquérir une compréhension solide des fondements de l’algèbre linéaire et de
ses applications.

Abstract

This manuscript, developed from the Algebra 2 course intended for first-year L.M.D.
students in mathematics and computer science, presents a coherent and systema-
tically organized exploration of the core concepts of linear algebra.The text sequentially
introduces the fundamental notions of vector spaces, subspaces, linearly independent and
spanning sets, as well as the concepts of basis and dimension. It then examines linear
mappings, emphasizing their properties, the notions of kernel and image, operations on
linear mappings, and the rank theorem. A strong connection is subsequently establi-
shed between linear mappings and their matrix representations, including topics such as
change-of-basis matrices, determinants, and matrix inversion. The theoretical framework
is then applied to the study and solution of linear systems of equations, through classical
methods such as substitution, Cramer’s rule, and the Gaussian elimination method. Each
section is rich in theoretical explanations and practical examples, allowing students to
develop a strong understanding of the fundamentals of linear algebra and its applications.



Introduction Générale

Ce document constitue un support de cours structuré et approfondi en algèbre linéaire, organisé en
quatre chapitres principaux. Il offre une présentation progressive et rigoureuse des concepts fondamentaux
qui forment le socle de cette discipline mathématique essentielle. Rédigé dans le cadre du module Algèbre
2, il s’adresse principalement aux étudiants de première année du système L.M.D. en mathématiques et
en informatique, ainsi qu’à toute personne désireuse d’acquérir des bases solides en algèbre. L’objectif de
ce manuscrit est de guider les étudiants vers une compréhension claire, cohérente et durable des notions
fondamentales de l’algèbre linéaire, les préparant ainsi à l’étude de notions plus avancées. Le contenu suit
fidèlement le programme récemment révisé, conformément au canevas officiel de formation.

La structure du cours s’organise autour de quatre chapitres principaux. Le premier chapitre introduit la
notion fondamentale d’espace vectoriel, en abordant les lois de composition externes et les parties stables.
Sont ensuite développées les notions de sous-espaces vectoriels, de familles libres, liées et génératrices,
ainsi que la notion de base. La dimension finie est étudiée à travers des résultats essentiels tels que le
théorème de la base extraite et le théorème de la base incomplète. Le chapitre se conclut par l’étude de la
somme directe, des sous-espaces supplémentaires et de la formule de Grassmann, permettant d’analyser
et de décomposer la structure des espaces vectoriels.

Le deuxième chapitre est consacré aux applications linéaires, ces transformations qui préservent la
structure vectorielle. Après la définition des applications linéaires, endomorphismes, isomorphismes, auto-
morphismes et formes linéaires, il présente des applications particulières telles que projections, symétries,
affinités et projecteurs. Les propriétés fondamentales sont détaillées, notamment la préservation des com-
binaisons linéaires et la caractérisation par l’image d’une base. Les opérations sur les applications linéaires
et le groupe linéaire sont étudiés, tandis que les concepts de noyau, d’image, de rang et le théorème du
rang fournissent des outils puissants pour leur analyse.

Le troisième chapitre établit le lien fondamental entre applications linéaires et matrices. Il couvre les
définitions de base, les types de matrices, les opérations matricielles et les opérations élémentaires, ainsi
que la représentation matricielle des applications linéaires. Les changements de base et les matrices de
passage sont abordés, de même que le déterminant et son rôle dans l’inversion des matrices.

Le quatrième chapitre applique les concepts précédents à la résolution des systèmes linéaires. Il exa-
mine les représentations matricielles, les conditions d’existence de solutions et présente des méthodes de
résolution telles que la substitution, la méthode de Cramer et le pivot de Gauss.

Cette progression logique, combinant théorie et exemples concrets, constitue un outil pédagogique es-
sentiel pour l’apprentissage de l’algèbre linéaire, tant en mathématiques pures que dans ses applications en
informatique, physique et ingénierie. Nous espérons que ce polycopié répondra aux attentes des étudiants
et contribuera à leur réussite académique.

Pour toute remarque ou suggestion visant à améliorer ce cours, vous pouvez me contacter à l’adresse
suivante : m.kecies@centre-univ-mila.dz
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Chapitre 1

Espaces vectoriels

Ce premier chapitre est consacré à l’étude des espaces vectoriels, qui constituent le fondement
de l’algèbre linéaire et un outil essentiel dans de nombreux domaines des mathématiques et de
l’informatique. Un espace vectoriel est une structure algébrique qui généralise la notion de vecteur
de la géométrie usuelle et permet de manipuler des objets abstraits tout en préservant des opérations
fondamentales telles que l’addition et la multiplication par un scalaire.

Le chapitre débute par la définition et les propriétés des espaces vectoriels, illustrées par des
exemples concrets et variés. Il introduit ensuite la notion de sous-espace vectoriel, indispensable pour
comprendre la structure interne d’un espace et organiser ses éléments. Une attention particulière est
portée aux concepts de familles de vecteurs, de combinaisons linéaires, de dépendance et indépendance
linéaire, ainsi qu’aux notions de base et de dimension, qui jouent un rôle central dans toute la suite
du cours.

Ces notions sont enrichies par l’étude des sous-espaces supplémentaires, de la somme directe et
de la dimension d’une somme, qui permettent d’analyser la décomposition des espaces vectoriels et
de mieux appréhender leur organisation.

Enfin, le chapitre introduit des résultats fondamentaux tels que la formule de Grassmann, consti-
tuant un outil puissant pour travailler avec des sous-espaces et comparer leurs dimensions.

Ainsi, ce chapitre offre une introduction claire, progressive et structurée aux fondements de l’al-
gèbre linéaire, en établissant les bases indispensables pour l’étude ultérieure des applications linéaires,
des matrices et des systèmes d’équations linéaires.

Dans tout ce chapitre pK,`, ¨q désigne un corps commutatif et en général, K “ R ou K “ C.

1.1 Lois de composition externes.

Avant de pouvoir définir rigoureusement la notion d’espace vectoriel, il est essentiel de comprendre
les types d’opérations qui interviennent dans cette structure. En algèbre, et plus particulièrement dans
l’étude des espaces vectoriels, on distingue deux types fondamentaux de lois : les lois de composition
internes et les lois de composition externes.

La loi de composition interne permet de combiner deux éléments appartenant au même ensemble,
comme l’addition de deux vecteurs. En revanche, la loi de composition externe fait intervenir un
élément extérieur à l’ensemble, généralement issu d’un corps de scalaires, et permet ainsi de faire
agir un scalaire sur un vecteur. Cette dernière joue un rôle central dans la définition et l’étude des
espaces vectoriels, car elle établit le lien entre les vecteurs et les scalaires.
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Espaces vectoriels

Définition 1.1.1 Loi de composition externe (LCE)
Soient E un ensemble et Ω un autre ensemble (souvent un corps).
1. On appelle loi de composition externe (abrégée LCE) sur E toute application notée T définie par

T : Ωˆ E : ÝÑ E
pλ, xq ÞÝÑ λTx,

où les éléments de Ω sont appelés opérateurs ou scalaires.
2. Cette loi associe à chaque couple pλ, xq, formé d’un scalaire et d’un élément de E, un nouvel
élément de E.

Notation 1.1.1 Par convention, cette loi est généralement notée de façon multiplicative à l’aide
d’un point central ¨. Ainsi, l’image de pλ, xq est notée λ ¨ x.

Exemple 1.1.1
1. Considérons l’ensemble E “ Rn et le corps Ω “ R. On définit la loi de composition externe
suivante

@λ P R, @x “ px1, x2, ..., xnq P Rn : λ ¨ x “ pλx1, λx2, ..., λxnq.

C’est une loi de composition externe classique : elle permet de multiplier un vecteur de Rn par un
scalaire réel. Elle correspond à la multiplication usuelle d’un vecteur par un scalaire.
2. Soit E “ R rXs, l’ensemble des polynômes à une indéterminée X à coefficients réels, et Ω “ R. La
multiplication ¨ d’un polynôme P P R rXs par un scalaire λ P R est une loi de composition externe
sur R rXs à opérateurs dans R définie par

¨ : Rˆ R rXs : ÝÑ R rXs
pλ, P q ÞÝÑ λ ¨ P,

le polynôme λ ¨ P obtenu en multipliant chaque coefficient de P par λ. Par exemple, si

P “ 2X2
` 3X ` 1,

alors
5 ¨ P “ 10X2

` 15X ` 5.
3. Soit E “ FpR,Rq, l’ensemble des applications de R dans R, et Ω “ R. On définit une loi

¨ : Rˆ FpR,Rq : ÝÑ FpR,Rq
pλ, fq ÞÝÑ λ ¨ f,

définie, pour tout x P R, par
@x P R : pλ ¨ fqpxq “ λ ¨ fpxq.

Il s’agit d’une loi de composition externe sur FpR,Rq à opérateurs dans R. Cette LCE correspond
à la multiplication d’une application par un scalaire : on multiplie chaque valeur de l’application par
ce scalaire.
4. Soit E “ RN “ FpN,Rq, l’ensemble des suites réelles, et Ω “ R. Définissons une loi

¨ : Rˆ RN : ÝÑ RN

pλ, uq ÞÝÑ λ ¨ u “ pλunq,

Autrement dit, pour toute suite u “ punqnPN et tout réel λ P R, on définit une nouvelle suite λ ¨ u
dont les termes sont donnés, pour tout n P N , par

pλ ¨ uqn “ λ ¨ un.

Il s’agit d’une loi de composition externe sur RN à opérateurs dans R. Cette loi correspond à la
multiplication d’une suite par un scalaire : chaque terme de la suite est multiplié par le même nombre
réel.

4



Espaces vectoriels

1.1.1 Partie stable par une loi externe

Définition 1.1.2 (Partie stable par une loi externe)
Soit E un ensemble muni d’une loi de composition externe T à opérateurs dans Ω. Soit F une partie
de E.
1. Partie stable.
(a) On dit que la partie F est stable par la loi externe T si et seulement si

@λ P Ω, @x P F : λTx P F.

Cela signifie que la restriction de la loi T à Ωˆ F définit également une loi de composition externe
sur F .
(b) La stabilité signifie que lorsqu’on applique la loi externe à un élément de F , le résultat appartient
encore à F .
2. Partie non stable.
(a) On dit que F n’est pas stable (ou non stable) par la loi externe T s’il existe au moins un scalaire
λ P Ω et un élément x P F tels que l’image T pλ, xq ne soit pas dans F . Autrement dit

Dλ P Ω, Dx P F : λTx R F.

(b) Une partie est non stable si, en appliquant la loi externe à un de ses éléments, on peut obtenir
un résultat qui n’est pas dans cette partie.

Exemple 1.1.2
1. Dans R rXs, considérons l’ensemble suivant

F “ RnrXs “ tP P RrXs : degpP q ď nu (n P N),

l’ensemble des polynômes de degré inférieur ou égal à n, alors F est stable par la loi externe ¨ définie
par

¨ : Rˆ R rXs : ÝÑ R rXs
pλ, P q ÞÝÑ λ ¨ P.

En effet, soient λ P R, P P RnrXs, alors

degpλ ¨ P q “
"

degp0RrXsq “ ´8 ď n, si λ “ 0
degpP q ď n, si λ ­“ 0.

Ainsi λ ¨ P P RnrXs.
2. Dans R rXs, considérons l’ensemble suivant

F “ tP P RrXs : degpP q “ nu (n P N),

l’ensemble des polynômes de degré exactement égal à n. Alors F n’est pas stable par la loi externe ¨.
En effet, soit P “ Xn P F , et λ “ 0, alors

λ ¨ P “ 0RrXs.

Or degp0RrXsq “ ´8 ă n. Alors λ ¨ P R F , ce qui montre que F n’est pas stable par la loi externe ¨.
3. Dans E “ RN, l’ensemble des suites réelles, considérons

F “ tx “ pxnqnPN, DN P N, @n ě N : xn “ 0u ,

l’ensemble des suites nulles à partir d’un certain rang. Alors F est stable par la loi externe ¨ définie
par

¨ : Rˆ RN : ÝÑ RN

pλ, xq ÞÝÑ λ ¨ x “ pλxnqn.

5



Espaces vectoriels

En effet, soit x P F , alors il existe N P N tel que xn “ 0 pour tout n ě N . Pour tout λ P R, on a
alors

pλ ¨ xqn “ λxn “ 0, pour tout n ě N .

donc λ ¨ x P F . Ainsi, F est stable par la loi externe.
4. Dans Rn, considérons l’ensemble suivant

F “ tx “ p0, 0, ..., 0qu .

F est stable par la loi externe ¨ définie par

@λ P R, @x “ px1, x2, ..., xnq P Rn : λ ¨ x “ pλx1, λx2, ..., λxnq.

En effet, soient λ P R, x “ p0, 0, ..., 0q P F , alors

λ ¨ x “ p0, 0, ..., 0q P F .

Ainsi, F est stable par la loi externe.
5. Dans E “ FpR,Rq, considérons la partie F suivante de E

F “ tf P FpR,Rq, @x P R : fpxq ą 0u ,

l’ensemble des applications strictement positives sur R, alors F n’est pas stable par la loi externe ¨
définie par

¨ : Rˆ FpR,Rq : ÝÑ FpR,Rq
pλ, fq ÞÝÑ λ ¨ f,

car la stabilité n’est assurée que pour les scalaires positifs λ ą 0. En effet, soient λ P R, f P F , alors
λ ¨ f P F si et seulement si

@x P R : λfpxq ą 0.

Alors
• Si λ ą 0, alors λfpxq ą 0 pour tout x, donc λ ¨ f P F .
• Si λ ď 0, alors λfpxq ď 0 pour tout x, donc λ ¨ f R F .
Ainsi, il existe des scalaires λ P R (comme λ “ 0 ou λ “ ´1) tels que λ ¨ f R F , ce qui montre que
F n’est pas stable par la loi externe.
6. Dans R2, considérons la partie suivante

F “
 

px, yq P R2 : x ą 0
(

,

alors F n’est pas stable par la loi externe ¨ définie par

@λ P R, @x “ px1, x2q P R2 : λ ¨ x “ pλx1, λx2q,

car,
Dλ1 “ ´1 P R, Dx1 “ p2, 1q P F mais λ1 ¨ x1 “ p´2,´1q R F.

Après avoir introduit la notion de loi de composition externe, nous pouvons à présent définir la
structure d’un espace vectoriel. Cette loi joue un rôle central, car elle permet de relier les scalaires
(éléments d’un corps K) aux vecteurs (éléments d’un ensemble E). Grâce à elle, on peut multiplier
un vecteur par un scalaire, ce qui est fondamental pour les opérations linéaires.
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Définition 1.1.3 (Espace vectoriel sur un corps K)
On appelle espace vectoriel sur le corps K tout ensemble E muni d’une loi de composition interne
(addition vectorielle)

` : E ˆ E : ÝÑ E
px, yq ÞÝÑ x` y,

et d’une loi de composition externe ¨ (multiplication par un scalaire)

¨ : Kˆ E : ÝÑ E
pλ, yq ÞÝÑ λ ¨ y,

satisfaisant les propriétés suivantes
1. pE,`q est un groupe commutatif. On note 0E l’élément neutre (appelé vecteur nul) et ´x l’opposé
d’un vecteur x P E.
2. Distributivité (à droite) de la loi externe par rapport à l’addition dans K

@α, β P K, @x P E : pα ` βq ¨ x “ α ¨ x` β ¨ x.

3. Distributivité (à gauche) de la loi externe par rapport à l’addition dans E

@α P K, @x, y P E : α ¨ px` yq “ α ¨ x` α ¨ y.

4. Compatibilité avec la multiplication scalaire

@α, β P K, @x P E : pα ¨ βq ¨ x “ α ¨ pβ ¨ xq .

5. Élément neutre du corps
@x P E : 1K ¨ x “ x.

On dit alors que pE,`, ¨q est un espace vectoriel sur K ou K´espace vectoriel. Les éléments de K
sont appelés scalaires, ceux de E, vecteurs. L’élément neutre de pE,`q, 0E est appelé vecteur nul.

Notation 1.1.2 Par convention
• un espace vectoriel sur K est noté K´ev,
• et un espace vectoriel tout court peut être abrégé ev (sans précision sur le corps).

Exemple 1.1.3 (Principaux exemples d’espaces vectoriels)
1. Tout corps pK,`, ¨q est un espace vectoriel sur lui-même, avec ses propres lois d’addition et de
multiplication. En particulier, R et C sont des R´espaces vectoriels pour les lois usuelles.
2. Espaces vectoriels Rn : L’ensemble Rn des n´uplets de réels est un R´espace vectoriel avec
• Addition (loi interne)

@x “ px1, ..., xnq, y “ py1, ..., ynq P Rn : x` y “ px1 ` y1, ..., xn ` ynq .

• Multiplication par un scalaire (loi externe)

@λ P R, @x “ px1, ..., xnq P Rn : λ ¨ x “ pλx1, ..., λxnq .

3. Espace vectoriel des applications FpX,Eq : Soit X un ensemble non vide et soit E un
K´espace vectoriel. On définit sur l’ensemble FpX,Eq des applications définies sur X à valeurs
dans E, une addition `

` : FpX,Eq ˆ FpX,Eq : ÝÑ FpX,Eq
pf, gq ÞÝÑ f ` g,
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donnée par
@x P X : pf ` gq pxq “ fpxq ` gpxq,

une multiplication par un scalaire ¨

¨ : Kˆ FpX,Eq : ÝÑ FpX,Eq
pλ, fq ÞÝÑ λ ¨ f,

donnée par
@x P X : pλ ¨ fq pxq “ λ ¨ fpxq.

Avec ces deux lois, pFpX,Eq,`, ¨q est un K´espace vectoriel. Son vecteur nul est l’application iden-
tiquement nulle sur X à valeurs dans E.

0FpX,Eq : X ÝÑ E
x ÞÝÑ 0E.

5. Espace vectoriel des polynômes K rXs : L’ensemble K rXs des polynômes à coefficients dans
K est un espace vectoriel sur K. La loi de composition interne sur K rXs est l’addition de polynômes
et la loi de composition externe est la multiplication d’un polynôme par un élément de K.

@P “ panqnPN, Q “ pbnqnPN P K rXs : P `Q “ S “ psnqnPN,

telle que
sn “ an ` bn, @n P N,

et
@λ P K, @P “ panqnPN P K rXs : λ ¨ P “ Q “ pλanqnPN.

Les vecteurs de K rXs sont les polynômes et les scalaires sont les éléments de K. Le vecteur nul est
le polynôme nul,

0KrXs “ p0K, 0K, ..., 0K, ...q “ 0.1` 0.X ` 0.X2
` ..... P K rXs .

Proposition 1.1.1 (Règles de calcul dans un espace vectoriel)
Soit pE,`, ¨q un K´espace vectoriel. Pour tous scalaires α, β, λ de K et pour tous vecteurs x, y de
E, on a

1. 0K ¨ x “ 0E et λ ¨ 0E “ 0E.
2. λ ¨ x “ 0E ðñ λ “ 0K ou x “ 0E.
3. α ¨ px´ yq “ α ¨ x´ α ¨ y.
4. pα ´ βq ¨ x “ α ¨ x´ β ¨ x.
5. ´pλ ¨ xq “ p´λq ¨ x “ λ ¨ p´xq .

Ces identités sont des conséquences directes des axiomes de l’espace vectoriel. Elles jouent un rôle
fondamental en facilitant les calculs algébriques, notamment dans la résolution d’équations vecto-
rielles, la manipulation de combinaisons linéaires, ou encore l’étude des applications linéaires. Elles
constituent donc un outil indispensable pour le raisonnement en algèbre linéaire.

Preuve. Les démonstrations des propriétés sont des manipulations sur les axiomes définissant les
espaces vectoriels.
1. Soit x P E, alors

0K ¨ x “ p0K ` 0Kq ¨ x “ 0K ¨ x` 0K ¨ x.

En additionnant p´0K ¨ xq à droite et à gauche dans cette dernière égalité, on obtient

0K ¨ x “ 0E.
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Soit λ P K, alors
λ ¨ 0E “ λ ¨ p0E ` 0Eq “ λ ¨ 0E ` λ ¨ 0E.

En additionnant p´λ ¨ 0Eq à droite et à gauche dans cette dernière égalité, on obtient

λ ¨ 0E “ 0E.

2. (i) Sens réciproqueðù : Cette implication découle immédiatement des deux premières propriétés
des espaces vectoriels.
(ii) Sens direc ùñ: Supposons que

λ ¨ x “ 0E.

• Si λ “ 0K, alors l’implication est vérifiée (ou si λ “ 0K, on a bien λ “ 0K ou x “ 0E).
• Si λ ­“ 0K, alors λ est inversible dans le corps K. En multipliant par λ´1 les deux membres de
l’égalité, il vient

λ´1
¨ pλ ¨ xq “ λ´1

¨ 0E ùñ
`

λ´1
¨ λ

˘

¨ x “ 0E

ùñ 1K ¨ x “ 0E.

Maintenant, supposons que x ­“ 0E. Alors nécessairement λ “ 0K, car sinon (comme ci-dessus) on
pourrait multiplier l’égalité λ ¨ x “ 0E par λ´1, ce qui impliquerait x “ 0E, ce qui contredirait notre
hypothèse.
3. Soient αP K et x, y P E, alors

α ¨ x “ α ¨ px` 0Eq “ α ¨ px` p´y ` yqq “ α ¨ ppx´ yq ` yq “ α ¨ px´ yq ` α ¨ y.

En rajoutant à chaque membre de l’égalité le symétrique ´pα ¨ yq de pα ¨ yq, on obtient

α ¨ px´ yq “ α ¨ x´ α ¨ y.

4. Soient α, β P K et x P E, alors

α ¨ x “ pα ` 0Kq ¨ x “ pα ` p´β ` βqq ¨ x “ ppα ´ βq ` βq ¨ x “ pα ´ βq ¨ x` β ¨ x.

En rajoutant à chaque membre de l’égalité le symétrique ´pβ ¨ xq de pβ ¨ xq, on obtient

pα ´ βq ¨ x “ α ¨ x´ β ¨ x.

5. Soient λ P K et x P E, alors

λ ¨ x` p´λq ¨ x “ pλ´ λq ¨ x “ 0K ¨ x “ 0E.

Il en résulte que p´λq ¨ x est le symétrique de λ ¨ x, i.e,

´pλ ¨ xq “ p´λq ¨ x.

D’autre part, on a
λ ¨ x` λ ¨ p´xq “ λ ¨ px´ xq “ λ ¨ 0E “ 0E.

Il en résulte que λ ¨ p´xq est bien le symétrique de λ ¨ x, i.e,

´pλ ¨ xq “ λ ¨ p´xq .

l

La notion de combinaison linéaire permet d’introduire des concepts essentiels tels que l’espace
engendré par une famille de vecteurs, la dépendance linéaire, les sous-espaces vectoriels, ou encore la
notion de base d’un espace vectoriel.
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Définition 1.1.4 (Combinaison linéaire)
1. Soient x1, ..., xn des vecteurs d’un K´espace vectoriel pE,`, ¨q. On appelle combinaison linéaire
de ces vecteurs tout vecteur x P E qui s’écrit sous la forme

x “ λ1x1 ` λ2x2 ` ...` λnxn “

n
ÿ

i“1
λixi

où λ1, λ2, ..., λn P K sont des scalaires appelés coefficients de la combinaison linéaire.
2. En particulier, si x “ λ1x1, on dit que x est colinéaire à x1 (ou : x et x1 sont colinéaires).

Exemple 1.1.4
1. Dans l’espace R3, tout vecteur x “ pα1, α2, α3q P R3 est une combinaison linéaire des vecteurs
suivants

x1 “ p1, 0, 0q , x2 “ p0, 1, 0q , x3 “ p0, 0, 1q .
En effet,

x “ pα1, α2, α3q “ α1 p1, 0, 0q ` α2 p0, 1, 0q ` α3 p0, 0, 1q “ α1x1 ` α2x2 ` α3x3.

Les scalaires α1, α2 et α3 sont les coefficients de la combinaison linéaire.
2. Dans l’espace des polynômes R2 rXs, le polynôme P “ 3´X ` 2X2 est une combinaison linéaire
des polynômes suivants

P1 “ 1, P2 “ X,P3 “ X2,

car on peut écrire
P “ 3P1 ` p´1qP2 ` 2P3.

Les coefficients de la combinaison linéaire sont 3,´1 et 2.
3. Dans l’espace des applications FpR,Rq, considérons les applications suivantes

f1pxq “ sin x, f2pxq “ cosx, fpxq “
?

2 sin x´ cosx.

On a alors
fpxq “

?
2f1pxq ` p´1qf2pxq.

L’application f est donc une combinaison linéaire de f1 et f2, avec coefficients
?

2 et ´1.

1.2 Sous-espaces vectoriels

Une fois qu’un espace vectoriel est défini sur un corps donné, il est naturel de s’intéresser à cer-
taines parties de cet espace qui, elles-mêmes, possèdent une structure d’espace vectoriel. Ces parties
sont appelées sous-espaces vectoriels. Autrement dit, un sous-ensemble d’un espace vectoriel est
un sous-espace vectoriel s’il est stable à la fois par l’addition vectorielle et par la multiplication par
un scalaire, et s’il contient le vecteur nul. Cela signifie qu’il vérifie les mêmes propriétés (ou axiomes)
que l’espace vectoriel lui-même, mais à l’intérieur d’un ensemble plus petit.

Définition 1.2.1 (Sous-espace vectoriel)
1. Soit pE,`, ¨q est un K´espace vectoriel. Un sous-espace vectoriel de E est un sous-ensemble
F Ă E qui est lui-même un espace vectoriel, muni des mêmes opérations d’addition vectorielle et
de multiplication par un scalaire que E. Autrement dit, F est un sous-espace vectoriel de E si et
seulement si les trois conditions suivantes sont vérifiées
(a) F contient le vecteur nul de E,

0E P F.
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(b) F est stable par l’addition (loi interne),

@x, y P F : x` y P F.

(c) F est stable par la multiplication par un scalaire (loi externe),

@λ P K, @x P F : λ ¨ x P F.

Remarque 1.2.1
1. Un sous-espace vectoriel, c’est juste une partie d’un espace vectoriel qui ressemble elle-même à un
espace vectoriel. Autrement dit, un sous-espace vectoriel est un "petit espace vectoriel contenu dans
un plus grand", dans lequel on peut effectuer les mêmes opérations que dans tout E, et où les règles
restent valables.
2. Pour qu’un ensemble de vecteurs soit un sous-espace vectoriel, il suffit de vérifier trois choses
simples
• Présence du vecteur nul car c’est un élément essentiel de tout espace vectoriel.
• Stabilité par addition. Si on prend deux vecteurs dans le sous-ensemble, leur somme doit aussi
appartenir à ce sous-ensemble.
• Stabilité par multiplication scalaire. Si on prend un vecteur du sous-ensemble et qu’on le multiplie
par n’importe quel scalaire du corps K, le résultat doit encore appartenir au sous-ensemble.

Exemple 1.2.1
1. Sous-espaces vectoriels triviaux. Soit E un K´espace vectoriel. Alors, les ensembles t0Eu

(réduit au vecteur nul) et E lui-même sont deux sous-espaces vectoriels de E. On les appelle les
sous-espaces vectoriels triviaux.
2. L’ensemble

F “
 

px, y, zq P R3 : x` 2y ´ z “ 0
(

,

est un sous-espace vectoriel de R3, car il est défini comme l’ensemble des solutions d’une équation
linéaire homogène.
3. Sous-espace vectoriel des polynômes de degré borné. Pour tout entier naturel n P N,
l’ensemble

Rn rXs “ tP P R rXs : degpP q ď nu ,

des polynômes de degré inférieur ou égal à n, forme un sous-espace vectoriel de R rXs.
4. Sous-espace vectoriel des applications paires et impaires. Soit FpR,Rq l’espace vectoriel
des applications de R dans R. Alors
• L’ensemble des applications paires

P pR,Rq “ tf P FpR,Rq : f est paireu “ tf P FpR,Rq, @x P R : fp´xq “ fpxqu ,

est un sous-espace vectoriel de FpR,Rq.
• De même, l’ensemble des applications impaires

I pR,Rq “ tf P FpR,Rq : f est impaireu “ tf P FpR,Rq, @x P R : fp´xq “ ´fpxqu ,

est aussi un sous-espace vectoriel de FpR,Rq.
5. Sous-espace vectoriel des suites réelles convergentes. L’ensemble

F “
!

x “ pxnqnPN P RN : lim
nÝÑ8

xn P R
)

,

des suites réelles convergentes forme un sous-espace vectoriel de RN, l’espace des suites réelles.
6. L’ensemble

F “
 

px, y, zq P R3 : x` y ` z “ 1
(

,

n’est pas un sous-espace vectoriel de R3, car il ne contient pas le vecteur nul p0, 0, 0q.
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Proposition 1.2.1 (Caractérisation d’un sous-espace par la notion de combinaison li-
néaire)
Soit pE,`, ¨q un K´espace vectoriel, et soit F une partie de E, alors

F est un sous-espace vectoriel de E ðñ

ðñ

$

&

%

(a) 0E P F
(b) F est stable par combinaisons linéaires,
@x, y P F, @α, β P K : α ¨ x` β ¨ y P F.

Ainsi, pour montrer qu’un sous-ensemble F est un sous-espace vectoriel, il suffit de vérifier que le
vecteur nul appartient à F , et que toute combinaison linéaire α ¨ x ` β ¨ y de deux éléments de F
appartient encore à F .

Preuve.
1. Sens direct (ùñ). Supposons que F est un sous-espace vectoriel de E, alors il contient nécessaire-
ment le vecteur nul 0E. Donc (a) est vérifiée. D’autre part, puisque F est stable par addition et par
multiplication scalaire, alors pour tous x, y P F et tous α, β P K, on a

α ¨ x` β ¨ y P F,

ce qui prouve (b).
2. Sens réciproque (ðù). Supposons maintenant que les deux conditions (a) et (b) sont satisfaites
(F est stable par combinaisons linéaires). Nous allons montrer que F est un sous-espace vectoriel de
E.
• Stabilité par addition. Soient x, y P F . En prenant α “ β “ 1K dans (b), on obtient

x` y “ 1K ¨ x` 1K ¨ y P F.

• Stabilité par multiplication scalaire. Soient x P F et α P K. On pose y “ 0E et β “ 0K. Alors

α ¨ x` β ¨ y “ α ¨ x` 0E “ α ¨ x P F.

Ainsi, F est stable par addition et par multiplication par un scalaire. Donc F est un sous-espace
vectoriel de E. l

Remarque 1.2.2 Le complémentaire ensembliste noté CF
E d’un sous-espace vectoriel F dans E n’est

pas un sous-espace vectoriel de E, car CF
E ne contient pas le vecteur nul 0E.

Proposition 1.2.2 (Intersection de sous-espaces vectoriels)
Soit pFiqiPI une famille de sous-espaces vectoriels d’un même K´espace vectoriel E, alors

Ş

iPI

Fi est
un sous-espace vectoriel de E. Autrement dit l’intersection quelconque de sous-espaces vectoriels d’un
même espace vectoriel est elle-même un sous-espace vectoriel.

Preuve. On pose
F “

č

iPI

Fi.

Nous allons montrer que F est un sous-espace vectoriel de E, en vérifiant les deux conditions de
caractérisation des sous-espaces vectoriels.
(a) Le vecteur nul appartient à F . Comme chaque Fi est un sous-espace vectoriel, on a 0E P Fi

pour tout i P I. Donc,

0E P

˜

č

iPI

Fi

¸

“ F,
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ce qui prouve que F est non vide.
(b) Stabilité par combinaisons linéaires. Soient x, y P F et α, β P K. Par définition de l’in-
tersection, x, y P Fi pour tout i P I. Or, chaque Fi étant un sous-espace vectoriel, il est stable par
combinaisons linéaires, donc

α ¨ x` β ¨ y P Fi,

pour tout i P I. Par conséquent,

α ¨ x` β ¨ y P

˜

č

iPI

Fi

¸

“ F.

Les deux conditions sont vérifiées, donc F est un sous-espace vectoriel de E. l

Remarque 1.2.3 La réunion (finie ou infinie) de deux sous-espaces vectoriels n’est pas un sous-
espace vectoriel en général. Par exemple, considérons les deux sous-espaces vectoriels de l’espace
(produit) R2 définis par

F1 “ Rˆ t0u “ tpx1, 0q : x1 P Ru (l’axe des abscisses)

F2 “ t0u ˆ R “ tp0, x2q : x2 P Ru (l’axe des ordonnées).

Alors l’ensemble F1 Y F2 n’est pas un sous-espace vectoriel de R2 puisque p1, 0q P F1 Y F2 et p0, 1q P
F1 Y F2 et

p1, 0q ` p0, 1q “ p1, 1q R F1 Y F2.

1.3 Familles libres, Familles liées, Familles génératrices et
Bases

Dans un espace vectoriel, on travaille souvent avec des ensembles de vecteurs appelés familles de
vecteurs. Ces familles peuvent avoir des propriétés différentes, selon la façon dont les vecteurs "se
combinent" entre eux. Par exemple, une famille est dite libre si aucun vecteur ne peut être obtenu à
partir des autres. Au contraire, une famille est liée s’il existe au moins un vecteur qui peut s’exprimer
comme une combinaison des autres. Une autre notion importante est celle de famille génératrice : c’est
une famille de vecteurs qui permet de former tous les vecteurs de l’espace, en faisant des combinaisons
linéaires. Autrement dit, elle "engendre" tout l’espace. Enfin, une base est une famille de vecteurs à
la fois libre et génératrice. Elle constitue un ensemble minimal de vecteurs permettant de représenter
tous les éléments de l’espace de manière unique. Ces notions sont très utiles pour mieux comprendre
la structure des espaces vectoriels et résoudre des problèmes en algèbre linéaire. C’est pourquoi nous
abordons dans cette partie la notion importante de famille libre et la notion contraire de famille liée
et de famille génératrice. Ces notions nous conduiront naturellement aux concepts de dimension et
de base.

Définition 1.3.1 (Famille de vecteurs) Soit E un K´espace vectoriel. Une famille finie de vec-
teurs ou un système fini de vecteurs de E est un ensemble fini de vecteurs x1, ..., xn de E notée
tx1, x2, ..., xnu.

Définition 1.3.2 (Dépendance et indépendance linéaire) Soient E un K´espace vectoriel et
tx1, ..., xnu une famille de vecteurs de E.
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1. Familles libres. On dit que la famille (ou : le système) de vecteurs tx1, ..., xnu est libre sur K
(ou les vecteurs x1, ..., xn sont linéairement indépendants sur K) si et si

@λ1, λ2, ..., λn P K :
n
ÿ

i“1
λixi “ λ1x1 ` λ2x2 ` ...` λnxn “ 0E ùñ λ1 “ λ2 “ ... “ λn “ 0K.

En d’autres termes, toute combinaison linéaire des vecteurs qui donne le vecteur nul n’est possible
que lorsque tous les coefficients sont nuls.
2. Familles liées : On dit que la famille (ou : le système) de vecteurs tx1, ..., xnu est liée sur K
(ou les vecteurs x1, ..., xn sont linéairement dépendants sur K) si et si la famille tx1, ..., xnu n’est pas
libre. Formellement

Dλ1, λ2, ..., λn P K˚(non tous nuls) :
n
ÿ

i“1
λixi “ λ1x1 ` λ2x2 ` ...` λnxn “ 0E.

Cela signifie qu’il existe au moins un vecteur de la famille qui peut s’écrire comme combinaison
linéaire des autres.

Exemple 1.3.1
1. Dans tout K´espace vectoriel E, une famille formée d’un seul vecteur txu est
• liée si et seulement si x “ 0E,
• libre si et seulement si x ­“ 0E.
En effet, soit λ P K. Considérons l’équation

λ ¨ x “ 0E.

• Si x “ 0E , alors pour tout λ P K, on a

λ ¨ 0E “ 0E.

Cela signifie qu’il existe au moins un scalaire λ ­“ 0K (par exemple λ “ 1K) qui satisfait l’équation.
Par définition, la famille txu est donc liée.
• Si x ­“ 0E, alors l’équation λ ¨x “ 0E implique nécessairement λ “ 0K, car dans un espace vectoriel,
seul le produit d’un vecteur non nul par le scalaire nul donne le vecteur nul. Ainsi, la famille txu est
libre.
2. Considérons la famille de vecteurs t1, iu dans C, alors
• Sur R : La famille t1, iu est libre, car 1 et i sont linéairement indépendants sur R.
• Sur C : La famille t1, iu est liée, car i peut s’exprimer comme un multiple complexe de 1,

i “ i ¨ 1.

3. Dans l’espace Rn, Considérons la famille de vecteurs suivante

tx1 “ p1, 0, ..., 0q, x2 “ p0, 1, 0, ..., 0q, ..., xn “ p0, 0, ..., 1qu .

Cette famille est libre sur R.
4. Dans le R´espace vectoriel FpR,Rq des applications de R dans R, la famille tf1 “ cos, f2 “ sinu
est libre sur R. En effet, soient α1, α2 P R tels que

α1f1 ` α2f2 “ 0FpR,Rq.

Cela équivaut à

@x P R : α1f1pxq ` α2f2pxq “ 0 ðñ @x P R : α1 cosx` α2 sin x “ 0.
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En particulier, pour x “ 0, cette égalité donne α1 “ 0 et pour x “ 2π , elle donne α2 “ 0. Donc la
famille tf1, f2u est libre sur R.
En revanche la famille tf1 “ cos2, f2 “ sin2, f3 “ 1u de FpR,Rq est liée car on a la relation de dé-
pendance linéaire

cos2
` sin2

´1 “ 0.
Les coefficients de dépendance linéaire sont

α1 “ 1, α2 “ 1, α3 “ ´1.

Proposition 1.3.1 (Propriétés des familles libres et liées)
1. Toute famille contenant le vecteur nul est liée.
2. Soit A une famille de vecteurs d’un K´espace vectoriel E. On a alors
(a) Toute sous-famille d’une famille libre est libre. Autrement dit si A est libre et si A1 Ă A , alors
A1 est également libre.
(b) Toute sur-famille d’une famille liée est liée. Autrement dit si A est liée et si A Ă A1 , alors A1
est aussi liée.

Remarque 1.3.1
1. Si une famille est libre, cela signifie que aucun vecteur de cette famille ne peut être obtenu comme
combinaison linéaire des autres. Donc, si on retire des vecteurs, on diminue les possibilités de dépen-
dance. Une sous-famille conserve donc cette propriété d’indépendance.
2. Une famille est liée si au moins un vecteur peut s’écrire comme combinaison linéaire des autres.
Si on ajoute d’autres vecteurs, on ne peut pas "casser" cette dépendance : elle reste présente, donc la
famille reste liée.

Preuve.
1. Soit A “ tx1, ..., xnu une famille de vecteurs de E, et supposons que 0E P A. Alors il existe un indice
i P t1, 2, ..., nu tel que xi “ 0E. Considérons les scalaires λ1 “ λ2 “ ... “ λi´1 “ λi`1 “ ... “ λn “ 0K,
et λi “ 1K. Alors

n
ÿ

j“1
λjxj “ λixi “ 1K ¨ 0E “ 0E.

mais tous les scalaires ne sont pas nuls (puisque λi “ 1K). Cela montre qu’il existe une combinaison
linéaire non triviale des vecteurs de A qui donne le vecteur nul. Donc, la famille A est liée.
2. (a) Soit A “ tx1, ..., xnu une famille libre de vecteurs de E. Une sous-famille de A est de la forme

A1 “ txj1 , . . . , xjru où 1 ď j1 ă j2 ă ¨ ¨ ¨ ă jr ď n avec r ď n.

Puisque l’ordre des vecteurs dans la famille n’a pas d’importance pour sa liberté, on peut supposer
que

A1 “ tx1, . . . , xru .

Pour montrer que A1 est libre, soit λ1, . . . , λr P K tels que

λ1x1 ` ¨ ¨ ¨ ` λrxr “ 0E.

Pour utiliser la liberté de la famille A, complétons cette combinaison linéaire avec des coefficients
nuls

λr`1 “ ¨ ¨ ¨ “ λn “ 0K,

ainsi on a
λ1x1 ` ¨ ¨ ¨ ` λrxr ` λr`1xr`1 ` ...` λnxn “ 0E.

15



Espaces vectoriels

Par la liberté de A, on en déduit
λ1 “ ¨ ¨ ¨ “ λn “ 0K.

En particulier,
λ1 “ ¨ ¨ ¨ “ λr “ 0K,

ce qui prouve que A1 est libre.
b. On démontre cette propriété en prouvant sa contraposée : Si A1 est libre, alors toute sous-famille
A Ă A1 est libre. Or, cette propriété est déjà connue et démontrée : Toute sous-famille d’une famille
libre est libre. Ainsi, la contraposée étant vraie, l’énoncé initial est également vrai. Donc, si A Ă A1

et que A est liée, alors A1 ne peut pas être libre. Cela signifie que A1 est aussi liée. l

Après avoir introduit les notions de familles libres et familles liées, nous pouvons maintenant
définir celles de familles génératrices et de bases, qui occupent une place centrale dans l’étude des
espaces vectoriels.

Dans l’étude des espaces vectoriels, on cherche souvent à exprimer l’ensemble des vecteurs d’un
espace à partir d’un nombre limité de vecteurs. C’est précisément le rôle des familles génératrices :
une famille de vecteurs est dite génératrice d’un espace vectoriel si tout vecteur de cet espace peut
être écrit comme une combinaison linéaire de ses éléments. Cependant, une famille génératrice peut
contenir des vecteurs redondants, c’est-à-dire qui peuvent être exprimés à partir des autres. Pour
éliminer cette redondance, on s’intéresse aux bases, qui sont des familles à la fois génératrices et
libres. Autrement dit, une base permet de représenter chaque vecteur de l’espace de manière unique,
sans relation de dépendance entre ses vecteurs.

Définition 1.3.3 (Sous-espace vectoriel engendré)
1. Soit E un K´espace vectoriel, A P PpEq. On appelle sous-espace vectoriel engendré par A, et on
note V ectpAq ou xAy, l’intersection de tous les sous-espaces vectoriels de E contenant A

V ectpAq “
č

F sev de E et AĂF

F.

2. Si A “ tx1, ..., xnu est une famille finie de vecteurs de E, alors le sous-espace vectoriel engendré
par A est l’ensemble de toutes les combinaisons linéaires des vecteurs de la famille. Formellement

V ectpAq “ă A ą“ tx “ λ1x1 ` λ2x2 ` ...` λnxn : λ1, λ2, ..., λn P Ku .

Dans ce cas, on dit que la famille A engendre V ectpAq, ou qu’elle est génératrice de ce sous-espace.

Remarque 1.3.2
1. V ectpAq est le plus petit sous-espace vectoriel de E contenant A, au sens de l’inclusion. Autrement
dit, tout sous-espace vectoriel de E qui contient A contient nécessairement V ectpAq.
2. En particulier, si A “ φ (l’ensemble vide), alors le sous-espace vectoriel engendré est

V ectpφq “ t0Eu .

C’est-à-dire que l’espace engendré par l’ensemble vide est le sous-espace réduit au vecteur nul.
3. Si E est un K´espace vectoriel, alors

V ectpEq “ E.

Autrement dit, un espace vectoriel engendre lui-même, ce qui est une conséquence immédiate de la
définition.
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Exemple 1.3.2
1. La famille de vecteurs tx1 “ p1, 0, 0q , x2 “ p0, 1, 0q , x3 “ p0, 0, 1qu de l’espace vectoriel réel R3 est
une famille génératrice de R3. En effet, tout vecteur px, y, zq P R3 peut s’écrire comme

px, y, zq “ x p1, 0, 0q ` y p0, 1, 0q ` z p0, 0, 1q .

Autrement dit
R3
“ V ectptx1 “ p1, 0, 0q , x2 “ p0, 1, 0q , x3 “ p0, 0, 1quq.

2. Plus généralement, la famille génératrice canonique de Rn est donnée par

te1 “ p1, 0, ..., 0q, ..., en “ p0, 0, ..., 1qu ,

où chaque vecteur ei a un 1 en i´ème position et 0 ailleurs.
3. Dans l’espace vectoriel K rXs des polynômes à coefficients dans K, la famille infinie

 

1, X,X2, ...
(

,

est une famille génératrice de K rXs. En effet, tout polynôme de degré quelconque s’écrit comme une
combinaison linéaire finie de ces monômes.
4. L’ensemble t1, iu Ă C est une famille génératrice de C considéré comme un espace vectoriel réel.
Tout nombre complexe z “ a` ib peut s’écrire comme

z “ a ¨ 1` b ¨ i avec a, b P R.

Ainsi,
C “ V ectpt1, iuq.

5. Dans Kn rXs l’espace des polynômes de degré inférieur ou égal à n,
 

1, X,X2, ..., Xn
(

,

est une famille génératrice de Kn rXs. Tout polynôme de degré ď n est une combinaison de ces n` 1
monômes de Kn rXs.

Proposition 1.3.2 (Propriétés des familles génératrices)
1. Toute sur-famille d’une famille génératrice est génératrice. Si une famille A est géné-
ratrice d’un espace vectoriel E, alors toute famille A1 contenant A est également génératrice de E.
Autrement dit, si A Ă A1 et V ectpAq “ E, alors V ectpA1q “ E.
2. Inclusion des sous-espaces engendrés. Si deux familles A et B de E vérifient A Ă B, alors
V ectpAq Ă V ectpBq. Formellement

A Ă B ùñ V ectpAq Ă V ectpBq.

3. Espace engendré par l’union de deux familles. Pour toutes familles A et B de E, on a

V ectpAYBq “ V ectpAq ` V ectpBq,

où
V ectpAq ` V ectpBq “ tx “ v1 ` v2 : v1 P V ectpAq, v2 P V ectpBqu ,

est appelé la somme des sous-espaces vectoriels engendrés par A et B.
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Ayant posé les fondements avec les notions de familles libres, liées et génératrices, nous pouvons
maintenant introduire une notion centrale dans l’étude des espaces vectoriels : la base. Dans un espace
vectoriel E, une base est une famille de vecteurs qui vérifie deux propriétés essentielles. D’une part,
la famille est linéairement indépendante (ou libre), ce qui signifie qu’aucun vecteur de la famille ne
peut être obtenu comme combinaison linéaire des autres. D’autre part, elle est génératrice de l’espace,
c’est-à-dire que tout vecteur de E peut s’écrire comme une combinaison linéaire des vecteurs de la
famille. La notion de base est fondamentale, car elle permet de coordonner les vecteurs, de mesurer
la dimension d’un espace, et de travailler efficacement avec les applications linéaires et les matrices.

Définition 1.3.4 (Bases et coordonnées)
1. Base. On dit qu’une famille de vecteurs B est une base d’un K´espace vectoriel pE,`, ¨q si, et
seulement si, elle vérifie les deux conditions fondamentales suivantes :
(i) La famille B est libre, c’est-à-dire que ses vecteurs sont linéairement indépendants ;
(ii) La famille B est génératrice de E, autrement dit

V ectpBq “ E.

2. Caractérisation d’une base finie. Une famille finie B “ te1, . . . , enu d’éléments d’un K´espace
vectoriel E est une base de E si et seulement si

@x P E, D!pλ1, . . . , λnq P Kn : x “
n
ÿ

i“1
λiei.

Autrement dit, tout vecteur x P E admet une unique décomposition sous forme de combinaison
linéaire des vecteurs de B.
3. Coordonnées d’un vecteur. Si E admet une base finie B “ te1, . . . , enu, pour tout x de E, les
scalaires λ1, . . . , λn définis ci-dessus s’appellent les coordonnées (ou : composantes) de x sur la
base B. Plus précisément, λi s’appelle la i´ ème coordonnée (ou : composante) de x dans la base B.

Exemple 1.3.3
1. La famille t1Ku, réduite à l’élément neutre de la multiplication dans 1K, est une base de l’espace
vectoriel K sur lui-même. En effet, tout élément a P K peut s’écrire de manière unique comme

a “ a ¨ 1K.

La famille t1Ku est donc génératrice et libre, et constitue ainsi une base de K.
2. La base canonique de l’espace vectoriel Rn est la famille

te1 “ p1, 0, ..., 0q, ..., en “ p0, 0, ..., 1qu .

Cette famille est libre et génératrice de Rn, donc c’est bien une base. Elle permet de représenter tout
vecteur x “ px1, x2, ..., xnq de Rn comme

x “
n
ÿ

i“1
xiei.

3. La famille
 

1, X,X2, ...
(

,

forme la base canonique de l’espace K rXs des polynômes à coefficients dans un corps K. Cette famille
est libre et génératrice, mais elle est infinie. En particulier, pour tout entier naturel n, la famille

 

1, X,X2, ..., Xn
(

,
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forme la base canonique de l’espace Kn rXs, constitué des polynômes de degré inférieur ou égal à n.
4. La famille t1, iu constitue une base de l’espace C sur R. En effet, tout nombre complexe z “ a`bi,
avec a, b P R, s’écrit de façon unique comme

z “ a ¨ 1` b ¨ i.

La famille t1, iu est donc libre et génératrice de C sur R.

On peut aussi formuler la définition précédente sous la forme suivante

Proposition 1.3.3 (Application des coordonnées dans une base).
Soit B “ tv1, . . . , vnu une base d’un espace vectoriel E. Il existe alors une bijection linéaire, appelée
application des coordonnées dans la base B, définie par

ϕB : E ÝÑ Kn

x “ x1v1 ` ¨ ¨ ¨ ` xnvn ÞÝÑ px1, . . . , xnq

Les scalaires xi sont appelés les coordonnées (ou composantes) du vecteur x dans la base B “

tv1, . . . , vnu.

Exemple 1.3.4 On considère l’espace vectoriel R3.
1. Avec la base canonique. Soit

B “ te1 “ p1, 0, 0q, e2 “ p0, 1, 0q, e3 “ p0, 0, 1qu.

Prenons le vecteur
x “ p2,´1, 3q P R3.

Dans la base B, on a immédiatement

x “ 2e1 ´ 1e2 ` 3e3.

Les coordonnées de x dans B sont donc

ϕBpxq “ p2,´1, 3q.

2. Avec une base différente. Soit maintenant

B1 “ tv1 “ p1, 1, 0q, v2 “ p0, 1, 1q, v3 “ p1, 0, 1qu.

On veut exprimer x dans B1. On cherche pα1, α2, α3q P R3 tels que

x “ α1v1 ` α2v2 ` α3v3.

Ce qui donne le système
$

’

&

’

%

α1 ` α3 “ 2,
α1 ` α2 “ ´1,
α2 ` α3 “ 3.

En résolvant, on obtient
α1 “ ´2, α2 “ 1, α3 “ 4.

Ainsi
x “ ´2v1 ` 1v2 ` 4v3,

et ses coordonnées dans la base B1 sont

ϕB1pxq “ p´2, 1, 4q.

Cet exemple montre que les coordonnées d’un vecteur dépendent de la base choisie, mais
que la bijection ϕB décrite dans la proposition permet toujours de passer de E à Kn en fixant une
base.
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Remarque 1.3.3 La base de l’espace vectoriel réduit à t0Eu est la famille vide φ. En effet, cette
famille est à la fois libre (car elle ne contient aucun vecteur) et génératrice de t0Eu (puisque la seule
combinaison linéaire possible, la somme vide, donne 0E).

Une famille libre maximale, dans un espace vectoriel, est une famille de vecteurs qui est à la fois
libre et maximale, ce qui signifie qu’ajouter n’importe quel autre vecteur de l’espace à la famille la
rendrait liée.

Définition 1.3.5 (Famille libre maximale et famille génératrice minimale)
Soit E un K´espace vectoriel, F Ă E une famille (finie ou infinie) de vecteurs de E.
1. Famille libre maximale. On dit que F est une famille libre maximale ou famille indépendante
maximale dans E si F est libre c’est-à-dire que ses vecteurs sont linéairement indépendants et est
maximale pour l’inclusion parmi les familles libres de E, ce qui signifie que, pour tout v P E{F , la
famille F Y tvu est liée. Formellement,

"

(i)F est libre.
(ii) @v P E{F : F Y tvu est liée.

2. Famille génératrice minimale. On dit que F est une famille génératrice minimale dans E
si F est génératrice de E et est minimale pour l’inclusion parmi les familles génératrices de E,
c’est-à-dire que, pour tout v P F , la famille F{ tvu n’est plus génératrice de E. Formellement,

"

(i) V ectpFq “ E
(ii) @v P F : V ect pF{ tvuq ­“ E.

Remarque 1.3.4
1. Famille libre maximale : Une famille libre est dite maximale lorsque l’ajout de tout vecteur de
l’espace à cette famille la rend liée.
2. Famille génératrice minimale : Une famille génératrice est dite minimale lorsqu’il est impos-
sible d’en retirer un vecteur sans perdre la propriété d’engendrer tout l’espace.
3. Importance de la maximalité : La condition de maximalité pour une famille libre signifie
qu’on ne peut pas ajouter d’autre vecteur à cette famille sans la rendre liée (non libre). Cela assure
que la base contient le minimum de vecteurs nécessaires pour engendrer tout l’espace.
4. Importance de la minimalité : La minimalité d’une famille génératrice est importante car
elle permet d’avoir une représentation la plus simple possible de l’espace vectoriel, avec le moins de
vecteurs indépendants nécessaires pour l’engendrer.

Après avoir introduit les notions de famille libre maximale et de famille génératrice minimale,
nous pouvons maintenant présenter une caractérisation des bases d’un espace vectoriel. Dans un
espace vectoriel, les notions de base, famille libre maximale et famille génératrice minimale sont
équivalentes.

Proposition 1.3.4 (Caractérisation d’une base) Soit E un K´espace vectoriel, F Ă E une
famille (finie ou infinie) de vecteurs de E. Alors les assertions suivantes sont équivalentes
(a) F est une base de E.
(b) F est une famille libre maximale
(c) F est une famille génératrice minimale de E.

Preuve. Pour établir l’équivalence des trois assertions, nous allons montrer

paq ùñ pbq ùñ pcq ùñ paq,
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ce qui, par transitivité, prouvera l’équivalence.
1. paq ùñ pbq. Supposons que F est une base. Par définition, F est libre et engendre E. Soit v P E.
Comme v P V ectpFq “ E, alors v s’écrit comme combinaison linéaire des éléments de F . Ainsi la
famille FYtvu est liée. Donc on ne peut ajouter aucun vecteur sans perdre la liberté, ce qui montre
que F est maximale parmi les familles libres.
2. pbq ùñ pcq. Supposons F libre et maximale pour l’inclusion parmi les familles libres.
• Preuve qu’elle engendre E : Si V ectpFq ­“ E, choisissons v P EzV ectpFq. Alors FYtvu serait
encore libre (car v n’est pas combinaison des éléments de F), contredisant la maximalité. Donc
V ectpFq “ E, F engendre E.
• Preuve de la minimalité : si l’on pouvait enlever un vecteur w P F et que Fztwu engendrait
encore E, alors w serait combinaison linéaire des autres, ce qui contredirait la liberté de F . Ainsi F
est une famille génératrice minimale.
3. Supposons F engendre E et soit minimale pour cette propriété. Si F était liée, il existerait une
relation linéaire non triviale entre ses éléments ; en particulier un vecteur w P F s’exprimerait comme
combinaison linéaire des autres. Alors Fztwu engendrerait encore E, ce qui contredirait la minimalité
de F . Donc F est libre. Comme F engendre F et est libre, c’est une base. l

1.4 Espaces vectoriels de dimension finie

Dans cette section, nous introduisons la notion de dimension d’un espace vectoriel, ainsi que ses
principales propriétés. La notion de dimension joue un rôle fondamental dans l’étude des espaces
vectoriels. Elle permet d’évaluer la « taille » d’un espace vectoriel, en indiquant combien de vecteurs
sont nécessaires, au minimum, pour engendrer tous les vecteurs de l’espace. On dit qu’un espace
vectoriel est de dimension finie lorsqu’il existe un ensemble fini de vecteurs permettant d’exprimer
tous les autres par combinaison linéaire. Autrement dit, l’espace peut être entièrement décrit à l’aide
d’un nombre fini de vecteurs. En revanche, si un espace nécessite une infinité de vecteurs pour
engendrer tous les autres, on dit qu’il est de dimension infinie.

Définition 1.4.1
1. On dit qu’un K´espace vectoriel pE,`, ¨q est de dimension finie si, et seulement s’il admet au
moins une famille génératrice finie de vecteurs dans E, c’est-à-dire un ensemble fini de vecteurs dont
les combinaisons linéaires permettent d’engendrer tout l’espace.
1. Dans le cas contraire ( c’est-à-dire si aucune famille génératrice finie n’existe), on dit que E est
de dimension infinie.
2. Par convention, l’espace nul E “ t0Eu qui ne contient que le vecteur nul, est considéré comme un
espace de dimension finie.

Exemple 1.4.1
1. Pour tout corps K et tout entier n P N˚, l’espace Kn est l’ensemble des n´uplets de scalaires dans
K est de dimension finie car il est engendré par une famille finie : les vecteurs canoniques

te1 “ p1K, 0K, ..., 0Kq, ..., en “ p0K, 0K, ..., 1Kqu .

En particulier les espaces Rn,Cn, qui sont respectivement les cas où K “ R et K “ C, sont des espaces
vectoriels de dimension finie engendrés par leur base canonique.
2. Pour tout entier n P N˚, l’espace Kn rXs formé des polynômes à coefficients dans K et de degré
inférieur ou égal à n est de dimension finie car, il est engendré par la famille finie t1, X,X2, ..., Xnu.
En revanche, l’espace K rXs, qui contient tous les polynômes (de degré quelconque), n’est pas engendré
par une famille finie. Donc K rXs est de dimension infinie.
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Définition 1.4.2 (Dimension) Soit E un K´espace vectoriel de dimension finie.
1. Si E ­“ t0Eu, c’est-à-dire si E n’est pas réduit au seul vecteur nul, alors on appelle dimension de
E le cardinal ou le nombre d’éléments de toute base B de E, et on le note

dim
K
pEq “ CardpBq.

2. Si E “ t0Eu est l’espace nul, on dit que E est de dimension 0, et l’on pose par convention

dim
K
pEq “ 0.

Remarque 1.4.1
1. La dimension d’un K´espace vectoriel dépend du corps K sur lequel il est considéré. Un même
ensemble peut avoir des dimensions différentes selon le corps de scalaires. Par exemple
(a) Si l’on considère C comme un espace vectoriel sur R (i.e., C est un R´espace vectoriel), alors

dim
R
pCq “ 2,

car la famille t1, iu est une base de C sur R.
(b) Si l’on considère C comme un espace vectoriel sur lui-même, alors

dim
C
pCq “ 1,

car tout nombre complexe z s’écrit z “ z ¨ 1, donc la famille t1u est une base.
2. Pour tout K´espace vectoriel de dimension finie, on a

dim
K
pEq “ 0 ðñ E “ t0Eu .

Exemple 1.4.2
1. Soient E1, . . . , Ep des espaces vectoriels de dimension finie sur le même corps K. Alors

dim
K
pE1 ˆ ¨ ¨ ¨ ˆ Epq “ dim

K
pE1q ` ¨ ¨ ¨ ` dim

K
pEpq .

En particulier, on a
dim
C
pCn

q “ n, dim
R
pCn

q “ 2n, dim
R
pRn

q “ n.

2. Pour les espaces de polynômes à coefficients dans K,

dim
K
pKn rXsq “ n` 1, dim

K
pK rXsq “ 8.

Intéressons-nous maintenant à la dimension d’un sous-espace vectoriel d’un espace de dimension
finie.

Proposition 1.4.1 Soient pE,`, ¨q un K´espace vectoriel de dimension finie n et F un sous-espace
vectoriel de E. On a
1. Le sous-espace F est de dimension finie et

dim
K
pF q ď dim

K
pEq.

Autrement dit, toute base de F contient un nombre de vecteurs inférieur ou égal à celui d’une base
de E.
2. Le sous-espace F coïncide avec E si et seulement si leurs dimensions sont égales. On a donc

E “ F ðñ dim
K
pF q “ dim

K
pEq.
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Dans un espace vectoriel de dimension finie, le cardinal de toute famille génératrice est minoré
par celui d’une base, tandis que le cardinal de toute famille libre est majoré par celui d’une base. Ces
propriétés sont extrêmement importantes, car elles sont fréquemment utilisées en pratique. Nous les
résumons dans la proposition suivante.

Proposition 1.4.2 (Relations entre familles libres, génératrices, bases et dimension)
Soit E un K´espace vectoriel de dimension finie n. On a les propriétés suivantes
1. E admet au moins une base finie formée de n vecteurs.
2. Toutes les bases de E sont finies et ont exactement n vecteurs.
3. Toute famille libre contenant n vecteurs est une base de E.
4. Toute famille génératrice de E composée de n vecteurs est une base de E.
5. Toute famille de vecteurs de E ayant strictement plus de n éléments est liée (dépendante linéaire-
ment).
6. Toute famille de vecteurs de E ayant strictement moins de n éléments ne peut être génératrice de
E.

Remarque 1.4.2
• Les points (1) et (2) assurent l’existence d’une base et l’unicité de la dimension.
• Les points (3) et (4) affirment qu’une famille libre maximale ou une famille génératrice minimale
est nécessairement une base.
• Le point (5) indique qu’une famille trop nombreuse est forcément dépendante.
• Le point (6) indique qu’une famille trop petite ne peut pas engendrer tout l’espace.

Exemple 1.4.3
1. Existence d’une base de n vecteurs. Dans R3, la famille

B “ tp1, 0, 0q, p0, 1, 0q, p0, 0, 1qu,

est une base de R3, formée de 3 vecteurs. Cela illustre que tout espace vectoriel de dimension n admet
une base de n vecteurs.
1. Toutes les bases ont n vecteurs. Dans R3, la famille

B1 “ tp1, 1, 0q, p0, 1, 1q, p1, 0, 1qu,

est aussi une base de R3. Bien que différente de la base canonique, elle contient également 3 vecteurs,
ce qui montre que toutes les bases de R3 ont le même nombre de vecteurs.
3. Une famille libre de n vecteurs est une base. Considérons dans R2 la famille

F “ tp1, 2q, p3, 1qu.

Les vecteurs sont linéairement indépendants et R2 est de dimension 2, donc F est une base de R2.
4. Une famille génératrice de n vecteurs est une base. Dans R2, la famille

G “ tp1, 0q, p1, 1qu,

engendre R2. Comme elle contient 2 vecteurs (égale à la dimension de R2), elle est nécessairement
une base.
5. Une famille de plus de n vecteurs est liée. Dans R2, la famille

H “ tp1, 0q, p0, 1q, p1, 1qu,

contient 3 vecteurs, donc plus que la dimension de l’espace (2). Elle est liée, car

p1, 1q “ p1, 0q ` p0, 1q.
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6. Une famille de moins de n vecteurs n’est pas génératrice. Dans R3, la famille

K “ tp1, 0, 0q, p0, 1, 0qu,

contient seulement 2 vecteurs, donc moins que la dimension de R3. Elle ne peut pas engendrer tout
R3, car aucun vecteur de la famille n’a de composante non nulle sur le troisième axe.

Lorsqu’on travaille dans un espace vectoriel de dimension finie, il est souvent utile de réduire une
famille de vecteurs, parfois trop grande ou redondante, à une base, c’est-à-dire à une famille libre
qui génère tout l’espace. Le théorème de la base extraite formalise cette idée en affirmant qu’à partir
de toute famille génératrice, on peut toujours extraire une base. Ce résultat est fondamental car il
permet d’identifier une base « minimale » au sein d’une famille donnée, facilitant ainsi l’étude et la
manipulation des vecteurs de l’espace.

Théorème 1.4.1 (Théorème de la base extraite).
Soient E un K´espace vectoriel de dimension finie non réduit à t0Eu et F une famille génératrice
de E. Alors, on peut extraire de F une famille libre et génératrice de E. Autrement dit, il existe une
famille F 1 Ă F telle que F 1 soit une base de E.

Le théorème de la base extraite énonce que, dans un espace vectoriel de dimension finie, toute
famille génératrice contient une base. Autrement dit, à partir d’un ensemble de vecteurs qui engendre
tout l’espace, il est toujours possible de sélectionner un sous-ensemble formant une base, c’est-à-dire
un ensemble de vecteurs à la fois linéairement indépendants et générateurs.

Exemple 1.4.4 Considérons l’espace vectoriel R3 et la famille suivante

F “ tp1, 0, 0q, p0, 1, 0q, p1, 1, 0q, p0, 0, 1qu.

• Vérification que F est génératrice : Les vecteurs p1, 0, 0q, p0, 1, 0q et p0, 0, 1q engendrent déjà
R3, car pour tout px, y, zq P R3, on peut écrire

px, y, zq “ xp1, 0, 0q ` yp0, 1, 0q ` zp0, 0, 1q.

De plus, toute sur-famille d’une famille génératrice est également génératrice. Comme F contient
ces trois vecteurs, F est donc génératrice de R3.
• Extraction d’une base : Le théorème de la base extraite assure qu’il existe une sous-famille
F 1 Ă F formée de 3 vecteurs (puisque dimpR3q “ 3) qui soit une base. Par exemple

F 1 “ tp1, 0, 0q, p0, 1, 0q, p0, 0, 1qu,

est libre et génératrice, donc constitue une base extraite de F .

Le théorème suivant est fondamental, car il fournit un procédé permettant de construire une base
à partir d’une famille libre. Il affirme qu’il est toujours possible, en ajoutant des vecteurs bien choisis,
de compléter une famille libre incomplète pour obtenir une base. Ce résultat, connu sous le nom de
théorème de la base incomplète, exprime que, dans tout espace vectoriel de dimension finie, toute
famille libre peut être complétée en une base et, réciproquement, qu’il est possible d’extraire d’une
famille génératrice une sous-famille qui constitue une base.
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Théorème 1.4.2 (Théorème de la base incomplète) Soit pE,`, ¨q un K´espace vectoriel de
dimension n, et soit

L “ tx1, x2, ..., xpu ,

une famille libre de p (p ď nq vecteurs de E. Soit

B “ te1, e2, ..., enu ,

une base de E. Alors
1. Si p “ n, alors L est déjà une (nouvelle) base de E.
2. Si p ă n, alors on peut compléter L en une base de E en ajoutant exactement pn ´ pq vecteurs
supplémentaires de B.
Autrement dit, il existe des indices distincts i1, i2, ..., in´p P t1, 2, ..., nu tels que

 

x1, x2, ..., xp, ei1 , ..., ein´p

(

,

soit une base de E.

Remarque 1.4.3
1. Le théorème de la base extraite permet de réduire une famille génératrice trop grande à une base.
2. Le théorème de la base incomplète permet de compléter une famille libre insuffisante pour en faire
une base.
3. Ensemble, ces résultats montrent que toute base d’un espace de dimension finie contient exactement
n vecteurs et que toute famille libre ou génératrice peut être transformée en une base.

Exemple 1.4.5
1. Pour p “ 1, on travaille dans R3 avec la base canonique B “ te1, e2, e3u où e1 “ p1, 0, 0q,
e2 “ p0, 1, 0q, e3 “ p0, 0, 1q. Prenons L “ tx1u avec x1 “ p1, 1, 0q. Cette famille est libre et contient
un seul vecteur (p “ 1 ă 3), donc on peut la compléter avec exactement pn´ p “ 2q vecteurs pris
dans B. Par exemple, en ajoutant e1 et e3 (indices i1 “ 1, i2 “ 3), on obtient

tx1, e1, e3u “ tp1, 1, 0q, p1, 0, 0q, p0, 0, 1qu.

ces trois vecteurs sont linéairement indépendants, donc forment une base de R3.
2. Pour p “ 2, toujours dans R3 avec la base canonique B. On prend

x1 “ p1, 0, 1q, x2 “ p0, 1, 1q.

Ces deux vecteurs sont indépendants (p “ 2 ă 3). Il faut donc ajouter pn´ p “ 1q vecteur de B qui
ne soit pas dans l’espace engendré par x1 et x2. On teste e1 “ p1, 0, 0q (indices i1 “ 1) et on constate
qu’il ne peut pas s’écrire comme combinaison linéaire de x1 et x2. Ainsi,

tx1, x2, e1u “ tp1, 0, 1q, p0, 1, 1q, p1, 0, 0qu,

est une famille libre de trois vecteurs, donc une base de R3.

Le rang d’une famille finie de vecteurs est défini comme la dimension du sous-espace vectoriel
engendré par cette famille. Autrement dit, il représente le nombre maximal de vecteurs linéairement
indépendants que l’on peut extraire de cette famille.

Définition 1.4.3 (Rang d’une famille)
Soit pE,`, ¨q un K´espace vectoriel, et soit F “ tx1, x2, ..., xpu une famille finie de vecteurs de
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E. Le rang de F , noté rgpFq, est la dimension du sous-espace vectoriel engendré par cette famille,
autrement dit

rgpFq “ dim
K
pV ectpFqq.

Cela revient à dire que rgpFq est le nombre maximal de vecteurs linéairement indépendants que l’on
peut extraire de F .

Exemple 1.4.6 Soit la famille de vecteurs de R3

F “ tx1 “ p1, 0, 0q, x2 “ p0, 1, 0q, x3 “ p1, 1, 0qu .

On remarque que x3 est une combinaison linéaire des deux premiers vecteurs

x3 “ x1 ` x2.

Cela montre que la famille F est linéairement dépendante. Alors on peut extraire de F la sous famille
F 1 “ tx1, x2u qui est linéairement indépendant. Par conséquent,

rgpFq “ rgpF 1q “ 2.

Autrement dit, la famille F 1 “ tx1, x2u est une base de V ectpFq, on obtient

rgpFq “ dim
R
pV ectpFqq “ CardpF 1q “ 2.

Le rang vérifie les propriétés suivantes.

Proposition 1.4.3 (Propriétés du rang d’une famille de vecteurs)
1. Comparaison de rangs pour deux familles. Pour toutes familles finies F ,F 1 d’éléments de
E, on a

F Ă F 1 ùñ rgpFq ď rgpF 1q.
Autrement dit, ajouter des vecteurs à une famille ne peut pas diminuer son rang. De plus,

max prgpFq, rgpF 1qq ď rgpF Y F 1q ď rgpFq ` rgpF 1q.

Cela signifie que le rang de la réunion est au moins le plus grand des deux rangs, mais ne dépasse
jamais leur somme.
2. Si pE,`, ¨q est un K´espace vectoriel de dimension n, et F “ tx1, x2, ..., xmu une famille de
vecteurs de E, alors
(a). Le rang ne dépasse pas le nombre de vecteurs dans la famille,

rgpFq ď m.

(b). Le rang ne dépasse pas non plus la dimension de l’espace,

rgpFq ď minpm,nq.

(c). Cas particuliers,
(i) Famille libre,

rgpFq “ mðñ F est libre.
(ii) Famille génératrice,

rgpFq “ nðñ V ectpFq “ E.

(iii) Base de E,
rgpFq “ m “ nðñ F est une base de E.
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1.5 Somme, somme directe, sous-espace supplémentaires

La somme de deux sous-espaces vectoriels permet de créer un nouveau sous-espace à partir de
deux autres. Ce nouveau sous-espace contient tous les vecteurs des deux sous-espaces de départ et
toutes les sommes possibles de ces vecteurs. C’est le plus petit sous-espace qui les contient tous les
deux. Cette opération est importante car elle permet de rassembler plusieurs sous-espaces en un seul,
tout en gardant les règles d’un espace vectoriel.

Définition 1.5.1 (Somme de sous-espaces vectoriels) Soient pE,`, ¨q K´espace vectoriel et
F1, F2 deux sous-espaces vectoriels de E. La somme de F1 et F2 est le sous-ensemble de E, noté
F1 ` F2, défini par

F1 ` F2 “ tx P E, Dx1 P F1, Dx2 P F2 : x “ x1 ` x2u .

On peut aussi écrire
F1 ` F2 “ tx1 ` x2 : x1 P F1, x2 P F2u.

Autrement dit, F1 ` F2 est l’ensemble de toutes les sommes possibles d’un élément de F1 et d’un
élément de F2. Chaque élément de F1`F2 peut donc s’écrire sous la forme x “ x1`x2, avec x1 P F1
et x2 P F2.

Proposition 1.5.1 Si F1 et F2 sont deux sous-espaces vectoriels d’un K´espace vectoriel E, alors
F1 ` F2 est lui-même un sous-espace vectoriel de E.

Preuve. Soit
F1 ` F2 “ tx1 ` x2 : x1 P F1, x2 P F2 u.

Montrons que F1 ` F2 est un sous-espace de E.
(a) Stabilité par le vecteur nul. Comme 0E P F1 et 0E P F2, on a

0E “ 0E ` 0E P F1 ` F2.

(b) Stabilité par addition. Soient x “ u1 ` v1 et y “ u2 ` v2 dans F1 ` F2, avec u1, u2 P F1 et
v1, v2 P F2. Alors, en utilisant l’associativité et la commutativité de l’addition dans E, on a

x` y “ pu1 ` u2q ` pv1 ` v2q.

Comme F1 et F2 sont des sous-espaces, u1 ` u2 P F1 et v1 ` v2 P F2, donc x` y P F1 ` F2.
(c) Stabilité par multiplication scalaire. Soit λ P K et x “ u`v P F1`F2, avec u P F1 et v P F2.
Alors

λx “ pλuq ` pλvq.

Comme F1 et F2 sont des sous-espaces, λu P F1 et λv P F2, donc λx P F1 ` F2. Ainsi, F1 ` F2 est
bien un sous-espace vectoriel de E. l

Remarque 1.5.1 F1 et F2 sont eux-mêmes deux sous-espaces vectoriels de F1 ` F2.

On peut regrouper les principales propriétés de la somme de deux sous-espaces vectoriels dans la
proposition suivante.

Proposition 1.5.2 (Propriétés de la somme de sous-espaces vectoriels) Soit E un K´espace
vectoriel et soient F1, F2, F3 trois sous-espaces vectoriels de E. Les propriétés suivantes sont vérifiées.
1. Commutativité,

F1 ` F2 “ F2 ` F1.
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2. Inclusions de base,
F1 Ă F1 ` F2.

3. Caractérisation par inclusion,

pF1 Ă F3 et F2 Ă F3q ðñ F1 ` F2 Ă F3.

4. Compatibilité avec l’inclusion,

F1 Ă F2 ùñ F1 ` F3 Ă F2 ` F3.

5. Idempotence,
F1 ` F1 “ F1.

6. Somme avec le sous-espace nul,
F1 ` t0Eu “ F1.

7. Somme avec l’espace tout entier,
F1 ` E “ E.

8. Associativité,
pF1 ` F2q ` F3 “ F1 ` pF2 ` F3q.

Preuve. On rappelle que la somme de deux sous-espaces est définie par

F1 ` F2 “ tx1 ` x2 | x1 P F1, x2 P F2u.

1. Commutativité. Soit x P F1 ` F2. Alors x “ x1 ` x2 pour certains x1 P F1, x2 P F2. Par
commutativité de l’addition dans E on a x “ x2 ` x1, donc x P F2 ` F1. L’inclusion réciproque se
montre de la même façon, d’où

F1 ` F2 “ F2 ` F1.

2. Inclusions de base. Si x1 P F1 alors x1 “ x1 ` 0E avec 0E P F2, donc x1 P F1 ` F2. Ainsi
F1 Ă F1 ` F2. De même F2 Ă F1 ` F2.
3. Caractérisation par inclusion.
• Sens direct (ùñ). Si F1 Ă F3 et F2 Ă F3, alors pour tout x “ x1 ` x2 P F1 ` F2 on a x1, x2 P F3 et
donc x P F3 (puisque F3 est un sous-espace). D’où

F1 ` F2 Ă F3.

• Sens réciproque (ðù). Si F1`F2 Ă F3, alors pour x1 P F1 on a x1 “ x1` 0E P F1`F2 Ă F3, donc
F1 Ă F3. Même raisonnement pour F2.
4. Compatibilité avec l’inclusion. Supposons F1 Ă F2. Soit x P F1 ` F3, alors x “ u ` v avec
u P F1, v P F3. Comme u P F2 on a x P F2 ` F3. Donc

F1 ` F3 Ă F2 ` F3.

5. Idempotence.
• L’inclusion F1 Ă F1 ` F1 est claire. En effet, pour tout u P F1, on peut écrire

u “ u` 0E,

avec u P F1 et 0E. Cela montre que u P F1 ` F1.
• Réciproquement, si x P F1 ` F1 alors x “ u ` v avec u, v P F1 et donc x P F1 par stabilité de F1
par addition. D’où F1 ` F1 Ă F1. En combinant les deux inclusions, on obtient bien F1 ` F1 “ F1.
6. Somme avec t0Eu.
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Si x P F1 ` t0Eu alors x “ u ` 0E “ u pour un certain u P F1, donc x P F1. L’inclusion réciproque
vient de (2) puisque t0Eu Ă F1. Ainsi F1 ` t0Eu “ F1.
7. Somme avec E.
(i) Comme F1 Ă E est un espace vectoriel, toute somme x` y avec x P F1 et y P E est encore dans
E. Cela montre que

F1 ` E Ă E.
(ii) Pour tout y P E on a y “ 0E ` y avec 0E P F1, donc y P F1 ` E. Ainsi

E Ă F1 ` E.

8. Associativité. Soit x P pF1 ` F2q ` F3. Alors x “ pu` vq ` w avec u P F1, v P F2, w P F3. Par
associativité de l’addition dans E, x “ u ` pv ` wq et v ` w P F2 ` F3, donc x P F1 ` pF2 ` F3q.
L’inclusion inverse se démontre de manière analogue en permutant les rôles des sous-espaces. Ainsi

pF1 ` F2q ` F3 “ F1 ` pF2 ` F3q.

Cela achève la preuve des huit propriétés. l

Après avoir présenté la notion de somme de deux sous-espaces vectoriels et étudié leurs propriétés,
il est naturel de s’intéresser à un cas particulier important, appelé somme directe. Dans la somme
ordinaire, un vecteur peut parfois s’écrire de plusieurs façons différentes comme somme d’un vecteur
du premier sous-espace et d’un vecteur du second. En revanche, dans une somme directe, chaque
vecteur de la somme possède une décomposition unique : il existe un seul couple formé d’un vecteur
du premier sous-espace et d’un vecteur du second dont la somme donne ce vecteur.

Définition 1.5.2 (Somme directe)
Soient pE,`, ¨q un K´espace vectoriel et F1, F2 deux sous-espaces vectoriels de E. On dit que la
somme F1 ` F2 est directe, et l’on note F1 ‘ F2, lorsque les deux sous-espaces n’ont en commun que
le vecteur nul

F1 X F2 “ t0Eu.

Autrement dit
F1 ` F2 “ F1 ‘ F2 ðñ F1 X F2 “ t0Eu.

Remarque 1.5.2 La somme directe est un cas particulier de la somme de deux sous-espaces ; elle
impose la condition supplémentaire que leur intersection soit réduite au vecteur nul.

Exemple 1.5.1
1. Dans tout K´espace vectoriel pE,`, ¨q, les sous-espaces E et t0Eu sont en somme directe, c’est-
à-dire

E ` t0Eu “ E ‘ t0Eu.

car leur intersection est t0Eu.
2. Dans R2, considérons les sous-espaces vectoriels

F1 “ Rˆ t0u “ tpx, 0q : x P Ru (axe des abscisses),

F2 “ t0u ˆ R “ tp0, yq : y P Ru (axe des ordonnées).
On a

F1 X F2 “ tp0, 0qu.
Ainsi

F1 ` F2 “ F1 ‘ F2.
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3. Soit E “ FpR,Rq, l’espace vectoriel de toutes les applications de R dans R. On considère les
sous-espaces vectoriels

P pR,Rq “ tf P E : fp´xq “ fpxq, @x P Ru,
IpR,Rq “ tf P E : fp´xq “ ´fpxq @x P Ru,

qui sont respectivement les espaces des applications paires et impaires. On observe que

P pR,Rq X IpR,Rq “ t0FpR,Rqu,

car la seule application à la fois paire et impaire est l’application nulle. Ainsi

P pR,Rq ` IpR,Rq “ P pR,Rq ‘ IpR,Rq.

Proposition 1.5.3 (Caractérisation de la somme directe)
Pour que deux sous-espaces vectoriels F1, F2 d’un K´espace vectoriel pE,`, ¨q soient en somme
directe, il faut et il suffit que tout élément de F1 ` F2 se décompose de façon unique en somme d’un
élément de F1 et d’un élément de F2. Autrement dit

@x P F1 ` F2, D!x1 P F1, D!x2 P F2 : x “ x1 ` x2.

Autrement dit, chaque vecteur de la somme directe admet une seule écriture comme somme d’éléments
provenant de chacun des sous-espaces.

Preuve.
1. Condition nécessaire : Supposons que F1 et F2 soient en somme directe, c’est-à-dire que

F1 X F2 “ t0Eu.

Soit x P F1`F2, par définition de F1`F2, il existe px1, x2q P F1ˆF2 tel que x “ x1`x2. Supposons
qu’il existe une autre décomposition de x

x “ y1 ` y2

avec py1, y2q P F1 ˆ F2. On a alors

x1 ` x2 “ y1 ` y2 ùñ x1 ´ y1 “ y2 ´ x2.

Comme x1´ y1 P F1 et y2´ x2 P F2, et que F1XF2 “ t0Eu (car F1 et F2 sont en somme directe), on
déduit que

x1 ´ y1 “ y2 ´ x2 “ 0E.

Ainsi,
x1 “ y1 et x2 “ y2.

Cela prouve que la décomposition de x est unique.
2. Condition suffisante : Supposons que tout élément de F1 ` F2 admette une décomposition
unique

x “ x1 ` x2,

avec x1 P F1 et x2 P F2. Soit x P F1 X F2, alors on peut écrire 0E de deux façons

0E “ 0E ` 0E “ x` p´xq,

où x P F1 et ´x P F2.
Par unicité de la décomposition de 0E, on a nécessairement

x “ 0E et ´ x “ 0E.
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Donc
x “ 0E.

Ainsi
F1 X F2 “ t0Eu,

ce qui montre que la somme est directe. l

Définition 1.5.3 (Sous-espaces supplémentaires)
Soient pE,`, ¨q un K´espace vectoriel et F1, F2 deux sous-espaces vectoriels de E. On dit que F1 et
F2 sont supplémentaires dans E si et seulement si E “ F1 ‘ F2. Cela signifie que

E “ F1 ‘ F2 ðñ

$

&

%

F1 X F2 “ t0Eu

et
E “ F1 ` F2.

Remarque 1.5.3 (Remarque importante)
Il ne faut pas confondre le complémentaire ensembliste EzF avec un supplémentaire de F dans E.
• Un supplémentaire G est un sous-espace tel que E “ F ‘G.
• Un complémentaire ensembliste EzF est simplement l’ensemble des éléments de E qui n’appar-
tiennent pas à F . Il ne s’agit pas nécessairement d’un sous-espace vectoriel et il n’a donc pas la
structure nécessaire pour former une somme directe avec F .

Exemple 1.5.2
1. Pour tout K´espace vectoriel pE,`, ¨q, on a E et t0Eu sont supplémentaires dans E.
2. Soit l’espace vectoriel R2. Soit

F1 “ Rˆ t0u “ tpx, 0q : x P Ru (l’axe des abscisses)

F2 “ t0u ˆ R “ tp0, yq : y P Ru (l’axe des ordonnées),

deux sous-espaces vectoriels de R2, alors on a F1 et F2 sont supplémentaires dans R2. Autrement dit

R2
“ F1 ‘ F2.

3. Soit E “ FpR,Rq l’espace vectoriel des applications de R dans R. Soit P pR,Rq , et I pR,Rq
deux sous-espaces vectoriels de FpR,Rq des applications paires et impaires respectivement, alors on
a P pR,Rq et I pR,Rq sont supplémentaires dans FpR,Rq. Autrement dit

FpR,Rq “ P pR,Rq ‘ I pR,Rq .

4. Dans E “ C, posons
F1 “ V ectpt1uq, F2 “ V ectptiuq.

On sait que F1 et F2 sont des sous-espaces vectoriels de E.
• Si x P F1 X F2, alors x est à la fois réel et imaginaire pur donc x “ 0 et

F XG “ t0u.

• On a
F1 ` F2 “ V ectp1q ` V ectpiq “ V ectp1, iq “ C,

Ainsi
E “ F1 ‘ F2.
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Proposition 1.5.4 (Caractérisation des sous-espaces supplémentaires)
Deux sous-espaces vectoriels F1, F2 d’un K´espace vectoriel pE,`, ¨q sont supplémentaires dans E,
si et seulement si tout élément de E se décompose de façon unique en somme d’un élément de F1 et
d’un élément de F2. Formellement, cela s’écrit

@x P E, D!x1 P F1, D!x2 P F2 : x “ x1 ` x2.

Autrement dit, chaque vecteur de E possède une unique écriture comme somme d’éléments provenant
de chacun des sous-espaces supplémentaires.

Preuve.
1. Sens direct : Supposons que F1 et F2 soient supplémentaires

E “ F1 ` F2, F1 X F2 “ t0Eu.

(a). Existence de la décomposition : Comme E “ F1 ` F2, pour tout x P E, il existe x1 P F1 et
x2 P F2 tels que x “ x1 ` x2.
(b). Unicité de la décomposition : Supposons que x ait deux écritures

x “ x1 ` x2 “ y1 ` y2,

avec x1, y1 P F1 et x2, y2 P F2. On a alors

x1 ´ y1 “ y2 ´ x2.

Le membre de gauche est dans F1 et celui de droite à F2. Ainsi

x1 ´ y1 P F1 X F2 “ t0Eu ùñ x1 “ y1.

En remplaçant dans l’égalité de départ, on obtient aussi

x2 “ y2.

Ainsi, la décomposition est unique.
Sens réciproque : Supposons que tout x P E se décompose de façon unique en

x “ x1 ` x2,

avec x1 P F1 et x2 P F2.
(a). Somme : Par hypothèse, pour chaque x P E, on peut trouver x1 P F1 et x2 P F2 tels que

x “ x1 ` x2.

Cela signifie que x P E, on a donc
E Ă F1 ` F2.

Comme l’inclusion
F1 ` F2 Ă E,

est toujours vraie, on a
E “ F1 ` F2.

(b). Intersection nulle : Si v P F1 X F2, alors
$

&

%

v P F1
^

v P F2

ùñ

$

&

%

v “ v ` 0E

^

v “ 0E ` v,
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sont deux décompositions possibles. L’unicité impose v “ 0E. Donc

F1 X F2 “ t0Eu.

l

La proposition suivante fournit un critère simple et efficace pour vérifier que deux sous-espaces
vectoriels F1et F2 d’un espace vectoriel E sont supplémentaires à partir de leurs bases.

Proposition 1.5.5 Soient E un K´espace vectoriel de dimension finie n et F1, F2 deux sous-espaces
vectoriels de E munis d’une base B1 “ te1, . . . , epu pour F1 et d’une base B2 “ tf1, . . . , fqu pour F2.
Les assertions suivantes sont équivalentes
(a) F1 et F2 sont supplémentaires dans E,

E “ F1 ‘ F2.

(b) La famille B “ te1, . . . , ep, f1, . . . , fqu est une base de E.

Preuve.
1. Sens direct : paq ùñ pbq. Supposons que E “ F1 ‘ F2, donc

E “ F1 ` F2 et F1 X F2 “ t0Eu.

• Engendrement de E,
V ect pBq “ E.

On a tout x P E s’écrit x “ x1 ` x2 avec x1 P F1 et x2 P F2. Comme B1 engendre F1 et B2 engendre
F2, l’union B “ B1 YB2 engendre E. Ainsi

V ect pBq “ E.

• Indépendance linéaire. Soient α1, ..., αp, β1, ..., βq P K tels que
p
ÿ

i“1
αiei `

q
ÿ

j“1
βjfj “ 0E.

Posons
u “

p
ÿ

i“1
αiei P F1, v “

q
ÿ

j“1
βjfj P F2.

Alors
u` v “ 0E ùñ u “ ´v P F1 X F2.

Par hypothèse, F1 X F2 “ t0Eu, donc u “ v “ 0E. Ainsi, toutes les coordonnées αi et βj sont nulles,
et B est libre. Donc B est une base de E.
Sens réciproque : pbq ùñ paq. Supposons maintenant que B “ B1 YB2 soit une base de E.
• Somme. Comme B engendre E,

E “ V ectpBq “ V ectpB1 YB2q “ V ectpB1q ` V ectpB2q “ F1 ` F2.

• Intersection nulle. Soit x P F1 X F2. Alors x s’exprime uniquement à partir de vecteurs de
B1 (puisque x P F1) et uniquement à partir de vecteurs de B2 (puisque x P F2). L’unicité de la
représentation dans la base B impose x “ 0E. Ainsi,

F1 X F2 “ t0Eu.

On a donc E “ F1 ` F2 et F1 X F2 “ t0Eu, ce qui signifie

E “ F1 ‘ F2.

l
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Théorème 1.5.1 (Existence d’un supplémentaire en dimension finie) Soit pE,`, ¨q un
K´espace vectoriel de dimension n, alors
(a) Tout sous-espace vectoriel F de E admet au moins un supplémentaire dans E.
(b) Si dimpF q “ p, alors tout supplémentaire de F dans E est de dimension pn´ pq.

Remarque 1.5.4 L’existence d’un supplémentaire est également garantie en dimension infinie.

Exemple 1.5.3
1. Dans R3soit

E “ R3, F “ V ecttp1, 0, 0q, p0, 1, 0qu.

On a dimpEq “ 3, dimpF q “ 2. Selon le théorème, le supplémentaire G doit avoir dimpGq “ 3´2 “
1.
Construction du supplémentaire : On choisit un vecteur v qui n’appartient pas à F . Par exemple
v “ p0, 0, 1q. Alors

G “ V ecttvu “ V ecttp0, 0, 1qu.

Vérification. Chaque vecteur x “ px1, x2, x3q P R3 s’écrit

x “ px1, x2, 0q ` p0, 0, x3q P F `G.

Intersection nulle : F XG “ t0R3u, car aucun vecteur non nul de F n’est dans G. Par conséquent

R3
“ F ‘G.

2. Dans R4, soit
E “ R4, F “ V ectte1, e2u,

avec
e1 “ p1, 0, 0, 0q, e2 “ p0, 1, 0, 0q.

Il est clair que dimpEq “ 4, dimpF q “ 2. Un supplément G doit avoir dimpGq “ 4´ 2 “ 2.
Construction du supplémentaire : On choisit deux vecteurs indépendants de F , par exemple

G “ V ectte3 “ p0, 0, 1, 0q, e4 “ p0, 0, 0, 1qu.

Vérification : Chaque vecteur x P R4 s’écrit comme

x “ αe1 ` βe2 ` γe3 ` δe4 P F `G.

Intersection : F X G “ t0R4u car aucun vecteur non nul de F n’est dans G. Par conséquent
R4 “ F ‘G.
3. Un sous-espace peut avoir plusieurs supplémentaires différents. Dans R3, F “ V ecttp1, 0, 0qu a
par exemple G “ V ecttp0, 1, 0q, p0, 0, 1qu ou G1 “ V ecttp1, 1, 0q, p0, 0, 1qu. La dimension du supplé-
mentaire est toujours déterminée : dimpGq “ dimpEq ´ dimpF q.

Dans l’étude des sous-espaces vectoriels, il est souvent nécessaire de relier la dimension de la
somme de deux sous-espaces à celles de chacun d’eux, ainsi qu’à la dimension de leur intersection. La
formule de Grassmann, également appelée formule des quatre dimensions, établit ce lien de manière
simple et élégante. Cette formule tient compte du « double comptage » des vecteurs appartenant
simultanément aux deux sous-espaces et permet de calculer efficacement la dimension de leur somme.
Elle constitue un outil fondamental en algèbre linéaire.
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Théorème 1.5.2 (Dimension d’une somme de sous-espaces vectoriels, formule de Grass-
mann)
Soient E un K-espace vectoriel de dimension finie, F1 et F2 des sous-espaces vectoriels de E. Alors

dim
K
pF1 ` F2q “ dim

K
pF1q ` dim

K
pF2q ´ dim

K
pF1 X F2q.

En particulier, si F1 et F2 sont en somme directe (F1 ‘ F2), on a

dim
K
pF1 ‘ F2q “ dim

K
pF1q ` dim

K
pF2q .

Ainsi, la formule de Grassmann exprime que la dimension de la somme F1`F2 est égale à la somme
des dimensions de F1 et F2, diminuée de la dimension de leur intersection F1 X F2.

Proposition 1.5.6 (Caractérisation de la supplémentarité en dimension finie)
Soient E un K-espace vectoriel de dimension finie, F1 et F2 des sous-espaces vectoriels de E. Alors

E “ F1 ‘ F2 ðñ

$

&

%

F1 X F2 “ t0Eu

et
dimpEq “ dimpF1q ` dimpF2q.

De manière équivalente

E “ F1 ‘ F2 ðñ

$

&

%

E “ F1 ` F2
et
dimpEq “ dimpF1q ` dimpF2q.

Remarque 1.5.5 Ces formulations montrent que, pour que deux sous-espaces soient supplémen-
taires :
(a) Leur intersection doit être réduite au vecteur nul,
(b) La somme de leurs dimensions doit égaler celle de l’espace entier,
(c) Ou, de façon équivalente, leur somme doit engendrer tout l’espace.
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Conclusion du chapitre

Ce chapitre a présenté les notions fondamentales des espaces vectoriels. Après avoir introduit les
lois de composition et les sous-espaces vectoriels, il a développé les concepts de familles libres, liées,
génératrices et de bases. L’étude s’est ensuite concentrée sur les espaces vectoriels de dimension finie
et sur la notion de somme directe de sous-espaces.

Ces outils sont essentiels pour comprendre et manipuler les espaces vectoriels et trouvent des
applications en algèbre linéaire, en géométrie et en analyse fonctionnelle. Les notions de base, de
dimension et de somme directe constituent des fondements indispensables pour l’étude ultérieure des
matrices et applications linéaires.
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Chapitre 2

Applications Linéaires

Dans ce chapitre, nous allons étudier les applications linéaires, une notion fondamentale de l’al-
gèbre linéaire et très utilisée en mathématiques comme en informatique. Une application linéaire est
une transformation entre espaces vectoriels qui conserve leur structure : elle respecte l’addition des
vecteurs et la multiplication par un scalaire.

Nous commencerons par définir ce qu’est une application linéaire et donnerons des exemples
simples. Nous verrons aussi des cas particuliers importants comme les endomorphismes, isomor-
phismes, automorphismes et formes linéaires. Ensuite, nous présenterons des applications particu-
lières, telles que les projections, symétries, affinités et projecteurs, qui interviennent souvent dans la
modélisation et la résolution de problèmes.

Nous étudierons ensuite les principales propriétés des applications linéaires, en particulier la pré-
servation des combinaisons linéaires, ainsi que l’importance des bases pour les déterminer. Nous
aborderons aussi les opérations possibles (somme, multiplication par un scalaire, composition, puis-
sances, nilpotence), qui montrent que l’ensemble des applications linéaires possède une structure
riche.

Une partie sera consacrée aux isomorphismes et au groupe linéaire, qui permettent d’identifier
des espaces de même dimension comme étant équivalents du point de vue algébrique. Enfin, nous
introduirons des notions essentielles comme le noyau, l’image, la dimension, le rang et le théorème
du rang, qui sont des outils puissants pour analyser les applications linéaires.

Ainsi, ce chapitre fournit les bases nécessaires pour comprendre et utiliser les transformations
linéaires, ouvrant la voie à de nombreuses applications en géométrie, en analyse, en informatique et
dans d’autres domaines scientifiques.

2.1 Définitions et premiers exemples

La structure d’espace vectoriel ne devient vraiment intéressante que si l’on introduit la notion
d’application linéaire. Il s’agit des applications entre espaces vectoriels qui, dans un sens que nous
allons préciser, «conservent la structure d’espace vectoriel».

Dans cette partie, pE,`, ¨q et pF,`, ¨q désignent deux espaces vectoriels définis sur un même corps
(commutatif, en général K “ R ou K “ Cq. Ces espaces peuvent avoir des dimensions quelconques
(finies ou infinies), et pas nécessairement égales.

Définition 2.1.1 Soient pE,`, ¨q et pF,`, ¨q deux espaces vectoriels sur un même corps K.
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1. On appelle application linéaire (ou morphisme d’espaces vectoriels) de E dans F toute application
f : E ÝÑ F qui vérifie les propriétés suivantes
(a) Conservation de l’addition des vecteurs

@x, y P E : fpx` yq “ fpxq ` fpyq.

(b) Conservation de la multiplication par un scalaire ¨

@α P K, @x P E : fpα ¨ xq “ α ¨ fpxq.

Autrement dit, une application linéaire est une application qui préserve la structure d’un espace
vectoriel, c’est-à-dire qu’elle conserve l’addition des vecteurs et la multiplication par un scalaire.
2. On note LKpE,F q l’ensemble des applications linéaires de E dans F .

Certains types d’applications linéaires jouent un rôle particulièrement important. Nous en don-
nons ci-dessous les définitions.

Définition 2.1.2 (Cas particuliers)
Soient pE,`, ¨q et pF,`, ¨q deux K´espaces vectoriels et f : E ÝÑ F une application linéaire. On
distingue plusieurs cas particuliers importants.
(1) Endomorphisme :
(a) Si E “ F , on dit que f est un endomorphisme de E. Autrement dit, il s’agit d’une application
linéaire qui envoie l’espace sur lui-même.
(b) L’ensemble de tous les endomorphismes de E est noté EndKpEq.
(2) Isomorphisme :
(a) Si f est bijective, alors on dit que f est un isomorphisme d’espaces vectoriels.
(b) Dans ce cas, E et F sont dits isomorphes, ce qui signifie qu’ils ont la même dimension et la
même structure algébrique. On note alors

E « F.

En pratique, un isomorphisme permet de considérer deux espaces différents comme étant «essentiel-
lement les mêmes».
(c) L’ensemble de tous les isomorphismes de E dans F est noté IsoKpE,F q.
3. Automorphisme.
(a) Si f est à la fois un endomorphisme de E et un isomorphisme (c’est-à-dire bijectif), alors f est
un automorphisme de E.
(b) Un automorphisme est donc une application linéaire bijective de E dans lui-même.
(c) L’ensemble de tous les automorphismes de E est noté AutKpEq.
4. Forme linéaire.
(a) Si F “ K, alors une application linéaire f : E ÝÑ K est appelée une forme linéaire sur E.
(b) L’ensemble de toutes les formes linéaires sur E est noté LKpE,Kq.
(c) Cet ensemble est un espace vectoriel lui-même, appelé l’espace dual de E, et noté en général E˚.
On a donc

E˚ “ LKpE,Kq.

Exemple 2.1.1 (Exemples classiques d’applications linéaires (et non linéaires))
Les applications linéaires sont très nombreuses. Voici quelques exemples significatifs.
1. Identité. Pour tout K´espace vectoriel pE,`, ¨q, l’application identité IdE de E est un automor-
phisme de E (linéaire, bijective, inverse égale à elle-même).
2. L’application

f : R3 ÝÑ R2

px1, x2, x3q ÞÝÑ fpx1, x2, x3q “ p2x1 ` x2, x2 ´ x3q,
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est linéaire sur R. En effet, si x “ px1, x2, x3q, y “ py1, y2, y3q, et λ P R, alors on a

fpx` yq “ fpx1 ` y1, x2 ` y2, x3 ` y3q “ p2px1 ` y1q ` px2 ` y2q, px2 ` y2q ´ px3 ` y3qq

“ pp2x1 ` x2q ` p2y1 ` y2q, px2 ´ x3q ` py2 ´ y3qq “ fpxq ` fpyq,

et

fpλ ¨ xq “ fpλx1, λx2, λx3q “ p2λx1 ` λx2, λx2 ´ λx3q “ λ ¨ p2x1 ` x2, x2 ´ x3q “ λ ¨ fpxq.

Ainsi, f est bien une application linéaire.
Comme on peut s’en rendre compte par cet exemple, la linéarité de f tient au fait que les composantes
xi dans l’espace d’arrivée (ici R2) apparaissent toutes à la puissance 1 : plus précisément chaque
composante dans l’espace d’arrivée est un polynôme homogène de degré 1 en les xi. Nous verrons cela
d’une manière plus précise dans la suite. Ainsi, par exemple, l’application

h : R3 ÝÑ R2

px1, x2, x3q ÞÝÑ hpx1, x2, x3q “ px
2
1 ´ x2, x2 ` x3q,

n’est pas linéaire (ni a), ni b) de la définition 2.1.1 ne sont satisfaites à cause du terme au carré.
3. Dérivation sur les polynômes. L’application

f : R3 rXs ÝÑ R2 rXs
P ÞÝÑ fpP q “ P 1,

est une application linéaire sur R.
4. L’application

f : R2 ÝÑ C
px, yq ÞÝÑ fpx, yq “ x` iy,

est un isomorphisme sur R de R2 dans C. En effet :
(a) Linéarité sur R. Soient px1, y1q, px2, y2q P R2 et λ P R. Alors

fppx1, y1q ` px2, y2qq “ fpx1 ` x2, y1 ` y2q “ px1 ` x2q ` ipy1 ` y2q “ fpx1, y1q ` fpx2, y2q,

et
fpλ ¨ px1, y1qq “ fpλx1, λy1q “ λx1 ` iλy1 “ λ ¨ px1 ` iy1q “ λ ¨ fpx1, y1q.

Donc f est linéaire sur R.
(b) Injectivité. Si fpx, yq “ 0C, alors x` iy “ 0, ce qui implique x “ 0 et y “ 0. Donc

kerpfq “ tp0, 0qu,

et f est injective.
(c) Surjectivité. Tout nombre complexe z P C s’écrit z “ a ` ib avec a, b P R. Or z “ fpa, bq. Donc
f est surjective.
L’application f est linéaire, bijective, et donc un isomorphisme réel entre R2 et C.
5. Linéarité de l’opérateur de dérivation sur un intervalle. Pour tout intervalle non vide I
de R, l’application

f : DpI,Rq ÝÑ FpI,Rq
g ÞÝÑ fpgq “ g1 (dérivée de g),

est linéaire sur R telle que DpI,Rq désigne le R´espace vectoriel des applications de I dans R
dérivables sur I. En effet,
Soient g1, g2 P DpI,Rq et λ P R. On a

fpg1 ` g2q “ pg1 ` g2q
1
“ g11 ` g

1
2 “ fpg1q ` fpg2q,
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et
fpλ ¨ g1q “ pλg1q

1
“ λg11 “ λ ¨ fpg1q.

Ainsi, f est linéaire sur R.
6. Linéarité de l’opérateur d’intégration (forme linéaire). Pour tout intervalle non vide
ra, bs de R, l’application

f : Cpra, bs ,Rq ÝÑ R

g ÞÝÑ fpgq “
b
ş

a
gpxqdx,

est une forme linéaire sur R telle que CpI,Rq désigne le R´espace vectoriel des applications de I
dans R continues sur I. En effet,
Soient g1, g2 P Cpra, bs ,Rq et λ P R. Alors

fpg1 ` g2q “

ż b

a

pg1pxq ` g2pxqq dx “

ż b

a

g1pxqdx`

ż b

a

g2pxq dx “ fpg1q ` fpg2q,

et
fpλ ¨ g1q “

ż b

a

λg1pxqdx “ λ

ż b

a

g1pxq dx “ λ ¨ fpg1q.

Ainsi, f est une forme linéaire sur l’espace vectoriel Cpra, bs ,Rq.
7. L’application

f : R2 ÝÑ R3

px, yq ÞÝÑ fpx, yq “ py2, x´ y, 3x` 2yq ,
n’est pas linéaire sur R car

fp2 ¨ p0, 1qq “ f p0, 2q “ p4,´2, 4q ­“ p2,´2, 4q “ 2 ¨ fp0, 1q.

8. Les applications suivantes
g1 : R ÝÑ R
x ÞÝÑ g1pxq “ sinpxq,

et
g2 : R ÝÑ R
x ÞÝÑ g2pxq “ exppxq,

ne sont pas linéaires sur R. En effet, en général on a

sinpx` yq ­“ sinpxq ` sinpyq et exppx` yq ­“ exppxq ` exppyq,

tels que x, y P R. Donc les propriétés de linéarité ne sont pas vérifiées.

Proposition 2.1.1 (Caractérisation des applications linéaires)
Soient pE,`, ¨q et pF,`, ¨q deux K´espaces vectoriels et f : E ÝÑ F une application. Alors f est
une application linéaire sur K si et seulement si elle préserve les combinaisons linéaires, c’est-à-dire

@α, β P K, @x, y P E : fpα ¨ x` β ¨ yq “ α ¨ fpxq ` β ¨ fpyq.

Autrement dit, l’image par f d’une combinaison linéaire de vecteurs est égale à la combinaison linéaire
(avec les mêmes coefficients) de leurs images.

Preuve.
1. Supposons que f soit une application linéaire. Soient x, y deux vecteurs de E et α, β deux scalaires
de K. Par définition de la linéarité, on a

fpα ¨ x` β ¨ yq “ fpα ¨ xq ` fpβ ¨ yq “ α ¨ fpxq ` β ¨ fpyq.
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2. Réciproquement, Supposons maintenant que f vérifie la propriété précédente.
• En prenant α “ β “ 1K et px, yq P E2, on obtient

fpx` yq “ fp1K ¨ x` 1K ¨ yq “ 1K ¨ fpxq ` 1K ¨ fpyq “ fpxq ` fpyq,

car
1K ¨ fpxq “ fpxq et 1K ¨ fpyq “ fpyq.

ce qui montre que f respecte l’addition.
• En prenant β “ 0K, on a

fpα ¨ x` 0K ¨ yq “ α ¨ fpxq ` 0K ¨ fpyq “ α ¨ fpxq ` 0F “ α ¨ fpxq,

car 0K ¨ fpyq “ 0F . Or, puisque 0K ¨ y “ 0E,

fpα ¨ x` 0Eq “ fpα ¨ xq.

On a ainsi montré que
fpα ¨ xq “ α ¨ fpxq.

Ce qui montre que f respecte la multiplication par un scalaire. Ainsi, f est bien une application
linéaire. l

2.2 Applications linéaires particulières

Les applications linéaires particulières sont des relations importantes qui respectent la structure
des espaces vectoriels. Elles incluent, par exemple, l’inclusion canonique, les projections, les symétries,
les affinités et les projecteurs. Nous présentons maintenant quelques-unes de ces applications linéaires,
ainsi que leurs principales propriétés.

Définition 2.2.1 (Inclusion canonique)
Soient E un K´espace vectoriel, F un sous-espace vectoriel de E. On définit l’inclusion (ou injection
canonique) par

iF : F ÝÑ E
x ÞÝÑ iF pxq “ x,

Autrement dit, chaque vecteur de F est envoyé sur lui-même, mais vu comme élément de E. Donc
iF est bien une application linéaire injective.

Définition 2.2.2 (Projection canonique) Soient n P N˚, E1, . . . , En des K´espaces vectoriels.
Pour chaque i P t1, . . . , nu, on définit la i´ème projection canonique, notée pri, par

pri : E1 ˆ ¨ ¨ ¨ ˆ En ÝÑ Ei

px1, . . . , xnq ÞÝÑ pripx1, . . . , xnq “ xi,

Autrement dit, la projection canonique pri extrait simplement la i´ème composante d’un n´uplet.
Donc pri est bien une application linéaire. Par exemple, pour n “ 2

pr1 : E1 ˆ E2 ÝÑ E1, px1, x2q ÞÝÑ x1,

pr2 : E1 ˆ E2 ÝÑ E2, px1, x2q ÞÝÑ x2.
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Proposition 2.2.1 Pour chaque i P t1, . . . , nu, la i´ème projection canonique

pri : E1 ˆ ¨ ¨ ¨ ˆ En ÝÑ Ei,

est une application linéaire.

Preuve. Soient u “ pu1, . . . , unq et v “ pv1, . . . , vnq des éléments de E1 ˆ ¨ ¨ ¨ ˆEn et α P K. Alors
(i). Pour l’additivité,

pripu` vq “ pripu1 ` v1, . . . , un ` vnq “ ui ` vi “ pripuq ` pripvq.

(ii) Pour l’homogénéité,

pripα ¨ uq “ pripαu1, . . . , αunq “ α ¨ ui “ α ¨ pripuq.

Ainsi, la projection canonique vérifie les deux propriétés de linéarité. Donc pri est bien une application
linéaire. l

Définition 2.2.3 (Symétrie par rapport à un sous-espace vectoriel)
Soient E un K-espace vectoriel, F et G deux sous-espaces vectoriels supplémentaires dans E (E “

F ‘G).
(a) On appelle symétrie par rapport à F parallèlement à G, (ou de direction G), l’application sF

définie par,
sF : E ÝÑ E
x “ xF ` xG ÞÝÑ sF pxq “ xF ´ xG.

(b) De même, on appelle symétrie par rapport à G parallèlement à F , (ou de direction F ), l’applica-
tion sG définie par,

sG : E ÝÑ E
x “ xF ` xG ÞÝÑ sGpxq “ xG ´ xF .

Proposition 2.2.2 Les applications sF et sG sont des endomorphismes de E.

Preuve.
1. Cas de sF .
(i) sF est bien définie. La définition de sF pxq fait intervenir la décomposition x “ xF `xG. Comme
la somme est directe, cette décomposition est unique ; donc xF et xG sont bien déterminés par x. Par
conséquent sF pxq est bien définie (ne dépend pas d’un choix).
(ii) Linéarité de sF . Soient x “ xF ` xG et y “ yF ` yG avec xF , yF P F , xG, yG P G, et soit λ P K.
Alors

sF px` yq “ pxF ` yF q ´ pxG ` yGq “ pxF ´ xGq ` pyF ´ yGq “ sF pxq ` sF pyq.

et
sF pλ ¨ xq “ λxF ´ λxG “ λpxF ´ xGq “ λ ¨ sF pxq.

Ainsi sF est linéaire.
(iii) Endomorphisme. Par construction sF pxq “ xF ´ xG appartient à E pour tout E. Donc sF est
une application linéaire de E dans E, autrement dit un endomorphisme.
2. Cas de sG. On peut répéter les mêmes étapes pour sG, ou observer la relation simple

sGpxq “ xG ´ xF “ ´pxF ´ xGq “ ´sF pxq.

Comme sF est linéaire, sG l’est aussi. Cela achève la preuve. l
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Définition 2.2.4 (Affinité)
Soient E un K-espace vectoriel, F un sous-espace vectoriel de E, G un supplémentaire de F dans E
(c’est-à-dire E “ F ‘G). Fixons un scalaire λ P K.
1. On appelle affinité de base F , de direction G et de rapport λ, l’application u définie par,

u : E “ F ‘G ÝÑ E
x “ xF ` xG ÞÝÑ upxq “ xF ` λxG.

où xF P F et xG P G désignent les composantes de x dans la décomposition directe E “ F ‘G.
2. L’application u vérifie :
Si λ “ 1, alors u “ IdE.
Si λ “ 0, alors u est la projection sur F de direction G.
Si λ “ ´1, alors u est la symétrie par rapport à F de direction G.
Si pF est la projection sur F parallèlement à G, alors on a

u “ λIdE ` p1´ λqpF .

Proposition 2.2.3 L’application u d’affinité est endomorphisme de E.

Preuve.
(i) u est bien définie. Pour tout x P E, la décomposition x “ xF ` xG est unique car E “ F ‘G.
Les composantes xF et xG sont donc bien déterminées par x. L’expression upxq “ xF `λxG est donc
bien définie (ne dépend pas d’un choix).
(ii) Linéarité de u. Soient x, y P E et écrivons leurs décompositions uniques

x “ xF ` xG, y “ yF ` yG, pxF , yF P F, xG, yG P Gq.

Alors,
x` y “ pxF ` yF q ` pxG ` yGq,

avec xF ` yF P F et xG ` yG P G. Par définition de u,

upx` yq “ pxF ` yF q ` λpxG ` yGq “ pxF ` λxGq ` pyF ` λyGq “ upxq ` upyq.

Soit α P K, en écrivant
α ¨ x “ pαxF q ` pαxGq,

où αxF P F et αxG P G, on obtient

upα ¨ xq “ αxF ` λpαxGq “ α ¨ pxF ` λxGq “ α ¨ upxq.

Ainsi, u respecte l’addition et la multiplication par un scalaire, donc u est linéaire. De plus, par
définition upxq P E pour tout x P E. Donc u est un endomorphisme de E. l

Définition 2.2.5 (Projecteurs)
Soient E un K´espace vectoriel, F,G deux sous-espaces vectoriels supplémentaires dans E, c’est-à-
dire E “ F ‘G, alors tout vecteur x P E s’écrit d’une manière unique sous la forme

x “ xF ` xG, xF P F, xG P G.

1. Projecteur sur F parallèlement à G. L’application

p1 : E ÝÑ E
x “ xF ` xG ÞÝÑ p1pxq “ xF ,
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est appelée le projecteur sur F parallèlement à G.
2. Projecteur sur G parallèlement à F . L’application

p2 : E ÝÑ E
x “ xF ` xG ÞÝÑ p2pxq “ xG,

est appelée le projecteur sur G parallèlement à F .
3. On a les relations fondamentales

p1 ` p2 “ IdE , p2
1 “ p1 , p2

2 “ p2.

Proposition 2.2.4 Les applications p1 et p2 sont des endomorphismes de E.

Preuve. Soient x, y P E et λ P K. On peut écrire

x “ xF ` xG, y “ yF ` yG,

avec xF , yF P F et xG, yG P G. Alors

x` y “ pxF ` yF q ` pxG ` yGq,

où
xF ` yF P F, xG ` yG P G.

Par définition de p1,
p1px` yq “ xF ` yF “ p1pxq ` p1pyq.

De même,
p1pλ ¨ xq “ p1pλxF ` λxGq “ λxF “ λ ¨ p1pxq.

Ainsi p1 est linéaire, donc un endomorphisme de E. Le même raisonnement s’applique à p2. l

2.3 Propriétés fondamentales

Les applications linéaires possèdent des propriétés fondamentales qui montrent qu’elles conservent
la structure des espaces vectoriels. Elles préservent notamment l’addition des vecteurs, la multipli-
cation par un scalaire, l’élément neutre et les opposés. Nous verrons aussi un résultat important :
la détermination d’une application linéaire. Il explique qu’il suffit de connaître l’image des vecteurs
d’une base pour connaître toute l’application linéaire.

Proposition 2.3.1 (Propriétés)
Toute application linéaire f P LKpE,F q est un morphisme de groupes additifs entre les groupes pE,`q
et pF,`q, donc
1. Conservation de l’élément neutre.

fp0Eq “ 0F .

2. Conservation des opposés.

@x P E : fp´xq “ ´fpxq.
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Preuve.
1. Conservation de l’élément neutre. Soit x P E. Comme 0E est l’élément neutre de E, on a

x “ x` 0E.

En appliquant f des deux côtés
fpxq “ fpx` 0Eq.

Or, par linéarité
fpx` 0Eq “ fpxq ` fp0Eq.

Donc
fpxq “ fpxq ` fp0Eq.

En simplifiant par fpxq dans le groupe additif pF,`q, il vient

fp0Eq “ 0F .

2. Conservation des opposés. Soit x P E. Par définition de l’opposé, on a

x` p´xq “ 0E.

En appliquant f
fpx` p´xqq “ fp0Eq.

Par linéarité
fpx` p´xqq “ fpxq ` fp´xq.

D’après (1), on sait que fp0Eq “ 0F . Donc

fpxq ` fp´xq “ 0F .

Ainsi
fp´xq “ ´fpxq.

l

Proposition 2.3.2 Soient pE,`, ¨q et pF,`, ¨q deux K´espaces vectoriels, f P LKpE,F q. Alors, pour
tout entier n P N˚, pour tous scalaires λ1, λ2, ..., λn P K et tous vecteurs x1, x2, ..., xn P E, on a

fpλ1x1 ` λ2x2 ` ...` λnxnq “ f

˜

n
ÿ

k“1
λkxk

¸

“ λ1fpx1q ` λ2fpx2q ` ...` λnfpxnq “

n
ÿ

k“1
λkfpxkq.

En d’autres termes, toute application linéaire préserve les combinaisons linéaires.

Preuve. Pour tout n P N˚, on note Ppnq la propriété suivante

Ppnq : fpλ1x1`λ2x2`¨ ¨ ¨`λnxnq “ f

˜

n
ÿ

k“1
λkxk

¸

“ λ1fpx1q`λ2fpx2q`¨ ¨ ¨`λnfpxnq “

n
ÿ

k“1
λkfpxkq,

où λ1, . . . , λn P K et x1, . . . , xn P E. Montrons par récurrence sur n P N˚ la propriété Ppnq.
• Pour n “ 1, on a

fpλ1x1q “ λ1fpx1q,
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ce qui est vrai par la linéarité de f . Donc Pp1q est vérifiée.
• Supposons que Ppnq soit vraie pour un certain n P N˚, c’est-à-dire

f

˜

n
ÿ

k“1
λkxk

¸

“

n
ÿ

k“1
λkfpxkq.

Montrons que Ppn` 1q est vraie. On a

f

˜

n`1
ÿ

k“1
λkxk

¸

“ f

˜˜

n
ÿ

k“1
λkxk

¸

` λn`1xn`1

¸

.

Par la linéarité de f

f

˜

n`1
ÿ

k“1
λkxk

¸

“ f

˜

n
ÿ

k“1
λkxk

¸

` fpλn`1xn`1q.

En utilisant l’hypothèse de récurrence et la linéarité

f

˜

n`1
ÿ

k“1
λkxk

¸

“

n
ÿ

k“1
λkfpxkq ` λn`1fpxn`1q “

n`1
ÿ

k“1
λkfpxkq.

Donc Ppn`1q est vérifiée. Par le principe de récurrence, la propriété Ppnq est vraie pour tout n P N˚.
l

L’application linéaire f préserve les combinaisons linéaires, ce qui est une propriété essentielle des
applications linéaires entre espaces vectoriels. Cela signifie que l’image d’une combinaison linéaire de
vecteurs est la combinaison linéaire des images de ces vecteurs. La proposition suivante permet de
comprendre qu’une application linéaire définie entre un espace vectoriel de dimension n et un autre
espace vectoriel est entièrement déterminée par l’image d’une base.

Proposition 2.3.3 (Détermination d’une application linéaire) Soit E un K´espace vectoriel
de dimension n, F un K´espace vectoriel. On suppose que
pH1q B “ te1, . . . , enu est une base de E.
pH2q F “ ty1, . . . , ynu est une famille de vecteurs de F .
Alors,
1. Existence et unicité : Il existe une et une seule application linéaire

u : E ÝÑ F,

telle que
@i P t1, ..., nu : upeiq “ yi. (2.1)

2. Formule explicite. Pour tout vecteur x P E ayant pour coordonnées pλ1, . . . , λnq P Kn dans la
base B, c’est-à-dire

x “
n
ÿ

k“1
λkek,

on a
upxq “

n
ÿ

k“1
λkyk.

En particulier, une application linéaire est entièrement déterminée par les images des vecteurs d’une
base de l’espace de départ.
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Preuve.
1. (a) Unicité. Soit v : E ÝÑ F une autre application linéaire vérifiant p2.1q. Prouvons que u “ v.
Soit x P E. Comme B est une base de E, il existe des scalaires uniques α1, . . . , αn P K tels que

x “
n
ÿ

k“1
αkek.

Par linéarité, on a

upxq “ u

˜

n
ÿ

k“1
αkek

¸

“

n
ÿ

k“1
αkupekq “

n
ÿ

k“1
αkyk,

et de même,

vpxq “ v

˜

n
ÿ

k“1
αkek

¸

“

n
ÿ

k“1
αkvpekq “

n
ÿ

k“1
αkyk.

Par conséquent, upxq “ vpxq pour tout x P E, ce qui entraîne u “ v.
(b) Existence. On construit une application u : E ÝÑ F de la manière suivante : pour x P E,
écrivons (par décomposition unique dans la base B)

x “
n
ÿ

k“1
λkek,

et posons

upxq “
n
ÿ

k“1
λkyk.

Il faut vérifier que u est bien définie et linéaire, et qu’elle satisfait p2.1q.
(i)Bien-définie. La décomposition de x dans la base B est unique, donc les scalaires λk sont uniques ;
l’expression

n
ÿ

k“1
λkyk,

ne dépend pas d’un choix et upxq est bien définie.
(ii) Linéarité. Soient

x “
n
ÿ

k“1
λkek P E, x

1
“

n
ÿ

k“1
λ1kek P E,

et α, β P K. Alors

αx` βx1 “
n
ÿ

k“1
pαλk ` βλ

1
kqek,

d’où

upαx` βx1q “
n
ÿ

k“1
pαλk ` βλ

1
kqyk “ α ¨

˜

n
ÿ

k“1
λkyk

¸

` β ¨

˜

n
ÿ

k“1
λ1kyk

¸

“ α ¨ upxq ` β ¨ upx1q.

Ainsi, u est bien linéaire.
(iii) Valeurs sur la base. Un vecteur de la base, disons ei, peut lui aussi s’écrire comme une
combinaison linéaire des vecteurs de la base B “ te1, . . . , enu. En effet

ei “ 0K ¨ e1 ` 0K ¨ e2 ` ¨ ¨ ¨ ` 1K ¨ ei ` ¨ ¨ ¨ ` 0K ¨ en.

Cela signifie que les coefficients λk sont tous nuls sauf le ième, qui vaut 1K. En utilisant le symbole
de Kronecker δki (qui vaut 1K si k “ i et 0K sinon), on écrit

ei “

n
ÿ

k“1
δkiek.
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Par définition de u, pour chaque i,

upeiq “ u

˜

n
ÿ

k“1
δkiek

¸

“

n
ÿ

k“1
δkiyk.

Puisque tous les δki sont nuls sauf pour k “ i, la somme garde seulement le terme yi, ainsi

upeiq “ yi.

Donc u existe et satisfait les conditions demandées.
2. Formule explicite. Par construction même de u, si

x “
n
ÿ

k“1
λkek P E,

alors
upxq “

n
ÿ

k“1
λkyk.

Cela achève la preuve de l’existence, de l’unicité et de la formule explicite. l

Remarque 2.3.1 (Conséquences importantes). Ce résultat montre que la connaissance de
l’image d’une base suffit à déterminer complètement une application linéaire. Autrement dit, une
application linéaire est entièrement caractérisée par les images des vecteurs d’une base de l’espace de
départ. Cette caractérisation a deux conséquences essentielles :
(a) elle offre une définition équivalente, souvent plus pratique, des applications linéaires ;
(b) elle constitue un outil de construction simple : il suffit de fixer une base de l’espace de départ
et de choisir arbitrairement une famille de vecteurs dans l’espace d’arrivée pour obtenir, de manière
unique, une application linéaire associée.
Ce résultat met ainsi en évidence le rôle fondamental des bases dans l’étude et la construction des
applications linéaires.

Exemple 2.3.1
1. Soit E “ R2 et F “ R2, avec la base canonique B “ te1 “ p1, 0q, e2 “ p0, 1qu. On définit

fpe1q “ p2, 1q, fpe2q “ p0,´1q.

Alors pour tout px, yq P R2,

fpx, yq “ fpxe1 ` ye2q “ xfpe1q ` yfpe2q “ p2x, x´ yq.

Alors
f : R2 ÝÑ R2

px, yq ÞÝÑ fpx, yq “ p2x, x´ yq.
Donc f est complètement déterminée par ses valeurs sur e1 et e2.
2. Soit E “ R2rXs l’espace des polynômes réels de degré ď 2 avec la base canonique B “ t1, X,X2u,
et F “ R2rXs. On définit

fp1q “ 0, fpXq “ 1, fpX2
q “ 2X.

Alors pour tout P “ a` bX ` cX2 P R2rXs,

fpP q “ fpa` bX ` cX2
q “ afp1q ` bfpXq ` cfpX2

q “ b` 2cX.
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On obtient
f : R2rXs ÝÑ R2rXs
P “ a` bX ` cX2 ÞÝÑ fpP q “ b` 2cX.

3. Soit E “ R3, F “ R, et B “ te1, e2, e3u la base canonique. On définit

fpe1q “ 1, fpe2q “ 0, fpe3q “ ´1.

Alors pour tout px, y, zq P R3, on a

fpx, y, zq “ x ¨ fpe1q ` y ¨ fpe2q ` z ¨ fpe3q “ x´ z.

C’est une forme linéaire déterminée uniquement par ses valeurs sur la base. Alors

f : R3 ÝÑ R
px, y, zq ÞÝÑ fpx, y, zq “ x´ z.

2.4 Opérations sur les applications linéaires

Une fois la notion d’application linéaire introduite, il est naturel de s’intéresser aux opérations
que l’on peut définir sur l’ensemble de toutes les applications linéaires entre deux espaces vectoriels.
Cet ensemble possède une structure particulièrement riche : d’une part, il forme un espace vectoriel,
puisque l’on peut additionner deux applications linéaires et les multiplier par des scalaires ; d’autre
part, il est stable par composition, ce qui confère une structure encore plus puissante dans le cas
des endomorphismes. Ainsi, l’étude de ces opérations permet non seulement de manipuler les appli-
cations linéaires comme des objets algébriques, mais aussi de préparer le terrain pour des notions
fondamentales en algèbre linéaire telles que la représentation matricielle, la diagonalisation et les
endomorphismes.

2.4.1 Somme et multiplication par un scalaire

Définition 2.4.1 (Proposition) Soient E et F deux espaces vectoriels sur un corps K.
1. Somme d’applications linéaires. Si f, g P LKpE,F q, on définit leur somme f ` g par

@x P E : pf ` gqpxq “ fpxq ` gpxq.

2. Multiplication par un scalaire. Si f P LKpE,F q et λ P K, on définit l’application λ ¨ f par

@x P E : pλ ¨ fqpxq “ λ ¨ fpxq.

Alors f ` g P LKpE,F q, λ ¨ f P LKpE,F q, c’est-à-dire que la somme et la multiplication par un sca-
laire d’applications linéaires sont encore des applications linéaires. En particulier, toute combinaison
linéaire de deux applications linéaires définies sur les mêmes espaces vectoriels est une application
linéaire

@λ, µ P K, @f, g P LKpE,F q : λ ¨ f ` µ ¨ g P LKpE,F q.

Preuve.
1. Linéarité de la somme f ` g. Soient f, g P LKpE,F q et x, y P E.
(a) Pour l’additivité, on a

pf ` gqpx` yq “ fpx` yq ` gpx` yq “ fpxq ` fpyq ` gpxq ` gpyq (par linéarité de f et g)
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“ pfpxq ` gpxqq ` pfpyq ` gpyqq “ pf ` gqpxq ` pf ` gqpyq.

(b) Pour l’homogénéité. Si λ P K, alors

pf ` gqpλ ¨ xq “ fpλ ¨ xq ` gpλ ¨ xq,

“ λfpxq ` λgpxq, (par linéarité de f et g)
“ λ ¨ pfpxq ` gpxqq “ λ ¨ pf ` gqpxq.

Ainsi, f ` g est linéaire.
2. Linéarité du multiple scalaire λ ¨ f . Soit f P LKpE,F q et λ P K.
(a) Pour l’additivité, on a

pλ ¨ fqpx` yq “ λ ¨ fpx` yq “ λ ¨ pfpxq ` fpyqq (par linéarité de f)

“ λ ¨ fpxq ` λ ¨ fpyq “ pλ ¨ fqpxq ` pλ ¨ fqpyq.

(b) Pour l’homogénéité, si α P K, alors

pλ ¨ fqpαxq “ λ ¨ fpαxq “ λ ¨ pα ¨ fpxqq (par linéarité de f)

“ α ¨ pλ ¨ fpxqq “ α ¨ pλ ¨ fqpxq.

Ainsi, λ ¨ f est linéaire.
3. Combinaison linéaire. Soient f, g P LKpE,F q et λ, µ P K. Comme pλfq et pµgq sont linéaires,
et que la somme de deux applications linéaires est linéaire, on a

λf ` µg P LKpE,F q.

Vérification directe, pour tous x, y P E et α, β P K,

pλf ` µgqpαx` βyq “ λfpαx` βyq ` µgpαx` βyq,

“ λpαfpxq ` βfpyqq ` µpαgpxq ` βgpyqq,

“ αpλfpxq ` µgpxqq ` βpλfpyq ` µgpyqq,

“ αpλf ` µgqpxq ` βpλf ` µgqpyq.

Donc pλf ` µgq est bien linéaire. l

Corollaire 2.4.1 Soient E et F deux espaces vectoriels sur le corps K. L’ensemble pLKpE,F q,`, ¨q
des applications linéaires de E vers F , muni de l’addition et de la multiplication par un scalaire
définies pour tout x P E par

pf ` gqpxq “ fpxq ` gpxq,

et
pλ ¨ fqpxq “ λ ¨ fpxq,

est un K-espace vectoriel.

Preuve. Nous vérifions les axiomes d’un espace vectoriel (les égalités sont vérifiées en évaluant en
un vecteur arbitraire x P E et en utilisant les axiomes de l’espace F ).
1. Fermeture par addition et multiplication scalaire. D’après la définition 2.4.1, on a LKpE,F q
est stable par addition et stable par multiplication par un scalaire.
2. Commutativité de l’addition. Soient f, g P LKpE,F q. Pour tout x P E,

pf ` gqpxq “ fpxq ` gpxq “ gpxq ` fpxq “ pg ` fqpxq.
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Donc
f ` g “ g ` f.

3. Associativité de l’addition. Soient f, g, h P LKpE,F q. Pour tout x P E,
rpf ` gq ` hspxq “ pf ` gqpxq ` hpxq “ pfpxq ` gpxqq ` hpxq “ fpxq ` pg ` hqpxq “ rf ` pg ` hqspxq.

Donc
pf ` gq ` h “ f ` pg ` hq.

4. Élément neutre pour l’addition. L’application nulle 0 : E ÝÑ F définie par 0pxq “ 0F pour
tout x P E est linéaire et vérifie

pf ` 0qpxq “ fpxq ` 0pxq “ fpxq ` 0F “ fpxq.

Donc f ` 0 “ f pour tout f P LKpE,F q. Ainsi 0 est l’élément neutre pour l’addition.
5. Tout élément a un opposé. Soit f P LKpE,F q. Définissons l’application

´f : E ÝÑ F,

par pour tout x P E,
p´fqpxq “ ´fpxq.

Alors ´f est linéaire et
pf ` p´fqqpxq “ fpxq ` p´fqpxq “ fpxq ´ fpxq “ 0F “ 0pxq.

Donc
f ` p´fq “ 0.

6. Distributivité de la multiplication par rapport à l’addition des vecteurs. Soient λ P K
et f, g P LKpE,F q. Pour tout x P E,
pλpf ` gqqpxq “ λpf ` gqpxq “ λpfpxq ` gpxqq “ λfpxq ` λgpxq “ pλfqpxq ` pλgqpxq “ pλf ` λgq pxq.

Donc
λpf ` gq “ λf ` λg.

7. Distributivité de la multiplication par rapport à l’addition des scalaires. Soient λ, µ P K
et f P LKpE,F q. Pour tout x P E,
ppλ`µqfqpxq “ pλ`µqfpxq “ λfpxq`µfpxq “ pλfqpxq`pµfqpxq “ ppλ` µqfq pxq “ pλf ` µfq pxq.

Donc
pλ` µqf “ λf ` µf.

8. Compatibilité de la multiplication avec la multiplication dans K. Soient λ, µ P K et
f P LKpE,F q. Pour tout x P E,

ppλµqfqpxq “ pλµqfpxq “ λpµfpxqq “ λppµfqpxqq “ pλpµfqqpxq.

Donc
pλµqf “ λpµfq.

9. Elément neutre pour la multiplication par un scalaire. Soit f P LKpE,F q. Pour tout x P E,
p1K ¨ fqpxq “ 1K ¨ fpxq “ fpxq.

Donc
1K ¨ f “ f.

Tous les axiomes étant vérifiés, LKpE,F q est bien un K-espace vectoriel. l

Proposition 2.4.1 Si E et F sont de dimensions finies, avec dimpEq “ n et dimpF q “ m, alors
LKpE,F q est de dimension finie et

dim pLKpE,F qq “ m.n.
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2.4.2 Composition des applications linéaires

La composition des applications linéaires est un moyen de combiner deux applications linéaires
successives pour former une nouvelle application, tout en conservant les propriétés de linéarité. La
composition consiste à appliquer ces deux applications l’une après l’autre, on commence par transfor-
mer un vecteur du premier espace à l’aide de la première application, puis on transforme le résultat
obtenu à l’aide de la seconde application pour arriver dans le troisième espace.

Définition 2.4.2 (Composition des applications linéaires)
Soient E, F , et G trois espaces vectoriels sur un même corps K. Soient f : E ÝÑ F et g : F ÝÑ G
deux applications linéaires. La composition de f et g, notée g ˝ f , est l’application définie par

@x P E : pg ˝ fqpxq “ gpfpxqq.

Ainsi, on applique d’abord f au vecteur x, puis on applique g au résultat obtenu. Si

E
f
ÝÑ F

g
ÝÑ G,

alors
g ˝ f E ÝÑ G.

Exemple 2.4.1
1. (a) Soient les applications linéaires suivantes

f : R2 ÝÑ R3

px, yq ÞÝÑ fpx, yq “ px` y, 2x, y ´ xq,

et
g : R3 ÝÑ R2

px, yq ÞÝÑ gpx, y, zq “ px´ y, y ` zq.

Calculons la composition g ˝ f : R2 ÝÑ R2. Alors

pg ˝ fqpx, yq “ gpfpx, yqq

“ gpx` y, 2x, y ´ xq
“ ppx` yq ´ 2x, 2x` py ´ xqq
“ p´x` y, x` yq.

Ainsi,
pg ˝ fqpx, yq “ p´x` y, x` yq.

(b) Calculons la composition f ˝ g : R3 ÝÑ R3. On a

pf ˝ gqpx, y, zq “ fpgpx, y, zqq “ fpx´ y, y ` zq “ ppx´ yq ` py ` zq, 2px´ yq, py ` zq ´ px´ yqq .

En simplifiant, on obtient

pf ˝ gqpx, y, zq “ px` z, 2x´ 2y, ´x` 2y ` zq.

Ces deux compositions sont donc différentes pg ˝ f ­“ f ˝ gq , ce qui illustre le fait général que la
composition d’applications linéaires n’est pas commutative.

Proposition 2.4.2 La composée d’applications linéaires compatibles est une application linéaire.
Autrement dit

@f P LKpE,F q, @g P LKpF,Gq : g ˝ f P LKpE,Gq
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Preuve. Pour prouver que la composition de deux applications linéaires est une application linéaire,
nous devons démontrer qu’elle respecte les deux conditions de linéarité : l’additivité et l’homogénéité.
1. Additivité. Soient x, y P E

pg ˝ fqpx` yq “ gpfpx` yqq

“ gpfpxq ` fpyqq (car f est linéaire)
“ gpfpxqq ` gpfpyqq (car g est linéaire)
“ pg ˝ fqpxq ` pg ˝ fqpyq.

2. Homogénéité. Soit λ P K et x P E,

pg ˝ fqpλxq “ gpfpλxqq

“ gpλfpxqq (car f est linéaire)
“ λgpfpxqq (car g est linéaire)
“ λpg ˝ fqpxq.

Ainsi g ˝ f est bien linéaire. l

Proposition 2.4.3 (Compatibilité de la composition avec l’addition et la multiplication
par un scalaire) Soient E, F , et G trois espaces vectoriels sur un même corps K.
(a) Distributivité à droite.

@f1, f2 P LKpE,F q, @g P LKpF,Gq : g ˝ pf1 ` f2q “ g ˝ f1 ` g ˝ f2.

(b) Distributivité à gauche.

@f P LKpE,F q, @g1, g2 P LKpF,Gq : pg1 ` g2q ˝ f “ g1 ˝ f ` g2 ˝ f.

(c) Compatibilité avec la multiplication par un scalaire.

@α P K, @f P LKpE,F q, @g P LKpF,Gq : α ¨ pg ˝ fq “ pα ¨ gq ˝ f “ g ˝ pα ¨ fq .

Preuve.
1. Distributivité à droite. Soit x P E. Alors

pg ˝ pf1 ` f2qqpxq “ gppf1 ` f2qpxqq
“ gpf1pxq ` f2pxqq (définition de la somme)
“ gpf1pxqq ` gpf2pxqq (linéarité de g)
“ pg ˝ f1qpxq ` pg ˝ f2qpxq
“ pg ˝ f1 ` g ˝ f2qpxq.

Comme l’égalité est vraie pour tout x P E, on en déduit

g ˝ pf1 ` f2q “ g ˝ f1 ` g ˝ f2.

2. Distributivité à gauche. Soit x P E. Alors

ppg1 ` g2q ˝ fqpxq “ pg1 ` g2qpfpxqq
“ g1pfpxqq ` g2pfpxqq (définition de la somme)
“ pg1 ˝ fqpxq ` pg2 ˝ fqpxq
“ pg1 ˝ f ` g2 ˝ fqpxq.

Donc
pg1 ` g2q ˝ f “ g1 ˝ f ` g2 ˝ f.
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3. Compatibilité avec la multiplication par un scalaire. Soit α P K et x P E. On a :

pαpg ˝ fqqpxq “ α pg ˝ fqpxq
“ α gpfpxqq
“ pαgqpfpxqq
“ ppαgq ˝ fqpxq,

et également
pαpg ˝ fqqpxq “ α gpfpxqq

“ gpαfpxqq
“ pg ˝ pαfqqpxq.

Ainsi, on obtient
αpg ˝ fq “ pαgq ˝ f “ g ˝ pαfq.

Toutes les propriétés sont donc démontrées. l

Une conséquence importante de la composition des applications linéaires est la notion de nil-
potence. Une application linéaire (ou un endomorphisme) est dite nilpotente lorsqu’une itération
suffisante de sa composition avec elle-même conduit à l’application nulle.
Soit E un K-espace vectoriel et soit f : E ÝÑ F un endomorphisme de E. Pour tout entier k ě 1,
on définit la puissance fk par

fk
“ f ˝ f ˝ ¨ ¨ ¨ ˝ f
looooooomooooooon

k fois

.

Définition 2.4.3
1. Application linéaire nilpotente. Un endomorphisme f de E est dit nilpotent si et seulement
s’il existe k P N˚ tel que

fk
“ 0,

c’est-à-dire s’il existe k P N˚ tel que fkpxq “ 0E pour tout x P E. Autrement dit un endomorphisme est
dit nilpotent si sa composition avec elle-même, répétée un certain nombre de fois, donne l’application
nulle.
2. Indice de nilpotence. Si f est nilpotent, alors l’ensemble

 

k P N˚ : fk
“ 0

(

,

est une partie non vide de N˚, donc admet un plus petit élément, noté vpfq, et appelé indice de
nilpotence de f . On a
(a) Par définition de vpfq, pour tout k P N˚

k ă vpfq ùñ fk
­“ 0.

(b) Pour tout k P N˚
k ě vpfq ùñ fk

“ 0,

car
fk
“ fk´vpfq

˝ f vpfq
“ fk´vpfq

˝ 0 “ 0.

Remarque 2.4.1 Si l’espace E est de dimension finie, alors l’indice de nilpotence d’un endomor-
phisme de E est nécessairement inférieur ou égal à dim pEq.
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Exemple 2.4.2 On considère l’espace vectoriel

R3rXs “ ta0 ` a1X ` a2X
2
` a3X

3 : a0, a1, a2, a3 P R u,

formé des polynômes à coefficients réels de degré ď 3. C’est un espace vectoriel de dimension 4. On
définit l’application linéaire

f : R3rXs ÝÑ R3rXs
P ÞÝÑ fpP q “ P 1,

où P 1 désigne la dérivée usuelle de P . Alors f est nilpotente et son indice de nilpotence vaut

vpfq “ 4.

En effet, pour tout P “ a0 ` a1X ` a2X
2 ` a3X

3 P R3rXs, on a

fpP q “ P p1q “ a1 ` 2a2X ` 3a3X
2,

f 2
pP q “ pf ˝ fq pP q “ f pfpP qq “ fpP p1qq “ P p2q “ 2a2 ` 6a3X

f 3
pP q “ pf ˝ f ˝ fq pP q “ f

`

f 2
pP q

˘

“ fpP p2qq “ P p3q “ 6a3,

f 4
pP q “ pf ˝ f ˝ f ˝ fq pP q “ f

`

f 3
pP q

˘

“ fpP p3qq “ P p4q “ 0.
Ainsi, f est nilpotente d’indice vpfq “ 4.
2. On définit l’application linéaire

f : R2 ÝÑ R2

px, yq ÞÝÑ fpx, yq “ py, 0q.

Alors, pour tout px, yq P R2, on obtient

f 2
px, yq “ pf ˝ fq px, yq “ f pfpx, yqq “ fpy, 0q “ p0, 0q.

On en déduit que
f 2
“ 0.

Donc f est une application linéaire nilpotente d’indice

vpfq “ 2.

3. On définit l’application linéaire

g : R2 ÝÑ R2

px, yq ÞÝÑ gpx, yq “ p´y, xq.

Calculons les puissances successives de g. Tout d’abord, on a directement

gpx, yq “ p´y, xq.

En composant g avec lui-même,

g2
px, yq “ g pgpx, yqq “ gp´y, xq “ p´x,´yq “ ´px, yq,

ce qui montre que
g2
“ ´IdR2 .

On calcule ensuite

g3
px, yq “ g

`

g2
px, yq

˘

“ gp´x,´yq “ py,´xq “ ´gpx, yq.
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d’où
g3
“ ´g.

Par suite
g4
px, yq “ g

`

g3
px, yq

˘

“ gpy,´xq “ px, yq.

On retrouve donc
g4
“ IdR2 .

En composant g4 et g on obtient

g5
“ g4

˝ g “ IdR2 ˝ g “ g.

Ainsi, pour tout px, yq P R2,
g5
px, yq “ gpx, yq “ p´y, xq.

Les puissances successives de g sont données par

g1
“ g, g2

“ ´IdR2 , g3
“ ´g, g4

“ IdR2 , g5
“ g.

La suite est donc périodique de période 4. Autrement dit, pour tout n P N,

gn
“

$

’

’

’

’

’

&

’

’

’

’

’

%

IdR2 si n ” 0 mod p4q,

g si n ” 1 mod p4q,

´IdR2 si n ” 2 mod p4q,

´g si n ” 3 mod p4q.

( Justification par récurrence).

En particulier, aucune puissance de g n’est l’application nulle, donc g n’est pas nilpotente.

2.5 Isomorphisme d’espaces vectoriels et groupe linéaire

Quand on étudie les espaces vectoriels, on cherche souvent à comparer leur structure. Deux espaces
peuvent paraître différents, mais s’ils ont la même dimension, ils possèdent en réalité la même « forme
algébrique» on dit alors qu’ils sont isomorphes. L’isomorphisme est donc une manière d’identifier
deux espaces vectoriels de même dimension et de les considérer comme équivalents.

Par ailleurs, si l’on regarde toutes les applications linéaires bijectives d’un espace vectoriel dans
lui-même, on obtient un ensemble particulier qui est muni naturellement de la composition des appli-
cations. Cet ensemble forme ce qu’on appelle le groupe linéaire, qui rassemble toutes les applications
linéaires inversibles de l’espace et joue un rôle central en algèbre et en géométrie.

Proposition 2.5.1 Soient E et F deux espaces vectoriels sur le corps K, f P LKpE,F q. Si f est un
isomorphisme de E dans F , alors son inverse f´1 : F ÝÑ E est également un isomorphisme de F
dans E.

Preuve.
1. Existence de l’inverse. Comme f est un isomorphisme, elle est bijective (injective et surjective).
Par définition d’une application bijective, il existe une application inverse f´1 : F ÝÑ E telle que

f´1
˝ f “ IdE et f ˝ f´1

“ IdF ,
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où IdE et IdF sont les applications identités sur E et F .
2. Linéarité de f´1. Montrons que f´1 est linéaire. Soient y1, y2 P F et λ1, λ2 P K. Comme f est
surjective, il existe x1, x2 P E tels que

fpx1q “ y1 et fpx2q “ y2.

Alors, par linéarité de f

λ1y1 ` λ2y2 “ λ1fpx1q ` λ2fpx2q “ fpλ1x1 ` λ2x2q.

En appliquant f´1 des deux côtés

f´1
pλ1y1 ` λ2y2q “ f´1

pfpλ1x1 ` λ2x2qq “ λ1x1 ` λ2x2.

Or x1 “ f´1py1q et x2 “ f´1py2q, donc

f´1
pλ1y1 ` λ2y2q “ λ1f

´1
py1q ` λ2f

´1
py2q,

ce qui prouve que f´1 est linéaire. Puisque f´1 est bijective et linéaire, c’est un isomorphisme de F
dans E. l

Définition 2.5.1 (Isomorphisme d’espaces vectoriels) Soient E et F deux espaces vectoriels
sur un même corps K. On dit que E et F sont isomorphes s’il existe une application linéaire bijective

f : E ÝÑ F.

Une telle application f est appelée un isomorphisme de E sur F , et l’on note alors

E « F.

Exemple 2.5.1
1. Isomorphisme entre R2 et R1rXs. On considère les deux espaces vectoriels sur R

R2
“ tpx, yq : x, y P Ru,R1rXs “ ta0 ` a1X : a0, a1 P Ru.

On définit l’application f par

f : R2 ÝÑ R1rXs
px, yq ÞÝÑ fpx, yq “ x` yX.

(a) Vérification de la linéarité de f . Soient px1, y1q, px2, y2q P R2 et λ P R, alors

fppx1, y1q ` px2, y2qq “ fpx1 ` x2, y1 ` y2q “ px1 ` x2q ` py1 ` y2qX

“ px1 ` y1Xq ` px2 ` y2Xq “ fpx1, y1q ` fpx2, y2q,

et
fpλ ¨ px, yqq “ fpλx, λyq “ λx` λyX “ λ ¨ fpx, yq.

Ainsi, f est bien linéaire sur R.
(b) Vérification de la bijectivité.
(i) Injectivité : Si fpx, yq “ 0, alors

x` yX “ 0 “ 0.1` 0.X ùñ x “ 0, y “ 0.

ùñ kerpfq “ tp0, 0qu .
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donc f est injective.
(ii) Surjectivité : Tout polynôme a0 ` a1X P R1rXs, on a

fpa0, a1q “ a0 ` a1X.

où pa0, a1q P R2. Donc f est surjective.
L’application f est linéaire et bijective, donc c’est un isomorphisme de R2 sur R1rXs. En d’autres
termes, les espaces R2 et R1rXs sont isomorphes.
2. Isomorphisme entre R2 et C. On considère les espaces vectoriels sur R

R2
“ tpx, yq : x, y P Ru,C “ ta` ib : a, b P Ru,

On définit l’application f : R2 ÝÑ C par

fpx, yq “ x` iy.

(a) Vérification de la linéarité de f . Soient px1, y1q, px2, y2q P R2 et λ P R. Alors

fppx1, y1q ` px2, y2qq “ fpx1 ` x2, y1 ` y2q “ px1 ` x2q ` ipy1 ` y2q “ fpx1, y1q ` fpx2, y2q.

et
fpλ ¨ px, yqq “ fpλx, λyq “ λx` iλy “ λ ¨ fpx, yq.

Ainsi, f est linéaire.
(b) Vérification de la bijectivité.
(i) Injectivité. Si fpx, yq “ 0, alors

x` iy “ 0 ùñ x “ 0^ y “ 0.

ùñ kerpfq “ tp0, 0qu .
Donc f est injective.
(ii) Surjectivité. Pour tout z “ a` ib P C, on a

fpa, bq “ a` ib “ z.

Donc f est surjective.
L’application f est linéaire et bijective. Ainsi, f est un isomorphisme de R2 sur C.

Proposition 2.5.2
1. Caractérisation des isomorphismes par la dimension. Soient E et F deux espaces vecto-
riels sur un même corps K, de dimension finie. Alors

E et F sont isomorphesðñ dimpEq “ dimpF q.

2. Isomorphisme avec Kn. Soit n P N˚, tout espace vectoriel E de dimension finie n sur K est
isomorphe à Kn,

E « Kn.

Exemple 2.5.2
1. L’espace R3 et l’espace des polynômes de degré ď 2, R2rXs, ont tous deux dimension 3. Donc ils
sont isomorphes

R3
« R2rXs.

2. L’espace R3rXs des polynômes de degré ď 3 (dim “ 4) est isomorphe à R4,

R3rXs « R4.

Un isomorphisme explicite est
f : R3rXs ÝÑ R4

a0 ` a1X ` a2X
2 ` a3X

3 ÞÝÑ pa0, a1, a2, a3q.
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Proposition 2.5.3 (Définition)
Soit E un espace vectoriel sur un corps K. L’ensemble

GLpEq “ t f : E Ñ E : f est linéaire et bijective u,

muni de la composition ˝ est un groupe, appelé groupe linéaire de E. En général, GLpEq n’est pas
commutatif (la composition d’applications ne commute pas en général).

Preuve. On vérifie les axiomes de groupe pour la loi ˝.
1. Stabilité pour loi interne. Si f, g P GLpEq, alors f et g sont linéaires et bijectives. La composée
g ˝ f est linéaire (composition d’applications linéaires) et bijective (composition de bijections). Ainsi
g ˝ f P GLpEq.
2. Élément neutre. L’identité

IdE : E ÝÑ E,

est linéaire et bijective, donc IdE P GLpEq ; de plus, pour tout f P GLpEq, on a

IdE ˝ f “ f “ f ˝ IdE.

3. Associativité. Pour toutes applications

f, g, h : E ÝÑ E,

on a
ph ˝ gq ˝ f “ h ˝ pg ˝ fq.

En particulier, la composition est associative sur GLpEq.
4. Existence d’inverses. Si f P GLpEq, alors f est bijective ; son inverse

f´1 : E ÝÑ E

est linéaire (inverse d’un isomorphisme linéaire) et bijective. Ainsi

f´1
P GLpEq,

et
f´1

˝ f “ IdE “ f ˝ f´1.

Les quatre axiomes étant satisfaits, pGLpEq, ˝q est un groupe. l

2.6 Noyau, image d’une application linéaire

Dans l’étude des applications linéaires, deux notions fondamentales jouent un rôle central pour
caractériser le fonctionnement d’une application : le noyau et l’image. Le noyau est l’ensemble des
vecteurs de l’espace de départ qui sont envoyés sur le vecteur nul. Il représente donc tous les vecteurs
annulés par l’application. L’image est l’ensemble des vecteurs de l’espace d’arrivée qui peuvent être
obtenus à partir de vecteurs de l’espace de départ. Elle correspond à tous les résultats possibles de
l’application.

Définition 2.6.1 Soient pE,`, ¨q et pF,`, ¨q deux K´espaces vectoriels et f, P LKpE,F q une appli-
cation linéaire. Alors
1. Noyau. On appelle noyau de f , noté kerpfq, le sous-ensemble de E défini par

kerpfq “ tx P E : fpxq “ 0F u “ f´1
pt0F uq Ă E.
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2. Image. On appelle image de f , et l’on note Impfq ou encore fpEq, le sous-ensemble de F défini
par

Impfq “ fpEq “ ty P F, Dx P E : fpxq “ yu “ tfpxq P F : x P Eu Ă F.

Ainsi, l’image de f regroupe l’ensemble des vecteurs de F qui peuvent être atteints par l’application
linéaire

Remarque 2.6.1
1. Interprétations équivalentes du noyau d’une application linéaire. Le noyau peut être
vu de plusieurs manières équivalentes :
(a) Ensemble des vecteurs annulés par f . Le noyau est l’ensemble des vecteurs dont l’image par f
est le vecteur nul.
(b) Ensemble des solutions de l’équation fpxq “ 0F . Le noyau est l’ensemble des solutions de l’équa-
tion linéaire homogène associée à f .
(c) Ensemble des antécédents du vecteur nul. Le noyau est la préimage du singleton t0F u par f , notée
f´1 pt0F uq.
2. Interprétations équivalentes de l’image d’une application linéaire. De la même façon,
l’image peut être interprétée de différentes manières équivalentes :
(a) Ensemble des images des vecteurs de E. L’image est l’ensemble de tous les vecteurs y P F tels
qu’il existe x P E avec fpxq “ y.
(b) Ensemble des valeurs prises par f . L’image regroupe toutes les valeurs que prend fpxq quand x
parcourt E.
(c) Image directe de E par f . L’image correspond à l’image directe de l’espace E par f , notée fpEq.
3. Noyau non vide. La linéarité de f garantit que son noyau n’est jamais vide, car il contient
toujours au moins le vecteur nul 0E, c’est-à-dire

0E P kerpfq.

Exemple 2.6.1 Soit E “ R2rXs l’espace vectoriel des polynômes réels de degré ď 2. On définit
l’application linéaire

f : R2rXs ÝÑ RrXs
P ÞÝÑ fpP q “ P 1,

c’est-à-dire que f associe à chaque polynôme son polynôme dérivé.
1. Calcul du noyau : Soit P “ a0 ` a1X ` a2X

2 P E. Alors

fpP q “ P 1 “ a1 ` 2a2X.

Pour que P appartienne au noyau de f , il faut que fpP q “ 0RrXs. Ceci équivaut à

a1 “ 0 et a2 “ 0.

Ainsi,
kerpfq “ tP “ a0 : a0 P Ru “ V ectptP1 “ 1uq,

c’est-à-dire l’ensemble des polynômes constants.
2. Calcul de l’image : L’image est constituée de tous les polynômes qui peuvent s’écrire comme
fpP q pour un certain P P E. Or, on a vu que

fpP q “ a1 ` 2a2X,

qui est un polynôme de degré ď 1. Ainsi,

Impfq “ R1rXs,

c’est-à-dire l’ensemble des polynômes réels de degré ď 1. Dans cet exemple, on a

kerpfq “ R, Impfq “ R1rXs.
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Proposition 2.6.1 (Image directe et réciproque d’un sous-espace vectoriel par une ap-
plication lineaire) Soient pE,`, ¨q et pF,`, ¨q deux K´espaces vectoriels et f, P LKpE,F q une
application linéaire .
1. Pour tout sous-espace vectoriel S1 de E, l’image directe de S1 par f , notée fpS1q est un sous-espace
vectoriel de F . En particulier, l’image Impfq “ fpEq est un sous-espace vectoriel de F .
2. Pour tout sous-espace vectoriel S2 de F , l’image réciproque f´1pS2q de S2 par f est un sous-espace
vectoriel de E. En particulier, le noyau kerpfq de f est un sous-espace vectoriel de E.

Preuve.
1. Image directe. Soit S1 un sous-espace vectoriel de E. Rappelons que

fpS1q “ t fpxq : x P S1u.

(i) Comme S1 est un sous-espace, 0E P S1. Par linéarité de f on a

fp0Eq “ 0F ,

donc 0F P fpS1q et fpS1q est non vide.
(ii) Soient y1, y2 P fpS1q et α, β P K. Par définition il existe x1, x2 P S1 tels que fpx1q “ y1 et
fpx2q “ y2. Par linéarité de f on obtient

αy1 ` βy2 “ αfpx1q ` βfpx2q “ fpαx1 ` βx2q.

Comme S1 est stable par combinaison linéaire, αx1 ` βx2 P S1. Par conséquent

αy1 ` βy2 P fpS1q.

Ainsi fpS1q est stable par combinaisons linéaires et contiendra le vecteur nul ; c’est donc un sous-
espace vectoriel de F .
En prenant

S1 “ E,

on déduit que Impfq “ fpEq est un sous-espace de F (puisque E est un sous-espace vectoriel de
lui-même).
2. Image réciproque. Soit S2 un sous-espace de F . On définit

f´1
pS2q “ tx P E : fpxq P S2u.

(i) Puisque 0F P S2 et fp0Eq “ 0F , on a

0E P f
´1
pS2q,

l’ensemble est non vide.
(ii) Soient x1, x2 P f

´1pS2q et α, β P K. Alors fpx1q, fpx2q P S2, par linéarité

fpαx1 ` βx2q “ αfpx1q ` βfpx2q.

Or S2 est un sous-espace, donc
αfpx1q ` βfpx2q P S2.

Il s’ensuit que
αx1 ` βx2 P f

´1
pS2q.

Ainsi f´1pS2q est stable par combinaisons linéaires et contient le vecteur nul, donc c’est un sous-
espace de E.
En prenant

S2 “ t0F u,

on obtient
f´1

pt0F uq “ tx P E : fpxq “ 0F u “ kerpfq,
donc kerpfq est un sous-espace vectoriel de E. l
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Proposition 2.6.2 (Caractérisation de l’injectivité et de la surjectivité d’une applica-
tion linéaire)
Soient pE,`, ¨q et pF,`, ¨q deux K´espaces vectoriels et f P LKpE,F q une application linéaire .
1. L’application linéaire f est injective si et seulement si kerpfq “ t0Eu.
2. L’application linéaire f est surjective si et seulement si Impfq “ F.

Preuve.
1) (a) Supposons que f est injective. Comme kerpfq est un sous-espace vectoriel de E, alors 0E P

kerpfq, donc
t0Eu Ă kerpfq.

D’autre part, soit x P kerpfq, alors
fpxq “ 0F “ fp0Eq.

Comme f est injective, on en déduit que x “ 0E. Ainsi,

kerpfq Ă t0Eu .

Par double inclusion, on conclut que
kerpfq “ t0Eu .

(b) Réciproquement, supposons que kerpfq “ t0Eu et soient x1, x2 P E tels que fpx1q “ fpx2q. Par
linéarité de f , on en déduit que

fpx1q ´ fpx2q “ fpx1 ´ x2q “ 0F .

Donc, x1 ´ x2 P kerpfq. Comme kerpfq “ t0Eu, on a x1 ´ x2 “ 0E, c’est-à-dire que x1 “ x2. Ainsi, f
est injective.
2. On a

f est surjective ðñ @y P F, Dx P E : fpxq “ y ðñ fpEq “ F ðñ Impfq “ F.

l

Exemple 2.6.2
1. Soit f : R2 ÝÑ R2 définie par

fpx, yq “ px` y, x´ yq.

Le noyau de f est

kerpfq “
 

px, yq P R2 : f px, yq “ p0, 0q
(

“
 

px, yq P R2 : px` y, x´ yq “ p0, 0q
(

“ tp0, 0qu .

Ainsi, f est injective.
2. Soit f : R3 ÝÑ R2 définie par

fpx, y, zq “ px` y, y ´ zq.

L’image de f est
Impfq “ tpx` y, y ´ zq : x, y, z P Ru .

On vérifie que
Impfq “ R2,

car pour tout pa, bq P R2, on peut trouver x, y, z P R tels que

fpx, y, zq “ pa, bq.

Ainsi, f est surjective.

62



Applications Linéaires

Proposition 2.6.3 (Applications linéaires et familles de vecteurs)
Soient pE,`, ¨q et pF,`, ¨q deux K´espaces vectoriels et f P LKpE,F q une application linéaire. Soit
L une famille de vecteurs de E.
(1) Conservation de la dépendance linéaire : Si L est linéairement dépendante dans E, alors
fpLq est linéairement dépendante dans F .
(2) Conservation de l’indépendance linéaire par réciproque : Si fpLq est linéairement in-
dépendante dans F , alors L est linéairement indépendante dans E.
(3) Conservation de l’ensemble générateur : Si L engendre E, alors fpLq engendre Impfq.
(4) Injection et l’indépendance linéaire : Si L est linéairement indépendante dans E et f est
injective, alors fpLq est linéairement indépendante dans F .
(5) Surjection et engendrement : Si L engendre E, et f est surjective, alors fpLq engendre F.
(6) Caractérisation de la bijectivité : Si L est une base de E, alors

f est bijective (isomorphisme) ðñ fpLq est une base de F .

Preuve. Nous traitons les points un par un. Considérons une famille L de E et supposons que
cette famille est finie, alors

L “ tx1, x2, ..., xnu .
1. Conservation de la dépendance linéaire. Supposons que L est linéairement dépendante dans
E, il existe des scalaires λ1, λ2, ..., λn non tous nuls tels que

λ1x1 ` λ2x2 ` ...` λnxn “ 0E.

En appliquant f des deux côtés, et en utilisant la linéarité de f , on obtient

fpλ1x1 ` λ2x2 ` ...` λnxnq “ λ1fpx1q ` λ2fpx2q ` ...` λnfpxnq “ fp0Eq “ 0F .

Comme au moins un λi est non nul, cela montre que fpLq est aussi est linéairement dépendante F.
2. Conservation de l’indépendance par réciproque. Supposons maintenant que fpLq est li-
néairement indépendante dans F . Soient λ1, λ2, ..., λn P K, tels que

λ1x1 ` λ2x2 ` ...` λnxn “ 0E.

En appliquant f des deux côtés, et en utilisant la linéarité de f , on obtient

fpλ1x1 ` λ2x2 ` ...` λnxnq “ λ1fpx1q ` λ2fpx2q ` ...` λnfpxnq “ fp0Eq “ 0F .

Comme fpLq est linéairement indépendante, alors tous les scalaires λi sont nuls. Cela signifie que L
est linéairement indépendante dans E.
3. Conservation de l’ensemble générateur. Supposons que L engendre E et soit y P Impfq, alors
il existe x P E tel que y “ fpxq. Comme L engendre E, x s’écrit comme une combinaison linéaire
des vecteurs xi,

x “ λ1x1 ` λ2x2 ` ...` λnxn, λ1, λ2, ..., λn P K.
En appliquant f des deux côtés, et en utilisant la linéarité de f , on obtient

y “ fpxq “ fpλ1x1 ` λ2x2 ` ...` λnxnq “ λ1fpx1q ` λ2fpx2q ` ...` λnfpxnq.

Cela signifie que y P Impfq est une combinaison linéaire des vecteurs fpx1q, fpx2q, ..., fpxnq. Ainsi

Impfq Ă V ectpfpLqq.

L’inclusion inverse est évidente, donc Impfq “ V ectpfpLqq, c.-à-d. fpLq engendre Impfq.
4. Indépendance et injectivité. Supposons que L est linéairement indépendante dans E et que
f est injective. Soient λ1, λ2, ..., λn P K, tels que

λ1fpx1q ` λ2fpx2q ` ...` λnfpxnq “ 0F .
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En utilisant la linéarité de f , on obtient

fpλ1x1 ` λ2x2 ` ...` λnxnq “ fp0Eq.

Comme f est injective, donc
λ1x1 ` λ2x2 ` ...` λnxn “ 0E.

Comme L est linéairement indépendante, alors tous les scalaires λi sont nuls. Cela signifie que fpLq
est linéairement indépendante dans F .
5. Surjectivité et engendrement. Supposons que L engendre E et que f est surjective. Comme
f est surjective,

Impfq “ F.

D’après le point 3, fpLq engendre Impfq “ F . Ainsi, fpLq engendre F .
6. Caractérisation de la bijectivité.
(i) Supposons que f est bijective. Comme L est une base de E , fpLq est linéairement indépendante
(d’après le point 4) et engendre F (d’après le point 5). Ainsi, fpLq est une base de F .
(ii) Supposons que fpLq est une base de F . Alors fpLq est linéairement indépendante et engendre F .
Soient x, y P E, alors

"

D!λ1, λ2, ..., λn P K : x “ λ1x1 ` λ2x2 ` ...` λnxn

D!α1, α2, ..., αn P K : y “ α1x1 ` α2x2 ` ...` αnxn.

On obtient

fpxq “ fpyq ùñ fpλ1x1 ` λ2x2 ` ...` λnxnq “ fpα1x1 ` α2x2 ` ...` αnxnq.

La linéarité de f implique que

λ1fpx1q ` λ2fpx2q ` ...` λnfpxnq “ α1fpx1q ` α2fpx2q ` ...` αnfpxnq

ùñ pλ1 ´ α1q fpx1q ` pλ2 ´ α2q fpx2q ` ...` pλn ´ αnq fpxnq “ 0F .

Comme fpLq est linéairement indépendante, on a
$

’

’

’

&

’

’

’

%

λ1 ´ α1 “ 0K
λ2 ´ α2 “ 0K

...
λn ´ αn “ 0K

ùñ

$

’

’

’

&

’

’

’

%

λ1 “ α1
λ2 “ α2

...
λn “ αn.

On obtient x “ y. Ce qui montre que f est injective. De plus, comme fpLq engendre F , alors tout
élément de F peut s’écrire comme combinaison linéaire des fpxiq, ce qui montre que f est surjective.
Par conséquent, f est bijective. l

2.7 Rang d’une application linéaire et théorème du rang

Le théorème du rang est un résultat fondamental qui établit une relation clé entre la dimension
de l’espace de départ d’une application linéaire et les dimensions de son noyau et de son image. Cette
relation permet de déduire des propriétés importantes concernant l’injectivité, la surjectivité et la
bijectivité des applications linéaires.
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Définition 2.7.1 (Rang d’une application linéaire)
Soient pE,`, ¨q et pF,`, ¨q deux K´espaces vectoriels de dimension finie et f P LKpE,F q une appli-
cation linéaire.
1. On appelle rang de f , et on note rgpfq l’entier naturel défini par

rgpfq “ dim
K
pImpfqq.

En d’autres termes, le rang de f est la dimension de l’image de f.
2. Si dim

K
pEq “ n et B “ te1, e2, ..., enu est une base de E alors le rang de f est le rang de la famille

de vecteurs tfpe1q, fpe2q, ..., fpenqu “ fpBq. On a donc

rgpfq “ rgpfpBqq “ dim
K
pV ectpfpBqq “ dim

K
pImpfqq.

Autrement dit, le rang de f est le nombre maximum de vecteurs linéairement indépendants que l’on
peut extraire de la famille fpBq. Cela revient à la dimension de l’espace vectoriel engendré par fpBq,
c’est-à-dire dim

K
pImpfqq.

3. De plus, on a
rgpfq ď min

!

dim
K
pEq, dim

K
pF q

)

.

Remarque 2.7.1
1. Impfq est bien de dimension finie, puisque Impfq est un sous-espace vectoriel de F et que F est de
dimension finie, ou bien, autrement, parce que E est de dimension finie. Plus généralement, soient
E,F deux K´espaces vectoriels (non nécessairement de dimension finie), f P LpE,F q. On dit que f
est de rang fini si et seulement si Impfq est de dimension finie, et, dans ce cas, on appelle rang
de f l’entier naturel, noté rgpfq, défini par

rgpfq “ dim
K
pImpfqq.

2. Si dim
K
pEq “ n et B “ te1, e2, ..., enu est une base de E alors le rang de f est le rang de la famille

de vecteurs
tfpe1q, fpe2q, ..., fpenqu “ fpBq.

On obtient donc
rgpfq “ rgpfpBqq “ dim

K
pV ectpfpBqq.

Autrement dit, le rang de f est égal au nombre maximal de vecteurs linéairement indépendants que
l’on peut extraire de la famille fpBq. C’est donc la dimension de l’espace vectoriel engendré par cette
famille.
3. Pour toute f P LKpE,F q,

rgpfq ď min
!

dim
K
pEq, dim

K
pF q

)

.

Exemple 2.7.1 Soit l’application linéaire f : R3 ÝÑ R2 définie par

fpx, yq “ px` y, 2x´ zq.

On prend la base canonique B “ te1 “ p1, 0, 0q, e2 “ p0, 1, 0q, e3 “ p0, 0, 1qu.On calcule les images des
vecteurs de B, on obtient

$

&

%

fpe1q “ p1, 0q
fpe2q “ p0,´1q
fpe3q “ p1, 2q.

On cherche le nombre maximal de vecteurs linéairement indépendants dans fpBq. La famille fpBq est
de rang 2, car les vecteurs p1, 0q et p0,´1q sont linéairement indépendants (ils ne sont pas colinéaires),
et p1, 2q est une combinaison linéaire de ces deux vecteurs.
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Après avoir introduit la notion de rang d’une application linéaire, nous pouvons établir le théorème
du rang. Aussi appelé formule du rang, ce théorème met en relation le noyau et l’image d’une
application linéaire définie sur un espace vectoriel de dimension finie. Plus précisément, si f est une
application linéaire de E vers F , alors la dimension de E est égale à la somme de la dimension du
noyau de f et de la dimension de son image.

Théorème 2.7.1 (Théorème du rang ou Formule du rang)
Soient pE,`, ¨q et pF,`, ¨q deux K´espaces vectoriels et soit f P LKpE,F q une application linéaire.
Si E est de dimension finie (mais F n’est pas nécessairement de dimension finie), alors

dim
K
pEq “ dim

K
kerpfq ` dim

K
pImpfqq “ dim

K
kerpfqq ` rgpfq. (2.2)

Ce théorème établit que la dimension de l’espace de départ E se décompose en la somme de la
dimension du noyau et du rang de f .

Remarque 2.7.2
1. Rôle de l’hypothèse de finitude de dimpEq. Elle garantit que kerpfq et Impfq sont également
de dimension finie, ce qui rend le théorème du rang bien défini :
(a) kerpfq est un sous-espace de E. Comme tout sous-espace d’un espace vectoriel de dimension finie,
il est nécessairement de dimension finie.
(b) Impfq est engendré par les images des vecteurs d’une base de E. Or, une base de E est finie,
donc Impfq est aussi de dimension finie.
2. Cas où F est de dimension infinie. Le théorème du rang reste valable. Même si F est
de dimension infinie, Impfq reste fini-dimensionnel dès lors que E est de dimension finie. En effet,
dimpImpfqq ď dimpEq. L’image est donc toujours contrôlée par la dimension de E, indépendamment
de celle de F .

Exemple 2.7.2 Soit l’application linéaire

f : R4 ÝÑ R3

px1, x2, x3, x4q ÞÝÑ fpx1, x2, x3, x4q “ px1 ´ x2 ` x3, 2x1 ` 2x2 ` 6x3 ` 4x4,´x1 ´ 2x3 ´ x4q.

Calculons le rang de f et la dimension du noyau de f .
Première méthode. On calcule d’abord le noyau, on a

px1, x2, x3, x4q P ker pfq ðñ fpx1, x2, x3, x4q “ p0, 0, 0q

ðñ

$

’

&

’

%

x1 ´ x2 ` x3 “ 0
2x1 ` 2x2 ` 6x3 ` 4x4 “ 0
´x1 ´ 2x3 ´ x4 “ 0.

On résout ce système et on trouve qu’il est équivalent à
#

x1 ´ x2 ` x3 “ 0
x2 ` x3 ` x4 “ 0.

On choisit x3 et x4 comme paramètres et on trouve

ker pfq “ tp´2x3 ´ x4,´x3 ´ x4, x3, x4q : x3, x4 P Ru

“ tx3 p´2,´1, 1, 0q ` x4 p´1,´1, 0, 1q : x3, x4 P Ru

“ V ect ptp´2,´1, 1, 0q , p´1,´1, 0, 1quq .
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Les deux vecteurs définissant le noyau sont linéairement indépendants, donc

dim
R
pker fq “ 2.

On applique maintenant le théorème du rang pour en déduire, sans calculs supplémentaires, la di-
mension de l’image

dim
R
pImfq “ dim

R
pR4
q ´ dim

R
pker fq “ 4´ 2 “ 2.

Donc le rang de f est 2.
rgpfq “ 2.

2. Deuxième méthode. On calcule d’abord l’image. Calculons les images des vecteurs de la base
canonique te1, e2, e3, e4u de R4.

v1 “ fpe1q “ fp1, 0, 0, 0q “ p1, 2,´1q,
v2 “ fpe2q “ fp0, 1, 0, 0q “ p´1, 2, 0q,
v3 “ fpe3q “ fp0, 0, 1, 0q “ p1, 6,´2q,
v4 “ fpe4q “ fp0, 0, 0, 1q “ p0, 4,´1q.

L’image de f est l’espace engendré par ces quatre vecteurs

Im pfq “ V ectptv1, v2, v3, v4uq.

Nous cherchons la plus grande sous-famille libre parmi ces vecteurs. Observons les relations suivantes

v3 “ 2v1 ` v2, v4 “ v1 ` v2.

Ces égalités se vérifient en comparant coordonnées,

2v1 ` v2 “ 2p1, 2,´1q ` p´1, 2, 0q “ p2´ 1, 4` 2,´2` 0q “ p1, 6,´2q “ v3,

et
v1 ` v2 “ p1, 2,´1q ` p´1, 2, 0q “ p0, 4,´1q “ v4.

Ainsi v3 et v4 sont combinaisons linéaires de v1 et v2. Il suffit donc d’analyser l’indépendance linéaire
de v1 et v2. Pour cela, supposons qu’il existe λ P R tel que v2 “ λv1. En comparant la première
coordonnée on obtient ´1 “ λ ¨ 1, donc λ “ ´1. Mais en comparant la deuxième coordonnée on
obtiendrait 2 “ λ ¨ 2 “ ´2, contradiction. Donc v1 et v2 ne sont pas colinéaires et sont linéairement
indépendants. Par conséquent

Im pfq “ V ectptv1, v2uq et dim
R
pImfq “ 2.

On obtient
dim
R
pker fq “ 2, dim

R
pImfq “ 2.

La formule du rang donne bien

dim
R
pR4
q “ 4 “ dim

R
pker fq ` dim

R
pImfq “ 2` 2 “ 4.

Les deux méthodes sont cohérentes et fournissent les mêmes résultats.

Exemple 2.7.3 Soit l’application linéaire

f : RnrXs ÝÑ RnrXs
P ÞÝÑ fpP q “ P 2.
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Où P 2 est la dérivée seconde de P . Quel est le rang et la dimension du noyau de f ?
1. Première méthode. On calcule d’abord le noyau. On a

P P ker pfq ðñ fpP q “ 0

ðñ P 2 “ 0
ðñ P 1 “ a

ðñ P “ aX ` b,

où a, b P R sont des constantes. Cela prouve que ker pfq est engendré par les deux polynômes 1 (le
polynôme constant) et X. Ainsi

ker pfq “ V ectpt1, Xuq.
Donc

dim
R
pkerpfqq “ 2.

Par le théorème du rang,

rg pfq “ dim
R
pImpfqq “ dim

R
pRnrXsq ´ dim

R
pkerpfqq “ pn` 1q ´ 2 “ n´ 1.

2. Deuxième méthode. On commence par calculer l’image de f . La famille t1, X,X2, . . . , Xnu est
une base de l’espace de départ RnrXs, donc

rg pfq “ dimpImpfqq “ dim pV ectptfp1q, fpXq, . . . , fpXn
quqq .

Calculons les images des éléments de cette base,

fp1q “ 0, fpXq “ 0,

et pour tout entier k ě 2,

fpXk
q “

`

Xk
˘2
“
`

kXk´1˘1
“ kpk ´ 1qXk´2.

Ainsi,
tfpX2

q, fpX3
q, . . . , fpXn

qu “ t2, 6X, 12X2, . . . , npn´ 1qXn´2
u,

Ces polynômes sont non nuls et deux à deux de degrés distincts p0, 1, . . . , n ´ 2q. Ils sont donc
linéairement indépendants, et engendrent un espace de dimension pn´ 1q. On en déduit

rg pfq “ n´ 1, si n ě 2.

Par le théorème du rang, on obtient

dim
R
pkerpfqq “ dim

R
pRnrXsq ´ rg pfq “ pn` 1q ´ pn´ 1q “ 2.

Cas particuliers.
(a) Si n “ 0, alors R0rXs “ V ect pt1uq et f “ 0. Donc

dimpkerpfqq “ 1, rgpfq “ 0.

(b) Si n “ 1, alors R1rXs “ V ect pt1, Xuq, et encore f “ 0. Donc

dimpkerpfqq “ 2, rgpfq “ 0.

On obtient

rgpfq “

#

0, n ď 1,
n´ 1, n ě 2,

, dimpkerpfqq “
#

1, n “ 0,
2, n ě 1.
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Le résultat suivant stipule que l’on ne change pas le rang d’une application linéaire lorsque l’on
compose celle-ci à gauche ou à droite par une application linéaire bijective.

Proposition 2.7.1 Soient E, F et G trois K´espaces vectoriels de dimensions finies, f une appli-
cation linéaire de E vers F et g une application linéaire de F vers G.
1. Si f est bijective (isomorphisme) alors

rgpg ˝ fq “ rgpgq.

2. Si g est bijective (isomorphisme) alors

rgpg ˝ fq “ rgpfq.

Preuve. Rappelons que, par définition,

rgpg ˝ fq “ dim
K
pImpg ˝ fqq et Impg ˝ fq “ gpfpEqq.

1. Supposons f bijective (et g quelconque) et montrons que

rgpg ˝ fq “ rg pgq .

On a, en tenant compte que fpEq “ F (puisque f est bijective),

rgpg ˝ fq “ dim
K
pgpfpEqqq “ dim

K
pgpF qq “ dim

K
pImpgqq “ rg pgq .

On a ainsi vérifié que
rgpg ˝ fq “ rg p gq .

2. Supposons à présent g bijective (et f quelconque) et montrons que

rgpg ˝ fq “ rg p fq .

On désigne par g̃ l’application de Impfq dans G définie comme la restriction de l’application g au
sous-espace Impfq, c’est-à-dire

g̃ “ g|Impfq.

Appliquons le théorème du rang à l’application linéaire

g̃ : Impfq ÝÑ G.

On a
rg pfq “ dim

K
pIm p fqq “ rg pg̃q ` dim

K
pker pg̃qq.

On vérifie sans peine que
ker pg̃q Ă ker pgq .

On en déduit que dim
K
pker pg̃qq “ 0 puisque, g étant bijective,

dim
K
pker pgqq “ 0.

De plus, d’une part par définition

rg pg̃q “ dim
K
pIm pg̃qq “ dim

K
pg̃pIm p fqqq “ dim

K
pg̃pfpEqqq, (2.3)

et d’autre part
g̃pfpEqq “ gpfpEqq pc’est immédiatq.

Ainsi
rg pg̃q “ rgpg ˝ fq.

L’égalité (2.3) s’écrit alors
rg p fq “ rgpg ˝ fq.

l
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Remarque 2.7.3 On déduit de la proposition 2.7.1 que si f P LKpE,F q, g P LKpF,Gq et h P
LKpG,Hq avec E,F,G et H quatre K-espaces vectoriels de dimensions finies, et si f et h sont
bijectives alors

rgph ˝ g ˝ fq “ rg pgq .

Autrement dit, on ne change pas le rang lorsque l’on compose à gauche et à droite par des applications
linéaires bijectives.

2.7.1 Conséquences du théorème du rang

Le théorème du rang établit une relation fondamentale entre la dimension d’un espace vectoriel,
le noyau et l’image d’une application linéaire. Cette relation est valable indépendamment de la
dimension de l’espace d’arrivée F , qui peut être finie ou infinie. Dans le cas particulier où F est
de dimension finie, le théorème conduit à des conséquences importantes concernant l’injectivité, la
surjectivité et la bijectivité d’une application linéaire. Plus généralement, au-delà de sa formule, il
permet de caractériser la bijectivité, d’établir des liens entre rang, injectivité et surjectivité, et de
simplifier l’étude des systèmes linéaires.

Proposition 2.7.2 (Caractérisation de l’injectivité, la surjectivité et la bijectivité)
Soient pE,`, ¨q et pF,`, ¨q deux K´espaces vectoriels de dimension finie et f P LKpE,F q une appli-
cation linéaire. On a
1. Une application linéaire f est injective si et seulement si son rang est égal à la dimension de E,
c’est-à-dire

f est injective ðñ rgpfq “ dim
K
pEq.

2. Une application linéaire f est surjective si et seulement si son rang est égal à la dimension de F ,
c’est-à-dire

f est surjective ðñ rgpfq “ dim
K
pF q.

3. Une application linéaire f est bijective si et seulement si son rang est égal à la dimension de F et
à la dimension de E, c’est-à-dire

f est bijective ðñ rgpfq “ dim
K
pF q “ dim

K
pEq.

Preuve. Ces propriétés découlent directement du théorème du rang, qui établit la relation fonda-
mentale

dim
K
pEq “ dim

K
pkerpfqq ` dim

K
pImpfqq “ dim

K
pkerpfqq ` rgpfq.

En appliquant cette égalité, on déduit immédiatement les conditions nécessaires et suffisantes pour
que f soit injective, surjective ou bijective.
1. On a

f est injectiveðñ kerpfq “ t0Eu ðñ rgpfq “ dim
K
pEq.

2. On a
f est surjectiveðñ Impfq “ F ðñ rgpfq “ dim

K
pF q.

3. On a

f est bijectiveðñ f est injective et surjective ðñ rgpfq “ dim
K
pF q “ dim

K
pEq.

l
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Cette proposition admet un corollaire essentiel. En général, pour qu’une application linéaire soit
bijective, il faut établir à la fois son injectivité et sa surjectivité. Toutefois, dans le cas où les deux
espaces vectoriels ont la même dimension finie, il suffit de vérifier l’une des deux propriétés seulement :
si l’application est injective, elle est automatiquement surjective, et réciproquement.

Corollaire 2.7.1 (Caractérisation des isomorphismes) Soient pE,`, ¨q et pF,`, ¨q deux K´espaces
vectoriels de dimension finie et f P LKpE,F q une application linéaire. Si dim

K
pEq “ dim

K
pF q, alors

les propriétés d’injectivité, de surjectivité et de bijectivité de f sont équivalentes. Autrement dit

f est bijectiveðñ f est injectiveðñ f est surjective.

Cela signifie que pour qu’une application linéaire entre deux espaces vectoriels de même dimension
finie soit bijective, il suffit de vérifier soit l’injectivité, soit la surjectivité.

Preuve. C’est immédiat à partir du théorème du rang. En effet, la propriété f est injective
équivaut à kerpfq “ t0Eu, donc d’après le théorème du rang, f est injective si et seulement si

dim
K
pImpfqq “ dim

K
pEq.

D’après l’hypothèse sur l’égalité des dimensions de E et de F , ceci équivaut à

dim
K
pImpfqq “ dim

K
pF q.

Cela équivaut donc à
Impfq “ F,

c’est-à-dire f est surjective. l

Exemple 2.7.4
1. Soit l’application linéaire

f : R2 ÝÑ R2

px, yq ÞÝÑ fpx, yq “ px´ y, x` yq.

Une façon simple de montrer que l’application linéaire f est bijective est de remarquer que l’espace
de départ et l’espace d’arrivée ont même dimension. Ensuite on calcule le noyaun, soit px, yq P R2,
alors

px, yq P kerpfq ðñ fpx, yq “ 0 ðñ px´ y, x` yq “ p0, 0q

ðñ

#

x` y “ 0
x´ y “ 0

ðñ px, yq “ p0, 0q.

Ainsi
kerpfq “ tp0, 0qu,

est réduit au vecteur nul, ce qui prouve que f est injective et donc, par le corollaire 2.7.1, que f est
un isomorphisme (automorphisme).
2. Soit l’application linéaire

f : R2 ÝÑ R1rXs
pa, bq ÞÝÑ fpa, bq “ a` bX,

où R1rXs désigne l’espace des polynômes réels de degré inférieur ou égal à 1.
Étape 1 : Comparaison des dimensions. On a

dimpR2
q “ 2, dimpR1rXsq “ 2,
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car une base de R1rXs est t1, Xu. Ainsi, E et F sont de même dimension.
Étape 2 : Calcul du noyau. Soit pa, bq P R2. Alors

fpa, bq “ 0 ðñ a` bX “ 0 dans R1rXs.

Ceci implique
a “ 0 et b “ 0.

Donc
kerpfq “ tp0, 0qu.

Le noyau est réduit au vecteur nul, donc f est injective. Comme dimpEq “ dimpF q, on en déduit que
f est également surjective. Ainsi, f est bijective et constitue un isomorphisme entre R2 et R1rXs.
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Conclusion du chapitre

Dans ce chapitre, nous avons étudié les applications linéaires, leurs définitions, exemples et cas
particuliers. Nous avons vu leurs principales propriétés, les opérations qu’elles admettent, ainsi que
des notions essentielles comme le noyau, l’image, la dimension, le rang et le théorème du rang.
Ces résultats permettent de caractériser l’injectivité, la surjectivité et la bijectivité des applications
linéaires, et jouent un rôle fondamental dans l’étude des systèmes linéaires et dans la représentation
matricielle. Ce chapitre constitue donc une base indispensable pour la suite du cours et pour de
nombreuses applications en mathématiques et en informatique.
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Chapitre 3

Matrices

Les matrices sont un outil fondamental de l’algèbre linéaire. Elles se présentent sous la forme
de tableaux de nombres disposés en lignes et en colonnes. Elles permettent de représenter des sys-
tèmes d’équations linéaires, de décrire des transformations géométriques et de manipuler des données.
Leur utilisation s’étend à de nombreux domaines tels que la physique, l’informatique, l’économie et
l’ingénierie.

Dans ce chapitre, nous nous intéressons aux matrices à coefficients dans un corps commutatif K
(généralement R ou C). Après avoir introduit les définitions et notations de base, nous classerons les
matrices selon leur structure : matrices rectangulaires et carrées, matrices nulles, identité, diagonales,
triangulaires, ainsi que les matrices élémentaires qui forment la base canonique de l’espace matriciel.
Nous examinerons ensuite des opérations fondamentales sur les matrices : addition, multiplication
par un scalaire, transposition, produit matriciel, ainsi que leurs propriétés algébriques. Ces opérations
permettront de montrer que l’ensemble des matrices constitue un espace vectoriel de dimension finie et
qu’il possède des sous-espaces remarquables (diagonales, triangulaires, symétriques, antisymétriques).
Le chapitre aborde également des opérations plus spécifiques telles que les opérations élémentaires
sur les lignes et colonnes, outils indispensables pour simplifier les matrices et résoudre des systèmes
linéaires. Cette étude sera complétée par l’analyse de la manière dont les matrices représentent des
familles de vecteurs ou des applications linéaires, ce qui ouvre la voie à une compréhension plus
profonde des changements de bases et des matrices de passage. Une partie importante est consacrée
au déterminant des matrices carrées. Nous présenterons différentes méthodes de calcul, les propriétés
fondamentales de la fonction déterminant (multilinéarité, alternance, invariance par transposition,
etc.), et nous montrerons son rôle dans la caractérisation de l’inversibilité des matrices. Le lien entre
déterminant et comatrice sera mis en évidence à travers la formule explicite de l’inverse.

Enfin, ce chapitre propose une approche progressive et rigoureuse, en illustrant chaque concept
par des exemples concrets et des applications variées. L’objectif est de donner à l’étudiant les bases
nécessaires pour manipuler les matrices avec assurance et pour comprendre leur importance aussi
bien en mathématiques pures qu’en sciences appliquées.

3.1 Définitions et notations

Une matrice est un tableau rectangulaire de nombres disposés en lignes et en colonnes, géné-
ralement encadré par des parenthèses ou des crochets. Elle occupe une place essentielle en algèbre
linéaire, où elle sert notamment à représenter les applications linéaires et à résoudre les systèmes
d’équations. Les matrices trouvent aussi de nombreuses applications en physique, en informatique et
en économie.
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Définition 3.1.1 (Matrice)
Soient m,n P N˚ deux entiers naturels strictement positifs.
1. On appelle matrice à m lignes et n colonnes, à coefficients dans K toute application

A : t1, 2, ...,mu ˆ t1, 2, ..., nu ÝÑ K,

qui associe à chaque couple pi, jq un scalaire aij P K. On écrit

A : t1, 2, ...,mu ˆ t1, 2, ..., nu ÝÑ K
pi, jq ÞÝÑ Api, jq “ aij (ou ai,j).

2. Représentation. Une matrice A se représente sous forme d’un tableau rectangulaire de m lignes
et n colonnes

A “ paijq1ďiďm
1ďjďn

“ paijqij “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

a11 a12 ¨ ¨ ¨

j ´ ème colonne
looooooooomooooooooon

a1j ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... ... ... ... ...
ai1

i´ ème ligne
loooooomoooooon

ai2 ¨ ¨ ¨ aij ¨ ¨ ¨ ain

... ... ... ... ... ...
am1 am2 ¨ ¨ ¨ amj ¨ ¨ ¨ amn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... . . . ... ... ...
ai1 ai2 ¨ ¨ ¨ aij ¨ ¨ ¨ ain
... ... ... ... . . . ...
am1 am2 ¨ ¨ ¨ amj ¨ ¨ ¨ amn

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

3. Terminologie.
(a) Le couple pm,nq est appelé la taille (ou : le format, le type) de la matrice A et on dit aussi que
A est une matrice de type pm,nq à coefficients dans K.
(b) L’indice i (variant de 1 à m) désigne le numéro de ligne.
(c) L’indice j (variant de 1 à n) désigne le numéro de colonne.
(d) Pour tout pi, jq P t1, 2, ...,mu ˆ t1, 2, ..., nu, le scalaire aij est appelé le coefficient (ou le terme)
de A situé à l’intersection de la i´ème ligne et de la j´ème colonne de A.
4. Notation. On noteMm,npKq l’ensemble des matrices de type pm,nq et à coefficients dans K.

Définition 3.1.2 (Cas particulier : matrices carrées)
1. Si m “ n, alors on dit que A est une matrice carrée d’ordre n. Elle s’écrit

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... . . . ... ... ...
ai1 ai2 ¨ ¨ ¨ aij ¨ ¨ ¨ ain
... ... ... ... . . . ...
an1 an2 ¨ ¨ ¨ anj ¨ ¨ ¨ ann

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

2. On noteMnpKq l’ensemble des matrices carrées d’ordre n à coefficients dans K.
3. Les scalaires paiiq (1 ď i ď n) sont appelés les éléments diagonaux de A, et le n´uplet pa11, a22, ..., annq

est appelé la diagonale de A.
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Exemple 3.1.1
1. Exemple de matrice rectangulaire : Soit la matrice A1 définie dansM3,2pRq par

A1 “

¨

˝

1 ´3
0 1
2 ´1

˛

‚.

Cette matrice a 3 lignes, 2 colonnes, et ses coefficients sont des réels.
2. Exemple de matrice carrée :
(a) Soit la matrice A2 définie dansM3pRq par

A2 “

¨

˝

´1 2 0
´2 3 ´1
0 1 1

˛

‚.

Il s’agit d’une matrice carrée d’ordre 3, dont les coefficients sont des réels.
3. Exemple de matrice définie par une formule générale : Soit la matrice A3 “ paijq P

M3,2pRq, dont les coefficients sont définis par la relation

@pi, jq P t1, 2, 3u ˆ t1, 2u : aij “ ij ` 1.

En appliquant cette règle, nous obtenons

A3 “

¨

˝

a11 a12
a21 a22
a31 a32

˛

‚“

¨

˝

2 3
3 5
4 7

˛

‚.

Définition 3.1.3 (Égalité de deux matrices)
Soient

A “ paijq PMm,npKq, B “ pbijq PMp,qpKq.

On dit que A et B sont égales, et l’on écrit A “ B, si et seulement si
(i) elles ont le même type, c’est-à-dire m “ p et n “ q (même nombre de lignes et même nombre de
colonnes) ;
(ii) et leurs coefficients correspondants sont égaux

@pi, jq P t1, 2, . . . ,mu ˆ t1, 2, . . . , nu : aij “ bij.

En d’autres termes, deux matrices sont égales si elles ont la même dimension et si chaque coefficient
de la première coïncide avec le coefficient correspondant de la seconde.

Exemple 3.1.2
1. Cas d’égalité. Soient x, y P R et considérons les matrices A,B PM2,3pRq définies par

A “

ˆ

x 1 2
0 x2 ´ y 3

˙

, B “

ˆ

1 1 2
0 2 3

˙

.

Pour que A “ B, les deux matrices doivent avoir le même type (ce qui est le cas ici) et des coefficients
égaux deux à deux. Cela conduit au système

#

x “ 1,
x2 ´ y “ 2.
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La résolution donne x “ 1 et y “ ´1. Ainsi, A “ B si et seulement si x “ 1 et y “ ´1.
2. Matrices de types différents. Considérons les matrices

A “

ˆ

1 2
3 5

˙

, B “

ˆ

1 2 7
3 5 8

˙

.

La matrice A est de type p2, 2q, tandis que B est de type p2, 3q. Comme leurs dimensions diffèrent,
les deux matrices ne peuvent pas être égales pA ­“ Bq.
3.Matrices de même type mais avec un coefficient différent. Considérons enfin les matrices

A “

ˆ

´1 0
1 2

˙

, B “

ˆ

´1 0
1 3

˙

.

Les deux matrices sont de type p2, 2q. Toutefois, leurs coefficients différent en position p2, 2q

a22 “ 2 ­“ b22 “ 3.

Elles ne sont donc pas égales.

3.2 Matrices spéciales

Dans ce qui suit, nous allons introduire certaines matrices particulières, appelées matrices spé-
ciales. Elles se répartissent en deux grandes catégories : Les matrices rectangulaires spéciales et les
matrices carrées spéciales. Chaque catégorie regroupe des matrices ayant des propriétés spécifiques
et jouant un rôle important en algèbre linéaire ainsi que dans de nombreuses applications pratiques.

3.2.1 Matrices spéciales rectangulaires

Une matrice rectangulaire est une matrice dont le nombre de lignes m est différent du nombre de
colonnes n (c’est-à-dire m ­“ n). Parmi ces matrices, on distingue plusieurs cas particuliers d’impor-
tance.

Définition 3.2.1 Soit A “ paijq PMm,npKq une matrice de type pm,nq à coefficients dans K. On
distingue plusieurs types de matrices rectangulaires spéciales :
(1) Matrice colonne. Si n “ 1, alors A est appelée matrice colonne ou unicolonne de type pm, 1q
notée

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11
a21
...
ai1
...
am1

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Autrement dit, une matrice colonne est une matrice qui ne possède qu’une seule colonne. L’ensemble
des matrices colonnes à coefficients dans K est notéMm,1pKq.
(2) Matrice ligne. Si m “ 1, alors A est appelée matrice ligne ou uniligne de type p1, nq notée

A “
`

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

˘

.

Autrement dit, une matrice ligne est une matrice qui ne possède qu’une seule ligne. L’ensemble des
matrices lignes à coefficients dans K est notéM1,npKq.
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(3) Matrice nulle. La matrice A est dite nulle si et seulement si tous ses coefficients sont nuls. On
la note Om,n et elle vérifie

@pi, jq P t1, . . . ,mu ˆ t1, . . . , nu : aij “ 0K.

Remarque 3.2.1
1. Les matrices ligne et colonne sont utiles pour représenter respectivement des vecteurs lignes et des
vecteurs colonnes ; on identifie souvent Kn (ou Rn) àMn,1pKq.
2. La matrice nulle Om,n joue le rôle d’élément neutre pour l’addition dans l’espace vectorielMm,npKq.

Après avoir vu les matrices nulles, lignes et colonnes, intéressons-nous maintenant à un autre
type fondamental : les matrices élémentaires où Chaque matrice contient un seul coefficient non nul,
généralement égal à 1K, situé en une position particulière, tandis que tous les autres coefficients
sont nuls. Ces matrices sont importantes car elles permettent de construire n’importe quelle matrice
comme une somme de matrices élémentaires et constituent ainsi la base canonique de l’espace des
matricesMm,npKq. De plus, elles servent d’outil pratique pour étudier et manipuler les matrices et
les applications linéaires.

Définition 3.2.2 (Matrices élémentaires Ei,j)
1. Pour tout couple pi, jq P t1, 2, . . . ,mu ˆ t1, 2, . . . , nu, on note Ei,j la matrice de Mm,npKq dont
tous les coefficients sont nuls sauf celui situé à la position pi, jq, qui est égal à 1K (l’élément neutre
pour la multiplication dans K). Chaque matrice élémentaire Ei,j a donc la forme

Ei,j “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K
0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K
... ... . . . ... ... ...

0K 0K ¨ ¨ ¨ 1K ¨ ¨ ¨ 0K
... ... ... ... . . . ...

0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

où le 1K est placé à l’intersection de la i´ième ligne et de la j´ième colonne.
2. On peut également exprimer Ei,j à l’aide du symbole de Kronecker δx,y, défini par

δx,y “

"

1K, si x “ y
0K, si x ­“ y,

on a
Eij “ pδk,i ¨ δl,jq1ďkďm

1ďlďn
.

Alors le coefficient pk, lq de Ei,j s’écrit

pEi,jqk,l “ δk,i ¨ δl,j “

"

1K, si pk, lq “ pi, jq
0K, si pk, lq ­“ pi, jq .

Remarque 3.2.2
1. Les matrices Ei,j forment une base de l’espace vectoriel Mm,npKq. Autrement dit, toute matrice
A PMm,npKq peut s’exprimer de manière unique comme une combinaison linéaire de ces matrices

A “
m
ÿ

i“1

˜

n
ÿ

j“1
aijEi,j

¸

.

78



Matrices

Dans cette décomposition, chaque coefficient aij de A correspond au coefficient de la matrice élémen-
taire Ei,j dans cette décomposition.
2. Le nombre total de matrices élémentaires deMm,npKq est égal au produit du nombre de lignes et
du nombre de colonnes

m.n,

ce qui correspond au nombre total de couples (i.e, le nombre de couples pi, jq possibles).

Exemple 3.2.1 DansM2,3pRq, il y a 2.3 “ 6 matrices élémentaires,

Matrice Position de 1 Forme Matricielle Notation δ

E1,1 p1, 1q
ˆ

1 0 0
0 0 0

˙

pδk,1 ¨ δl,1q1ďkď2
1ďlď3

“

ˆ

δ1,1 ¨ δ1,1 δ1,1 ¨ δ2,1 δ1,1 ¨ δ3,1
δ2,1 ¨ δ1,1 δ2,1 ¨ δ21 δ2,1 ¨ δ3,1

˙

E1,2 p1, 2q
ˆ

0 1 0
0 0 0

˙

E1,2 “ pδk,1 ¨ δl,2q1ďkď2
1ďlď3

E1,3 p1, 3q
ˆ

0 0 1
0 0 0

˙

E1,3 “ pδk,1 ¨ δl,3q1ďkď2
1ďlď3

E2,1 p2, 1q
ˆ

0 0 0
1 0 0

˙

E2,1 “ pδk,2 ¨ δl,1q1ďkď2
1ďlď3

E2,2 p2, 2q
ˆ

0 0 0
0 1 0

˙

E2,1 “ pδk,2 ¨ δl,2q1ďkď2
1ďlď3

E2,3 p2, 2q
ˆ

0 0 0
0 0 1

˙

E2,3 “ pδk,2 ¨ δl,3q1ďkď2
1ďlď3

.

3.2.2 Matrices spéciales carrées

Les matrices carrées sont des matrices où le nombre de lignes mmm est égal au nombre de colonnes
nnn (c’est-à-dire m “ n). Parmi elles, on trouve les matrices diagonales, la matrice identité, et les
matrices triangulaires (supérieures ou inférieures).

Définition 3.2.3 Soit A “ paijq PMnpKq une matrice carrée d’ordre n à coefficients dans K. On
distingue plusieurs types de matrices carrées spéciales :
(1) Matrice diagonale.
(i) Une matrice carrée A est dite diagonale si tous ses éléments situés hors de la diagonale principale
sont tous nuls. Formellement

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu : i ­“ j ùñ aij “ 0K.

Autrement dit, une matrice diagonale a la forme

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K
0K a22 ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K
... ... . . . ... ... ...

0K 0K ¨ ¨ ¨ aij ¨ ¨ ¨ 0K
... ... ... ... . . . ...

0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ ann

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

(ii) On note DnpKq l’ensemble des matrices diagonales d’ordre n à coefficients dans K.
(2) La matrice diagonale d’ordre n dont les éléments de la diagonale principale valent 1K est appelée
matrice unité et est notée In. Formellement

aij “

#

1K, si i “ j,

0K, si i ­“ j.
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Elle est de la forme

In “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K
0K 1K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K
... ... . . . ... ... ...

0K 0K ¨ ¨ ¨ 1K ¨ ¨ ¨ 0K
... ... ... ... . . . ...

0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 1K

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

(3) Matrice triangulaire. Une matrice triangulaire est une matrice carrée dont certains coefficients
sont nuls de manière systématique, formant ainsi une structure en triangle. On distingue deux types
principaux,
(a) Matrice triangulaire inférieure :
(i) Une matrice carrée A “ paijq est dite triangulaire inférieure si tous les coefficients situés au-dessus
de la diagonale principale sont nuls. Formellement

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu : i ă j ùñ aij “ 0K.

Alors, elle est de la forme

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K
a21 a22 ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K
... ... . . . ... ... ...
ai1 ai2 ¨ ¨ ¨ aij ¨ ¨ ¨ 0K
... ... ... ... . . . ...
an1 an2 ¨ ¨ ¨ anj ¨ ¨ ¨ ann

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Autrement dit, seuls les éléments situés sur la diagonale ou en dessous peuvent être non nuls.
(ii) On note Tn,infpKq l’ensemble des matrices Triangulaires inférieures d’ordre n à coefficients dans
K.
(b) Matrice triangulaire inférieure stricte. Une matrice carrée A “ paijq est dite triangulaire
inférieure stricte si

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu : i ď j ùñ aij “ 0K.

Autrement dit, tous les éléments au-dessus de la diagonale principale sont nuls, et tous les éléments
sur la diagonale sont également nuls. Alors, elle est de la forme

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K
a21 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K
... ... . . . ... ... ...
ai1 ai2 ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K
... ... ... ... . . . ...
an1 an2 ¨ ¨ ¨ anj ¨ ¨ ¨ 0K

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

(b) Matrice triangulaire supérieure.
(i) Une matrice carrée A “ paijq est dite triangulaire supérieure si tous les coefficients situés en
dessous de la diagonale principale sont nuls. Formellement

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu : i ą j ùñ aij “ 0K.
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Alors, elle est de la forme

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

0K a22 ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... . . . ... ... ...

0K 0K ¨ ¨ ¨ aij ¨ ¨ ¨ ain
... ... ... ... . . . ...

0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ ann

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Autrement dit, seuls les éléments situés sur la diagonale ou au-dessus peuvent être non nuls.
(ii) On note Tn,suppKq l’ensemble des matrices Triangulaires supérieures d’ordre n à coefficients dans
K.
(d) Matrice triangulaire supérieure stricte. Une matrice carrée A “ paijq est dite triangulaire
supérieure stricte si

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu : i ě j ùñ aij “ 0K.

Autrement dit, tous les éléments en dessous de la diagonale principale sont nuls, et tous les éléments
sur la diagonale sont également nuls. Alors, elle est de la forme

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0K a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

0K 0K ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... . . . ... ... ...

0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ ain
... ... ... ... . . . ...

0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Exemple 3.2.2 Soient les matrices carrées deM3pRq suivantes

A1 “

¨

˝

1 3 ´1
0 ´2 5
0 0 4

˛

‚, A2 “

¨

˝

0 3 ´1
0 0 5
0 0 0

˛

‚, A3 “

¨

˝

1 0 0
5 ´2 0
´2 1 3

˛

‚, A4 “

¨

˝

0 0 0
5 0 0
´2 1 0

˛

‚,

alors A1 est triangulaire supérieure, A2 est triangulaire supérieure stricte, A3 est triangulaire infé-
rieure et A4 est triangulaire inférieure stricte.

Définition 3.2.4 (Trace d’une matrice) Soit A “ paijq P MnpKq une matrice carrée d’ordre
n. On appelle trace de la matrice A, et l’on note TrpAq, la somme des coefficients situés sur sa
diagonale principale. Autrement dit,

TrpAq “ a11 ` a22 ` ¨ ¨ ¨ ` ann “

n
ÿ

i“1
aii.

Exemple 3.2.3
1. Soit

A “

¨

˝

1 2 3
0 ´1 4
2 5 0

˛

‚PM3pRq.

Les éléments diagonaux sont a11 “ 1, a22 “ ´1, a33 “ 0. Ainsi,

TrpAq “ 1` p´1q ` 0 “ 0.
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2. Soit

B “

ˆ

2 0
5 3

˙

PM2pRq.

Les éléments diagonaux sont b11 “ 2, b22 “ 3. Par conséquent,

TrpBq “ 2` 3 “ 5.

3. Pour la matrice identité In d’ordre n

In “

¨

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0
0 1 ¨ ¨ ¨ 0
... ... . . . ...
0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‚

,

les n éléments diagonaux valent 1, donc

TrpInq “ 1` 1` ¨ ¨ ¨ ` 1 “ n.

3.3 Transposition, matrices symétriques et antisymétriques

L’une des opérations les plus importantes sur les matrices est la transposition. Elle consiste à
échanger les lignes et les colonnes d’une matrice : l’élément placé en position pi, jq devient l’élément
pj, iq dans la transposée. Cette opération permet de définir deux familles importantes de matrices
carrées. Une matrice est dite symétrique lorsqu’elle est égale à sa transposée, ce qui signifie que ses
éléments sont disposés de manière symétrique par rapport à la diagonale principale. À l’inverse, une
matrice est dite antisymétrique lorsque sa transposée est égale à son opposée ; dans ce cas, la diagonale
est nécessairement nulle et les éléments situés de part et d’autre de la diagonale apparaissent avec
des signes contraires.

Définition 3.3.1 (Transposition)
Soit A “ paijq1ďiďm

1ďjďn
P Mm,npKq. On appelle transposée de A la matrice notée tA P Mn,mpKq,

définie par
tA “ pajiq.

Autrement dit, l’élément situé à la i ´ ème ligne et j ´ ème colonne de A devient l’élément situé à
la j ´ ème ligne et i´ ème colonne de tA.

Exemple 3.3.1
1. La transposée d’une matrice colonne est une matrice ligne et réciproquement, alors si

A1 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a1
a2
...
ai
...
am

˛

‹

‹

‹

‹

‹

‹

‹

‚

PMm,1pKq, A2 “
`

b1 b2 ¨ ¨ ¨ bj ¨ ¨ ¨ bn

˘

PM1,npKq,
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alors

tA1 “
`

a1 a2 ¨ ¨ ¨ aj ¨ ¨ ¨ am

˘

PM1,mpKq, A2 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

b1
b2
...
bj
...
bn

˛

‹

‹

‹

‹

‹

‹

‹

‚

PMn,1pKq.

2 . Consiérons la matrice
A “

ˆ

1 2 3
4 5 6

˙

PM23pRq.

C’est une matrice de taille p2, 3q. Sa transposée est la matrice

tA “

¨

˝

1 4
2 5
3 6

˛

‚PM32pRq,

qui est de taille p3, 2q. On observe que les lignes de A deviennent les colonnes de tA.
3. Soit la matrice

A “

¨

˝

1 2 3
4 5 6
7 8 9

˛

‚PM3pRq.

Sa transposée est

tA “

¨

˝

1 4 7
2 5 8
3 6 9

˛

‚.

On remarque que les éléments situés symétriquement par rapport à la diagonale principale ont été
échangés : par exemple a12 “ 2 devient a21 “ 2, et a23 “ 6 devient a32 “ 6.

Définition 3.3.2 (Matrice symétrique, antisymétrique)
Si A PMnpKq est une matrice carrée d’ordre n, alors on distingue les cas suivants :
(1) A est symétrique si et seulement si

tA “ A.

C’est-à-dire si et seulement si

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu : aji “ aij.

L’ensemble des matrices symétriques deMnpKq est noté SnpKq.
(2) A est antisymétrique (ou skew-symétrique) si et seuelment si

tA “ ´A.

C’est-à-dire si et seulement si

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu : aji “ ´aij.

L’ensemble des matrices antisymétriques deMnpKq est noté AnpKq.

Remarque 3.3.1 (Interprétation de la transposée d’une matrice)
1. Transposition et symétrie.
(a) La transposée d’une matrice A est obtenue en échangeant ses lignes et ses colonnes : la première
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ligne de A devient la première colonne de tA, la deuxième ligne devient la deuxième colonne, et ainsi
de suite.
(b) La transposition peut être vue comme une symétrie par rapport à la diagonale principale (celle
qui relie le coin supérieur gauche au coin inférieur droit),
• La diagonale principale reste inchangée.
• Chaque élément situé au-dessus de la diagonale est échangé avec son symétrique situé en dessous.
2. Matrices symétriques. Pour la matrice symétrique, on a

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu :
"

aii “ aii, si i “ j
aji “ aij, si i ­“ j

Cela signifie que les éléments sur la diagonale principale peuvent être quelconques, mais que les
éléments hors diagonale sont symétriques par rapport à cette diagonale. En d’autres termes, une
matrice symétrique est invariante par transposition.
3. Matrices antisymétriques. Pour la matrice antisymétrique, on a
• Les éléments sont opposés par rapport à la diagonale principale.
• Tous les éléments diagonaux sont nuls, c’est-à-dire

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu : i “ j ùñ aii “ 0K.

Cela signifie que toutes les coefficients diagonaux d’une matrice antisymétrique sont nuls.

Exemple 3.3.2 1. Considérons la matrice suivante

A “

¨

˝

1 2 3
2 5 0
3 0 6

˛

‚PM3pRq.

Sa transposée est

tA “

¨

˝

1 2 3
2 5 0
3 0 6

˛

‚.

Puisque tA “ A, la matrice A est bien symétrique.
2. Considérons maintenant la matrice suivante

B “

¨

˝

0 1 ´5
´1 0 2
5 ´2 0

˛

‚PM3pRq.

Sa transposée est

tB “

¨

˝

0 ´1 5
1 0 ´2
´5 2 0

˛

‚.

Puisque tB “ ´B, la matrice B est bien antisymétrique.
3. La matrice unité d’ordre n notée In est symétrique car

tIn “ In.

4. La seule matrice à la fois symétrique et antisymétrique est la matrice carrée nulle On, car tA “ A
et tA “ ´A impliquent A “ ´A, donc A “ On.
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3.4 Opérations sur les matrices

On peut effectuer plusieurs opérations sur les matrices, comme l’addition, la multiplication, la
multiplication par un scalaire ou encore la transposition. Ces opérations sont fondamentales pour
résoudre des systèmes d’équations, étudier des transformations linéaires ou manipuler des données
dans divers domaines. Dans cette section, nous allons présenter ces principales opérations et les
illustrer par des exemples concrets afin de mieux les comprendre.

3.4.1 Addition et opposé de matrices

Définition 3.4.1 Soient A “ paijq PMm,npKq et B “ pbijq PMm,npKq deux matrices de même type
pm,nq.
1. Addition de matrices. On appelle somme de A et B, et on note A ` B, la matrice S de type
pm,nq définie par

A`B “ S “ psijq PMm,npKq.
avec

@pi, jq P t1, 2, ...,mu ˆ t1, 2, ..., nu : sij “ aij ` bij.

Autrement dit, la somme de deux matrices de même type s’obtient en additionnant élément par
élément leurs coefficients correspondants (ou en sommant ”terme à terme” les éléments de A et de
B). On a donc

A`B “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... . . . ... ... ...
ai1 ai2 ¨ ¨ ¨ aij ¨ ¨ ¨ ain
... ... ... ... . . . ...
am1 am2 ¨ ¨ ¨ amj ¨ ¨ ¨ amn

˛

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˝

b11 b12 ¨ ¨ ¨ b1j ¨ ¨ ¨ b1n

b21 b22 ¨ ¨ ¨ b2j ¨ ¨ ¨ b2n
... ... . . . ... ... ...
bi1 bi2 ¨ ¨ ¨ bij ¨ ¨ ¨ bin
... ... ... ... . . . ...
bm1 bm2 ¨ ¨ ¨ bmj ¨ ¨ ¨ bmn

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 ` b11 a12 ` b12 ¨ ¨ ¨ a1j ` b1j ¨ ¨ ¨ a1n ` b1n

a21 ` b21 a22 ` b22 ¨ ¨ ¨ a2j ` b2j ¨ ¨ ¨ a2n ` b2n
... ... . . . ... ... ...

ai1 ` bi1 ai2 ` bi2 ¨ ¨ ¨ aij ` bij ¨ ¨ ¨ ain ` bin
... ... ... ... . . . ...

am1 ` bm1 am2 ` bm2 ¨ ¨ ¨ amj ` bmj ¨ ¨ ¨ amn ` bmn

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

2. Matrice opposée. L’opposé d’une matrice A “ paijq P Mm,npKq, notée ´A, est la matrice
définie par

´A “ p´aijq PMm,npKq.
Autrement dit,

´A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´a11 ´a12 ¨ ¨ ¨ ´a1j ¨ ¨ ¨ ´a1n

´a21 ´a22 ¨ ¨ ¨ ´a2j ¨ ¨ ¨ ´a2n
... ... . . . ... ... ...

´ai1 ´ai2 ¨ ¨ ¨ ´aij ¨ ¨ ¨ ´ain
... ... ... ... . . . ...

´am1 ´am2 ¨ ¨ ¨ ´amj ¨ ¨ ¨ ´amn

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

3. On définit la différence de deux matrices A et B de la façon suivante

A´B “ A` p´Bq.
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Autrement dit, on soustrait élément par élément les coefficients de B à ceux de A. C’est-à-dire que
soustraire B revient à additionner A et l’opposé de B.

Remarque 3.4.1
1. Compatibilité des matrices pour l’addition et la soustraction. L’addition ou la soustrac-
tion de deux matrices n’est possible que si elles sont de même type, c’est-à-dire si elles possèdent le
même nombre de lignes et le même nombre de colonnes.
2. Addition de matrices. Pour additionner deux matrices, on additionne les coefficients situés
aux mêmes positions dans chaque matrice. La matrice obtenue constitue leur somme.
3. Opposé d’une matrice. L’opposé d’une matrice A, noté ´A, est la matrice dont chaque coeffi-
cient est l’oposé du coefficient correspondant de A.
4. Propriété fondamentale de l’opposé. La matrice ´A est l’unique matrice vérifiant

A` p´Aq “ p´Aq ` A “ Om,n,

où Om,n désigne la matrice nulle de type pm,nq.

Exemple 3.4.1 Soient les matrices deM2,3pRq suivantes

A “

ˆ

2 ´1 3
4 0 ´2

˙

, B “

ˆ

5 3 ´1
´2 7 4

˙

.

1. Somme de matrices : La somme A`B s’obtient en additionnant les coefficients correspondants

A`B “

ˆ

2` 5 ´1` 3 3` p´1q
4` p´2q 0` 7 ´2` 4

˙

“

ˆ

7 2 2
2 7 2

˙

.

2. Opposé d’une matrice : L’opposé de B, noté ´B, est la matrice dont chaque coefficient est
l’opposé du coefficient correspondant de B

´B “

ˆ

´5 ´3 1
2 ´7 ´4

˙

.

3. Différence de matrices : La différence A´B se définit par A´B “ A` p´Bq, soit

A´B “

ˆ

2´ 5 ´1´ 3 3´ p´1q
4´ p´2q 0´ 7 ´2´ 4

˙

“

ˆ

´3 ´4 4
6 ´7 ´6

˙

.

3.4.2 Multiplication par un scalaire

La multiplication d’une matrice par un scalaire consiste à multiplier chacun des éléments de la
matrice par un nombre appartenant au corps K . Cette opération peut être interprétée comme une
transformation qui "agrandit" ou "réduit" la matrice en fonction de la valeur du scalaire, tout en
conservant la taille de la matrice.

Définition 3.4.2 Soient A “ paijq PMm,npKq et λ P K un scalaire. La multiplication de A par λ
est la matrice notée λ ¨ A deMm,npKq définie par

λ ¨ A “ B “ prijq PMm,npKq.

avec
@pi, jq P t1, 2, ...,mu ˆ t1, 2, ..., nu : rij “ λ ¨ aij.
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Autrement dit, on multiplie chaque élément de la matrice par le scalaire λ. Ainsi

λ ¨ A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

λa11 λa12 ¨ ¨ ¨ λa1j ¨ ¨ ¨ λa1n

λa21 λa22 ¨ ¨ ¨ λa2j ¨ ¨ ¨ λa2n
... ... . . . ... ... ...

λai1 λai2 ¨ ¨ ¨ λaij ¨ ¨ ¨ λain
... ... ... ... . . . ...

λam1 λam2 ¨ ¨ ¨ λamj ¨ ¨ ¨ λamn

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Exemple 3.4.2 Soit la matrice suivante

A “

ˆ

2 ´1 3
4 0 ´2

˙

,

et soit λ “ 2 P R. On effectue la multiplication, on obtient

λA “

ˆ

4 ´2 6
8 0 ´4

˙

.

L’opération ne change pas la taille de la matrice : A et 2 ¨ A sont de type p2, 3q.

3.4.3 Propriétés de l’addition des matrices, de la multiplication par un
scalaire et de la transposée

L’addition des matrices, la multiplication par un scalaire et l’opération de transposition possèdent
plusieurs propriétés fondamentales. Ces propriétés sont essentielles car elles montrent que l’ensemble
des matricesMm,npKq muni de ces opérations constitue un espace vectoriel (sur le corps K) et que
la transposition est une opération bien structurée.

Proposition 3.4.1
1. Addition de matrices. L’addition des matrices vérifie
(a) Commutativité,

@A,B PMm,npKq : A`B “ B ` A.

(b) Associativité,
@A,B,C PMm,npKq : pA`Bq ` C “ A` pB ` Cq .

(c) Élément neutre. La matrice nulle est l’élément neutre de l’addition

@A PMm,npKq : A`Om,n “ Om,n ` A “ A.

(d) Élément opposé. Pour toute matrice A PMm,npKq, il existe une matrice p´Aq PMm,npKq telle
que

A` p´Aq “ p´Aq ` A “ Om,n.

2. Multiplication par un scalaire. La multiplication par un scalaire satisfait
(a) Distributivité par rapport aux scalaires,

@λ, µ P K, @A PMm,npKq : pλ` µq ¨ A “ λ ¨ A` µ ¨ A.

La somme de deux scalaires multipliée par une matrice est égale à la somme des produits de chaque
scalaire avec la matrice.
(b) Distributivité par rapport aux matrices,

@λ P K, @A,B PMm,npKq : λ ¨ pA`Bq “ λ ¨ A` λ ¨B.
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Un scalaire multiplié par une somme de matrices est égal à la somme des matrices multipliées sépa-
rément par ce scalaire.
(c) Associativité mixte,

@λ, µ P K, @A PMm,npKq : pλ ¨ µq ¨ A “ λ ¨ pµ ¨ Aq .

La multiplication d’une matrice par le produit de deux scalaires est équivalente à la multiplication
successive par chaque scalaire.
(d) Élément neutre,

@A PMm,npKq : 1K ¨ A “ A,

où 1K est l’unité du corps K.
3. Propriétés de la transposée.
(a) Transposée d’une somme de matrices,

@A,B PMm,npKq :t pA`Bq “t A`t B.

La transposée d’une somme est égale à la somme des transposées.
(b) Transposée d’une multiplication par un scalaire,

@λ P K, @A PMm,npKq :t pλ ¨ Aq “ λ ¨t A.

Le scalaire reste inchangé et se multiplie à la transposée.
(c) Transposée de la transposée,

@A PMm,npKq :t
`

t
pAq

˘

“ A.

Preuve. Soient A “ paijq, B “ pbijq, C “ pcijq PMm,npKq et λ, µ P K. Nous utilisons la définition
élémentaire : si X “ pxijq et Y “ pyijq sont deux matrices de même taille, alors

X “ Y ðñ @pi, jq : xij “ yij.

1. Addition de matrices.
(a) Commutativité. Par définition

pA`Bqij “ aij ` bij pour toutpi, jq.

Or dans le corps K l’addition est commutative

aij ` bij “ bij ` aij.

Donc
pA`Bqij “ pB ` Aqij pour toutpi, jq,

d’où
A`B “ B ` A.

(b) Associativité. On a, pour tout pi, jq,

ppA`Bq ` Cqij “ paij ` bijq ` cij,

et
pA` pB ` Cqqij “ aij ` pbij ` cijq.
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Dans K l’addition est associative, donc

paij ` bijq ` cij “ aij ` pbij ` cijq.

Ainsi
ppA`Bq ` Cqij “ pA` pB ` Cqqij pour tout pi, jq,

donc
pA`Bq ` C “ A` pB ` Cq.

(c) Élément neutre. Soit Om,n la matrice nulle (tous ses coefficients sont 0). Pour tout pi, jq,

pA`Om,nqij “ aij ` 0K “ aij.

Donc
A`Om,n “ A.

(d) Élément opposé. Définissons p´Aq comme la matrice p´aijq. Alors pour tout pi, jq,

pA` p´Aqqij “ aij ` p´aijq “ 0K,

car
aij ` p´aijq “ 0K,

dans K. Donc
A` p´Aq “ Om,n.

2. Multiplication par un scalaire.
(a) Distributivité par rapport aux scalaires. Soient λ, µ P K et A,B PMm,npKq. Pour tout pi, jq,

ppλ` µqAqij “ pλ` µqaij “ λaij ` µaij “ pλAqij ` pµAqij.

Donc
pλ` µqA “ λA` µA.

(En utilisant la distributivité dans K).
(b) Distributivité par rapport aux matrices. Pour tout pi, jq,

pλpA`Bqqij “ λpaij ` bijq “ λaij ` λbij “ pλAqij ` pλBqij.

D’où l’égalité matricielle.
(c) Associativité mixte. Pour tout pi, jq,

ppλµqAqij “ pλµqaij “ λpµaijq “ pλpµAqqij,

puisque la multiplication dans K est associative.
(d) Élément neutre. Pour tout pi, jq,

p1K ¨ Aqij “ 1K ¨ aij “ aij,

puisque 1K est l’unité multiplicative de K. Donc

1K ¨ A “ A.

3. Propriétés de la transposée.
(a) Transposée d’une somme de matrices. Pour des indices i, j (de tailles adaptés),

p
t
pA`Bqqij “ pA`Bqji “ aji ` bji.
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D’autre part,
p

tA`t Bqij “ p
tAqij ` p

tBqij “ aji ` bji.

Les deux coefficients coïncident pour tout pi, jq, donc

t
pA`Bq “t A`t B.

(b) Transposée d’une multiplication par un scalaire. Pour tout pi, jq,

p
t
pλAqqij “ pλAqji “ λaji,

et
pλtAqij “ λptAqij “ λaji.

Donc
t
pλAq “ λtA.

(c) Transposée de la transposée. Par définition

p
t
p

tAqqij “ p
tAqji “ aij.

Ainsi tous les coefficients sont identiques, donc

t
p

tAq “ A.

l

Remarque 3.4.2 Les preuves ci-dessus montrent que toutes les identités s’obtiennent en compa-
rant les coefficients à la position pi, jq et en utilisant simplement les propriétés algébriques du corps
K (associativité, commutativité, distributivité, existence d’un neutre et d’opposés). Par conséquent,
l’ensembleMm,npKq muni de l’addition matricielle et de la multiplication par un scalaire est bien un
espace vectoriel sur K. De plus, l’opération de transposition est une application linéaire qui préserve
l’addition et la multiplication par un scalaire.

Proposition 3.4.2 L’ensemble pMm,npKq,`, ¨q muni de l’addition (loi interne) des matrices et de
la multiplication des matrices par un scalaire (loi externe) est un espace vectoriel sur K de dimension
finie m.n.

dim
K
pMm,npKqq “ m.n.

Preuve.
1. Pour démontrer queMm,npKq est un espace vectoriel, il suffit de vérifier que les axiomes définissant
un espace vectoriel sont satisfaits. Or, ces axiomes découlent directement des propriétés de l’addition
des matrices et de la multiplication par un scalaire, déjà établies.
2. Pour déterminer la dimension de cet espace, considérons les matrices élémentaires unitaires Ei,j,
qui possèdent un unique 1K en position pi, jq et des 0K ailleurs. Ces matrices forment une famille
libre et génératrice deMm,npKq, constituant ainsi une base canonique deMm,npKq, de cardinal m.n
vecteurs. Ainsi,Mm,npKq est bien un espace vectoriel sur K de dimension m.n. l

Corollaire 3.4.1 L’ensemble des matrices triangulaires supérieures (resp. triangulaires inférieures)
et l’ensemble des matrices triangulaires supérieures strictes (resp. triangulaires inférieures strictes)
sont des sous-espaces vectoriels de MnpKq. En particulier, l’ensemble des matrices diagonales de
MnpKq constitue lui aussi un sous-espace vectorielMnpKq.
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Preuve.
1. Matrices triangulaires supérieures. Définissons

Tn,suppKq “ tA “ paijq PMnpKq : aij “ 0K pour tout i ą ju.

(i) La matrice nulle On vérifie
aij “ 0K pour tout i ą j.

aij “ 0K

donc On P Tn,suppKq.
(ii) Stabilité par addition. Si A “ paijq, B “ pbijq P Tn,suppKq, alors pour tout i ą j on a

aij “ bij “ 0K,

avec les coefficients pA`Bqij vérifient

aij ` bij “ 0K.

Ainsi Tn,suppKq.
(iii) Stabilité par multiplication par un scalaire. Pour λ P K et A “ paijq P Tn,suppKq, si i ą j alors
pλ ¨ Aqij “ λaij “ 0. Donc λ ¨ ATn,suppKq. Ainsi, Tn,suppKq est un sous-espace vectoriel deMnpKq.
2. Matrices triangulaires supérieure strictes. Les mêmes vérifications que pour Tn,suppKq s’ap-
pliquent, avec la condition indexée par i ě j au lieu de i ą j.
3. Matrices triangulaires inférieures.
(i) La matrice nulle On appartient à Tn,infpKq puisque tous ses coefficients sont nuls.
(ii) Soient A “ paijq, B “ pbijq P Tn,infpKq. Pour tout i ă j, on a aij “ 0K et bij “ 0K, donc

paij ` bijq “ 0K,

ce qui montre que A`B P Tn,infpKq.
(iii) Soit λ P K et A “ paijq P Tn,infpKq. Alors pour tout i ă j, λ ¨ aij “ 0K. Donc λ ¨ A P Tn,infpKq.
Ainsi, Tn,infpKq est un sous-espace vectoriel deMnpKq.
4. Matrices triangulaires inférieures strictes. Les mêmes vérifications que pour Tn,infpKq s’ap-
pliquent, avec la condition indexée par i ď j au lieu de i ă j.
5. Matrices diagonales. Définissons

DnpKq “ tA “ paijq PMnpKq : aij “ 0K pour tout i ‰ ju.

(i) La matrice nulle On est diagonale, donc On P DnpKq.
(ii) Si A “ paijq, B “ pbijq P DnpKq, alors pour i ‰ j on a

aij “ bij “ 0K,

donc
pA`Bqij “ 0K.

Ainsi
A`B P DnpKq.

(iii) Pour λ P K et A P DnpKq, si i ‰ j alors

pλ ¨ Aqij “ λ ¨ aij “ λ ¨ 0K “ 0K,

donc λA P DnpKq. Donc DnpKq est un sous-espace vectoriel.
Remarque. On peut aussi observer que

DnpKq “ Tn,suppKq X Tn,infpKq,

or l’intersection de deux sous-espaces vectoriels est toujours un sous-espace vectoriel. Cela fournit
une autre preuve que DnpKq est un sous-espace. l
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Proposition 3.4.3 Soient m,n P N˚. L’application

f :Mm,npKq ÝÑ Mn,mpKq
A ÞÝÑ fpAq “t A,

est linéaire. Autrement dit, l’opération de transposition définit une application linéaire.

Preuve. La linéarité de f découle immédiatement des propriétés de la transposition établies pré-
cédemment (proposition 3.4.1). l

3.4.4 Produit matriciel

Nous allons à présent définir le concept de produit de matrices. Le produit de deux matrices,
appelé produit matriciel, est une opération particulière qui n’est pas toujours possible. En effet,
toutes les matrices ne peuvent pas être multipliées entre elles : il faut que leurs dimensions soient
compatibles. Cela signifie que le nombre de colonnes de la première matrice doit être exactement
égal au nombre de lignes de la seconde. Lorsque cette condition est respectée, le produit est défini et
il donne une nouvelle matrice dont le nombre de lignes correspond à celui de la première matrice et
dont le nombre de colonnes correspond à celui de la seconde.

Définition 3.4.3 (Produit matriciel)
Soient A “ paijq PMm,npKq une matrice de type pm,nq et B “ pbijq PMn,ppKq une matrice de type
pn, pq. On définit le produit de A par B, noté A ¨B, comme la matrice C “ pcijq PMm,ppKq de type
pm, pq dont les coefficients sont donnés, pour tout couple pi, jq P t1, 2, . . . ,mu ˆ t1, 2, . . . , pu, par la
relation

cij “

n
ÿ

k“1
aikbkj “ ai1b1j ` ai2b2j ` ...` ainbnj.

Ainsi, l’élément cij du produit A ¨B est obtenu en effectuant la somme des produits des éléments de
la i´ème ligne de A avec ceux de la j´ème colonne de B.

Remarque 3.4.3
1. Le produit de deux matrices n’est défini que si leurs dimensions sont compatibles, c’est-à-dire
lorsque le nombre de colonnes de la première matrice est égal au nombre de lignes de la seconde.
Cette condition peut se résumer ainsi

pm,nq ˆ pn, pq “ pm, pq.

2. Chaque coefficient cij de la matrice AB, situé à l’intersection de la i ´ ème ligne et la j ´ ème
colonne, s’obtient en calculant le produit scalaire entre la i ´ ème ligne de A et la j ´ ème colonne
de B.
3. Même lorsque les produits AB et BA existent et sont de même type (par exemple pour deux matrices
carrées de même ordre), on n’a en général pas AB “ BA. Autrement dit, le produit matriciel n’est
pas commutatif.

Exemple 3.4.3 Soient les matrices suivantes

A “

ˆ

1 ´1 0
3 ´2 ´1

˙

PM2,3pRq, B “

¨

˝

1 2
1 2
1 2

˛

‚PM3,2pRq.
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Le produit AB est bien défini car le nombre de colonnes de A (qui est 3) est égal au nombre de lignes
de B (qui est aussi 3). Le résultat sera une matrice de type p2, 2q. On a donc

AB “ C “

ˆ

c11 c12
c21 c22

˙

.

Les coefficients de C sont obtenus en effectuant le produit scalaire des lignes de A avec les colonnes
de B,

c11 “ a11b11 ` a12b21 ` a13b31 “ 1 ¨ 1` p´1q ¨ 1` 0 ¨ 1 “ 0
c12 “ a11b12 ` a12b22 ` a13b32 “ 1 ¨ 2` p´1q ¨ 2` 0 ¨ 2 “ 0

c21 “ a21b11 ` a22b21 ` a23b31 “ 3 ¨ 1` p´2q ¨ 1` p´1q ¨ 1 “ 0
c22 “ a21b12 ` a22b22 ` a23b32 “ 3 ¨ 2` p´2q ¨ 2` p´1q ¨ 2 “ 0.

On obtient
AB “ C “

ˆ

0 0
0 0

˙

“ O2 (matrice carrée nulle).

D’autre part, le produit BA est également défini, car B est de type p3, 2q et A de type p2, 3q, ce qui
donne une matrice de type p3, 3q, notée D,

BA “ D “

¨

˝

d11 d12 d13
d21 d22 d23
d31 d32 d33

˛

‚“

¨

˝

7 ´5 ´2
7 ´5 ´2
7 ´5 ´2

˛

‚.

Cet exemple illustre plusieurs faits importants sur le produit matriciel :
(a) Le produit AB peut être la matrice nulle, même si ni A ni B ne sont nulles.
(b) Le produit matriciel n’est pas commutatif en général, c’est-à-dire que AB ­“ BA. Ici, AB “ O2 ­“

BA.

À partir des propriétés bien connues des opérations algébriques sur les applications linéaires, on
peut établir des propriétés analogues pour les matrices.

Proposition 3.4.4 Le produit matriciel vérifie les propriétés fondamentales suivantes
1. Distributivité à gauche,

@A PMm,npKq, @B,C PMn,ppKq : A ¨ pB ` Cq “ A ¨B ` A ¨ C.

2. Distributivité à droite,

@A,B PMm,npKq, @C PMn,ppKq : pA`Bq ¨ C “ A ¨ C `B ¨ C.

3. Compatibilité avec la multiplication par un scalaire,

@λ P K, @A PMm,npKq, @B PMn,ppKq : pλAq ¨B “ λpA ¨Bq “ A ¨ pλBq .

4. Associativité du produit matriciel,

@A PMm,npKq, @B PMn,ppKq, @C PMp,rpKq : pA ¨Bq ¨ C “ A ¨ pB ¨ Cq .

5. Élément neutre à gauche/droite,

@A PMm,npKq : A ¨ In “ Im ¨ A “ A.

6. Produit par la matrice nulle,

@A PMm,npKq : A ¨On,p “ Om,p et Op,m ¨ A “ Op,n.

7. Transposition d’un produit,

@A PMm,npKq, @B PMn,ppKq :t pA ¨Bq “t B ¨t A.
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Preuve. Soient K un corps et A “ paijq, B “ pbijq, C “ pcijq des matrices dont les tailles seront
précisées à chaque propriété. Les sommes et produits ci-dessous sont des sommes et produits dans
K.
1. Distributivité à gauche]. Soient A PMm,npKq, et B,C PMn,ppKq. Alors pour tout i P t1, . . . ,mu
et j P t1, . . . , pu,

pApB ` Cqqij “
n
ÿ

k“1
aik pbkj ` ckjq “

n
ÿ

k“1
aikbkj `

n
ÿ

k“1
aikckj (distributivité dans K) “ pABqij ` pACqij.

Comme cette égalité vaut pour tous i, j, on en déduit

ApB ` Cq “ AB ` AC.

telle que la notation pApB `Cqqij représente le coefficient de la matrice ApB `Cq situé à la i´ ème
ligne A et la j ´ ème colonne.
2. Distributivité à droite. Soient A,B PMm,npKq, et C PMn,ppKq. Alors pour tout i P t1, . . . ,mu
et j P t1, . . . , pu,

ppA`BqCqij “
n
ÿ

k“1
paik ` bikq ckj “

n
ÿ

k“1
aikckj `

n
ÿ

k“1
bikckj “ pACqij ` pBCqij.

D’où
pA`BqC “ AC `BC.

3. Compatibilité avec la multiplication par un scalaire. Soient λ P K, et A PMm,npKq, B PMn,ppKq.
Alors pour tout i P t1, . . . ,mu et j P t1, . . . , pu,

ppλAqBqij “
n
ÿ

k“1
pλaikq bkj “ λ

n
ÿ

k“1
aikbkj “ λpABqij.

De même,

pApλBqqij “
n
ÿ

k“1
aik pλbkjq “ λ

n
ÿ

k“1
aikbkj “ λpABqij.

Ainsi
pλAqB “ λpABq “ ApλBq.

4. Associativité du produit matriciel. Soient A PMm,npKq, B PMn,ppKq, et C PMp,rpKq. Fixons
i P t1, . . . ,mu et j P t1, . . . , ru. Par définition des produits matriciels,

ppABqCqij “
p
ÿ

k“1
pABqik ckj “

p
ÿ

k“1

˜

n
ÿ

`“1
ai`b`k

¸

ckj “

n
ÿ

`“1
ai`

˜

p
ÿ

k“1
b`kckj

¸

(réarrangement des sommes finies)

“

n
ÿ

`“1
ai` pBCq`j “ pApBCqqij .

Comme ceci vaut pour tous i, j, on conclut

pABqC “ ApBCq.

(l’échange d’ordre des sommes est permis car il s’agit de sommes finies dans K.)
5. Elément neutre à gauche/droite. Soit A PMm,npKq. Rappel

pInqkj “ δkj,
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(delta de Kronecker). Pour tout i, j

pAInqij “

n
ÿ

k“1
aikpInqkj “

n
ÿ

k“1
aik δkj “ aij.

et
pImAqij “

m
ÿ

k“1
pImqikakj “

m
ÿ

k“1
δik akj “ aij.

D’où
AIn “ ImA “ A.

6. Produit par la matrice nulle. Soit A PMm,npKq, pour tout i, j,

pAOn,pqij “

n
ÿ

k“1
aik ¨ 0K “ 0K,

et
pOp,mAqij “

m
ÿ

k“1
0K ¨ akj “ 0K.

D’où les égalités annoncées.
7. Transposition d’un produit. Soient A PMm,npKq et B PMn,ppKq, alors pour tout i P t1, . . . , pu,
j P t1, . . . ,mu. Par définition,

`

t
pABq

˘

ij
“ pABqji “

n
ÿ

k“1
ajkbki.

D’autre part,
`

tBtA
˘

ij
“

n
ÿ

k“1
p

tBqikp
tAqkj “

n
ÿ

k“1
bkiajk.

Les deux sommes sont identiques terme à terme, donc
t
pABq “t BtA.

Toutes ces preuves s’appuient uniquement sur les propriétés élémentaires de l’addition et de la mul-
tiplication dans K et sur la définition terme à terme du produit matriciel. La non-commutativité du
produit matriciel se déduit simplement : dans la plupart des cas AB et BA n’ont pas la même taille,
et même lorsqu’ils sont définis et de même taille on a en général AB ‰ BA. l

Proposition 3.4.5 Soient D “ pdijq et D1 “ pd1ijq deux matrices diagonales d’ordre n à coefficients
dans un corps K. Alors
1. Le produit A “ D ¨D1 est une matrice diagonale.
2. Les coefficients diagonaux de A sont donnés par

@i P t1, ..., nu : aii “ diid
1
ii.

Autrement dit

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

d11d
1
11 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K

0K d22d
1
22 ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K

... ... . . . ... ... ...
0K 0K ¨ ¨ ¨ diid

1
ii ¨ ¨ ¨ 0K

... ... ... ... . . . ...
0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ dnnd

1
nn

˛

‹

‹

‹

‹

‹

‹

‹

‚

.
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Preuve. Par définition d’une matrice diagonale, pour tout couple d’indices pi, jq avec i ­“ j, on a

dij “ 0K, d
1
ij “ 0K.

Soit A “ D ¨D1 “ paijq le produit. Les coefficients de A sont définis par la règle générale du produit
matriciel

aij “

n
ÿ

k“1
dikd

1
kj.

Cas 1 : i ‰ j. Comme D est diagonale, dik “ 0K pour tout k ‰ i et comme D1 est diagonale, d1kj “ 0K
pour tout k ‰ j.
Or ici i ‰ j. Donc, il n’existe aucun indice k qui soit à la fois i et j. Ainsi tous les termes de la
somme sont nuls, donc

aij “ 0K.

Cela montre que les coefficients hors diagonale de A sont nuls.
Cas 2 : i “ j. La somme se réduit à un seul terme correspondant à k “ i. On obtient

aii “ dii d
1
ii.

On en conclut que A est bien une matrice diagonale, dont la diagonale est le produit terme à terme
des diagonales de D et D1. l

Après avoir défini le produit de matrices, il est naturel de considérer le cas particulier où une même
matrice est multipliée plusieurs fois par elle-même. C’est ce qui conduit à la notion de puissances
d’une matrice. Cette opération n’a de sens que pour les matrices carrées, puisque le produit A ¨ A
n’est défini que si le nombre de colonnes de A est égal à son nombre de lignes.

Définition 3.4.4 (Puissances d’une matrice carrée)
Soit A PMnpKq une matrice carrée d’ordre n. On définit les puissances entières naturelles de A de
la manière suivante

$

&

%

A0 “ In, où In est la matrice identité d’ordre n,
@k ě 1 : Ak “ A ¨ A ¨ ... ¨ A

loooooomoooooon

k fois

“ A ¨ Ak´1 “ Ak´1 ¨ A,

autrement dit, Ak est le produit de A par elle-même k fois.

Exemple 3.4.4
1. Soit A “ paijq PMnpRq la matrice carrée d’ordre n définie par

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu : aij “ 1.

Autrement dit, A est la matrice dont tous les coefficients sont égaux à 1. Nous allons montrer que

@k P N˚ : Ak
“ n k´1A.

Le résultat est vrai pour k “ 1, puisque

A1
“ A “ n 0A.

et de même pour k “ 2, car chaque coefficient de A2 est la somme de n produits de 1 par 1, donc
vaut n. Ainsi,

A2
“ nA.
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Supposons que pour un certain k ě 1, on ait

Ak
“ n k´1A.

Alors
Ak`1

“ A ¨ Ak
“ A ¨ pn k´1Aq “ n k´1

pA ¨ Aq “ n k´1
pnAq “ n kA.

Par le principe de récurrence, la formule est vraie pour tout entier k ě 1.
2. Soit B PM3pRq la matrice carrée d’ordre 3 définie par

B “

¨

˝

0 1 1
0 0 1
0 0 0

˛

‚.

Calculons ses premières puissances,

B0
“ I3, B

1
“ B,B2

“ B ¨B “

¨

˝

0 0 1
0 0 0
0 0 0

˛

‚, B3
“ B2

¨B “

¨

˝

0 0 0
0 0 0
0 0 0

˛

‚“ O3.

Ainsi, on constate que la suite des puissances de B s’annule à partir de l’exposant 3. On a donc

@k ě 3 : Bk
“ O3.

3. Puissance d’une matrice diagonale. Soit A “ paijq PMnpRq une matrice diagonale, c’est-à-dire

@i ­“ j : aij “ 0K,

et A s’écrit sous la forme

A “

¨

˚

˚

˚

˝

a11 0K ¨ ¨ ¨ 0K
0K a22 ¨ ¨ ¨ 0K
... ... . . . ...

0K 0K ¨ ¨ ¨ ann

˛

‹

‹

‹

‚

.

Considérons maintenant la puissance Ak pour un entier k P N. Comme le produit de deux matrices
diagonales est encore une matrice diagonale et sur la diagonale principale, chaque coefficient est
simplement multiplié par lui-même à chaque étape de la puissance. Ainsi, le coefficient situé en
position pi, iq devient ak

ii. On obtient donc

@k P N : Ak
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

ak
11 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K

0K ak
22 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0K

... ... . . . ... ... ...
0K 0K ¨ ¨ ¨ ak

ij ¨ ¨ ¨ 0K
... ... ... ... . . . ...

0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ ak
nn

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Autrement dit, si A est diagonale, alors Ak est aussi diagonale, et ses coefficients diagonaux sont les
puissances k´ièmes des coefficients diagonaux de A.

On vérifie facilement les propriétés suivantes.

Proposition 3.4.6 (Propriétés fondamentales des puissances matricielles) Soit A PMnpKq
une matrice carrée d’ordre n, alors
1. Produit de puissances (Addition des exposants),

@k1, k2 P N : Ak1 ¨ Ak2 “ Ak1`k2 .
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2. Puissance d’une puissance (Multiplication des exposants),

@k1, k2 P N :
`

Ak1
˘k2
“ Ak1k2 .

3. Puissance d’un multiple scalaire,

@α P K, @k P N : pα ¨ Aqk “ αk
¨ Ak.

4. Transposée d’une puissance (Commutativité avec la transposition),

@k P N :t
`

Ak
˘

“
`

tA
˘k
.

Définition 3.4.5 (Matrice nilpotente).
1. Soit A P MnpKq une matrice carrée d’ordre n. On dit que A est nilpotente s’il existe un entier
k P N˚ tel que

Ak
“ On,

où On désigne la matrice nulle d’ordre n.
2. Le plus petit entier k satisfaisant cette condition est appelé l’indice de nilpotence de A, et se note
νpAq,

νpAq “ mintk P N˚ : Ak
“ Onu.

Exemple 3.4.5
1. Soit

B “

¨

˝

0 1 0
0 0 1
0 0 0

˛

‚PM3pRq.

On a successivement

B2
“

¨

˝

0 0 1
0 0 0
0 0 0

˛

‚, B3
“

¨

˝

0 0 0
0 0 0
0 0 0

˛

‚“ O3.

Ainsi, B est nilpotente d’indice νpBq “ 3.
2. Toute matrice triangulaire stricte (supérieure ou inférieure) est nilpotente d’indice de nilpotence
inférieure ou égale à sa taille.

Formule du binôme de Newton . La formule du binôme de Newton est l’une des identités
les plus importantes en algèbre. Elle décrit la manière de développer une puissance d’une somme et
s’écrit, pour deux scalaires a et b, sous la forme

pa` bqm “
m
ÿ

k“0
Ck

ma
kbm´k,m P N.

Cette relation repose sur la commutativité de la multiplication des nombres réels ou complexes. Dans
le cadre matriciel, la multiplication n’est pas commutative en général, ce qui empêche d’appliquer
directement la formule du binôme. Néanmoins, lorsque deux matrices A et B commutent, c’est-à-dire
lorsque AB “ BA, elles se comportent de manière analogue aux scalaires pour le produit. Dans ce
cas particulier, la formule du binôme de Newton reste valable dans MnpKq. Elle permet alors de
développer pA ` Bqm comme une somme de termes de la forme AkBm´k, chacun pondéré par le
coefficient binomial correspondant.

Cette propriété joue un rôle essentiel dans de nombreux calculs matriciels, notamment pour les
matrices diagonales ou triangulaires, ainsi que dans l’étude des polynômes de matrices.
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Considérons deux matrices carrées A et B, toutes les deux d’ordre n. Commençons par développer
l’expression pA`Bq2. On a

pA`Bq2 “ pA`Bq ¨ pA`Bq “ A2
` AB `BA`B2.

Si on suppose que les matrices A et B commutent alors on a

pA`Bq2 “ A2
` 2AB `B2.

Poursuivons en développant l’expression pA`Bq3. On a

pA`Bq3 “ pA`Bq ¨ pA`Bq2 “ pA`Bq ¨ pA2
` AB `BA`B2

q

“ A3
` A2B ` ABA` AB2

`BA2
`BAB `B2A`B3.

Si on suppose que les matrices A et B commutent alors on a

pA`Bq3 “ A3
` 3A2B ` 3AB2

`B3.

Plus généralement, on a le résultat suivant qui se démontre par récurrence sur le même principe.

Définition 3.4.6 (Formule du binôme de Newton dans MnpKq)
Soient A et B deux matrice carrées deMnpKq. Si les matrices A et B commutent, autrement dit si
AB “ BA, alors

@m P N : pA`Bqm “
m
ÿ

k“0
Ck

mA
kBm´k

où
Ck

m “
m!

pm´ kq!k!
désigne le coefficient binomial.

Preuve. La démonstration repose sur un raisonnement par récurrence sur m P N. l

Exemple 3.4.6 Soit m P N, calculer la matrice Am où

A “

ˆ

1 1
0 1

˙

PM2pRq.

On observe que

A “

ˆ

1 0
0 1

˙

`

ˆ

0 1
0 0

˙

“ I2 `B,B “

ˆ

0 1
0 0

˙

.

Il est clair que
B2
“ O2.

@k ě 2 : Bk
“ O2.

Comme I2 et B commutent (I2B “ BI2 “ B), on peut appliquer la formule du binôme

Am
“ pI2 `Bq

m
“

m
ÿ

k“0
Ck

mB
kIm´k

2 “

1
ÿ

k“0
Ck

mB
k
“ I2 `mB.

car dans la somme le terme Bk est nul si k ě 2. On a donc

Am
“

ˆ

1 0
0 1

˙

`m

ˆ

0 1
0 0

˙

“

ˆ

1 m
0 1

˙

.
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3.4.4.1 Inverse d’une matrice carrée

L’inverse d’une matrice carrée est une notion importante en algèbre linéaire. On peut la comparer
à l’inverse d’un nombre. Par exemple, pour un nombre non nul, il existe un autre nombre qui, multiplié
par le premier, donne un. De la même manière, une matrice carrée est dite inversible lorsqu’il existe
une autre matrice qui, multipliée par elle, donne la matrice identité.

L’inverse d’une matrice est très utile, car il permet de résoudre des systèmes d’équations linéaires,
de changer de base et d’étudier les applications mathématiques plus complexes.

Définition 3.4.7 (Inverse d’une matrice carrée)
Soit A PMnpKq une matrice carrée d’ordre n.
1. On dit que la matrice A est inversible (ou non-singulière, régulière) si et seulement s’il existe une
matrice B PMnpKq telle que

A ¨B “ B ¨ A “ In,

où In est la matrice identité d’ordre n.
2. Si A est inversible, alors B est unique et est appelée inverse de A, notée B “ A´1.
3. L’ensemble des matrices inversibles deMnpKq est noté GLnpKq.

Exemple 3.4.7 1. Soit la matrice

A “

ˆ

2 3
1 2

˙

PM2pRq.

Cette matrice est inversible, car il existe une matrice

B “

ˆ

2 ´3
´1 2

˙

PM2pRq,

tel que
AB “ BA “ I2.

L’inverse de A est donc
A´1

“ B “

ˆ

2 ´3
´1 2

˙

.

2. Soit A “ paijq PMnpKq une matrice diagonale, c’est-à-dire que

@i ­“ j : aij “ 0K,

Alors, A est inversible si et seulement si tous ses éléments diagonaux sont non nuls

@i P t1, 2, ..., nu : aii ­“ 0K,

Dans ce cas, l’inverse de A, noté A´1 , est également une matrice diagonale où les éléments diagonaux
sont les inverses des éléments diagonaux de A,

A´1
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

a´1
11 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K

0K a´2
22 ¨ ¨ ¨ 0K ¨ ¨ ¨ 0K

... ... . . . ... ... ...
0K 0K ¨ ¨ ¨ a´1

ij ¨ ¨ ¨ 0K
... ... ... ... . . . ...

0K 0K ¨ ¨ ¨ 0K ¨ ¨ ¨ a´1
nn

˛

‹

‹

‹

‹

‹

‹

‹

‚

.
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Remarque 3.4.4 Soit A PMnpKq une matrice carrée d’ordre n. Alors les trois assertions suivantes
sont équivalentes :
1. A est inversible à gauche ; c’est-à-dire qu’il existe B PMnpKq telle que BA “ In

2. A est inversible à droite ; c’est-à-dire qu’il existe C PMnpKq telle que AC “ In.
3. A est inversible.
Ainsi, pour une matrice carrée, le fait d’être inversible à gauche ou à droite implique nécessairement
l’existence d’un inverse unique, qui joue simultanément le rôle d’inverse à gauche et d’inverse à
droite. En d’autres termes, l’inversibilité unilatérale suffit à assurer l’inversibilité complète.

Proposition 3.4.7
1. Inverse de l’inverse. Si une matrice A P MnpKq est inversible alors sa matrice inverse est
elle-même inversible et

`

A´1˘´1
“ A.

2. Inverse d’un produit. Si A,B PMnpKq sont deux matrices inversibles, alors la matrice produit
A ¨B est inversible et son inverse, la matrice pA ¨Bq´1 est donnée par

pA ¨Bq´1
“ B´1

¨ A´1.

3. Transposée d’une matrice inversible. Si une matrice A P MnpKq est inversible alors sa
matrice transposée est elle-même inversible et l’inverse de la transposée de A est donné par

t
`

A´1˘
“
`

tA
˘´1

.

4. Puissances négatives. Pour toute matrice inversible A deMnpKq et tout entier m ě 0, on a

A´m
“
`

A´1˘m
.

5. Loi des exposants. Pour tout m, k P Z, si A PMnpKq est inversible, on a

Am`k
“ Am

¨ Ak.

Autrement dit l’application n ÞÝÑ An est un morphisme de groupes pZ,`q Ñ pGLnpKq, ¨q.

Preuve. On remarque, si A PMnpKq admet à la fois un inverse à gauche B (i.e. BA “ In) et un
inverse à droite C (i.e. AC “ In), alors B “ C. En effet

B “ BpACq “ pBAqC “ IC “ C.

Ainsi, lorsqu’une matrice carrée possède un inverse à gauche et un inverse à droite, ces inverses sont
égaux : on parle de l’inverse unique A´1.
1. Par définition de l’inverse, on a

AA´1
“ A´1A “ In.

Donc A est à la fois un inverse à gauche et un inverse à droite de A´1. Par unicité de l’inverse,
l’inverse de A´1 est A. Autrement dit pA´1q´1 “ A.
2. Posons

C “ B´1A´1.

Calculons
pABqC “ ApBB´1

qA´1
“ AInA

´1
“ AA´1

“ In,

et de même
CpABq “ B´1

pA´1AqB “ B´1InB “ B´1B “ In.
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Ainsi C est à la fois inverse à gauche et inverse à droite de AB. Par unicité de l’inverse,

C “ pABq´1.

Donc
pABq´1

“ B´1A´1.

(on a utilisé l’associativité de la multiplication matricielle et l’identité BB´1 “ In, etc.)
3. Pour toutes matrices X, Y de dimensions compatibles,

t
pXY q “t Y tX.

En particulier, si A est inversible avec A´1, on a

p
tAqtpA´1

q “
t
pA´1Aq “t In “ In,

et aussi
t
pA´1

q p
tAq “t

pAA´1
q “

t In “ In.

Donc tpA´1q est inverse à gauche et à droite de tA, d’où1

p
tAq´1

“
t
pA´1

q.

4. Pour m “ 0 la formule est vraie (les deux membres valent In). Pour m ě 1, notons d’abord que A
et A´1 commutent, en effet

AA´1
“ A´1A “ In.

On montre par récurrence que si X et Y commutent alors pXY qm “ XmY m ; en appliquant cela à
X “ A et Y “ A´1 on obtient

In “ pAA
´1
q

m
“ Am

pA´1
q

m.

De même
pA´1

q
mAm

“ In.

Ainsi pA´1qm est l’inverse de Am, donc

pAm
q
´1
“ pA´1

q
m.

Par définition
A´m

“ pAm
q
´1,

d’où
A´m

“ pA´1
q

m.

5. On définit les puissances entières de A par
$

&

%

A0 “ In,
pour n ą 0 : An “ A ¨ A ¨ ... ¨ A (n facteurs),
pour n ă 0 : An “ pA´1q´n.

On raisonne par analyse de cas.
(a) Cas m, k ě 0. C’est la loi usuelle des puissances d’un entier naturel, démontrée par récurrence

Am`k
“ AmAk.

(b) Cas m, k ď 0. Écrivons m “ ´p, k “ ´q avec p, q ě 0. Alors

Am`k
“ A´pp`qq

“ pA´1
q

p`q
“ pA´1

q
p
pA´1

q
q
“ AmAk.
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(c) Cas m ě 0, k ă 0. Posons k “ ´p avec p ą 0. On veut montrer que

Am´p
“ AmA´p.

• Si m ě p, posons r “ m´ p ě 0. Alors

AmA´p
“ Ap`rA´p

“ pArAp
qA´p

“ Ar
pApA´p

q “ ArIn “ Ar
“ Am´p.

(On a utilisé que les puissances de A commutent entre elles.)
• Si m ă p, posons s “ p´m ą 0. Alors

AmA´p
“ AmA´pm`sq

“ pAmA´m
qA´s

“ InA
´s
“ A´s

“ Am´p.

Dans les deux sous-cas on obtient
AmAk

“ Am`k.

(d) Cas m ă 0, k ě 0. Symétrique du cas précédent.
Ces cas couvrent toutes les possibilités pour m et k. On conclut donc que

Am`k
“ AmAk : @m, k P Z.

l

Proposition 3.4.8 L’ensemble GLnpKq des matrices inversibles deMnpKq, muni de la multiplica-
tion matricielle, forme un groupe, appelé groupe linéaire général d’ordre n sur K.

Preuve. Il faut vérifier les quatre axiomes d’un groupe pour l’ensemble G “ GLnpKq muni de la
loi ¨ : fermeture, associativité, élément neutre et existence d’inverses.
1. Fermeture. Si A,B P GLnpKq alors A et B sont inversibles. On vérifie que le produit AB est
inversible et que son inverse est B´1A´1, en effet

pABq ¨ pB´1A´1
q “ ApBB´1

qA´1
“ AInA

´1
“ AA´1

“ In,

et de même
pB´1A´1

qpABq “ In.

Donc AB P GLnpKq. Ainsi GLnpKq est stable par multiplication.
2. Existence d’un élément neutre. La matrice identité In appartient à GLnpKq (c’est son propre
inverse). Pour toute A PMnpKq on a

InA “ AIn “ A.

Donc In est l’élément neutre de la loi de multiplication.
3. Associativité. La multiplication de matrices est associative surMnpKq : pour toutes A,B,C P
MnpKq,

pABqC “ ApBCq.

Cette propriété est héritée de la définition du produit matriciel (ou se vérifie par calcul des compo-
santes). Par conséquent l’associativité tient sur GLnpKq aussi.
4. Existence des inverses. Par définition d’éléments de GLnpKq, chaque A P GLnpKq possède
un inverse A´1 PMnpKq. Il reste à noter que cet inverse appartient lui-même à GLnpKq (puisqu’il
possède pour inverse A). L’inverse est unique : si B et C sont deux inverses de A, alors

B “ BpACq “ pBAqC “ InC “ C.
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Ainsi les quatre axiomes d’un groupe sont satisfaits, donc pGLnpKq, ¨q est un groupe. l

Le rang d’une matrice représente le nombre maximal de lignes ou de colonnes linéairement indé-
pendantes, ce qui correspond à la dimension de l’espace vectoriel engendré par ces lignes ou colonnes.
Cette notion joue un rôle essentiel dans l’étude des systèmes d’équations linéaires, car elle permet de
déterminer si un système admet une solution, et combien de solutions il peut avoir.

La notion de rang a déjà été définie pour une famille finie de vecteurs. Cela nous avait alors
permis de définir le rang d’une application linéaire f : E ÝÑ F comme la dimension du sous-espace
Impfq de F , à la condition que E soit de dimension finie.

Nous définissons maintenant le rang d’une matrice rectangulaire.

Définition 3.4.8 Soit A “ paijq P MnpKq une matrice de taille pm,nq à coefficients dans K. On
appelle rang de A, et on le note rgpAq ou rangpAq, le rang de la famille de ses vecteurs colonnes,
ou de manière équivalente, le rang de la famille de ses vecteurs lignes. Ainsi, on a

rgpAq “ rgpC1, C2, . . . , Cnq “ rgpL1, L2, . . . , Lmq,

où C1, C2, . . . , Cn désignent les colonnes de A et L1, L2, . . . , Lm ses lignes. En d’autres termes, le rang
d’une matrice correspond au nombre maximal de colonnes ou de lignes linéairement indépendantes.

Exemple 3.4.8
1. Considérons la matrice A PM3,2pRq

A “

¨

˝

2 2
4 0
0 1

˛

‚.

Ses colonnes sont

C1 “

¨

˝

2
4
0

˛

‚, C2 “

¨

˝

2
0
1

˛

‚.

Ces deux colonnes correspondent aux vecteurs

c1 “ p2, 4, 0q, c2 “ p2, 0, 1q P R3.

Comme ces deux vecteurs sont linéairement indépendants dans R3, la famille tC1, C2u est libre. On
en déduit que le rang de A est

rgpAq “ 2.

On a le résultat suivant.

Proposition 3.4.9
1. Soit A “ paijq PMm,npKq, alors
(a) Le rang de A vérifie

rgpAq ď min tm,nu .
(b) Le rang de A est égal au rang de sa transposée,

rgpAq “ rgptAq.

(c) Le rang de A est nul si et seulement si A est la matrice nulle,

rgpAq “ 0 ðñ A “ Om,n.

2. Soit A “ paijq P MnpKq une matrice carrée d’ordre n, alors A est inversible si et seulement
rgpAq “ n.
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Le rang d’une matrice est invariant par multiplication à gauche ou à droite par une matrice
inversible. Autrement dit, multiplier une matrice par une matrice inversible (que ce soit à gauche ou
à droite) ne modifie pas son rang.

Proposition 3.4.10 Soit A “ paijq P Mm,npKq une matrice rectangulaire de type pm,nq à coeffi-
cients dans K. Alors
1. Si B P GLmpKq alors

rgpB ¨ Aq “ rgA.

2. Si C P GLnpKq alors
rgpA ¨ Cq “ rgA.

3. Si B P GLmpKq et C P GLnpKq alors

rgpB ¨ A ¨ Cq “ rgA.

3.5 Opérations élémentaires sur les lignes et les colonnes
d’une matrice

Dans l’étude des matrices et la résolution des systèmes d’équations linéaires, il est souvent néces-
saire de transformer une matrice afin de la simplifier, tout en conservant certaines de ses propriétés
fondamentales comme le rang ou l’ensemble des solutions associées. Pour cela, on utilise ce que l’on
appelle les opérations élémentaires sur les lignes et les colonnes. Ces opérations consistent à modifier
une matrice de manière simple et réversible. Elles sont de trois types : échanger deux lignes (ou deux
colonnes), multiplier une ligne (ou une colonne) par un nombre non nul, ou encore ajouter à une
ligne (ou à une colonne) un multiple d’une autre. Ces transformations, bien que très simples, sont à
la base de méthodes puissantes comme la réduction des matrices par la méthode du pivot de Gauss,
et permettent d’étudier efficacement les propriétés des matrices et des systèmes linéaires.

Définition 3.5.1 Soient m,n ě 2 deux entiers (c’est-à-dire pm,nq P Nzt0, 1u2), et soit A “ paijq P

Mm,npKq.
1. On appelle opérations élémentaires sur les colonnes de A (abrégé : OEC) les transformations
suivantes :
(a) Permutation de deux colonnes : Échange entre elles de deux colonnes de A, c’est-à-dire
pour i ­“ j, on effectue l’opération

Ci Ø Cj.

(b) Multiplication d’une colonne par un scalaire non nul : Remplacement d’une colonne Cj

de A par α ¨ Cj où α P K˚, c’est-à-dire

Cj ÐÝ α ¨ Cj.

(c) Addition d’une colonne à une autre : Remplacement d’une colonne Cj de A par une
combinaison linéaire de colonnes Cj et Ck où j ­“ k, c’est-à-dire

Cj ÐÝ α ¨ Cj ` βCk, α, β P K˚.

2. Opérations élémentaires sur les lignes (abrégé : OEL). De manière analogue, on définit
les opérations élémentaires sur les lignes de A, qui suivent les mêmes principes que celles définies
pour les colonnes (qui sont les opérations élémentaires sur les colonnes de la transposée de A). Elles
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consistent à :
(a) Echage entre elles de deux lignes

Li Ø Lj, i ­“ j.

(b) Multiplication d’une ligne par un scalaire non nul λ P K˚ ;

Li ÐÝ λ ¨ Li.

(c) Remplacement d’une ligne Li de A par une combinaison linéaire de lignes Li et Lk où i ­“ k,
α, β P K˚, c’est-à-dire

Li ÐÝ α ¨ Li ` β ¨ Lk.

Remarque 3.5.1 Les opérations élémentaires sur les lignes ou les colonnes d’une matrice ne changent
pas son rang. Autrement dit, si B PMm,npKq se déduit de A PMm,npKq par une suite d’opérations
élémentaires, alors

rgpAq “ rgpBq.

Exemple 3.5.1 Soit A PM3pRq la matrice carrée d’ordre 3 définie par

A “

¨

˝

1 2 4
1 3 8
1 4 16

˛

‚.

On effectue les opérations élémentaires sur les ligne de A suivantes

L2 ÐÝ L2 ´ L1 (On remplace la ligne 2 par la différence entre la ligne 2 et de la ligne 1)
L3 ÐÝ L3 ´ L1 (On remplace la ligne 3 par la différence entre la ligne 3 et de la ligne 1)

On obtient

A1 “

¨

˝

1 2 4
0 1 4
0 2 12

˛

‚.

Ensuite, on applique l’opération suivante

L3 ÐÝ L3 ´ 2L2 (On remplace la ligne 3 par la combinaison linéaire L3 ´ 2L2)

Ce qui nous permet d’obtenir la matrice

A2 “

¨

˝

1 2 4
0 1 4
0 0 4

˛

‚.

Il s’agit d’une matrice triangulaire supérieure.

3.6 Matrices d’une famille de vecteurs, et d’une application
linéaire

Dans un espace vectoriel, on peut représenter les vecteurs et les applications linéaires à l’aide de
matrices. Cela permet de passer d’objets abstraits à des calculs concrets. La matrice d’une famille
de vecteurs est construite en choisissant une base de l’espace. Chaque vecteur de la famille s’écrit
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alors comme combinaison des vecteurs de cette base. Les coefficients obtenus sont placés dans une
colonne de la matrice. Ainsi, la matrice rassemble tous les vecteurs de la famille et permet de savoir,
par exemple, s’ils sont liés ou indépendants.

De la même façon, une application linéaire peut être représentée par une matrice. Pour cela, on
choisit une base dans l’espace de départ et une base dans l’espace d’arrivée. On calcule ensuite l’image
de chaque vecteur de la base de départ, et on écrit cette image dans la base d’arrivée. Les coordonnées
trouvées forment les colonnes de la matrice de l’application. Grâce à cette représentation, appliquer
l’application linéaire à un vecteur revient simplement à faire un produit matriciel.

3.6.1 Matrice d’une famille de vecteurs relativement à une base

Dans un espace vectoriel, la notion de base joue un rôle essentiel : elle permet de décrire chaque
vecteur à l’aide de coordonnées. Ces coordonnées indiquent comment un vecteur se construit à partir
des vecteurs de la base. En les disposant les unes sous les autres, on obtient la matrice d’un vecteur
relativement à cette base, qui n’est autre qu’un vecteur-colonne.

Lorsqu’on considère plusieurs vecteurs à la fois, on peut regrouper leurs coordonnées dans un seul
tableau. Chaque vecteur fournit alors une colonne, et l’ensemble de ces colonnes forme la matrice
de la famille de vecteurs relativement à la base choisie. Cette matrice permet d’étudier la famille de
manière compacte et efficace, notamment pour déterminer si les vecteurs sont indépendants ou non.

Ainsi, la matrice d’un vecteur traduit sa position dans une base donnée, tandis que la matrice
d’une famille rassemble en une seule écriture les coordonnées de plusieurs vecteurs. Ces représenta-
tions facilitent l’analyse et les calculs en algèbre linéaire.

Définition 3.6.1 (Matrice d’un vecteur relativement à une base)
Soit E un K´espace vectoriel de dimension finie m, et soit B “ te1, e2, . . . , emu une base de E. Un
vecteur v P E peut toujours s’écrire de manière unique comme une combinaison linéaire des vecteurs
de la base

v “ x1e1 ` x2e2 ` ¨ ¨ ¨ ` xmem,

où les scalaires x1, x2, . . . , xm P K sont appelés les coordonnées de v dans la base B.
(a) On appelle matrice du vecteur v relativement à la base B, et l’on note Mat

B
pvq, la matrice colonne

formée par ses coordonnées

Mat
B
pvq “

¨

˚

˚

˚

˝

x1
x2
...
xm

˛

‹

‹

‹

‚

PMm,1pKq.

(b) Lorsque A “Mat
B
pvq, on dit que A est la représentation matricielle du vecteur v dans la base B.

Exemple 3.6.1 Considérons l’espace vectoriel R3 muni de sa base canonique B “ te1, e2, e3u. Soit
le vecteur v “ p1,´2, 3q P R3. Ses coordonnées dans la base canonique sont naturellement données
par les composantes du vecteur 1, ´2 et 3. La matrice de v relativement à la base B est donc

Mat
B
pvq “

¨

˝

1
´2
3

˛

‚PM3,1pRq.

Autrement dit, le vecteur x est représenté dans la base canonique par la matrice colonne ci-dessus.
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Définition 3.6.2 (Matrice d’une famille de vecteurs relativement à une base) Soit E un
espace vectoriel de dimension finie m sur un corps K, et soit B “ te1, e2, ..., emu une base de E.
Considérons une famille de vecteurs tv1, v2, ..., vnu appartenant à E. Chaque vecteur vj de la famille
peut être exprimé de manière unique comme combinaison linéaire des vecteurs de la base

@j P t1, 2, ..., nu : vj “

m
ÿ

i“1
aijei,

où les scalaires a1j, a2j, . . . , amj sont appelés les coordonnées de vj dans la base B. On appelle matrice
de la famille tv1, v2, ..., vnu relativement à la base B, et on la note

Mat
B
pv1, v2, ..., vnq,

la matrice deMm,npKq obtenue en disposant dans chaque colonne les coordonnées d’un vecteur de la
famille. Ainsi, la j ´ ème colonne correspond exactement aux coordonnées de vj dans la base B. On
a donc

A “Mat
B
pv1, v2, ..., vnq “

v1 v2 ¨ ¨ ¨ vj ¨ ¨ ¨ vn
¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... . . . ... ...
ai1 ai2 ¨ ¨ ¨ aij ¨ ¨ ¨ ain
... ... ... . . . ...
am1 am2 ¨ ¨ ¨ amj ¨ ¨ ¨ amn

˛

‹

‹

‹

‹

‹

‹

‹

‚

e1
e2
...
ei
...
em

.

Remarque 3.6.1
1. Si la famille se réduit à un seul vecteur (n “ 1), on retrouve la définition de la matrice-colonne
d’un vecteur relativement à une base.
2. Cette représentation matricielle permet d’étudier facilement les propriétés de la famille, comme
l’indépendance linéaire, l’engendrement ou la recherche d’un système de vecteurs de base.

Exemple 3.6.2 On travaille dans R3 muni de la base canonique B “ te1, e2, e3u. Soient les vecteurs

v1 “ p´1, 3, 0q, v2 “ p0,´1, 5q, v3 “ p´3, 2, 1q, v4 “ p1, 0,´1q.

La matrice de la famille tv1, v2, v3, v4u relativement à la base canonique s’écrit en assemblant les
coordonnées de chaque vecteur en colonne

A “Mat
B
pv1, v2, v3, v4q “

¨

˚

˝

´1 0 ´3 1
3 ´1 2 0
0 5 1 ´1

˛

‹

‚

.

Proposition 3.6.1 (Propriétés de la matrice d’une famille de vecteurs). Soit E un K´espace
vectoriel de dimension m, B “ te1, . . . , emu une base de E, et tv1, v2, . . . , vnu Ă E une famille de
vecteurs de E. On note

A “Mat
B
pv1, v2, . . . , vnq PMm,npKq,

la matrice dont les colonnes sont les coordonnées des vj dans la base B. Alors les propriétés suivantes
sont vérifiées
1. Somme de familles de vecteurs. Si tu1, u2, . . . , unu Ă E est une autre famille, alors

Mat
B
pv1 ` u1, . . . , vn ` unq “Mat

B
pv1, . . . , vnq `Mat

B
pu1, . . . , unq.
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Autrement dit, la matrice de la somme se déduit par addition des matrices colonnes.
2. Multiplication par un scalaire. Pour tout λ P K,

Mat
B
pλv1, . . . , λvnq “ λ ¨Mat

B
pv1, . . . , vnq.

Autrement dit, multiplier chaque vecteur par λ revient à multiplier toute la matrice par λ.

Preuve. Soit E un espace vectoriel de dimension m sur un corps K, et B “ te1, . . . , emu une base
de E. Considérons deux familles de vecteurs

tv1, . . . , vnu Ă E, tu1, . . . , unu Ă E,

et un scalaire λ P K. On note les matrices associées

A “Mat
B
pv1, . . . , vnq, U “Mat

B
pu1, . . . , unq.

Chaque vecteur s’écrit en coordonnées dans la base B, pour chaque j P t1, ..., nu

vj “

m
ÿ

i“1
aijei, uj “

m
ÿ

i“1
bijei,

où aij, bij P K.
1. Somme de familles de vecteurs. On considère la famille

tv1 ` u1, . . . , vn ` unu.

Pour chaque j, on a

vj ` uj “

m
ÿ

i“1
aijei `

m
ÿ

i“1
bijei “

m
ÿ

i“1
paij ` bijqei.

Ainsi, les coordonnées de vj ` uj dans la base B sont aij ` bij.
La matrice associée est donc

Mat
B
pv1 ` u1, . . . , vn ` unq “

¨

˚

˝

a11 ` b11 ¨ ¨ ¨ a1n ` b1n
... . . . ...

am1 ` bm1 ¨ ¨ ¨ amn ` bmn

˛

‹

‚

.

Mais ceci n’est rien d’autre que la somme des matrices A` U ,

Mat
B
pv1 ` u1, . . . , vn ` unq “ A` U.

Ce qui prouve la propriété pour la somme.
2. Multiplication par un scalaire. Considérons la famille

tλv1, . . . , λvnu.

Pour chaque j, on a

λvj “ λ

˜

m
ÿ

i“1
aijei

¸

“

m
ÿ

i“1
pλaijqei.

Donc les coordonnées de λvj sont λaij. La matrice associée est

Mat
B
pλv1, . . . , λvnq “

¨

˚

˝

λa11 ¨ ¨ ¨ λa1n
... . . . ...

λam1 ¨ ¨ ¨ λamn

˛

‹

‚

“ λA.

Ce qui prouve la propriété pour la multiplication par un scalaire. l
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Exemple 3.6.3
1. Somme de familles de vecteurs. Soit E “ R3 avec la base canonique B “ te1, e2, e3u, et deux
familles de vecteurs

v1 “ p1, 2, 0q , v2 “ p0, 1, 3q , u1 “ p2, 0, 1q , u2 “ p´1, 1, 1q .

Les matrices associées à ces familles sont

Mat
B
pv1, v2q “

¨

˝

1 0
2 1
0 3

˛

‚,Mat
B
pu1, u2q “

¨

˝

2 ´1
0 1
1 1

˛

‚.

On calcule la somme des vecteurs correspondants

v1 ` u1 “ p3, 2, 1q , v2 ` u2 “ p´1, 2, 4q .

La matrice de la somme est donc

Mat
B
pv1 ` u1, v2 ` u2q “

¨

˝

3 ´1
2 2
1 4

˛

‚.

Vérification par addition des matrices

Mat
B
pv1, v2q `Mat

B
pu1, u2q “

¨

˝

1 0
2 1
0 3

˛

‚`

¨

˝

2 ´1
0 1
1 1

˛

‚“

¨

˝

3 ´1
2 2
1 4

˛

‚.

Propriété confirmée la matrice de la somme correspond à la somme des matrices.
2. Multiplication par un scalaire. Soit λ “ 2 P R et la famille de vecteurs

v1 “ p1,´1, 0q , v2 “ p2, 0, 1q .

Donc la matrice associée à cette famille est

Mat
B
pv1, v2q “

¨

˝

1 2
´1 0
0 1

˛

‚.

On multiplie chaque vecteur par λ “ 2,

2v1 “ p2,´2, 0q , 2v2 “ p4, 0, 2q .

La matrice associée à cette nouvelle famille est

Mat
B
p2v1, 2v2q “

¨

˝

2 4
´2 0
0 2

˛

‚“ 2 ¨

¨

˝

1 2
´1 0
0 1

˛

‚“ 2 ¨Mat
B
pv1, v2q.

Propriété confirmée : la multiplication des vecteurs par un scalaire se traduit par la multiplication
de la matrice par le même scalaire.

Remarque 3.6.2 Mat
B
pxq représente les coordonnées du vecteur x dans la base B. Il y a bien sûr une

correspondance biunivoque entre les vecteurs de E et les matrices colonnes de taille n (qui contiennent
les composantes de ces vecteurs dans une base fixée). De plus, « effectuer des calculs avec ces vecteurs»
correspond à « effectuer des calculs avec ces matrices ». C’est le sens de la proposition suivante.
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Proposition 3.6.2 Soit E un K-espace vectoriel de dimension n et soit B une base de E. L’appli-
cation

f : E ÝÑ Mn,1pKq
x ÞÝÑ fpxq “Mat

B
pxq,

qui à un vecteur associe la matrice colonne de ses coordonnées dans la base B est un isomorphisme
de K-espaces vectoriels. En particulier, tout K´espace vectoriel de dimension n est isomorphe à
Mn,1pKq.

Preuve.
Étape 1 : Montrons la linéarité de f . Soient x, y P E et λ P K. Écrivons leurs coordonnées dans
la base B,

x “
n
ÿ

i“1
xiei, y “

n
ÿ

i“1
yiei, xi, yi P K.

Alors
x` y “

n
ÿ

i“1
pxi ` yiqei.

Par définition de Mat
B

,

Mat
B
px` yq “

¨

˚

˝

x1 ` y1
...

xn ` yn

˛

‹

‚

“

¨

˚

˝

x1
...
xn

˛

‹

‚

`

¨

˚

˝

y1
...
yn

˛

‹

‚

“Mat
B
pxq `Mat

B
pyq.

De même, pour tout scalaire λ P K

Mat
B
pλ ¨ xq “

¨

˚

˝

λx1
...

λxn

˛

‹

‚

“ λ ¨

¨

˚

˝

x1
...
xn

˛

‹

‚

“ λ ¨Mat
B
pxq.

Donc f est linéaire.
Étape 2 : Montrons la bijectivité de f .
(a) Injectivité. Si x P kerpfq, alors

Mat
B
pxq “ 0n,1 ùñ x1 “ x2 “ ¨ ¨ ¨ “ xn “ 0K ùñ x “ 0E.

Donc f est injective.
(b) Surjectivité. On sait que

dimpEq “ n “ dimpMn,1pKqq.

Une application linéaire entre deux espaces de même dimension, injective, est automatiquement
surjective. Donc f est bijective, donc un isomorphisme. l

3.6.2 Matrice d’une application linéaire dans des bases finies

Après avoir vu comment représenter une famille de vecteurs par une matrice, on peut maintenant
élargir cette idée aux applications linéaires. De la même façon qu’un vecteur est décrit par ses
coordonnées dans une base, une application linéaire peut être représentée par une matrice une fois que
l’on a choisi une base dans l’espace de départ et une base dans l’espace d’arrivée. Cette représentation
permet de transformer l’étude d’applications linéaires abstraites en calculs matriciels concrets et
pratiques.
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Définition 3.6.3 (Matrice d’une application linéaire relativement à deux bases)
Soient E un K´espace vectoriel de dimension n muni d’une base BE “ te1, e2, ..., enu, F un K´espace
vectoriel de dimension m muni d’une base BF “ tw1, w2, ..., wmu et f P LKpE,F q une application
linéaire de E dans F . Alors
1. On appelle matrice associée à f relativement aux bases BE et BF et on la note Mat

BE ,BF

pfq PMm,npKq
la matrice de type pm,nq sur K dont la j´ème colonne est formée par les coordonnées de fpejq l’image
du j´ième vecteur ej de la base de départ BE par rapport à la base d’arrivée BF . On note alors

A “ Mat
BE ,BF

pfq “

fpe1q fpe2q ¨ ¨ ¨ fpejq ¨ ¨ ¨ fpenq
¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... . . . ... ...
ai1 ai2 ¨ ¨ ¨ aij ¨ ¨ ¨ ain
... ... ... . . . ...
am1 am2 ¨ ¨ ¨ amj ¨ ¨ ¨ amn

˛

‹

‹

‹

‹

‹

‹

‹

‚

w1
w2
...
wi
...
wm

.

Telle que, pour tout j P t1, 2, ..., nu, pa1j, a2j, ..., amjq les coordonnées de fpejq dans la base BF ,
c’est-à-dire

@j P t1, 2, ..., nu : fpejq “

m
ÿ

i“1
aijwi.

Autrement dit chaque colonne correspond à l’image d’un vecteur de la base BE exprimée dans la base
BF . On dit que la matrice Mat

BE ,BF

pfq représente f dans les bases BE et BF .
2. En particulier, si E “ F et BE “ BF , on dit que

A “Mat
BE

pfq PMnpKq,

est la matrice de f dans la base BE.
3. Si f “ IdE est l’application identité sur E, alors

Mat
BE

pIdEq “ In,

où In est la matrice identité d’ordre n.

Remarque 3.6.3 Lorsque l’on écrit Mat
BE ,BF

pfq P Mm,npKq, l’ordre des deux indices m et n dans
Mm,npKq est inversé par rapport à l’ordre des deux bases BE et BF dans Mat

BE ,BF

pfq. Le premier indice
(ici m) correspond à la dimension de l’espace d’arrivée (ici F ) et le second (ici n) à la dimension
de l’espace de départ (ici E). Cette notation est, certes, malheureuse mais il s’agit de la notation
usuelle.

Exemple 3.6.4
1. Considérons E “ R2 avec la base canonique BE “ te1, e2u, F “ R3 avec la base canonique
BF “ tw1, w2, w3u, et l’application linéaire f : R2 ÝÑ R3 définie par

fpx, yq “ px` y, 2x, yq.

Pour construire la matrice associée à f , on calcule l’image des vecteurs de la base de départ et on
écrit ces images dans la base d’arrivée

fpe1q “ fp1, 0q “ p1, 2, 0q “ 1w1 ` 2w2 ` 0w3

fpe2q “ fp0, 1q “ p1, 0, 1q “ 1w1 ` 0w2 ` 1w3.
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On place ces coordonnées dans les colonnes de la matrice

A “ Mat
BR2 ,BR3

pfq “

¨

˝

1 1
2 0
0 1

˛

‚PM3,2pRq.

Ainsi, la première colonne correspond à fpe1q, et la deuxième colonne correspond à fpe2q. Cette
matrice représente complètement l’application linéaire f dans les bases choisies et permet de calculer
facilement fpx, yq pour tout vecteur px, yq P R2 via un produit matriciel.
2. Soit E “ F “ R2rXs, l’espace des polynômes réels de degré ď 2, muni de la base canonique
B “ t1, X,X2u, et soit f : R2rXs ÝÑ R2rXs définie par

fpP q “ P 1.

On calcule l’image des vecteurs de base

fp1q “ 0 “ 0 ¨ 1` 0 ¨X ` 0 ¨X2,

fpXq “ 1 “ 1 ¨ 1` 0 ¨X ` 0 ¨X2,

fpX2
q “ 2X “ 0 ¨ 1` 2 ¨X ` 0 ¨X2.

On place ces coordonnées en colonnes

A “Mat
B
pfq “

¨

˝

0 1 0
0 0 2
0 0 0

˛

‚PM3pRq.

3.6.2.1 Écriture matricielle d’une égalité vectorielle

L’intérêt de connaître la matrice associée à une application linéaire f : E ÝÑ F (relativement
à deux bases BE et BF ) est de pouvoir réécrire une égalité vectorielle de la forme y “ fpxq sous la
forme d’une égalité matricielle. Considérons la matrice A “ paijq PMm,npKq associée à l’application
linéaire f relativement aux bases BE et BF , c’est-à-dire

A “ Mat
BE ,BF

pfq.

Décomposons le vecteur x P E et son image y P F par f dans leurs bases respectives BE “ pejq1ďjďn

et BF “ pe
1
iq1ďiďm,

x “
n
ř

j“1
xjej, y “

m
ř

i“1
yie

1
i,

et cherchons à exprimer chacune des coordonnées y1, y2, . . . , ym du vecteur y en fonction des coor-
données x1, x2, . . . , xn du vecteur x. Pour cela, commençons par calculer fpxq. On a

fpxq “ f

˜

n
ÿ

j“1
xjej

¸

“

n
ÿ

j“1
xjfpejq “

n
ÿ

j“1

˜

xj

m
ÿ

i“1
aije

1
i

¸

,

puisque pour j “ 1, 2, . . . , n,

fpejq “

m
ÿ

i“1
aije

1
i.

Par conséquent,
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fpxq “
n
ÿ

j“1

˜

m
ÿ

i“1
xjaije

1
i

¸

“

m
ÿ

i“1

˜

n
ÿ

j“1
xjaije

1
i

¸

“

m
ÿ

i“1

˜

n
ÿ

j“1
aijxj

¸

e1i.

Nous en déduisons l’équivalence suivante

y “ fpxq ðñ
m
ÿ

i“1
yie

1
i “

m
ÿ

i“1

˜

n
ÿ

j“1
aijxj

¸

e1i.

Par identification des coordonnées (la décomposition d’un vecteur dans une base étant unique), on
obtient

@i P t1, 2, . . . ,mu : yi “

n
ÿ

j“1
aijxj,

c’est-à-dire
$

’

’

’

’

&

’

’

’

’

%

y1 “ a11x1 ` a12x2 ` . . .` a1nxn

y2 “ a21x1 ` a22x2 ` . . .` a2nxn

...
ym “ am1x1 ` am2x2 ` . . .` amnxn.

Ces relations se nomment équations (ou représentation analytique) de f relativement à BE et BF .
Ainsi, en notant X la matrice-colonne constituée des coordonnées x1, x2, . . . , xn du vecteur x dans la
base BE,

X PMn,1pKq,

et en notant Y la matrice-colonne constituée des coordonnées y1, y2, . . . , ym du vecteur y dans la base
BF ,

Y PMm,1pKq,

le système d’équations linéaires précédent s’écrit sous la forme matricielle

Y “ AX,

c’est-à-dire
¨

˚

˚

˚

˝

y1
y2
...
ym

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2n
... ... . . . ...
am1 am2 ¨ ¨ ¨ amn

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

.

Donc on a le résultat suivant.

Proposition 3.6.3 Soient E et F deux K´espaces vectoriels de dimensions finies, avec dimpEq “ n
et dimpF q “ m. Soient BE une base de E et BF une base de F . Soit f P LKpE,F q une application
linéaire, et A “ Mat

BE ,BF

pfq sa matrice relativement aux bases pBE, BF q.
Pour tout x P E, notons
• X PMn,1pKq la matrice-colonne des coordonnées de x dans BE,
• Y PMm,1pKq la matrice-colonne des coordonnées de y “ fpxq dans BF .
Alors on a l’équivalence fondamentale

fpxq “ y ðñ Y “ AX.
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Autrement dit,
Mat

BF

pfpxqq “ Mat
BE ,BF

pfq ¨Mat
BE

pxq.

En particulier, si E “ F et BE “ BF , cette formule s’écrit simplement

Mat
BE

pfpxqq “Mat
BE

pfq ¨Mat
BE

pxq.

Exemple 3.6.5 Soit f P LRpR3,R3q une application linéaire (un endomorphisme de R3). Sa matrice
associée dans la base canonique B est

A “Mat
B
pfq “

¨

˝

2 ´1 3
´1 0 1
1 ´3 2

˛

‚.

Soient
x “ px1, x2, x3q P R3, y “ py1, y2, y3q P R3.

Posons

X “

¨

˝

x1
x2
x3

˛

‚, Y “

¨

˝

y1
y2
y3

˛

‚.

L’application linéaire f est alors représentée par la relation matricielle

Y “ AX ðñ

¨

˝

2 ´1 3
´1 0 1
1 ´3 2

˛

‚¨

¨

˝

x1
x2
x3

˛

‚“

¨

˝

y1
y2
y3

˛

‚

ðñ

¨

˝

2x1 ´ x2 ` 3x3
´x1 ` x3
x1 ´ 3x2 ` 2x3

˛

‚“

¨

˝

y1
y2
y3

˛

‚

Ce qui équivaut au système
$

&

%

2x1 ´ x2 ` 3x3 “ y1
´x1 ` x3 “ y2
x1 ´ 3x2 ` 2x3 “ y3

On peut donc écrire f explicitement comme suit

f : R3 ÝÑ R3

x “ px1, x2, x3q ÞÝÑ fpxq “ y “ py1, y2, y3q “ p2x1 ´ x2 ` 3x3,´x1 ` x3, x1 ´ 3x2 ` 2x3q .

2. Prenons l’exemple de l’application linéaire f : E ÝÑ F , avec E et F deux K´espaces de dimensions
respectives 2 et 3, définie par les images des vecteurs de la base de départ

#

fpe1q “ 2e11 ` 3e12 ´ e13
fpe2q “ e11 ´ e

1
2 ` 4e13,

où BE “ te1, e2u est une base de E et BF “ te
1
1, e

1
2, e

1
3u une base de F . Soient x P E et y “ fpxq.

Décomposons x dans la base de départ BE et y dans la base d’arrivée BF . On a

x “ x1e1 ` x2e2, y “ y1e
1
1 ` y2e

1
2 ` y3e

1
3.

Puisque l’application f est linéaire, on a

fpxq “ fpx1e1 ` x2e2q “ x1fpe1q ` x2fpe2q “ x1p2e11 ` 3e12 ´ e13q ` x2pe
1
1 ´ e

1
2 ` 4e13q
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“ p2x1 ` x2qe
1
1 ` p3x1 ´ x2qe

1
2 ` p´x1 ` 4x2qe

1
3.

L’égalité vectorielle y “ fpxq se réécrit alors

y1e
1
1 ` y2e

1
2 ` y3e

1
3 “ p2x1 ` x2qe

1
1 ` p3x1 ´ x2qe

1
2 ` p´x1 ` 4x2qe

1
3.

En procédant à l’identification des coordonnées, on en déduit les expressions de y1, y2, y3 en fonction
de x1, x2

$

’

&

’

%

y1 “ 2x1 ` x2

y2 “ 3x1 ´ x2

y3 “ ´x1 ` 4x2

.

Ce sont les équations de f relativement aux deux bases BE et BF . Ce système s’écrit aussi sous la
forme matricielle

¨

˝

y1
y2
y3

˛

‚“

¨

˝

2 1
3 ´1
´1 4

˛

‚

ˆ

x1
x2

˙

.

3. Soient f : R2rXs ÝÑ R1rXs une application linéaire et

A “

˜

1 ´1 1
´1 1 ´1

¸

PM2,3pRq,

est la matrice de f relative aux bases canoniques. Pour P “ a`bX`cX2 P R2rXs on pose la colonne
des coordonnées de P dans BR2rXs,

X “

¨

˚

˝

a

b

c

˛

‹

‚

PM3,1pRq.

On note Y PM2,1pRq la colonne des coordonnées de y “ fpP q dans la base canonique de R1rXs. La
proposition affirme que

fpP q “ y ðñ Y “ AX.

On obtient

Y “ AX “

˜

1 ´1 1
´1 1 ´1

¸

¨

˚

˝

a

b

c

˛

‹

‚

“

˜

a´ b` c

´a` b´ c

¸

.

Donc, en écrivant

Y “

ˆ

y0
y1

˙

,

on obtient
y0 “ a´ b` c, y1 “ ´a` b´ c.

Ainsi, par la proposition fpP q “ y se traduit par le polynôme

fpa` bX ` cX2
q “ y0 ` y1X “ pa´ b` cq ` p´a` b´ cqX “ pa´ b` cq p1´Xq.
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3.6.2.2 Interprétation des opérations sur les matrices

Les matrices servent à représenter les applications linéaires quand on choisit des bases dans les
espaces vectoriels. Dans ce cadre, les opérations sur les applications linéaires (somme, produit par
un scalaire, composition, identité, inverse) se traduisent directement par des opérations sur leurs
matrices. Autrement dit, additionner deux applications, les multiplier par un scalaire, les composer
ou encore prendre l’identité ou l’inverse, revient à effectuer les opérations analogues sur leurs matrices.
Cela permet d’étudier les applications linéaires à travers des calculs matriciels plus concrets et plus
faciles à manipuler.

Proposition 3.6.4 Soient E,F,G trois K´espaces vectoriels de dimension finie, munis respective-
ment des bases BE, BF , BG, et soient f1, f2 P LKpE,F q, f3 P LKpF,Gq, f4 P LKpE,Eq des applications
linéaires et λ P K un scalaire. Alors
1. Somme d’applications linéaires. La matrice de la somme de deux applications linéaires est
la somme de leurs matrices.

Mat
BE ,BF

pf1 ` f2q “ Mat
BE ,BF

pf1q ` Mat
BE ,BF

pf2q.

2. Multiplication par un scalaire. La matrice d’une application linéaire multipliée par un scalaire
est le produit de sa matrice par ce scalaire.

Mat
BE ,BF

pλ ¨ f1q “ λ ¨ Mat
BE ,BF

pf1q.

3. Composition d’applications linéaires. La matrice de la composée de deux applications li-
néaires est le produit matriciel de leurs matrices.

Mat
BE ,BG

pf3 ˝ f1q “ Mat
BF ,BG

pf3q ¨ Mat
BE ,BF

pf1q.

4. Application identité. L’application identité est représentée par la matrice identité.

f4 “ IdE ðñ Mat
BE ,BE

pf4q “ In.

5. Inverse d’une application linéaire. Si dim
K
pEq “ dim

K
pF q, alors f1 est bijective si et si

Mat
BE ,BF

pf1q est inversible. Dans ce cas on a

Mat
BF ,BE

pf´1
1 q “

ˆ

Mat
BE ,BF

pf1q

˙´1

.

Autrement dit, une application linéaire est bijective (donc inversible) si et seulement si sa matrice est
inversible. De plus, la matrice de l’application réciproque est l’inverse de la matrice de l’application
initiale.

Preuve.
1. Il suffit de revenir à la définition d’une matrice associée à une application linéaire. Si f1 P LKpE,F q
et f2 P LKpE,F q alors f1 ` f2 P LKpE,F q. Soient BE “ te1, e2, . . . , enu une base de E et BF “

te11, e
1
2, . . . , e

1
mu une base de F . On note A (resp. B) la matrice de type pm,nq sur K représentant f1

(resp. f2) dans les bases BE et BF . Par définition, pour tout j P t1, 2, . . . , nu,

f1pejq “

m
ÿ

i“1
aije

1
i et f2pejq “

m
ÿ

i“1
bije

1
i.
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Puisque f1 ` f2 P LKpE,F q, la matrice représentant f1 ` f2 relativement aux bases BE et BF est de
type pm,nq. On note C “ pcijq1ďiďm,1ďjďn cette matrice. Par définition, pour tout j P t1, 2, . . . , nu,

pf1 ` f2qpejq “

m
ÿ

i“1
cije

1
i. (3.1)

Pour déterminer la matrice C, il suffit de calculer pf1 ` f2qpejq pour j P t1, 2, . . . , nu. On a

pf1 ` f2qpejq “ f1pejq ` f2pejq “

m
ÿ

i“1
aije

1
i `

m
ÿ

i“1
bije

1
i,

c’est-à-dire

pf1 ` f2qpejq “

m
ÿ

i“1

¨

˚

˝

aij ` bij
looomooon

“cij

˛

‹

‚

e1i. (3.2)

De p3.1q et p3.2q, par identification des coordonnées, il vient que

cij “ aij ` bij,

c’est-à-dire que le coefficient cij est le coefficient de la i´ ième ligne et de la j ´ ième colonne de la
matrice pA`Bq. On a ainsi vérifié que

C “ Mat
BE ,BF

pf1 ` f2q “ A`B “ Mat
BE ,BF

pf1q ` Mat
BE ,BF

pf2q.

2. Notons A “ paijq la matrice de f1 dans ces bases. Par définition, pour tout j P t1, . . . , nu,

f1pejq “

m
ÿ

i“1
aij e

1
i.

Considérons maintenant l’application λf1. Sa matrice (notée B “ pbijq) est définie pour tout j P
t1, 2, . . . , nu,

pλf1qpejq “

m
ÿ

i“1
bij e

1
i.

Or, pour tout j,

pλf1qpejq “ λ f1pejq “ λ

˜

m
ÿ

i“1
aije

1
i

¸

“

m
ÿ

i“1
pλaijqe

1
i.

Par identification des coordonnées dans la base BF , on obtient

bij “ λaij, @i, j.

Ainsi,
B “ λA.

Donc,
Mat

BE ,BF

pλ ¨ f1q “ λ ¨ Mat
BE ,BF

pf1q.

3. Soient E,F,G trois K´espaces vectoriels de dimensions finies, munis respectivement des bases

BE “ te1, e2, . . . , enu, BF “ te
1
1, e

1
2, . . . , e

1
mu, BG “ te

2
1, e

2
2, . . . , e

2
ku.

Soient f1 P LKpE,F q et f3 P LKpF,Gq. Notons

A “ Mat
BE ,BF

pf1q “ paijq PMm,npKq, B “ Mat
BF ,BG

pf3q “ pb`iq PMk,mpKq, C “ Mat
BE ,BG

pf3˝f1q “ pc`jq PMk,npKq.
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Par définition, pour tout j P t1, . . . , nu

f1pejq “

m
ÿ

i“1
aije

1
i,

et pour tout i P t1, . . . ,mu

f3pe
1
iq “

k
ÿ

`“1
b`ie

2
` .

Calculons pf3 ˝ f1qpejq.

pf3 ˝ f1qpejq “ f3pf1pejqq “ f3

˜

m
ÿ

i“1
aije

1
i

¸

“

m
ÿ

i“1
aijf3pe

1
iq “

m
ÿ

i“1
aij

˜

k
ÿ

`“1
b`ie

2
`

¸

.

En interchangeant les sommes

pf3 ˝ f1qpejq “

k
ÿ

`“1

˜

m
ÿ

i“1
b`iaij

¸

e2` .

D’autre part, par définition de C,

pf3 ˝ f1qpejq “

k
ÿ

`“1
c`je

2
` .

Par identification des coordonnées dans la base BG, on obtient

c`j “

m
ÿ

i“1
b`iaij, @`, j.

Ainsi,
C “ B ¨ A,

c’est-à-dire
Mat

BE ,BG

pf3 ˝ f1q “ Mat
BF ,BG

pf3q ¨ Mat
BE ,BF

pf1q.

ce qui démontre la formule.
4. Soit f4 P LKpE,Eq. Notons

A “ Mat
BE ,BE

pf4q “ paijq PMnpKq.

(i) Sens direct : Supposons f4 “ IdE. Alors, pour tout j P t1, . . . , nu,

f4pejq “ IdEpejq “ ej.

Or, par définition de la matrice de f4,

f4pejq “

n
ÿ

i“1
aijei.

Par identification des coordonnées dans la base BE, on obtient

aij “

#

1K si i “ j,

0K si i ‰ j.

Ainsi,
A “ In,
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c’est-à-dire
Mat

BE ,BE

pf4q “ In.

(ii) Sens inverse : Supposons
Mat

BE ,BE

pf4q “ In.

Alors, pour tout j P t1, . . . , nu,

f4pejq “

n
ÿ

i“1
aijei “ ej,

puisque
aij “ δij,

(symbole de Kronecker). Ainsi, f4 coïncide avec l’identité sur la base BE. Par linéarité, f4 “ IdE.
Alors

f4 “ IdE ðñ Mat
BE ,BE

pf4q “ In.

l

Proposition 3.6.5 (Une application linéaire est entièrement déterminée par sa matrice
dans deux bases)
Soient E un K´espace vectoriel de dimension n muni d’une base BE “ te1, e2, ..., enu, F un K´espace
vectoriel de dimension m muni d’une base BF “ tw1, w2, ..., wmu et f P LKpE,F q une application
linéaire de E dans F . Soit A “ Mat

BE ,BF

pfq la matrice associée à f relativement aux bases BE et BF .
On définit l’application

ϕ : LKpE,F q ÝÑ Mm,npKq
f ÞÝÑ ϕpfq “ Mat

BE ,BF

pfq,

qui associe à toute application linéaire sa matrice relative aux bases BE et BF . Alors ϕ est un
isomorphisme de K´espaces vectoriels.

Remarque 3.6.4 Cet isomorphisme montre que, une fois les bases fixées, l’étude des applications
linéaires et celle des matrices sont équivalentes. En effet :
• à toute application linéaire f correspond une unique matrice Matpfq,
• et réciproquement, à toute matrice correspond une unique application linéaire.
Ainsi, toute propriété de f se traduit en une propriété de sa matrice, et inversement. Autrement dit,
travailler avec les applications linéaires ou avec les matrices revient exactement au même, dès lors
que les bases de départ et d’arrivée sont choisies.

Preuve. On a pour f P LKpE,F q, on écrit pour chaque j P t1, . . . , nu

fpejq “

m
ÿ

i“1
aijwi,

et l’on pose
ϕpfq “ A “ paijq PMm,npKq.

Par définition la j-ième colonne de A est le vecteur colonne des coordonnées de fpejq dans la base
BF .
1. Linéarité de ϕ. Soient f, g P LKpE,F q et α, β P K. D’après la proposition 3.6.4 précédente, on a

ϕpαf ` βgq “ Mat
BE ,BF

pαf ` βgq “ Mat
BE ,BF

pαfq ` Mat
BE ,BF

pβgq “ α ¨ Mat
BE ,BF

pfq ` β ¨ Mat
BE ,BF

pgq.
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Ainsi,
ϕpαf ` βgq “ α ¨ ϕpfq ` β ¨ ϕpgq.

On en conclut que l’application ϕ est linéaire.
2. (a) Injectivité de ϕ. Supposons ϕpfq “ 0m,n (matrice nulle). Alors pour tout j, la colonne j de
Mat

BE ,BF

pfq est nulle, donc fpejq “ 0K. Montrons que f est l’application nulle. Soit x P E arbitraire.
Comme BE est une base de E, il existe des scalaires α1, . . . , αn P K tels que

x “
n
ÿ

j“1
αjej.

Par linéarité de f ,

fpxq “ f

˜

n
ÿ

j“1
αjej

¸

“

n
ÿ

j“1
αjfpejq.

Mais nous avons vu que pour chaque j, fpejq “ 0F . Donc

fpxq “
n
ÿ

j“1
αj0F “ 0F .

Ainsi fpxq “ 0F pour tout x P E. On en déduit que f est l’application nulle 0LKpE,F q. Ainsi

kerpϕq “ tf P LKpE,F q : ϕpfq “ 0m,nu “ t0LKpE,F qu.

Alors ϕ est injective.
(b). Surjectivité de ϕ. Montrons que pour toute matrice A “ paijq P Mm,npKq, il existe une
application linéaire f P LKpE,F q telle que Mat

BE ,BF

pfq “ A. Posons, pour chaque j P t1, . . . , nu,

vj “

m
ÿ

i“1
aijwi P F.

Par la propriété fondamentale des applications linéaires définies par les images d’une base, il existe
une unique application linéaire f : E ÝÑ F telle que

fpejq “ vj, @j.

En effet, pour tout

x “
n
ÿ

j“1
λjej P E,

on définit
fpxq “

n
ÿ

j“1
λjvj.

Cette définition est bien posée et assure la linéarité de f . Ainsi, l’application f est bien définie et
unique. De plus, par construction,

fpejq “ vj “

m
ÿ

i“1
aijwi,

donc la j-ième colonne de Mat
BE ,BF

pfq est exactement pa1j, a2j, . . . , amjq. Autrement dit, Mat
BE ,BF

pfq “ A.
CommeA était arbitraire, on conclut que l’application ϕ est surjective. Comme ϕ est linéaire, injective
et surjective ; donc c’est un isomorphisme. l
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3.6.2.3 Applications linéaires canoniquement associées aux matrices

Définition 3.6.4 (Application linéaire canoniquement associée à une matrice) Soit A P
Mm,npKq. On appelle application linéaire canoniquement associée à A l’application fA définie
par

fA : Kn ÝÑ Km

X ÞÝÑ fApXq “ AX.

Remarque 3.6.5 En réalité, le produit AX n’est défini que si l’on considère X comme une matrice
colonne de Mn,1pKq. Pour simplifier les écritures, on identifie donc Mn,1pKq à Kn et Mm,1pKq à
Km. Dans ce cadre, la définition s’écrit plus rigoureusement

fA : Mn,1pKq ÝÑ Mm,1pKq
X ÞÝÑ fApXq “ AX.

Ainsi, la matrice A représente exactement l’application linéaire fA relativement aux bases canoniques
de Kn et Km.

On peut définir l’endomorphisme canoniquement associé à une matrice exactement de la même
façon que pour l’application linéaire associée, mais en se restreignant au cas où la matrice est carrée
(n “ m).

Définition 3.6.5 (Endomorphisme canoniquement associé à une matrice). Soit A PMnpKq
une matrice carrée d’ordre n. On appelle endomorphisme canoniquement associé à A l’application
linéaire

fA : Kn ÝÑ Kn

X ÞÝÑ fApXq “ AX.

où l’on identifie Kn àMn,1pKq. Ainsi, A est précisément la matrice de l’endomorphisme fA dans la
base canonique de Kn.

Remarque 3.6.6 (Différences entre application linéaire associée et application linéaire canonique-
ment associée à une matrice).
1. L’application linéaire associée à une matrice :
• C’est une notion générale.
• Elle dépend du choix de bases dans les espaces de départ et d’arrivée.
• Une même matrice peut représenter des applications linéaires différentes si les bases changent.
2. L’application linéaire canoniquement associée à une matrice :
• Elle est définie de manière unique.
• On considère toujours les bases canoniques de Kn et Km.
• À chaque matrice A PMm,npKq, on associe l’application

fA : Kn
ÝÑ Km, X ÞÝÑ AX.

Cette association ne dépend d’aucun choix arbitraire de bases.

Exemple 3.6.6
1. Application linéaire canoniquement associée à une matrice non carrée. Soit

A “

ˆ

1 2 0
´1 0 3

˙

PM2,3pRq.
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On définit l’application linéaire canoniquement associée

fA : R3
ÝÑ R2, X ÞÝÑ AX.

Si

X “

¨

˝

x
y
z

˛

‚,

alors

fApXq “ AX “

ˆ

1 2 0
´1 0 3

˙

¨

˝

x
y
z

˛

‚“

ˆ

x` 2y
´x` 3z

˙

.

Ici, fA est une application linéaire de R3 vers R2.
2. Endomorphisme canoniquement associé à une matrice carrée. Soit

B “

ˆ

2 ´1
1 3

˙

PM2pRq.

On définit l’endomorphisme canoniquement associé

fB : R2
ÝÑ R2, X ÞÝÑ BX.

Pour
X “

ˆ

x
y

˙

,

on obtient
fBpXq “

ˆ

2 ´1
1 3

˙ˆ

x
y

˙

“

ˆ

2x´ y
x` 3y

˙

.

Ici, fB est un endomorphisme de R2, et la matrice B est précisément la matrice de fB dans la base
canonique.

Définition 3.6.6 (Noyau et image d’une matrice) Soit A P Mm,npKq, et fA l’application
linéaire canoniquement associée à A.
1. On appelle noyau de A le sous-espace vectoriel de Mn,1pKq, noté kerpAq, défini par

kerpAq “ tX PMn,1pKq : AX “ 0m,1u.

Autrement dit, le noyau de A coïncide avec le noyau de fA.
2. On appelle image de A le sous-espace vectoriel de Mm,1pKq, noté ImpAq, défini par

ImpAq “ tY PMm,1pKq, DX PMn,1pKq : Y “ AXu “ tAX : X PMn,1pKqu.

Autrement dit, l’image de A est exactement l’image de fA. Ainsi, les notations kerpAq, ImpAq tra-
duisent le fait qu’une matrice A peut être vue naturellement comme une application linéaire.
3. On dit que A est injective si et seulement si kerpAq “ t0n,1u.
4. On dit que A est surjective si et seulement si ImpAq “Mm,1pKq.

Remarque 3.6.7 Notons fA P LpKn,Kmq l’application linéaire canoniquement associée à A.
1. Pour un vecteur px1, . . . , xnq P Kn, on a

px1, . . . , xnq P kerpfq ðñ

¨

˚

˝

x1
...
xn

˛

‹

‚

P kerpAq.
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Ainsi, f est injective si et seulement si A est injective. De plus en identifiant Kn et Mn,1pKq, on
peut donc écrire

kerpAq “ kerpfq.

2. De même, pour un vecteur py1, . . . , ymq P Km, on a

py1, . . . , ymq P Impfq ðñ

¨

˚

˝

y1
...
ym

˛

‹

‚

P ImpAq.

Ainsi f est surjective si et seulement si A est surjective. De plus en identifiant Km etMm,1pKq, on
peut donc écrire

ImpAq “ Impfq.

Exemple 3.6.7
1. Soit

A “

ˆ

1 2
2 4

˙

PM2,2pRq.

L’application linéaire canoniquement associée à A est

fA : R2
ÝÑ R2, X ÞÝÑ AX.

On détermine le noyau et l’image de A.
(a) Noyau. Par définition,

kerpAq “ tX PM2,1pRq : AX “ 02,1u.

On pose

X “

ˆ

x
y

˙

.

Alors
AX “ 02,1 ðñ

ˆ

1 2
2 4

˙ˆ

x
y

˙

“

ˆ

0
0

˙

.

ðñ

ˆ

x` 2y
2x` 4y

˙

“

ˆ

0
0

˙

Cela donne le système
"

x` 2y “ 0
2x` 4y “ 0.

On obtient
x “ ´2y.

Donc
kerpAq “

"ˆ

´2y
y

˙

: y P R
*

“ V ect

ˆˆ

´2
1

˙˙

.

Comme le vecteur est non nul, donc
dimpkerpAqq “ 1.

donc A n’est pas injective.
(b) Image. Par définition,

ImpAq “ tAX : X PM2,1pRqu.
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Comme AX est toujours une combinaison linéaire des colonnes de A, car

AX “ x

ˆ

1
2

˙

` y

ˆ

2
4

˙

,

alors
ImpAq “ V ect

ˆ"ˆ

1
2

˙

,

ˆ

2
4

˙*˙

.

Or la deuxième colonne est un multiple de la première, donc

ImpAq “ V ect

ˆ"ˆ

1
2

˙*˙

.

Comme le vecteur est non nul, donc

dimpImpAqq “ 1 ă 2.

donc A n’est pas surjective.
2. Soit

B “

¨

˝

1 0
0 1
1 1

˛

‚PM3,2pRq.

L’application linéaire canoniquement associée à B est

fB : R3
ÝÑ R2, X ÞÝÑ BX.

(a) Noyau. Par définition,

kerpBq “ tX PM2,1pRq : BX “ 03,1u.

On pose

X “

ˆ

x
y

˙

.

Alors

BX “ 03,1 ðñ

¨

˝

1 0
0 1
1 1

˛

‚

ˆ

x
y

˙

“

¨

˝

0
0
0

˛

‚

ðñ

¨

˝

x
y

x` y

˛

‚“

¨

˝

0
0
0

˛

‚.

Le système
x “ 0, y “ 0, x` y “ 0,

donne la solution unique
x “ y “ 0.

Donc
kerpBq “ t02,1u.

Ainsi, B est injective.
(b) Image. Par définition,

ImpBq “ tBX : X PM2,1pRqu.
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C’est donc l’espace engendré par les colonnes de B,

ImpBq “ V ect

¨

˝

$

&

%

¨

˝

1
0
1

˛

‚,

¨

˝

0
1
1

˛

‚

,

.

-

˛

‚.

Comme ces deux vecteurs sont linéairement indépendants, on a

dimpImpBqq “ 2 ă 3.

Donc B n’est pas surjective.

3.7 Changement de base, matrices de passage et transfor-
mations associées

La matrice de passage est l’outil qui permet de passer d’une base à une autre. Elle explique
comment exprimer les vecteurs d’une base en fonction des vecteurs de l’autre base. Grâce à elle, on
peut transformer facilement les coordonnées d’un vecteur ou la matrice d’une application linéaire.

Pour un vecteur, le changement de base ne modifie pas le vecteur : il reste le même dans l’espace,
mais ses coordonnées changent selon la base utilisée. Pour une application linéaire, c’est le même
principe : une même application peut être représentée par des matrices différentes selon les bases
choisies pour l’espace de départ et pour l’espace d’arrivée ; les matrices de passage permettent alors
de passer correctement d’une représentation à l’autre. Pour un endomorphisme, c’est-à-dire une
application linéaire qui agit sur le même espace vectoriel, le changement de base est plus simple : une
seule matrice de passage suffit pour relier les deux matrices représentant le même endomorphisme.

En conclusion, le changement de base ne modifie pas les objets étudiés, mais uniquement leur
écriture. Les matrices de passage sont donc essentielles pour traduire les coordonnées des vecteurs et
les matrices des applications linéaires lorsqu’on change de base.

3.7.1 Changement de bases pour un vecteur

Quand on change de base, le vecteur ne change pas, mais ses coordonnées prennent une nouvelle
forme. Pour passer d’une écriture à l’autre, on utilise la matrice de passage, qui permet de traduire
les coordonnées d’une base vers une autre.

Définition 3.7.1 (Matrice de passage)
Soit E un K´espace vectoriel de dimension n. On considère deux bases de E,

B “ te1, e2, . . . , enu (ancienne base), B1 “ te11, e12, . . . , e1nu (nouvelle base).

1. On appelle matrice de passage de B vers B1 (ou matrice de changement de base) et on note
PasspB,B1q la matrice carrée

P “ PasspB,B1q PMnpKq,

dont les colonnes sont les coordonnées des vecteurs de la nouvelle base B1 exprimés dans l’ancienne
base B. Autrement dit

P “ PasspB,B1q “Mat
B
pe11, e

1
2, . . . , e

1
nq,
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où Mat
B
p¨q désigne la matrice d’une famille de vecteurs relativement à la base B.

2. Inverse. Si P “ PasspB,B1q, alors sa matrice inverse est donnée par

P´1
“ PasspB1, Bq “Mat

B1
pe1, e2, ..., enq.

Autrement dit, les colonnes de P´1 sont les coordonnées des vecteurs de l’ancienne base B exprimés
dans la nouvelle base B1.
3. Cas particulier. Le passage d’une base vers elle-même donne la matrice identité

PasspB,Bq “ In.

Exemple 3.7.1
1. Changement de base dans R2rXs. Considérons l’espace vectoriel E “ R2rXs, c’est-à-dire
l’ensemble des polynômes réels de degré inférieur ou égal à 2. On se donne l’ancienne base

B “ tP0 “ 1, P1 “ X,P2 “ X2
u,

et la nouvelle base
B1 “ tP 10 “ 1, P 11 “ X ´ 1, P 12 “ pX ´ 1q2u.

Pour construire la matrice de passage P “ PasspB,B1q, on exprime chaque vecteur de la nouvelle
base B1 comme combinaison linéaire des vecteurs de l’ancienne base B. On a donc

$

&

%

P 10 “ 1 “ 1 ¨ P0 ` 0 ¨ P1 ` 0 ¨ P2
P 11 “ X ´ 1 “ p´1q ¨ P0 ` 1 ¨ P1 ` 0 ¨ P2
P 12 “ pX ´ 1q2 “ X2 ´ 2X ` 1 “ 1 ¨ P0 ` p´2q ¨ P1 ` 1 ¨ P2.

Ainsi, les colonnes de P sont précisément ces coordonnées, ce qui donne

P “ PasspB,B1q “Mat
B
pP 10, P

1
1, P

1
2q “

¨

˝

1 ´1 1
0 1 ´2
0 0 1

˛

‚PM3pRq.

2. Changement de base dans R3. Considérons l’espace vectoriel E “ R3. On se donne, l’ancienne
base (canonique)

B “ te1 “ p1, 0, 0q, e2 “ p0, 1, 0q, e3 “ p0, 0, 1qu,

et la nouvelle base
B1 “ tu1 “ p1, 1, 0q, u2 “ p0, 1, 1q, u3 “ p1, 0, 1qu.

Pour construire la matrice de passage P “ PasspB,B1q, on exprime les vecteurs de la nouvelle base
B1 en fonction de l’ancienne base B.
Comme B est la base canonique, les coordonnées sont simplement les composantes des vecteurs

$

&

%

u1 “ p1, 1, 0q “ 1 ¨ e1 ` 1 ¨ e2 ` 0 ¨ e3
u2 “ p0, 1, 1q “ 0 ¨ e1 ` 1 ¨ e2 ` 1 ¨ e3
u3 “ p1, 0, 1q “ 1 ¨ e1 ` 0 ¨ e2 ` 1 ¨ e3.

On construit la matrice de passage P en plaçant ces coordonnées en colonnes

P “ PasspB,B1q “Mat
B
pu1, u2, u3q “

¨

˝

1 0 1
1 1 0
0 1 1

˛

‚.
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La question suivante se pose naturellement : quelle application linéaire remarquable est associée
à une matrice de passage ? La réponse donnée par la proposition suivante nous sera d’une grande
utilité.

Proposition 3.7.1 Soit E un K-espace vectoriel muni des bases B et C. La matrice de passage P
de B à C est la matrice représentant l’application identité

IdE : x P E ÞÝÑ x P E,

relativement aux bases C et B. En d’autres termes

P “ PasspB,Cq “Mat
C,B

pf “ IdEq.

Preuve. Notons n “ dimKpEq et écrivons la matrice Mat
C,B

pIdEq associée à l’application IdE relati-
vement à la base de départ C “ pu1, u2, . . . , unq et à la base d’arrivée B. En appliquant la définition
3.6.3, pour j variant de 1 à n, la j-ième colonne de la matriceMat

C,B
pIdEq est constituée des coordonnées

du vecteur IdEpujq dans la base d’arrivée B. Or pour j P t1, ..., nu,

IdEpujq “ uj.

Ainsi la j-ième colonne de la matrice Mat
C,B

pIdEq est constituée des coordonnées du vecteur uj dans
la base B. C’est précisément la matrice P (d’après la définition 3.7.1). l

Remarque 3.7.1 Si P est la matrice de passage de B à C alors P représente l’application identité
avec pour base de départ la nouvelle base C et pour base d’arrivée l’ancienne base B, et non l’inverse.
Schématiquement,

P “ PasspB,Cq “Mat
C,B

pf “ IdEq.
loooooooooooooooooooooomoooooooooooooooooooooon

pE,Cq ÝÑ pE,Bq

Une matrice de passage est toujours inversible, puisqu’elle représente l’application identité IdE,
qui est nécessairement bijective. Dès lors, connaître la matrice de passage de B à C permet d’en
déduire immédiatement la matrice de passage de C à B.

Proposition 3.7.2 Soit E un K-espace vectoriel muni des bases B et C. Si P “ PasspB,Cq est la
matrice de passage de B à C, alors P´1, la matrice inverse de P , est la matrice de passage de C à
B,

P´1
“ PasspC,Bq “Mat

B,C
pIdEq.

Autrement dit, les colonnes de P´1 sont les coordonnées des vecteurs de l’ancienne base B exprimés
dans la nouvelle base B1. Schématiquement,

P´1
“ PasspC,Bq “Mat

B,C
pf “ IdEq.

looooooooooooooooooooooomooooooooooooooooooooooon

pE,Bq ÝÑ pE,Cq

Preuve. Supposons que dimpEq “ n, alors P la matrice de passage de B à C est toujours inversible,
donc

P P GLnpKq,
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où GLnpKq désigne le groupe linéaire, c’est-à-dire l’ensemble des matrices carrées inversibles d’ordre
n.
Appelons Q P GLnpKq la matrice de passage de C à B. En appliquant la proposition 3.7.1, la matrice
Q représente l’application

IdE : E ÝÑ E,

relativement aux bases B et C (remarquer l’ordre des deux bases), c’est-à-dire

Q “Mat
B,C

pIdEq.

Soit P P GLnpKq la matrice de passage de B à C. D’après la proposition 3.7.1,

P “Mat
C,B

pIdEq.

Calculons l’un des deux produits matriciels Q ¨ P et P ¨ Q. Rappelons que la matrice associée à
l’application identité relativement à n’importe quelle base est la matrice unité. On a

Q ¨ P “Mat
B,C

pIdEq ¨Mat
C,B

pIdEq.

Or, par compatibilité entre composition et produit de matrices,

Q ¨ P “Mat
C,C

pIdE ˝ IdEq “Mat
C
pIdEq “ In.

On en déduit directement que
P´1

“ Q,

Ce qui achève la démonstration. l

Exemple 3.7.2
1. Reprenons l’exemple de l’espace vectoriel E “ R2rXs muni de l’ancienne base

B “ tP0 “ 1, P1 “ X,P2 “ X2
u,

et la nouvelle base
B1 “ tP 10 “ 1, P 11 “ X ´ 1, P 12 “ pX ´ 1q2u.

La matrice de passage de B à B1 est

P “ PasspB,B1q “Mat
B
pP 10, P

1
1, P

1
2q “

¨

˝

1 ´1 1
0 1 ´2
0 0 1

˛

‚PM3pRq.

Calcul de P´1. On sait que

P´1
“ PasspB1, Bq “Mat

B1
pP0, P1, P2q.

Autrement dit, les colonnes de P´1 sont les coordonnées des vecteurs de l’ancienne base B exprimés
dans la nouvelle base B1.
Pour construire la matrice de passage P´1, on exprime chaque vecteur de l’ancienne base B “

t1, X,X2u comme combinaison linéaire des vecteurs de la nouvelle base B1 “ t1, X ´ 1, pX ´ 1q2u.
Écrivons la combinaison générale

a ¨ 1` b ¨ pX ´ 1q ` c ¨ pX ´ 1q2 “ pa´ b` cq ` pb´ 2cqX ` cX2, pa, b, cq P R3.
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Les coordonnées par rapport à la base canonique p1, X,X2q sont donc

pa´ b` c, b´ 2c, cq.

Nous résolvons ce système pour chaque vecteur de B.
• Pour P0 “ 1 (coordonnées p1, 0, 0q),

$

’

&

’

%

a´ b` c “ 1
b´ 2c “ 0
c “ 0

ùñ

$

’

&

’

%

a “ 1
b “ 0
c “ 0

.

Coordonnées de 1 dans B1 sont p1, 0, 0q.
• Pour P1 “ X (coordonnées p0, 1, 0q),

$

’

&

’

%

a´ b` c “ 0
b´ 2c “ 1
c “ 0

ùñ

$

’

&

’

%

a “ 1
b “ 1
c “ 0

.

Coordonnées de X dans B1sont p1, 1, 0q.
• Pour P2 “ X2 (coordonnées p0, 0, 1q),

$

’

&

’

%

a´ b` c “ 0
b´ 2c “ 0
c “ 1

ùñ

$

’

&

’

%

a “ 1
b “ 2
c “ 1

.

Coordonnées de X2 dans B1 sont p1, 2, 1q.
Les colonnes obtenues forment P´1,

P´1
“ PasspB1, Bq “

¨

˚

˝

1 1 1
0 1 2
0 0 1

˛

‹

‚

.

Remarque. On retrouve bien le résultat obtenu précédemment ; vérification rapide

P ¨ P´1
“ I3.

2. Reprenons l’exemple de R3 muni de l’ancienne base (canonique) B “ te1, e2, e3u et de la nouvelle
base

B1 “ tu1 “ p1, 1, 0q, u2 “ p0, 1, 1q, u3 “ p1, 0, 1qu.

La matrice de passage P “ PasspB,B1q s’écrit

P “Mat
B
pu1, u2, u3q “

¨

˝

1 0 1
1 1 0
0 1 1

˛

‚.

Calcul de P´1. On a
P´1

“ PasspB1, Bq “Mat
B1
pe1, e2, e3q.

Autrement dit, les colonnes de P´1 sont les coordonnées des vecteurs de l’ancienne base B exprimés
dans la nouvelle base B1.
Pour construire la matrice de passage P´1, on exprime chaque vecteur de la base canonique B “
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te1, e2, e3u comme combinaison linéaire des vecteurs de la nouvelle base B1 “ tu1, u2, u3u.
Écrivons la combinaison générale

au1 ` bu2 ` cu3 “ pa` c, a` b, b` cq, pa, b, cq P R3.

Pour chaque vecteur canonique ei on résout

au1 ` bu2 ` cu3 “ ei,

et le vecteur pa, b, cq obtenu sera la i-ième colonne de P´1 “ PasspB1, Bq.
• Pour e1 “ p1, 0, 0q, on obtient

$

’

&

’

%

a` c “ 1
a` b “ 0
b` c “ 0

ùñ

$

&

%

a “ 1
2

b “ ´1
2

c “ 1
2

.

•Pour e2 “ p0, 1, 0q, on obtient
$

’

&

’

%

a` c “ 0
a` b “ 1
b` c “ 0

ùñ

$

&

%

a “ 1
2

b “ 1
2

c “ ´1
2

.

• Pour e3 “ p0, 0, 1q, on obtient
$

’

&

’

%

a` c “ 0
a` b “ 0
b` c “ 1

ùñ

$

&

%

a “ ´1
2

b “ 1
2

c “ 1
2

.

On obtient donc

P´1
“ PasspB1, Bq “

¨

˚

˚

˝

1
2

1
2 ´1

2

´1
2

1
2

1
2

1
2 ´1

2
1
2

˛

‹

‹

‚

.

Après avoir défini la matrice de passage, il est naturel de donner la formule de changement de
base qui relie les coordonnées d’un vecteur dans deux bases différentes.

Proposition 3.7.3 ( Formule de Changement de Base) Soient E un K´espace vectoriel de
dimension finie non nulle muni des bases B et B1 et soient XB “ Mat

B
pxq et X 1

B1 “ Mat
B1
pxq les

matrices-colonnes des coordonnées de x P E dans les bases respectives B et B1. Si P “ PasspB,B1q,
est la matrice de passage de B à B1. Alors

XB “ P ¨X 1
B1 et X 1

B1 “ P´1
¨XB.

Autrement dit, pour exprimer les coordonnées d’un vecteur dans l’une des deux bases, il suffit de
multiplier les coordonnées exprimées dans l’autre base par la matrice de passage P (ou par son
inverse).
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Preuve. Supposons que E un K´espace de dimension n muni des deux bases B “ te1, e2, . . . , enu

et B1 “ tu1, u2, . . . , unu. Un vecteur x appartenant à E peut se décomposer dans chacune des deux
bases B et B1. On note x1, x2, . . . , xn les coordonnées du vecteur x dans l’ancienne base B et on
qualifie ces coordonnées d’« anciennes »

x “
n
ÿ

i“1
xiei “ x1e1 ` x2e2 ` . . .` xnen. (3.3)

On désigne par x11, x12, . . . , x1n les nouvelles coordonnées de x dans la nouvelle base B1,

x “
n
ÿ

j“1
x1juj “ x11u1 ` x

1
2u2 ` . . .` x

1
nun. (3.4)

On cherche les relations liant anciennes et nouvelles coordonnées du vecteur x. En partant de p3.4q,
on a

x “
n
ÿ

j“1
x1juj “

n
ÿ

j“1
x1j

˜

n
ÿ

i“1
pijei

¸

,

puisque uj “
n
ř

i“1
pijei pour tout j P t1, . . . , nu (par définition de P ). Ainsi,

x “
n
ÿ

j“1

˜

n
ÿ

i“1
x1jpijei

¸

“

n
ÿ

i“1

˜

n
ÿ

j“1
pijx

1
jei

¸

“

n
ÿ

i“1

˜

n
ÿ

j“1
pijx

1
j

¸

ei. (3.5)

En comparant p3.3qet p3.5q, on déduit l’égalité
n
ÿ

i“1
xiei “

n
ÿ

i“1

˜

n
ÿ

j“1
pijx

1
j

¸

looooomooooon

xi

ei.

En identifiant les coordonnées, on obtient l’expression des anciennes coordonnées du vecteur x en
fonction de ses nouvelles coordonnées

@i P t1, 2, . . . , nu : xi “

n
ÿ

j“1
pijx

1
j,

Sous forme matricielle, cela s’écrit
¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

p11 p12 ¨ ¨ ¨ p1n

p21 p22 ¨ ¨ ¨ p2n
... ... . . . ...
pn1 pn2 ¨ ¨ ¨ pnn

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

x11
x12
...
x1n

˛

‹

‹

‹

‚

,

C’est-à-dire
XB “ P ¨X 1

B1 ,

ce qui établit la formule de changement de base.
À partir de la formule démontrée

XB “ P ¨XB1 ,

comme P est une matrice de passage donc inversible (P P GLnpKq), on peut multiplier à gauche par
P´1. On obtient

P´1
¨XB “ P´1

¨ pP ¨XB1q “ pP
´1P q ¨XB1 “ In ¨XB1 “ XB1 .

Donc
XB1 “ P´1

¨XB.

l
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Exemple 3.7.3
1. Soit R3 muni de la base canonique B “ te1, e2, e3u et de la base B1 “ tu1, u2, u3u avec u1 “

p1, 0,´1q, u2 “ p1,´1, 0q et u3 “ p1, 1, 1q, et considérons le vecteur x “ p3, 6, 9q de R3. Puisque B
est la base canonique de R3, on a immédiatement

x “ 3e1 ` 6e2 ` 9e3.

On note x11, x12 et x13 les coordonnées de ce même vecteur x dans la nouvelle base B1 “ tu1, u2, u3u.
On a

x “ x11u1 ` x
1
2u2 ` x

1
3u3.

Calculons x11, x12 et x13. On a

XB “ P ¨XB1 ðñ

¨

˝

1 1 1
0 ´1 1
´1 0 1

˛

‚

¨

˝

x11
x12
x13

˛

‚“

¨

˝

3
6
9

˛

‚,

ou encore, de manière équivalente,

XB1 “ P´1
¨XB ðñ

¨

˝

x11
x12
x13

˛

‚“ P´1
¨

¨

˝

3
6
9

˛

‚

telle que

P´1
“

1
3

¨

˝

1 1 ´2
1 ´2 1
1 1 1

˛

‚.

Le vecteur XB1 s’obtient en effectuant le produit matriciel P´1 ¨XB. On obtient

x11 “ ´3, x12 “ 0, x13 “ 6,

c’est-à-dire
x “ ´3u1 ` 6u3.

2. Soit l’espace vectoriel E “ R2rXs muni de l’ancienne base

B “ tP0 “ 1, P1 “ X,P2 “ X2
u,

et la nouvelle base
B1 “ tP 10 “ 1, P 11 “ X ´ 1, P 12 “ pX ´ 1q2u.

La matrice de passage de B à B1 est

P “ PasspB,B1q “

¨

˝

1 ´1 1
0 1 ´2
0 0 1

˛

‚PM3pRq.

Considérons le polynôme R P R2rXs défini par

R “ 1.P 10 ` 1.P 11 ` 1.P 12.

Dans la base B1, la matrice des coordonnées de R est donc

X 1
B1 “

¨

˝

1
1
1

˛

‚.
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On applique la formule de changement de base. Cela donne la relation

XB “ P ¨X 1
B1 ðñ

¨

˝

λ1
λ2
λ3

˛

‚“

¨

˝

1 ´1 1
0 1 ´2
0 0 1

˛

‚¨

¨

˝

1
1
1

˛

‚“

¨

˝

1
´1
1

˛

‚,

alors
R “ 1´X `X2.

3.7.2 Changement de bases pour une application linéaire

Une application linéaire est une relation qui associe à chaque vecteur d’un espace vectoriel un autre
vecteur, éventuellement situé dans un espace différent. Cette transformation peut être représentée
par une matrice, mais cette représentation dépend toujours du choix des bases dans l’espace de départ
et dans l’espace d’arrivée.

Lorsque l’on change de bases, l’application linéaire elle-même ne se modifie pas : elle reste la même
relation entre les deux espaces. En revanche, la matrice qui la représente change, car elle traduit
maintenant les coordonnées des vecteurs par rapport aux nouvelles bases. Cette nouvelle matrice est
liée à l’ancienne grâce aux matrices de passage, qui permettent de convertir la représentation d’une
base à une autre. On dit alors que les deux matrices sont équivalentes, car elles correspondent à une
même application linéaire exprimée dans des systèmes de coordonnées différents.

Effet d’un changement de bases pour une application linéaire. On considère une appli-
cation linéaire f : E ÝÑ F où l’espace de départ E est de dimension n et l’espace d’arrivée F de
dimension m. On munit l’espace E des bases B1 et B11. On note XB1 et X 1

B11
les matrices-colonnes

de Mn,1pKq constituées des coordonnées d’un vecteur x de E respectivement dans B1 et B11. Si
P P GLnpKq désigne la matrice de passage de B1 à B11 alors on peut écrire

XB1 “ PX 1
B11
.

On munit l’espace F des bases B2 et B12 et on note YB2 et Y 1B12 les matrices-colonnes de Mm,1pKq
constituées des coordonnées du vecteur y “ fpxq de F respectivement dans B2 et B12. Si Q P GLmpKq
désigne la matrice de passage de B2 à B12 alors on peut écrire

YB2 “ QY 1B12 ,

ou de manière équivalente
Y 1B12 “ Q´1YB2 .

On représente par A (respectivement par B) la matrice associée à f relativement aux deux bases B1
et B11 (resp. B2 et B12), c’est-à-dire

A “ Mat
B1,B2

pfq et B “ Mat
B11,B12

pfq.

D’après la proposition 3.6.3, l’égalité vectorielle y “ fpxq peut s’écrire relativement aux bases B1 et
B2 sous la forme matricielle

YB2 “ AXB1 , (3.6)

et relativement aux bases B11 et B12 sous la forme matricielle
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Y 1B12 “ BX 1
B11
. (3.7)

On cherche une relation liant les deux matrices A et B. Partons de l’égalité p3.6q. Puisque Q P

GLmpKq, on a l’équivalence suivante

YB2 “ AXB1 ðñ Q´1YB2 “ Q´1AXB1 .

En utilisant Q´1YB2 “ Y 1B12
et XB1 “ PX 1

B11
, on obtient

Y 1B12 “ pQ
´1AP qX 1

B11
. (3.8)

En comparant la dernière égalité p3.8q avec l’égalité p3.7q, on en déduit, par identification, une
relation donnant la matrice B en fonction de la matrice A,

B “ Q´1AP.

On a ainsi le théorème suivant.

Théorème 3.7.1 (Matrices équivalentes)
Soient E un K´espace vectoriel de dimension n, B1 et B11 deux bases de E et P “ PasspB1, B

1
1q la

matrice de passage de B1 à B11. Soient F un K´espace vectoriel de dimension m, B2 et B12 deux bases
de F et Q “ PasspB2, B

1
2q la matrice de passage de B2 à B12 et soit f P LKpE,F q une application

linéaire. Posons A “ Mat
B1,B2

pfq la matrice associée à f relativement aux bases B1 et B2. Alors

B “ Mat
B11,B12

pfq “ Q´1
¨ A ¨ P

et
A “ Mat

B1,B2
pfq “ Q ¨B ¨ P´1.

et on dit que les matrices A et B sont équivalentes, c’est-à-dire qu’elle représentent la même appli-
cation linéaire dans des bases différentes.

Remarque 3.7.2
1. Il est à noter que les deux matrices rectangulaires A et B sont du même type puisqu’elles repré-
sentent la même application linéaire f : E ÝÑ F . En revanche, les deux matrices carrées inversibles
P et Q ne sont a priori pas du même ordre, sauf si dimpEq “ dimpF q, auquel cas A, B, P et Q sont
quatre matrices du même ordre.
2. Les colonnes de la matrice B sont les coordonnées des images par f des vecteurs de la base B11
exprimés dans la base B12. Autrement dit,

B “Mat
B12

pfpB11qq.

3. L’égalité
B “ Q´1AP

n’est rien d’autre que l’écriture matricielle de l’égalité fonctionnelle suivante

f “ IdF ˝ f ˝ IdE

que l’on vérifie aisément puisque pour tout x P E, on a

pIdF ˝ f ˝ IdEqpxq “ IdF pfpIdEpxqqq “ IdF pfpxqq “ fpxq,
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et que l’on schématise par
E ÝÑ F

IdE Ó Ó IdF

E ÝÑ
f“IdF ˝f˝IdE

F

Il suffit alors de compléter ce schéma en munissant l’espace E des deux bases B1 et B11, et l’espace F
des deux bases B2 et B12, puis en écrivant les matrices associées à chacune des applications relative-
ment aux bases des espaces de départ et des espaces d’arrivée (le sens des flèches nous indique dans
chaque cas l’espace de départ et l’espace d’arrivée). On obtient alors le schéma

pE,B1q

A“ Mat
B1,B2

pfq

ÝÑ pF,B2q

P “ Mat
B11,B1

pIdEq Ó Ó Mat
B2,B12

pIdF q “ Q´1

pE,B11q ÝÑ
B“ Mat

B11,B12

pfq
pF,B12q

et on retrouve l’égalité matricielle

Mat
B11,B12

pfq
looomooon

B

“ Mat
B2,B12

pIdF q

loooomoooon

Q´1

¨Mat
B1,B2

pfq
looomooon

A

¨Mat
B11,B1

pIdEq

loooomoooon

P

Figure 3.1 – Changement de bases pour une application linéaire

Exemple 3.7.4 Soit l’application linéaire suivante

f : R3
Ñ R4, fpx, y, zq “ px` y, y ` z, x, zq.

On prend pour bases, ancienne base de R3 (canonique),

B1 “ te1 “ p1, 0, 0q, e2 “ p0, 1, 0q, e3 “ p0, 0, 1qu.
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Nouvelle base de R3,
B11 “ te

1
1 “ p1, 1, 0q, e12 “ p1, 0, 1q, e13 “ p0, 1, 1qu.

Ancienne base de R4 (canonique),

B2 “ tu1 “ p1, 0, 0, 0q, u2 “ p0, 1, 0, 0q, u3 “ p0, 0, 1, 0q, u4 “ p0, 0, 0, 1qu.

Nouvelle base de R4,

B12 “ tu
1
1 “ p1, 1, 0, 0q, u12 “ p0, 1, 1, 0q, u13 “ p0, 0, 1, 1q, u14 “ p1, 0, 0, 0qu.

On calcule les images des vecteurs de la base canonique de R3

fpe1q “ p1, 0, 1, 0q, fpe2q “ p1, 1, 0, 0q, fpe3q “ p0, 1, 0, 1q.

Les colonnes de A “ Mat
B1,B2

pfq la matrice associée à f relativement aux bases B1 et B2 sont ces images
exprimées dans la base canonique de R4

A “ Mat
B1,B2

pfq “

¨

˚

˚

˚

˚

˝

1 1 0
0 1 1
1 0 0
0 0 1

˛

‹

‹

‹

‹

‚

.

D’autre part, la matrice de passage de B1 à B11 est

P “ PasspB1, B
1
1q “

¨

˝

1 1 0
1 0 1
0 1 1

˛

‚.

La matrice de passage de B2 à B12 est

Q “ PasspB2, B
1
2q “

¨

˚

˚

˝

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 0

˛

‹

‹

‚

.

Par la proposition de changement de bases, la nouvelle matrice associée à f relativement aux bases
B11 et B12 est donnée par

B “ Mat
B11,B12

pfq “ Q´1
¨ A ¨ P.

On calcule d’abord Q´1,

Q´1
“

¨

˚

˚

˝

0 1 ´1 1
0 0 1 ´1
0 0 0 1
1 ´1 1 ´1

˛

‹

‹

‚

.

On obtient

B “ Mat
B11,B12

pfq “ Q´1
¨ A ¨ P “

¨

˚

˚

˝

0 1 ´1 1
0 0 1 ´1
0 0 0 1
1 ´1 1 ´1

˛

‹

‹

‚

¨

˚

˚

˝

1 1 0
0 1 1
1 0 0
0 0 1

˛

‹

‹

‚

¨

˝

1 1 0
1 0 1
0 1 1

˛

‚“

¨

˚

˚

˝

0 1 3
1 0 ´1
0 1 1
2 0 ´2

˛

‹

‹

‚

.

Ici, A et B sont différentes, mais elles représentent la même application linéaire f dans deux bases
différentes.
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Vérification (Autre méthode). Les colonnes de B doivent être les coordonnées dans B12 des
vecteurs fpe11q, fpe12q, fpe13q. Autrement dit

B “Mat
B12

pfpB11qq.

Calcul des images des vecteurs de B11,

fpe11q “ fp1, 1, 0q “ p2, 1, 1, 0q, fpe12q “ fp1, 0, 1q “ p1, 1, 1, 1q, fpe13q “ fp0, 1, 1q “ p1, 2, 0, 1q.

Exprimons fpe1jq dans la base B12 “ tu11, u12, u13, u14u. On résout pour chaque j P t1, 2, 3u,

fpe1jq “ α
pjq
1 u11 ` α

pjq
2 u12 ` α

pjq
3 u13 ` α

pjq
4 u14.

ceci est équivalent à
fpe1jq “ pα

j
1 ` α

j
4, α

j
1 ` α

j
2, α

j
2 ` α

j
3, α

j
3q

Pour fpe11q, on a
$

’

’

’

&

’

’

’

%

α
p1q
1 ` α

p1q
4 “ 2

α
p1q
1 ` α

p1q
2 “ 1

α
p1q
2 ` α

p1q
3 “ 1

α
p1q
3 “ 0

ùñ α
p1q
1 “ 0, αp1q2 “ 1, αp1q3 “ 0, αp1q4 “ 2.

Pour fpe12q, on a
$

’

’

’

&

’

’

’

%

α
p2q
1 ` α

p2q
4 “ 1

α
p2q
1 ` α

p2q
2 “ 1

α
p2q
2 ` α

p2q
3 “ 1

α
p2q
3 “ 1

ùñ α
p2q
1 “ 1, αp2q2 “ 0, αp2q3 “ 1, αp2q4 “ 0.

Pour fpe13q, on a
$

’

’

’

&

’

’

’

%

α
p3q
1 ` α

p3q
4 “ 1

α
p3q
1 ` α

p3q
2 “ 2

α
p3q
2 ` α

p3q
3 “ 0

α
p3q
3 “ 1

ùñ α
p3q
1 “ 3, αp3q2 “ ´1, αp3q3 “ 1, αp3q4 “ ´2.

Ainsi

B “Mat
B12

pfpB11qq “

¨

˚

˚

˝

0 1 3
1 0 ´1
0 1 1
2 0 ´2

˛

‹

‹

‚

“ Q´1
¨ A ¨ P.

On a bien vérifié que les colonnes de B sont les coordonnées dans B12 des images fpe11q, fpe12q, fpe13q.
Ainsi A et B représentent la même application linéaire f , exprimée dans deux couples de bases
différents.

Corollaire 3.7.1 Soient E un K´espace vectoriel de dimension n, B1 et B11 deux bases de E et
P “ PasspB1, B

1
1q la matrice de passage de B1 à B11. Soient F un K´espace vectoriel de dimension m,

B2 et B12 deux bases de F et Q “ PasspB2, B
1
2q la matrice de passage de B2 à B12 et soit f P LKpE,F q

une application linéaire. Posons A “ Mat
B1,B2

pfq la matrice associée à f relativement aux bases B1 et
B2. Soient

XB1 “Mat
B1
pxq , X 1

B11
“Mat

B11

pxq ,
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les matrices-colonnes des coordonnées de x P E dans les bases respectives B1 et B11.Soient

YB2 “Mat
B2
pyq , Y 1B12

“Mat
B12

pyq ,

les matrices-colonnes des coordonnées de y “ fpxq P F dans les bases respectives B2 et B12. Alors on
peut écrire

XB1 “ PX 1
B11
, YB2 “ QY 1B12 , YB2 “ AXB1 .

On obtient
Y 1B12 “ BX 1

B11
ðñ Y 1B12 “ pQ

´1AP qX 1
B11
.

Ici, la formule montre clairement comment transformer la matrice d’une application linéaire quand
on change de bases à la fois dans l’espace de départ et dans l’espace d’arrivée.

3.7.3 Chagement de bases pour un endomorphisme

Un endomorphisme est une application linéaire qui transforme un espace vectoriel dans lui-même.
Comme pour toute application linéaire, on peut le représenter par une matrice, et cette matrice
dépend du choix de la base. Quand on change de base, l’endomorphisme reste le même, mais sa
matrice change. La nouvelle matrice n’est pas arbitraire : elle est directement liée à l’ancienne grâce
à la matrice de passage qui traduit les coordonnées d’une base vers l’autre. On dit alors que les deux
matrices sont semblables, car elles représentent le même endomorphisme dans des bases différentes.

Corollaire 3.7.2 (Matrices semblables) Soit E un K´espace vectoriel de dimension n. Consi-
dérons deux bases B1 et B11 de E, et notons P “ PasspB1, B

1
1q la matrice de passage de la base B1

vers la base B11. Soit f P LKpE,Eq un endomorphisme de E.
1. Si A “ Mat

B1
pfq est la matrice représentant f dans la base B1, alors la matrice B “ Mat

B11

pfq,

représentant f dans la base B11, est obtenue par la relation

B “ P´1
¨ A ¨ P.

Inversement, on a aussi
A “ P ¨B ¨ P´1.

Autrement dit, les matrices A et B représentent le même endomorphisme dans deux bases différentes.
On dit que ces deux matrices sont semblables.
2. Les colonnes de la matrice B sont constituées des coordonnées, dans la base B11, des images par f
des vecteurs de cette base. Autrement dit

B “Mat
B11

pfpB11qq.

Remarque 3.7.3 On retrouve cette écriture matricielle à partir de l’égalité suivante

f “ IdE ˝ f ˝ IdE,

et en munissant les espaces E et F des deux bases B1 et B11, puis en écrivant les matrices associées
à chacune des applications. On obtient le schéma suivant :

pE,B1q

A“Mat
B1
pfq

ÝÑ pE,B1q

P “ Mat
B11,B1

pIdEq Ó Ò Mat
B1,B11

pIdEq “ P´1

pE,B11q ÝÑ
B“Mat

B11

pfq
pE,B11q
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On retrouve l’égalité matricielle

Mat
B11

pfq
looomooon

B

“ Mat
B1,B11

pIdEq

loooomoooon

P´1

¨Mat
B1
pfq

looomooon

A

¨Mat
B11,B1

pIdEq

loooomoooon

P

Figure 3.2 – Chagement de bases pour un endomorphisme

Exemple 3.7.5
1. Exemple dans R3. Considérons l’endomorphisme f : R3 ÝÑ R3 défini par

fpx, y, zq “ px` y, y ` z, x` zq.

On prend pour bases, ancienne base de R3 (canonique),

B1 “ te1 “ p1, 0, 0q, e2 “ p0, 1, 0q, e3 “ p0, 0, 1qu.

Nouvelle base de R3,
B11 “ te

1
1 “ p1, 1, 0q, e12 “ p1, 0, 1q, e13 “ p0, 1, 1qu.

Dans la base B1, on calcule les images des vecteurs de la base canonique

fpe1q “ p1, 0, 1q, fpe2q “ p1, 1, 0q, fpe3q “ p0, 1, 1q.

En écrivant ces vecteurs comme colonnes, on obtient la matrice de f dans la base B1,

A “Mat
B1
pfq “

¨

˝

1 1 0
0 1 1
1 0 1

˛

‚.

La matrice de passage P “ PasspB1, B
1
1q s’obtient en écrivant les vecteurs de la nouvelle base dans

l’ancienne

P “

¨

˝

1 1 0
1 0 1
0 1 1

˛

‚.
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D’après la formule du changement de base, la matrice de f dans la base B11 est donnée par

B “Mat
B11

pfq “ P´1AP.

On calcule P´1. Ici on trouve explicitement

P´1
“

1
2

¨

˝

1 1 ´1
1 ´1 1
´1 1 1

˛

‚.

On obtient

B “ P´1AP “
1
2

¨

˝

1 1 ´1
1 ´1 1
´1 1 1

˛

‚

¨

˝

1 1 0
0 1 1
1 0 1

˛

‚

¨

˝

1 1 0
1 0 1
0 1 1

˛

‚.

En effectuant le produit on obtient

B “

¨

˝

1 0 1
1 1 0
0 1 1

˛

‚.

Les matrices A et B sont différentes, mais elles représentent le même endomorphisme. Elles sont
donc semblables.
2. Exemple dans R2rXs. Considérons l’endomorphisme f : R2rXs ÝÑ R2rXs défini par la dériva-
tion

fpP q “ P 1.

Prenons la base canonique
B1 “ t1, X,X2

u.

On calcule l’image des vecteurs de la base,

fp1q “ 0 “ 0 ¨ 1` 0 ¨X ` 0 ¨X2

fpXq “ 1 “ 1 ¨ 1` 0 ¨X ` 0 ¨X2

fpX2
q “ 2X “ 0 ¨ 1` 2 ¨X ` 0 ¨X2

Donc la matrice de f dans la base canonique est

A “Mat
B1
pfq “

¨

˝

0 1 0
0 0 2
0 0 0

˛

‚.

Prenons une nouvelle base
B11 “ t1, 1`X, 1`X `X2

u.

La matrice de passage de B1 à B11 est obtenue en écrivant les vecteurs de B11 dans la base canonique

P “ PasspB1, B
1
1q “

¨

˝

1 1 1
0 1 1
0 0 1

˛

‚.

D’après la formule du changement de base, la matrice de f dans la base B11 est donnée par

B “Mat
B11

pfq “ P´1AP.

Telle que

P´1
“

¨

˝

1 ´1 0
0 1 ´1
0 0 1

˛

‚.
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En effectuant le calcul, on trouve

B “

¨

˝

1 ´1 0
0 1 ´1
0 0 1

˛

‚

¨

˝

0 1 0
0 0 2
0 0 0

˛

‚

¨

˝

1 1 1
0 1 1
0 0 1

˛

‚“

¨

˝

0 1 ´1
0 0 2
0 0 0

˛

‚.

Les matrices A et B sont semblables, car elles représentent le même endomorphisme (la dérivation)
exprimé dans deux bases différentes de R2rXs.
3. Reprenons l’exemple de l’endomorphisme f qui au vecteur x “ px1, x2, x3q de R3 associe le vecteur

y “ p2x1 ` x2 ` x3, x1 ` 2x2 ` x3, x1 ` x2 ` 2x3q P R3.

Soient B1 “ te1, e2, e3u la base canonique de R3 et B11 “ tu1, u2, u3u la base de R3 définie par

u1 “ p1, 0,´1q, u2 “ p1,´1, 0q, u3 “ p1, 1, 1q.

En notant P la matrice de passage de B1 à B11, on vérifie que l’on a

B “Mat
B11

pfq “ P´1AP “

¨

˝

1 0 0
0 1 0
0 0 4

˛

‚“
1
3

¨

˝

1 1 ´2
1 ´2 1
1 1 1

˛

‚

¨

˝

2 1 1
1 2 1
1 1 2

˛

‚

¨

˝

1 1 1
0 ´1 1
´1 0 1

˛

‚.

3.8 Déterminant d’une matrice

Après avoir défini les matrices et leurs principales propriétés, il est naturel d’introduire la notion
de déterminant. Le déterminant d’une matrice carrée est une valeur scalaire unique associée à cette
matrice, noté detpAq ou |A|. Ce nombre permet surtout de savoir si une matrice est inversible : si
le déterminant est nul, la matrice n’est pas inversible ; s’il est non nul, elle l’est. Il est utilisé dans
la résolution de systèmes d’équations linéaires, dans le calcul d’aires ou de volumes, et dans l’étude
des propriétés des matrices. Son calcul est simple pour les petites matrices, mais pour les grandes,
on préfère des méthodes comme la réduction de Gauss. Pour certaines matrices particulières, comme
les matrices triangulaires ou diagonales, le déterminant se calcule très facilement en multipliant les
éléments de la diagonale.

Définition 3.8.1 (Déterminant d’une matrice)
1. On appelle déterminant d’une matrice toute application qui associe à chaque matrice carrée A “
paijq PMnpKq un scalaire de K, noté detpAq ou encore |A|. On a donc

det : MnpKq ÝÑ K

A “ paijq ÞÝÑ detpAq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... . . . ... ... ...
ai1 ai2 ¨ ¨ ¨ aij ¨ ¨ ¨ ain
... ... ... ... . . . ...
an1 an2 ¨ ¨ ¨ anj ¨ ¨ ¨ ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

2. Le déterminant d’une matrice carrée A peut s’écrire indifféremment comme une fonction des
colonnes de A

detpAq “ detpC1, C2, . . . , Cnq,

ou comme une fonction de ses lignes

detpAq “ detpL1, L2, . . . , Lnq,

où C1, C2, . . . , Cn désignent les colonnes de A, et L1, L2, . . . , Ln ses lignes.
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3.8.1 Calcul de déterminant d’une matrice carrée.

Le déterminant d’une matrice carrée A “ paijq PMnpKq se définit et se calcule par récurrence
sur l’ordre n de la matrice.

3.8.1.1 Cas 1 : Déterminant d’une matrice d’ordre 1

Dans ce cas, la matrice A est simplement A “
`

a11
˘

. Alors le déterminant est simplement

detpAq “
ˇ

ˇ a11
ˇ

ˇ “ a11.

3.8.1.2 Cas 2 : Déterminant d’une matrice d’ordre 2

Dans ce cas, la matrice A est
ˆ

a11 a12
a21 a22

˙

, et le déterminant se calcule par la formule

detpAq “
ˇ

ˇ

ˇ

ˇ

a11 a12
a21 a22

ˇ

ˇ

ˇ

ˇ

“ a11a22 ´ a21a12.

Ces deux premiers cas constituent la base de la définition par récurrence du déterminant des matrices
d’ordre supérieur (n ě 3), qui se calcule à l’aide du développement selon une ligne ou une colonne.

3.8.1.3 Cas général : Déterminant d’une matrice d’ordre n ě 3, mineurs et cofacteurs

Pour calculer le déterminant d’une matrice carrée d’ordre n ě 3, on ne peut plus utiliser les
formules directes des cas n “ 1 ou n “ 2. On emploie une méthode appelée développement par rapport
à une ligne ou une colonne. Afin de mettre en œuvre cette méthode, il est nécessaire d’introduire deux
notions fondamentales : les mineurs et les cofacteurs. Ces outils permettent de décomposer le calcul
d’un déterminant d’ordre n en plusieurs déterminants d’ordres inférieurs, ce qui rend la méthode
applicable par récurrence.

Définition 3.8.2 Soit A “ paijq PMnpKq.
1. Mineur. On appelle mineur de A d’indice pi, jq, et l’on note Mij, la sous-matrice carrée d’ordre
n´ 1 obtenue en supprimant de A la i´ème ligne et la j´ème colonne.
2. Cofacteur. On appelle cofacteur de A d’indice pi, jq, et l’on note ∆ij le scalaire défini par

∆ij “ p´1qi`j detpMijq.

Remarque 3.8.1 Le facteur p´1qi`j est toujours égal à p`1q ou à p´1q selon les indices i et j
du cofacteur. Le cofacteur d’indice pi, jq d’une matrice est donc le déterminant signé du mineur de
même indice. Les signes qui accompagnent les mineurs sont toujours en alternance. Pour une matrice
carrée d’ordre 3, nous avons les signes suivants

¨

˝

p´1q1`1 p´1q1`2 p´1q1`3

p´1q2`1 p´1q2`2 p´1q2`3

p´1q3`1 p´1q3`2 p´1q3`3

˛

‚“

¨

˝

`1 ´1 `1
´1 `1 ´1
`1 ´1 `1

˛

‚.

Cette alternance de signes joue un rôle essentiel dans le calcul du déterminant par développement
selon une ligne ou une colonne.
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Exemple 3.8.1
1. Soit la matrice

A “

¨

˝

1 0 5
2 ´4 7
3 2 1

˛

‚PM3pRq.

Le mineur M23 est obtenu en éliminant la ligne 2 et la colonne 3 de la matrice A tandis que le mineur
M21 est obtenu en éliminant la ligne 2 et la colonne 1 de la matrice A,

M23 “

ˆ

1 0
3 2

˙

,M21 “

ˆ

0 5
2 1

˙

.

2. Les cofacteurs correspondants sont,
(a) Pour l’indice p2, 3q, le cofacteur ∆23 est

∆23 “ p´1q2`3 detpM23q “ ´

∣∣∣∣∣1 0
3 2

∣∣∣∣∣ “ ´2.

(b)Pour l’indice p2, 1q, le cofacteur ∆21 est

∆21 “ p´1q2`1 detpM21q “ ´

∣∣∣∣∣0 5
2 1

∣∣∣∣∣ “ ´p´10q “ 10.

Après avoir introduit les notions de mineurs et de cofacteurs, on peut établir une règle générale
pour le calcul du déterminant d’une matrice de n’importe quel ordre. Cette règle, appelée développe-
ment de Laplace, exprime le déterminant d’une matrice comme une combinaison linéaire de certains
coefficients de la matrice et de leurs cofacteurs. Elle fournit une méthode systématique de calcul, qui
peut être appliquée en choisissant n’importe quelle ligne ou n’importe quelle colonne de la matrice.

Théorème 3.8.1 (Développement d’un déterminant par rapport à une rangée) Soit A “
paijq PMnpKq une matrice carrée d’ordre n. On peut calculer son déterminant en développant suivant
une ligne ou une colonne.
1. Développement par rapport à la ligne i (fixée).

detpAq “
n
ÿ

j“1
p´1qi`jaij detpMijq “

n
ÿ

j“1
aij ¨∆ij.

où Mij est le mineur d’indice pi, jq et ∆ij “ p´1qi`j detpMijq est le cofacteur associé.
2. Développement par rapport à la colonne j (fixée).

detpAq “
n
ÿ

i“1
p´1qi`jaij detpMijq “

n
ÿ

i“1
aij ¨∆ij.

Autrement dit, le déterminant d’une matrice carrée peut être calculé en choisissant n’importe quelle
ligne ou n’importe quelle colonne, puis en effectuant la somme des produits de chaque coefficient de
cette ligne ou colonne par son cofacteur.

Remarque 3.8.2 (Calcul d’un déterminant et choix d’une rangée ou d’une colonne)
1. On appelle rangée d’une matrice ou d’un déterminant toute ligne ou colonne de cette matrice ou
de ce déterminant.
2. Il est souvent utile de développer un déterminant par rapport à une rangée lorsque cette rangée
comporte peu de termes non nuls (plusieurs termes nuls).
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3. Étapes pour le développement par ligne ou colonne.
(a) Choisir une rangée. Pour simplifier le calcul, il est conseillé de choisir une ligne ou une
colonne contenant le plus grand nombre de zéros.
(b) Calculer les cofacteurs ∆ij pour chaque élément de la rangée choisie,

∆ij “ p´1qi`j detpMijq.

(c) Former la somme des produits des éléments par leurs cofacteurs. Cette somme donne detpAq.
Le développement par colonne s’effectue de manière analogue

detpAq “
n
ÿ

i“1
aij ∆ij.

4. Pour des calculs numériques, des méthodes plus rapides que le développement par rangée ou colonne
existent, surtout pour les matrices de grande taille.

Exemple 3.8.2
1. Soit la matrice

A “

¨

˝

1 2 3
0 4 5
1 0 6

˛

‚PM3pRq.

(a). Développons par rapport à la deuxième ligne (i “ 2), on a

detpAq “
3
ÿ

j“1
p´1q2`ja2j detpM2jq “

3
ÿ

j“1
∆2j ¨ a2j.

“ p´1q2`1a21 detpM21q ` p´1q2`2a22 detpM22q ` p´1q2`3a23 detpM23q

“ 4
ˇ

ˇ

ˇ

ˇ

1 3
1 6

ˇ

ˇ

ˇ

ˇ

´ 5
ˇ

ˇ

ˇ

ˇ

1 2
1 0

ˇ

ˇ

ˇ

ˇ

“ 4 ¨ 3´ 5 ¨ p´2q “ 22.

(b). Développons par rapport à la troisième colonne (j “ 3), on a

detpAq “
3
ÿ

i“1
p´1qi`3ai3 detpMi3q “

3
ÿ

i“1
∆i3 ¨ ai3.

“ p´1q1`3a13 detpM13q ` p´1q2`3ai3 detpM23q ` p´1q3`3a33 detpM33q

“ 3
ˇ

ˇ

ˇ

ˇ

0 4
1 0

ˇ

ˇ

ˇ

ˇ

´ 5
ˇ

ˇ

ˇ

ˇ

1 2
1 0

ˇ

ˇ

ˇ

ˇ

` 6
ˇ

ˇ

ˇ

ˇ

1 2
0 4

ˇ

ˇ

ˇ

ˇ

“ 3 ¨ p´4q ´ 5 ¨ p´2q ` 6 ¨ 4 “ 22.

On retrouve bien le même résultat
detpAq “ 22.

2. Calculons le déterminant de la matrice

A “

¨

˝

4 2 3
2 1 4
5 3 2

˛

‚PM3pRq.

(a) En effectuant son développement de Laplace selon la deuxième ligne,

detpAq “
3
ÿ

j“1
p´1q2`ja2j detpM2jq “

3
ÿ

j“1
∆2j ¨ a2j.
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“ p´1q2`1a21 detpM21q ` p´1q2`2a22 detpM22q ` p´1q2`3a23 detpM23q

“ 2p´1q2`1
∣∣∣∣∣2 3
3 2

∣∣∣∣∣` 1p´1q2`2
∣∣∣∣∣4 3
5 2

∣∣∣∣∣` 4p´1q2`3
∣∣∣∣∣4 2
5 3

∣∣∣∣∣
“ ´2p4´ 9q ` p8´ 15q ´ 4p12´ 10q “ ´5.

(b) Reprenons le calcul du déterminant de la matrice A, mais cette fois en effectuant son développe-
ment de Laplace selon la troisième colonne,

detpAq “
3
ÿ

i“1
p´1qi`3ai3 detpMi3q “

3
ÿ

i“1
∆i3 ¨ ai3.

“ p´1q1`3a13 detpM13q ` p´1q2`3a23 detpM23q ` p´1q3`3a33 detpM33q

“ 3p´1q1`3
∣∣∣∣∣2 1
5 3

∣∣∣∣∣` 4p´1q2`3
∣∣∣∣∣4 2
5 3

∣∣∣∣∣` 2p´1q3`3
∣∣∣∣∣4 2
2 1

∣∣∣∣∣
“ 3p6´ 5q ´ 4p12´ 10q ` 2p4´ 4q “ ´5.

On retrouve le même résultat
detpAq “ ´5.

Ainsi, le déterminant d’une matrice est unique : il ne dépend ni de la ligne, ni de la colonne choisie
pour le développement.

3.8.1.4 Règle de Sarrus

Le calcul du déterminant d’une matrice peut devenir long et compliqué lorsque la taille augmente.
Cependant, pour les matrices carrées d’ordre 3, il existe une méthode rapide et intuitive appelée règle
de Sarrus. Elle repose sur un procédé visuel qui évite le développement par mineurs et cofacteurs, et
permet d’obtenir le résultat en quelques étapes simples.

Principe de la règle de Sarrus. La règle consiste à
1. Recopier les deux premières colonnes de la matrice à droite, pour obtenir 5 colonnes au total.
2. Additionner les produits des diagonales descendantes (de gauche à droite, vers le bas).
3. Additionner les produits des diagonales montantes (de gauche à droite, vers le haut).
4. Le déterminant est la différence entre ces deux sommes

detpAq “ S` ´ S´.

Étapes d’application de la règle de Sarrus. Soit

A “

¨

˝

a11 a12 a13
a21 a22 a23
a31 a32 a33

˛

‚PM3pKq.

1. Recopier les deux premières colonnes à droite
¨

˝

a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32

˛

‚.

2. Calculer la somme des produits des diagonales descendantes

S` “ a11a22a33 ` a12a23a31 ` a13a21a32.
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3. Calculer la somme des produits des diagonales montantes

S´ “ a31a22a13 ` a32a23a11 ` a33a21a12.

4. Déterminant

detpAq “ S` ´ S´ “ pa11a22a33 ` a12a23a31 ` a13a21a32q ´ pa31a22a13 ` a32a23a11 ` a33a21a12q.

Remarque 3.8.3 La règle de Sarrus est valable uniquement pour les matrices 3ˆ3. Pour les matrices
d’ordre supérieur, il faut utiliser le développement de Laplace.

Exemple 3.8.3 Soit

A “

¨

˝

2 1 3
0 ´1 4
1 2 5

˛

‚PM3pRq.

Étape 1 : recopier les deux premières colonnes à droite.
On ajoute à droite de la matrice les deux premières colonnes pour visualiser plus facilement les
diagonales

¨

˝

2 1 3 2 1
0 ´1 4 0 ´1
1 2 5 1 2

˛

‚.

Étape 2 : Calcul de la somme des produits des diagonales descendantes ( S`).

S` “ 2 ¨ p´1q ¨ 5` 1 ¨ 4 ¨ 1` 3 ¨ 0 ¨ 2 “ ´10` 4` 0 “ ´6.

Étape 3 : Calcul de la somme des produits des diagonales montantes (S´).

S´ “ 3 ¨ p´1q ¨ 1` 2 ¨ 4 ¨ 2` 1 ¨ 0 ¨ 5 “ ´3` 16` 0 “ 13.

Étape 4 : Calcul du déterminant.

detpAq “ S` ´ S´ “ ´6´ 13 “ ´19.

On peut vérifier ce résultat en utilisant le développement de Laplace (par exemple le long de la
première colonne), ce qui confirme que le calcul par la règle de Sarrus est correct.

3.8.2 Multilinéarité et autres propriétés fondamentales du déterminant

Dans cette section, nous présentons les propriétés essentielles de l’application déterminant. Ces
propriétés, dites fondamentales, jouent un rôle central dans l’étude des matrices carrées et des sys-
tèmes linéaires. Elles permettent notamment de comprendre la nature du déterminant en tant
qu’application multilinéaire et alternée, et justifier les règles usuelles de calcul du déterminant.

Proposition 3.8.1 Soit A “ paijq PMnpKq. On note C1, C2, . . . , Cn les colonnes de A et L1, L2, . . . , Ln

ses lignes. Alors
1. Linéarité par rapport à une colonne.
Pour tout j P t1, . . . , nu, l’application déterminant est linéaire en la j´ième colonne, c’est-à-dire
pour tout λ P K et pour toutes colonnes C 1j, C2j P Kn,

detpC1, . . . , λC
1
j, . . . , Cnq “ λ detpC1, . . . , C

1
j, . . . , Cnq,
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et
detpC1, . . . , C

1
j ` C

2
j , . . . , Cnq “ detpC1, . . . , C

1
j, . . . , Cnq ` detpC1, . . . , C

2
j , . . . , Cnq.

2. Linéarité par rapport à une ligne.
De façon analogue, pour tout i P t1, . . . , nu, le déterminant est linéaire en la i´ième ligne, c’est-à-dire
pour tout λ P K et pour toutes lignes L1i, L2i P Kn,

detpL1, . . . , λL
1
i, . . . , Lnq “ λ detpL1, . . . , L

1
i, . . . , Lnq,

et
detpL1, . . . , L

1
i ` L

2
i , . . . , Lnq “ detpL1, . . . , L

1
i, . . . , Lnq ` detpL1, . . . , L

2
i , . . . , Lnq.

Le déterminant est donc multilinéaire par rapport à ses colonnes, et de même par rapport à ses lignes.

Preuve. Soit A “ paijq PMnpKq et fixons une colonne j. On note C1, C2, . . . , Cn les colonnes de
A. Par le développement de Laplace suivant la colonne j, on a

detpAq “
n
ÿ

i“1
aij∆ij,

où chaque ∆ij “ p´1qi`j detpMijq est un cofacteur associé à l’entrée aij. On observe que ces cofacteurs
ne dépendent pas des éléments de la colonne j, mais uniquement des autres colonnes.
1. Linéarité par rapport à une colonne.
(a). Homogénéité (multiplication par un scalaire). Si la colonne j est remplacée par λC 1j
(λ P K), alors chaque coefficient devient

aij “ λa1ij.

Ainsi,

detpC1, . . . , λC
1
j, . . . , Cnq “

n
ÿ

i“1
pλa1ijq∆ij “ λ

n
ÿ

i“1
a1ij∆ij “ λ detpC1, . . . , C

1
j, . . . , Cnq.

(b). Additivité (somme de colonnes). Si la colonne j est la somme

C 1j ` C
2
j ,

alors
aij “ a1ij ` a

2
ij.

On obtient

detpC1, . . . , C
1
j ` C

2
j , . . . , Cnq “

n
ÿ

i“1
pa1ij ` a

2
ijq∆ij “

n
ÿ

i“1
a1ij∆ij `

n
ÿ

i“1
a2ij∆ij.

D’où

detpC1, . . . , C
1
j ` C

2
j , . . . , Cnq “ detpC1, . . . , C

1
j, . . . , Cnq ` detpC1, . . . , C

2
j , . . . , Cnq.

Ces deux propriétés montrent que le déterminant est une application linéaire en chaque colonne.
Comme le choix de la colonne j est arbitraire, la linéarité vaut pour toutes les colonnes.
1. Linéarité par rapport à une ligne.
Le raisonnement est entièrement analogue si l’on fixe une ligne, ce qui établit la linéarité du déter-
minant par rapport à une ligne. l
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Exemple 3.8.4
1. Linéarité par rapport à une colonne. Considérons la matrice

A “

¨

˝

1 2 1
0 3 4
1 1 0

˛

‚PM3pRq.

La 2ème colonne se décompose en

C2 “

¨

˝

2
3
1

˛

‚“

¨

˝

2
0
1

˛

‚

loomoon

C12

`

¨

˝

0
3
0

˛

‚

loomoon

C22

.

Posons les matrices obtenues en remplaçant la colonne C2 par C 12 puis par C22 ,

A1 “ pC1, C
1
2, C3q “

¨

˚

˝

1 2 1
0 0 4
1 1 0

˛

‹

‚

, A2 “ pC1, C
2
2 , C3q “

¨

˚

˝

1 0 1
0 3 4
1 0 0

˛

‹

‚

.

Par la propriété de multilinéarité du déterminant en chaque colonne, on a

detpAq “ detpC1, C2, C3q “ detpC1, C
1
2 ` C

2
2 , C3q “ detpC1, C

1
2, C3q ` detpC1, C

2
2 , C3q,

c’est-à-dire
detpAq “ detpA1q ` detpA2q.

Nous vérifions maintenant numériquement cette égalité en calculant chacun des déterminants.
(a) Calcul de detpAq. On développe par la première ligne

detpAq “

∣∣∣∣∣∣∣∣
1 2 1
0 3 4
1 1 0

∣∣∣∣∣∣∣∣ “ 1 ¨ |M11| ´ 2 ¨ |M12| ` 1 ¨ |M13| “ 1 ¨ p´4q ´ 2 ¨ p´4q ` 1 ¨ p´3q “ ´4` 8´ 3 “ 1.

(b) Calcul de detpA1q. On développe par la première ligne

detpA1q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 2 1
0 0 4
1 1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 1 ¨ |M11| ´ 2 ¨ |M12| ` 1 ¨ |M13| “ 1 ¨ p´4q ´ 2 ¨ p´4q ` 1 ¨ 0 “ ´4` 8` 0 “ 4.

(c) Calcul de detpA2q. On développe par la première ligne

detpA2q “

∣∣∣∣∣∣∣∣
1 0 1
0 3 4
1 0 0

∣∣∣∣∣∣∣∣ “ 1 ¨ |M11| ´ 0 ¨ |M12| ` 1 ¨ |M13| “ 1 ¨ 0´ 0` 1 ¨ p´3q “ ´3.

On vérifie la relation donnée par la multilinéarité

detpA1q ` detpA2q “ 4` p´3q “ 1 “ detpAq.

Ce qui confirme la multilinéarité du déterminant en la 2ème colonne.
2. Linéarité par rapport à une ligne.
Considérons la matrice

A “

¨

˝

1 2 1
3 1 4
0 2 5

˛

‚PM3pRq.
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Sa deuxième ligne est
L2 “

`

3 1 4
˘

“
`

3 0 0
˘

loooomoooon

L12

`
`

0 1 4
˘

loooomoooon

L22

.

On définit alors les matrices obtenues en remplaçant L2 par chacune de ces parties

A1 “

¨

˝

1 2 1
3 0 0
0 2 5

˛

‚, A2 “

¨

˝

1 2 1
0 1 4
0 2 5

˛

‚.

Par la propriété de multilinéarité du déterminant en chaque ligne, on a

detpAq “ detpL1, L2, L3q “ detpL1, L
1
2 ` L

2
2, L3q “ detpA1q ` detpA2q.

Nous vérifions maintenant numériquement cette égalité en calculant chacun des déterminants.
(a) Calcul de detpAq. Développement (par la 1ère ligne)

detpAq “

∣∣∣∣∣∣∣
1 2 1
3 1 4
0 2 5

∣∣∣∣∣∣∣ “ 1 ¨ p1 ¨ 5´ 4 ¨ 2q ´ 2 ¨ p3 ¨ 5´ 4 ¨ 0q ` 1 ¨ p3 ¨ 2´ 1 ¨ 0q “ ´27.

(b) Calcul de detpA1q. Développement (par la 1ère ligne)

detpA1q “

∣∣∣∣∣∣∣
1 2 1
3 0 0
0 2 5

∣∣∣∣∣∣∣ “ 1 ¨ p0 ¨ 5´ 0 ¨ 2q ´ 2 ¨ p3 ¨ 5´ 0q ` 1 ¨ p3 ¨ 2´ 0q “ ´24.

(c) Calcul de detpA2q. Développement (par la 1ère ligne)

detpA2q “

∣∣∣∣∣∣∣
1 2 1
0 1 4
0 2 5

∣∣∣∣∣∣∣ “ 1 ¨ p1 ¨ 5´ 4 ¨ 2q ´ 2 ¨ p0 ¨ 5´ 4 ¨ 0q ` 1 ¨ p0 ¨ 2´ 1 ¨ 0q “ ´3

On obtient
detpA1q ` detpA2q “ p´24q ` p´3q “ ´27 “ detpAq.

Cela confirme la linéarité du déterminant par rapport à une ligne (ici la deuxième ligne).

Le déterminant est une application qui associe à chaque matrice carrée un nombre du corps de base.
Pour bien l’utiliser, il est important de connaître ses propriétés fondamentales. Celles-ci décrivent
comment le déterminant se comporte lorsqu’on effectue des opérations élémentaires sur les colonnes
ou les lignes. Elles précisent aussi les cas où le déterminant est nul, par exemple lorsqu’une colonne
est nulle, que deux colonnes sont égales ou qu’une colonne est combinaison linéaire des autres. Enfin,
toutes ces propriétés sont valables aussi bien pour les lignes que pour les colonnes, comme le montre
la proposition suivante.

Proposition 3.8.2 (Propriétés fondamentales du déterminant) Soit A “ paijq P MnpKq.
On note C1, C2, ..., Cn (resp. L1, L2, ..., Lnq les colonnes (resp. lignes) de A. Alors
1. Effet des opérations élémentaires.
(a) Permutation de deux colonnes. Si on permute deux colonnes de A on multiplie detpAq par
p´1q,

detpC1, . . . , Ci, . . . , Cj, . . . , Cnq “ ´ detpC1, . . . , Cj, . . . , Ci, . . . , Cnq.
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Cette propriété exprime le caractère alterné du déterminant.
(b) Multiplication d’une colonne par un scalaire. Si l’on multiplie une colonne Cj par un
scalaire λ P K, le déterminant est multiplié par λ,

detpC1, . . . , λCj, . . . , Cnq “ λ detpC1, . . . , Cj, . . . , Cnq.

Cela traduit la linéarité du déterminant par rapport à chaque colonne.
(c) Ajout d’une combinaison linéaire des autres colonnes à une colonne. Si l’on remplace
une colonne Cj par une combinaison linéaire des autres colonnes

Cj ÐÝ Cj `
ÿ

k‰j

λkCk,

alors le déterminant reste inchangé

detpC1, . . . , Cj `
ÿ

k‰j

λkCk, . . . , Cnq “ detpC1, . . . , Cj, . . . , Cnq.

2. Cas particuliers entraînant un déterminant nul.
(a) Colonne nulle. Si une des colonnes de A est le vecteur nul, alors

detpAq “ 0K.

C’est une conséquence directe de la linéarité : multiplier une colonne par 0K annule le déterminant.
(b) Deux colonnes égales. Si deux colonnes sont identiques, alors

detpAq “ 0K.

3. Colonne combinaison linéaire des autres. Si une colonne est une combinaison linéaire des
autres, alors les colonnes sont linéairement dépendantes, et

detpAq “ 0K.

Cette propriété exprime le fait que le déterminant est nul lorsque les colonnes (ou lignes) de la matrice
ne forment pas une famille libre.
4. Symétrie lignes/colonnes. Toutes les propriétés ci-dessus, énoncées pour les colonnes, restent
valables pour les lignes.

Nous allons appliquer les propriétés fondamentales du déterminant pour calculer le déterminant de
Vandermonde dans l’exemple suivant.

Exemple 3.8.5 Soit n P N˚. Soit px1, . . . , xnq P Kn. On appelle déterminant de Vandermonde,
et on note V px1, . . . , xnq l’élément de K défini par

V px1, . . . , xnq “

∣∣∣∣∣∣∣∣∣∣
1K x1 x2

1 ¨ ¨ ¨ xn´1
1

1K x2 x2
2 ¨ ¨ ¨ xn´1

2
... ... ... . . . ...

1K xn x2
n ¨ ¨ ¨ xn´1

n

∣∣∣∣∣∣∣∣∣∣
“ det

`

pxj´1
i q1ďi,jďn

˘

.

On a
@n P N˚, @px1, . . . , xnq P Kn : V px1, . . . , xnq “

ź

1ďjăiďn

pxi ´ xjq.
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En effet. Par récurrence sur n.
• Si n “ 1, alors la matrice est p1Kq donc V px1q “ 1K, et la formule (produit vide) est vraie.
• Si n “ 2, alors

V px1, x2q “

∣∣∣∣∣1K x1

1K x2

∣∣∣∣∣ “ x2 ´ x1,

ce qui correspond bien au produit
ź

1ďjăiď2
pxi ´ xjq “ x2 ´ x1.

• Si n “ 3,

V px1, x2, x3q “

∣∣∣∣∣∣∣
1K x1 x2

1
1K x2 x2

2
1K x3 x2

3

∣∣∣∣∣∣∣ .
On effectue les opérations suivantes

C3 ÐÝ C3 ´ x1C2, C2 ÐÝ C2 ´ x1C1.

On obtient

V px1, x2, x3q “

∣∣∣∣∣∣∣
1K 0K 0K
1K x2 ´ x1 x2

2 ´ x1x2
1K x3 ´ x1 x2

3 ´ x1x3

∣∣∣∣∣∣∣
En développant le déterminant par la première ligne, on obtient

V px1, x2, x3q “

∣∣∣∣∣x2 ´ x1 x2
2 ´ x1x2

x3 ´ x1 x2
3 ´ x1x3

∣∣∣∣∣ “ px2 ´ x1qpx3 ´ x1qpx3 ´ x2q,

ce qui correspond bien au produit
ź

1ďjăiď3
pxi ´ xjq “ px2 ´ x1qpx3 ´ x1qpx3 ´ x2q,

Supposons la formule vraie pour n´ 1 ( n ě 3). Considérons la matrice de Vandermonde A “ paijq

avec aij “ x j´1
i . Pour j “ 2, . . . , n, on effectue les opérations élémentaires sur les colonnes

C2 ÐÝ C2 ´ x1C1, C3 ÐÝ C3 ´ x1C2, . . . , Cn ÐÝ Cn ´ x1Cn´1.

Autrement dit
Cj ÐÝ Cj ´ x1Cj´1.

Ces opérations élémentaires sur les colonnes ne changent pas la valeur du déterminant. La matrice
résultante a donc la forme

¨

˚

˚

˚

˚

˝

1K 0K 0K ¨ ¨ ¨ 0K

1K px2 ´ x1qx2 px2 ´ x1qx
2
2 ¨ ¨ ¨ px2 ´ x1qx

n´2
2

... ... ... . . . ...
1K pxn ´ x1qxn pxn ´ x1qx

2
n ¨ ¨ ¨ pxn ´ x1qx

n´2
n

˛

‹

‹

‹

‹

‚

.

En développant le déterminant par rapport à la première ligne, on obtient

V px1, . . . , xnq “

n
ź

i“2
pxi ´ x1q ¨ V px2, . . . , xnq.
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Par l’hypothèse de récurrence,

V px2, . . . , xnq “
ź

2ďjăiďn

pxi ´ xjq.

D’où

V px1, . . . , xnq “

˜

n
ź

i“2
pxi ´ x1q

¸˜

ź

2ďjăiďn

pxi ´ xjq

¸

“
ź

1ďjăiďn

pxi ´ xjq.

Cela conclut la récurrence et la preuve.

Le déterminant d’une matrice carrée n’est pas seulement caractérisé par ses propriétés de multili-
néarité et d’alternance ; il possède également un ensemble de propriétés algébriques fondamentales
qui en font un outil central en algèbre linéaire. Celles-ci décrivent son comportement vis-à-vis de la
multiplication par un scalaire, du produit de matrices, de la transposition et de l’inversibilité. Elles
constituent à la fois des moyens pratiques pour simplifier les calculs et des outils théoriques essentiels
pour comprendre la structure des matrices et leurs applications.

Proposition 3.8.3 (Propriétés algébriques du déterminant) Soient A “ paijq, B “ pbijq P

MnpKq et λ P K, alors
1. Multiplication par un scalaire. Si l’on multiplie tous les coefficients de la matrice A par un
scalaire λ, le déterminant est multiplié par λn,

detpλ ¨ Aq “ λn
¨ detpAq.

2. Compatibilité avec le produit matriciel. Le déterminant d’un produit de matrices est égal
au produit de leurs déterminants

detpA ¨Bq “ detpAq ¨ detpBq.

Cela montre que le déterminant «respecte » la multiplication de matrices.
3. Invariance par transposition. Le déterminant d’une matrice reste inchangé lorsqu’on la trans-
pose

detptAq “ detpAq.

4. Critère d’inversibilité. La matrice A est inversible si et seulement si

detpAq ­“ 0K.

Autrement dit, un déterminant nul indique que la matrice est singulière (non inversible).
5. Déterminant de l’inverse. Si A est inversible, le déterminant de son inverse est l’inverse de
son déterminant

detpA´1
q “ pdetpAqq´1 .

6. Déterminant d’une matrice triangulaire. Si A est une matrice triangulaire (supérieure ou
inférieure). Alors

detpAq “
n
ź

i“1
aii “ a11 ¨ a22 ¨ . . . ¨ ann.

Autrement dit, le déterminant d’une matrice triangulaire est simplement le produit de ses éléments
diagonaux.
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Corollaire 3.8.1 (Conséquences algébriques du déterminant)
1. Déterminant des puissances entières positives. À partir de la propriété de compatibilité
du déterminant avec le produit matriciel, on établit par récurrence que

@A PMnpKq, @k P N˚ : detpAk
q “ pdetpAqqk.

2. Déterminant des puissances entières relatives. Si A est inversible (A P GLnpKq), on a

@k P Z : detpAk
q “ pdetpAqqk.

3. Déterminant des matrices nilpotentes. Si A PMnpKq est nilpotente, il existe k P N˚ tel que
Ak “ 0n. Par conséquent

detpAk
q “ pdetpAqqk “ 0K,

et donc
detpAq “ 0K.

Autrement dit, toute matrice nilpotente est non inversible.
4. Déterminant des matrices antisymétriques d’ordre impair. Si A P MnpKq est antisy-
métrique et si n est impair, alors

detpAq “ detptAq “ detp´Aq “ p´1qn detpAq “ ´ detpAq,

d’où
detpAq “ 0K.

Preuve.
1. On procède par récurrence sur k. Pour k “ 1 on a bien

detpA1
q “ detA “ pdetAq1.

Supposons qu’il existe k ě 1 tel que

detpAk
q “ pdetAqk.

Alors, en utilisant la propriété multiplicative du déterminant

detpXY q “ detX detY,

on obtient

detpAk`1
q “ detpAkAq “ detpAk

q detpAq “ pdetAqk detpAq “ pdetAqk`1.

Par le principe de récurrence, l’égalité est vraie pour tout k P N˚.
2. Si A P GLnpKq, alors A est inversible et A´1 existe et

detpA´1
q “ pdetpAqq´1 .

Dès lors, pour tout k P Z,
• Si k ě 0, on utilise le point (1).
• Si k ă 0, on écrit

k “ ´m,m ą 0,
alors

detpAk
q “ detpA´m

q “ detppA´1
q

m
q “ pdetpA´1

qq
m
“
`

pdetpAqq´1˘m
“ pdetpAqq´m

“ pdetpAqqk.
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Dans tous les cas on a pour tout entier k P Z,

detpAk
q “ pdetpAqqk.

3. Soit A PMnpKq nilpotente. Par définition, il existe un entier k ą 0 tel que

Ak
“ 0n.

En prenant les déterminants des deux côtés et en utilisant la multiplicativité du déterminant et le
fait que

detp0nq “ 0K,

on obtient
detpAk

q “ detp0nq “ 0K.

D’après le point (1) (cas des puissances positives),

detpAk
q “ pdetAqk.

Ainsi
pdetAqk “ 0K.

Comme K est un corps (donc sans diviseurs de zéro), l’équation xk “ 0K n’a pour solution que
x “ 0K. On en déduit

det pAq “ 0K.

4. Si A PMnpKq est antisymétrique, on a

tA “ ´A.

Or le déterminant d’une transposée est égal à celui de la matrice initiale,

detptAq “ detpAq.

D’autre part
detptAq “ detp´Aq “ p´1qn detpAq.

Si n est impair, alors p´1qn “ ´1. Donc

detpAq “ detptAq “ p´1qn detpAq “ ´ detpAq.

Ainsi
detpAq “ ´ detpAq ùñ detpAq “ 0K.

l

Exemple 3.8.6
1. Déterminant des puissances entières positives en dimension 3. Soit

A “

¨

˚

˝

1 2 0
0 3 1
0 0 4

˛

‹

‚

PM3pRq.

Or A est triangulaire supérieure, donc detpAq est le produit des éléments diagonaux

detpAq “ 1 ¨ 3 ¨ 4 “ 12.
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Calculons maintenant A2 et A3 et leurs déterminants pour vérifier detpAkq “ pdetAqk.
On a

A2
“ A ¨ A “

¨

˚

˝

1 8 2
0 9 7
0 0 16

˛

‹

‚

.

Comme A2 est encore triangulaire, son déterminant est le produit des diagonales

detpA2
q “ 144.

Or
pdetAq2 “ 122

“ 144.

Donc
detpA2

q “ pdetAq2.

On a

A3
“ A2

¨ A “

¨

˚

˝

1 26 16
0 27 37
0 0 64

˛

‹

‚

.

Donc
detpA3

q “ 1728,

et
pdetAq3 “ 123

“ 1728.

Ainsi
detpA3

q “ pdetAq3.

Pour une matrice triangulaire (ici supérieure), Ak est aussi triangulaire et ses éléments diagonaux
sont les puissances des éléments diagonaux de A. Par conséquent

detpAk
q “

3
ź

i“1
paiiq

k
“

˜

3
ź

i“1
aii

¸k

“ pdetAqk,

ce qui illustre et confirme la propriété pour ce cas concret en dimension 3.
2. Déterminant des puissances entières relatives en dimension 3. Choisissons la matrice
inversible

A “

¨

˚

˝

1 2 0
0 1 3
4 0 1

˛

‹

‚

PM3pRq.

(a) On calcule detpAq par développement selon la première ligne

detpAq “ a11 det
ˆ

1 3
0 1

˙

´ a12 det
ˆ

0 3
4 1

˙

` a13 det
ˆ

0 1
4 0

˙

“ 25 ­“ 0.

Ainsi A P GL3pRq.
(b) On calcule la matrice inverse de A, obtient donc

A´1
“

1
25

¨

˚

˝

1 ´2 6
12 1 ´3
´4 8 1

˛

‹

‚

.
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On n’a pas besoin de développer le déterminant de A´1 à partir de cette forme, la propriété générale
donne directement la valeur.
(c) Vérification de la propriété pour quelques valeurs de k.
• Pour k “ 1,

detpA1
q “ detpAq “ 25 “ p25q1.

• Pour k “ 2, par la propriété (1) (puissances positives),

detpA2
q “ pdetAq2 “ 252

“ 625.

• Pour k “ ´1, puisque A P GL3pRq,

detpA´1
q “ pdetAq´1

“ 25´1
“

1
25 .

Ceci est cohérent avec A´1 calculé ci-dessus (dont le déterminant vaut bien 1{25 par la propriété
générale).
• Pour k “ ´2,

detpA´2
q “ det

`

pA´1
q

2˘
“ pdetpA´1

qq
2
“

ˆ

1
25

˙2

“
1

625 “ 25´2.

Ainsi, pour ces valeurs vérifiées explicitement,

detpAk
q “ pdetAqk, pour k “ 1, 2,´1,´2,

et la formule vaut en général pour tout k P Z comme l’énoncé l’affirme.
3. Matrice nilpotente et déterminant nul en dimension 3. Considérons la matrice

A “

¨

˚

˝

0 1 0
0 0 1
0 0 0

˛

‹

‚

PM3pRq.

(a) Vérifions la nilpotence de A. On a

A2
“

¨

˚

˝

0 1 0
0 0 1
0 0 0

˛

‹

‚

¨

˚

˝

0 1 0
0 0 1
0 0 0

˛

‹

‚

“

¨

˚

˝

0 0 1
0 0 0
0 0 0

˛

‹

‚

.

Ensuite

A3
“ A2

¨ A “

¨

˚

˝

0 0 1
0 0 0
0 0 0

˛

‹

‚

¨

˚

˝

0 1 0
0 0 1
0 0 0

˛

‹

‚

“

¨

˚

˝

0 0 0
0 0 0
0 0 0

˛

‹

‚

“ 03.

Donc A est nilpotente d’indice k “ 3 (i.e. A3 “ 03 et A2 ­“ 03).
(b) Calcul du déterminant. Comme A est triangulaire supérieure avec des zéros sur la diagonale,
donc

detpAq “ 0 ¨ 0 ¨ 0 “ 0.
(c) Vérification via la propriété des puissances. Par la propriété déjà établie,

detpA3
q “ pdetAq3.

Or A3 “ 03 donc
detpA3

q “ detp03q “ 0 ùñ pdetAq3 “ 0,
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donc det pAq “ 0 dans le corps R.
4. Déterminant des matrices antisymétriques d’ordre impair. Considérons la matrice an-
tisymétrique suivante dansM3pRq

A “

¨

˝

0 2 ´3
´2 0 4
3 ´4 0

˛

‚.

(a) Vérification que A est antisymétrique. Par définition, une matrice est antisymétrique si
tA “ ´A.

Ici,

tA “

¨

˝

0 ´2 3
2 0 ´4
´3 4 0

˛

‚“ ´A “

¨

˝

0 ´2 3
2 0 ´4
´3 4 0

˛

‚.

(b) Déterminant d’une matrice antisymétrique d’ordre impair. On sait que pour n impair,

detpAq “ detptAq “ detp´Aq “ p´1qn detpAq.

Or ici n “ 3 (impair), donc

detpAq “ p´1q3 detpAq “ ´ detpAq.

Cela implique
detpAq “ ´ detpAq ùñ 2 detpAq “ 0

ùñ detpAq “ 0.
(c) Vérification directe. Si on calcule directement le déterminant de A,

detpAq “

∣∣∣∣∣∣∣
0 2 ´3
´2 0 4
3 ´4 0

∣∣∣∣∣∣∣ “ 0.

Le calcul donne bien 0, ce qui confirme la propriété. Par conséquent, Toute matrice antisymétrique
d’ordre impair (ici en dimension 3) est non inversible car son déterminant est nul.

Le déterminant est un outil puissant pour analyser les familles de vecteurs dans un espace vecto-
riel. Il permet non seulement de déterminer si une famille de vecteurs est libre, mais aussi, lorsque
le nombre de vecteurs est égal à la dimension de l’espace, de vérifier si elle constitue une base.
La proposition suivante formalise cette relation essentielle entre le déterminant et l’indépendance
linéaire.

Corollaire 3.8.2 (Définition )
Critère de l’indépendance linéaire via le déterminant. Soient E un K´espace vectoriel de
dimension finie n, muni d’une base B “ te1, . . . , enu. Soit F “ tv1, v2, . . . , vnu une famille de n
vecteurs de E. On désigne par Mat

B
pv1, v2, ..., vnq la matrice de la famille de vecteurs dans la base B

et on définit le déterminant de la famille de vecteurs tv1, v2, . . . , vnu par

det
B
pv1, v2, . . . , vnq “ det

´

Mat
B
pv1, v2, ..., vnq

¯

.

Alors F “ tv1, v2, . . . , vnu est une famille libre si, et seulement si, detBpFq ­“ 0K. Dans ce cas, la
famille tv1, v2, . . . , vnu forme une base de E.
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Remarque 3.8.4 Cette condition n’est valable que lorsque le nombre de vecteurs est égal à la di-
mension de l’espace. Si la famille contient moins de n vecteurs, on ne peut pas conclure par le
déterminant.

Exemple 3.8.7
1. Famille libre. Soit E “ R3 muni de la base canonique B. Prenons la famille F1 “ tv1, v2, v3u où

v1 “ p1, 2, 3q, v2 “ p0, 1, 4q, v3 “ p2,´1, 1q.
La matrice des vecteurs (colonnes = coordonnées dans B) est

A “Mat
B
pv1, v2, v3q “

¨

˚

˝

1 0 2
2 1 ´1
3 4 1

˛

‹

‚

.

Calculons le déterminant (par la règle de Sarrus ou par Laplace)

detpAq “ det
B
pv1, v2, . . . , vnq “ a11pa22a33´a23a32q´a12pa21a33´a23a31q`a13pa21a32´a22a31q “ 15 ‰ 0,

la famille F1 est linéairement indépendante et puisqu’elle contient 3 vecteurs dans un espace de
dimension 3, donc F1 est une base de E.
2. Famille liée. Prenons maintenant la famille F2 “ tu1, u2, u3u où

u1 “ p1, 2, 3q, u2 “ p2, 4, 6q, u3 “ p0, 1, 1q.
Matrice des colonnes est

A1 “Mat
B
pu1, u2, u3q “

¨

˚

˝

1 2 0
2 4 1
3 6 1

˛

‹

‚

.

Calculons detpA1q par la même formule. On obtient

detpA1q “ 0,
la famille F2 est liée (ce qui correspond à l’observation u2 “ 2u1).

3.8.3 Calcul de l’inverse d’une matrice à l’aide de la comatrice

Le calcul de l’inverse d’une matrice carrée est très important en algèbre linéaire, notamment pour
résoudre des systèmes d’équations linéaires ou pour étudier des applications linéaires. Cependant,
toutes les matrices ne sont pas inversibles : une matrice A est inversible seulement si son déterminant
est non nul. L’une des méthodes classiques pour calculer l’inverse d’une matrice consiste à utiliser la
comatrice (ou matrice des cofacteurs). Cette méthode établit un lien direct entre le déterminant, les
cofacteurs et la formule de A´1.

Définition 3.8.3 (Comatrice)
Soit A “ paijq P MnpKq. On appelle comatrice de A ou matrice des cofacteurs, la matrice carrée
d’ordre n, notée compAq dont les coefficients sont les cofacteurs de A. On a donc

compAq “ p∆ijq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

∆11 ∆12 ¨ ¨ ¨ ∆1j ¨ ¨ ¨ ∆1n

∆21 ∆22 ¨ ¨ ¨ ∆2j ¨ ¨ ¨ ∆2n
... ... . . . ... ... ...

∆i1 ∆i2 ¨ ¨ ¨ ∆ij ¨ ¨ ¨ ∆in
... ... ... ... . . . ...

∆n1 ∆n2 ¨ ¨ ¨ ∆nj ¨ ¨ ¨ ∆nn

˛

‹

‹

‹

‹

‹

‹

‹

‚

,
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où ∆ij est le cofacteur d’indice pi, jq dans A.

Exemple 3.8.8 Soit

A “

¨

˝

1 2 0
0 3 1
0 0 4

˛

‚PM3pRq.

On calcule les cofacteurs

∆11 “ p´1q2 det
ˆ

3 1
0 4

˙

“ 12, ∆12 “ p´1q3 det
ˆ

0 1
0 4

˙

“ 0, ∆13 “ p´1q4 det
ˆ

0 3
0 0

˙

“ 0,

∆21 “ p´1q3 det
ˆ

2 0
0 4

˙

“ ´8, ∆22 “ p´1q4 det
ˆ

1 0
0 4

˙

“ 4, ∆23 “ p´1q5 det
ˆ

1 2
0 0

˙

“ 0,

∆31 “ p´1q4 det
ˆ

2 0
3 1

˙

“ 2, ∆32 “ p´1q5 det
ˆ

1 0
0 1

˙

“ ´1, ∆33 “ p´1q6 det
ˆ

1 2
0 3

˙

“ 3.

Donc

compAq “

¨

˝

12 0 0
´8 4 0
2 ´1 3

˛

‚.

La comatrice d’une matrice carrée n’est pas seulement un outil pour calculer son inverse ; elle satisfait
aussi une relation remarquable qui relie directement la matrice, sa comatrice et son déterminant.
Cette identité, appelée formule fondamentale de la comatrice. Elle permet notamment de justifier la
formule explicite de l’inverse d’une matrice inversible

Proposition 3.8.4 (Formule fondamentale de la comatrice) Soit A PMnpKq. Alors,

A ¨t pcompAqq “t
pcompAqq ¨ A “ detpAq ¨ In. (3.9)

Exemple 3.8.9 Considérons la matrice

A “

¨

˝

1 2 0
0 3 1
0 0 4

˛

‚.

On a déjà calculé sa comatrice

compAq “

¨

˝

12 0 0
´8 4 0
2 ´1 3

˛

‚.

Le déterminant de A est
detpAq “ 1 ¨ 3 ¨ 4 “ 12.

Vérifions maintenant l’identité

A ¨t pcompAqq “t
pcompAqq ¨ A “ detpAq ¨ I3.

On calcule

A ¨t pcompAqq “

¨

˝

1 2 0
0 3 1
0 0 4

˛

‚

¨

˝

12 ´8 2
0 4 ´1
0 0 3

˛

‚“

¨

˝

12 0 0
0 12 0
0 0 12

˛

‚“ 12I3.
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De même

t
pcompAqq ¨ A “

¨

˝

12 ´8 2
0 4 ´1
0 0 3

˛

‚

¨

˝

1 2 0
0 3 1
0 0 4

˛

‚“

¨

˝

12 0 0
0 12 0
0 0 12

˛

‚“ 12I3.

On retrouve bien que
A ¨t pcompAqq “t

pcompAqq ¨ A “ detpAq ¨ I3.

Après avoir défini la comatrice d’une matrice carrée A, on peut utiliser cette notion pour établir une
formule générale de l’inverse. En effet, grâce à l’identité fondamentale p3.9q, il est possible d’exprimer
l’inverse d’une matrice inversible directement à l’aide de sa comatrice.

Corollaire 3.8.3 (Formule de l’inverse via la comatrice)
Soit A “ paijq P MnpKq. Si la matrice A est inversible (detpAq ­“ 0K), alors son inverse A´1 est
donné par la formule

A´1
“

1
detpAq ¨

t
pcompAqq “ pdetpAqq´1

¨
t
pcompAqq .

où t pcompAqq désigne la transposée de la comatrice de A.

Preuve. Rappelons l’identité fondamentale

A ¨t pcompAqq “ detpAq ¨ In

Comme detpAq ­“ 0K dans K, l’élément detpAq est inversible dans le corps K. On peut donc multiplier
l’égalité précédente par le scalaire 1

detpAq et obtenir

A ¨

ˆ

1
detpAq ¨

t
pcompAqq

˙

“ In.

De même, en partant de l’égalité symétrique

t
pcompAqq ¨ A “ detpAq ¨ In,

et en multipliant cette fois-ci à gauche par 1
detpAq , on obtient

ˆ

1
detpAq

t

pcompAqq

˙

A “ In.

Ainsi la matrice
1

detpAq
t

pcompAqq ,

est à la fois un inverse à gauche et un inverse à droite de A. Dans les anneaux de matrices sur un
corps, un inverse à gauche et un inverse à droite coïncident et donnent l’unique inverse de la matrice.
Donc

A´1
“

1
detpAq

t

pcompAqq .

l
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Exemple 3.8.10 Soit la matrice

A “

¨

˝

1 2 3
0 1 4
5 6 0

˛

‚PM3pRq.

On calcule d’abord son déterminant en développant selon la première ligne

detpAq “ 1
ˇ

ˇ

ˇ

ˇ

1 4
6 0

ˇ

ˇ

ˇ

ˇ

´ 2
ˇ

ˇ

ˇ

ˇ

0 4
5 0

ˇ

ˇ

ˇ

ˇ

` 3
ˇ

ˇ

ˇ

ˇ

0 1
5 6

ˇ

ˇ

ˇ

ˇ

“ 1.

Ainsi, detpAq “ 1 ­“ 0, donc A est inversible.
On détermine ensuite les cofacteurs

∆ij “ p´1qi`j detpMijq.

On obtient

∆11 “ ´24, ∆12 “ 20, ∆13 “ ´5,
∆21 “ 18, ∆22 “ ´15, ∆23 “ 4,
∆31 “ 5, ∆32 “ ´4, ∆33 “ 1.

La comatrice est alors

compAq “

¨

˝

´24 20 ´5
18 ´15 4
5 ´4 1

˛

‚.

D’après la formule de l’inverse via la comatrice, on a

A´1
“

1
detpAq

t

pcompAqq “

¨

˝

´24 18 5
20 ´15 ´4
´5 4 1

˛

‚.
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Conclusion du chapitre

Dans ce chapitre, nous avons découvert les bases de la théorie des matrices, un outil essentiel de
lalgèbre linéaire. Nous avons appris à reconnaître les différents types de matrices (nulles, diagonales,
triangulaires, symétriques, etc.) et à effectuer les opérations fondamentales : addition, multiplication
par un scalaire, transposition et produit matriciel.

Nous avons vu que ces opérations donnent aux matrices une structure algébrique utile et quelles
sont étroitement liées à la résolution des systèmes déquations linéaires. Nous avons aussi étudié le
rôle des matrices dans la représentation des applications linéaires et dans le changement de base.

Enfin, létude du déterminant nous a permis de comprendre ses propriétés, son lien avec linversi-
bilité dune matrice et son utilisation pour calculer linverse à laide de la comatrice.

Ce chapitre constitue ainsi une base solide pour la suite du cours, où les matrices serviront à
approfondir létude des systèmes linéaires, des transformations linéaires et des valeurs propres.
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Chapitre 4

Systèmes d’équations linéaires

L’étude des systèmes d’équations linéaires constitue une étape essentielle de l’algèbre linéaire. Elle
permet de modéliser et de résoudre simultanément plusieurs équations faisant intervenir plusieurs
inconnues. Cette problématique se retrouve dans de nombreux domaines : mathématiques, physique,
informatique, économie, ou encore sciences de l’ingénieur.

Dans ce chapitre, nous commencerons par définir ce qu’est une équation linéaire, avant d’étendre
cette notion à celle de système linéaire, c’est-à-dire un ensemble d’équations à résoudre simultané-
ment. Nous analyserons les différentes manières de représenter un système linéaire. La forme matri-
cielle offre un cadre algébrique efficace, permettant de manipuler les équations à l’aide de matrices
et d’opérations élémentaires. Une seconde approche consiste à considérer le système comme une
application linéaire entre deux espaces vectoriels, ce qui nous permettra d’introduire des concepts
fondamentaux comme le noyau, l’image, ainsi que les notions d’injectivité et de surjectivité. En-
fin, nous explorerons également une interprétation vectorielle, dans laquelle les équations sont vues
comme des combinaisons linéaires de vecteurs.

Nous distinguerons ensuite plusieurs types de systèmes, en fonction du nombre et de la nature
de leurs solutions. Les systèmes homogènes, par exemple, admettent toujours la solution triviale.
Parmi les systèmes dits compatibles, certains sont déterminés (ils possèdent une solution unique),
d’autres indéterminés (ils admettent une infinité de solutions). À l’inverse, les systèmes incompatibles
ne possèdent aucune solution.

Pour résoudre ces systèmes, nous étudierons différentes méthodes. La méthode de substitution,
bien que simple, est adaptée aux petits systèmes. La règle de Cramer, fondée sur les déterminants,
s’applique uniquement aux systèmes carrés. La méthode du pivot de Gauss, quant à elle, s’avère parti-
culièrement puissante pour traiter des systèmes plus complexes, grâce à une élimination systématique
des variables.

Ce chapitre introduira également des outils théoriques fondamentaux, comme la matrice augmen-
tée, qui fournit une représentation structurée du système, ou encore le théorème de Rouché-Fontené,
qui permet de déterminer avec précision l’existence et le nombre de solutions d’un système.

L’objectif principal de ce chapitre est d’apprendre à analyser et résoudre un système d’équations
linéaires, en déterminant s’il admet une solution, plusieurs ou aucune, tout en maîtrisant les diffé-
rentes méthodes de résolution et les concepts fondamentaux de l’algèbre linéaire qui y sont associés.

Dans ce chapitre, pK,`, ¨q désigne un corps commutatif, et en général, K “ R ou K “ C.
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4.1 Équations linéaires

Avant d’aborder l’étude des systèmes d’équations linéaires, il est essentiel de commencer par
les équations linéaires elles-mêmes. En effet, comprendre la structure et les propriétés fondamen-
tales d’une équation linéaire — telles que la forme générale, les solutions possibles et les conditions
d’existence et d’unicité — constitue une étape préalable indispensable. Cette étude fournit les bases
nécessaires pour analyser ensuite des ensembles d’équations linéaires combinées au sein d’un système,
et pour mieux saisir les méthodes de résolution qui en découlent.

Une équation linéaire est une équation dans laquelle les variables apparaissent uniquement à
la puissance 1, sans être multipliées entre elles ni élevées à une puissance supérieure. Elle peut
contenir une ou plusieurs variables. Les équations linéaires sont très importantes en algèbre, car elles
constituent la base de nombreuses méthodes de calcul et trouvent des applications en mathématiques,
en physique et en informatique.

4.1.1 Définitions et exemples

Dans cette section, nous présentons les notions de base des équations linéaires, en donnant leur
définition formelle et en illustrant chaque notion par des exemples concrets pour faciliter la compré-
hension.

Définition 4.1.1 (Équation linéaire)
1. Équation linéaire. Une équation linéaire à n variables (ou inconnues) x1, ..., xn est une relation
de la forme

a1x1 ` ...` anxn “ b,

où a1, ..., an sont les coefficients et b est le terme constant, tous appartenant à K.
2. Solution. Une solution de cette équation est tout n´uplet px1, ..., xnq P Kn qui satisfait l’égalité,
c’est-à-dire qui rend la somme des termes égale à b.
3. Équation linéaire homogène. Une équation linéaire homogène est une équation linéaire dont
le terme constant est nul. Elle s’écrit

a1x1 ` ...` anxn “ 0K.

Remarque 4.1.1 Une équation linéaire est une équation du premier degré par rapport à ses va-
riables, c’est-à-dire que chaque variable apparaît uniquement avec un exposant 1 (et non au carré, au
cube, etc.) et n’est pas multipliée par une autre variable (pas de produit croisé comme xy ou x1x2).

Exemple 4.1.1 (Exemples d’Équations Linéaires)
1. Exemple en trois variables réelles. Considérons l’équation suivante à trois variables réelles
x1, x2, x3,

2x1 ´ 3x2 ` 5x3 “ 7.
Il s’agit d’une équation linéaire, car les inconnues apparaissent uniquement au premier degré, sans
puissances supérieures ni produits entre variables. Les coefficients sont a1 “ 2, a2 “ ´3, a3 “ 5, et le
terme constant est b “ 7, tous appartenant à R.
Pour trouver les solutions, nous devons exprimer deux variables en fonction de la troisième. Par
exemple, nous pouvons résoudre pour x1 en fonction de x2 et x3,

x1 “
1
2p7` 3x2 ´ 5x3q.
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Ainsi, la solution générale est donnée par tous les triplets px1, x2, x3q P R3 de la forme

px1, x2, x3q “

ˆ

1
2p7` 3x2 ´ 5x3q, x2, x3

˙

,

où x2 et x3 sont des paramètres libres.
2. Exemple en deux variables complexes. Considérons maintenant une équation en deux va-
riables complexes x1, x2 P C,

p2` iqx1 ´ p3´ 2iqx2 “ 5` 4i.
Cette équation est également linéaire : chaque variable apparaît au premier degré, et les coefficients
ainsi que le terme constant appartiennent à C. Les coefficients sont a1 “ p2 ` iq, a2 “ ´p3 ´ 2iq, et
le terme constant est b “ 5` 4i.
Résolvons cette équation en exprimant x1 en fonction de x2

x1 “
1

2` i p5` 4i` p3´ 2iqx2q .

Pour simplifier cette expression, on multiplie numérateur et dénominateur par le conjugué de p2` iq,
qui est p2´ iq. On obtient alors après calcul

x1 “

ˆ

4
5 ´

7
5i
˙

x2 `

ˆ

14
5 `

3
5i
˙

.

La solution générale est donc donnée par tous les couples px1, x2q P C2 de la forme

px1, x2q “

ˆˆ

4
5 ´

7
5i
˙

x2 `

ˆ

14
5 `

3
5i
˙

, x2

˙

.

où x2 est un paramètre complexe libre.
3. Exemple d’équation homogène en quatre variables. Considérons l’équation suivante

3x1 ` 4x2 ` 5x4 “ 0.

C’est une équation linéaire homogène à quatre inconnues x1, x2, x3 et x4.
On remarque que la variable x3 n’apparaît pas dans l’équation. Cela veut dire que son coefficient
est nul. Ainsi, bien que x3 ne figure pas dans l’expression, elle fait partie intégrante des inconnues
du problème. Cette remarque montre qu’il est essentiel de préciser l’espace vectoriel dans lequel on
cherche les solutions. Ici, les solutions sont des vecteurs de R4, car il y a quatre variables, même si
toutes n’apparaissent pas explicitement dans l’équation.

4.1.2 Interprétation des équations linéaires comme applications linéaires

Une équation linéaire peut être interprétée comme l’expression d’une application linéaire (ou
forme linéaire) entre deux espaces vectoriels. Cette approche permet de relier les équations à des
notions clés telles que le noyau, l’image, le rang, l’injectivité et la surjectivité.

Définition 4.1.2 Soit une équation linéaire

a1x1 ` ...` anxn “ b.

1. On lui associe l’application linéaire suivante

f : Kn ÝÑ K
px1, x2, ..., xnq ÞÝÑ fpx1, x2, ..., xnq “ a1x1 ` ...` anxn.
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Cette application f est linéaire. Elle est appelée une forme linéaire sur Kn, c’est-à-dire une application
linéaire de Kn dans K.
2. Interprétation de l’équation.
(a). Écriture fonctionnelle. L’équation initiale peut être reformulée sous forme fonctionnelle

fpx1, x2, ..., xnq “ b.

Autrement dit, le vecteur x “ px1, x2, . . . , xnq P Kn est une solution de l’équation si et seulement si
son image par f est égale à b. L’ensemble des solutions est donc l’ensemble des antécédents de b par
f

tx P Kn : fpxq “ bu “ f´1
ptbuq Ă Kn.

(b). Cas particulier : équation homogène.
Lorsque le second membre est nul (b “ 0K), l’équation devient

a1x1 ` ...` anxn “ 0K ðñ fpxq “ 0K.

On dit alors que l’équation est homogène. Dans ce cas, l’ensemble des solutions correspond au noyau
de l’application linéaire f , noté kerpfq. C’est un sous-espace vectoriel de Kn.

Exemple 4.1.2 (Interprétation comme application linéaire)
1. Cas non homogène. Considérons dans R l’équation suivante à trois inconnues

2x1 ´ x2 ` 3x3 “ 5.

On lui associe l’application (forme) linéaire suivante

f : R3 ÝÑ R
px1, x2, x3q ÞÝÑ fpx1, x2, x3q “ 2x1 ´ x2 ` 3x3.

L’équation s’écrit alors sous forme fonctionnelle

fpx1, x2, x3q “ 5.

Ainsi, l’ensemble des solutions est exactement l’ensemble des antécédents de 5 par f ,

S “ f´1
pt5uq “

 

px1, x2, x3q P R3 : fpx1, x2, x3q “ 5
(

.

2. Cas homogène. Considérons maintenant l’équation associée, homogène

2x1 ´ x2 ` 3x3 “ 0.

On utilise la même application linéaire f . L’ensemble des solutions est alors le noyau de f ,

kerpfq “
 

px1, x2, x3q P R3 : fpx1, x2, x3q “ 0
(

“

"

p
x2 ´ 3x3

2 , x2, x3q : x2, x3 P R
*

.

Il s’agit d’un sous-espace vectoriel de dimension 2 de R3.

4.2 Systèmes d’équations linéaires

Après avoir étudié les équations linéaires, nous abordons maintenant les systèmes d’équations
linéaires. Un système est un ensemble d’équations linéaires que l’on cherche à résoudre simultanément.
L’étude des systèmes permet de déterminer si un ensemble d’équations possède une solution unique,
plusieurs solutions ou aucune solution. Elle permet également de distinguer les systèmes homogènes,
lorsque le second membre est nul, des systèmes non homogènes. Enfin, cette étude ouvre la voie aux
méthodes de résolution, notamment celles utilisant les matrices et le concept de rang, et permet de
passer de l’analyse d’une seule équation à celle d’un ensemble d’équations interconnectées.
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4.2.1 Définitions et notations

Définition 4.2.1 (Systèmes d’équations linéaires) Soit m et n deux entiers naturels non nuls.
1. On appelle système d’équations linéaires de m équations à n inconnues x1, ..., xn à coefficients
dans K toute liste (ou famille) de n équations linéaires de la forme

pSq :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1
a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2

... ... ... ...
ai1x1 ` ai2x2 ` ¨ ¨ ¨ ` ainxn “ bi

... ... ... ...
am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn “ bm.

Où
(a) Les scalaires paijq1ďiďm

1ďjďn
de K sont appelés les coefficients du système pSq.

(b) Les scalaires pbiq1ďiďm de K constituent le second membre du système pSq.
(c) Les symboles x1, ..., xn sont les inconnues du système.

Notation 4.2.1
1. Notation des inconnues. Lorsque le nombre d’inconnues est réduit (par exemple 2 ou 3), il
est courant d’utiliser les lettres x, y, z au lieu de x1, x2, x3, afin d’alléger l’écriture et de faciliter la
lecture.
2. Convention d’indexation. Les coefficients aij respectent une convention universelle en algèbre
linéaire, également adoptée par les logiciels de calcul (Scilab, MATLAB, NumPy, etc.). Cette unifor-
mité garantit une compréhension et une utilisation cohérentes.
3. Signification des indices dans aij. Le coefficient aij désigne le coefficient de l’inconnue xj

dans la i´ème équation Li du système. Autrement dit :
• Le premier indice i correspond à la ligne ( numéro de l’équation).
• Le second indice j correspond à la colonne (numéro de l’inconnue xj).
Cette notation est fondamentale pour passer à la représentation matricielle des systèmes.

Exemple 4.2.1
1. Considérons le système linéaire suivant

pSq :

$

&

%

x1`2x2´ x3“ 4
3x1´ x2`2x3“´1
2x1` x2` x3“ 3.

On en extrait les éléments suivants,
(a) Inconnues sont x1, x2, x3.
(b) Coefficients du système sont

a11 “ 1, a12 “ 2, a13 “ ´1, a21 “ 3, a22 “ ´1, a23 “ 2, a31 “ 2, a32 “ 1, a33 “ 1.

(c) Second membre est
pb1, b2, b3q “ p4,´1, 3q.

2. Considérons le système linéaire suivant

pSq :
"

x1`2x2´x3“ 4
x2`x3“1.
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Remarques importantes,
(a) Ici m “ 2 et n “ 3 (donc m ă n).
(b) Dans la deuxième équation, la composante en x1 est 0 (on n’a pas x1 dans cette équation).
(c) Inconnues sont x1, x2, x3.
(d) Coefficients,

a11 “ 1, a12 “ 2, a13 “ ´1, a21 “ 0, a22 “ 1, a23 “ 1.

(e) Second membre est
pb1, b2q “ p4, 1q.

Un cas particulier essentiel des systèmes linéaires est celui des systèmes homogènes, c’est-à-dire ceux
dont tous les seconds membres sont nuls.

Définition 4.2.2 (Systèmes d’équations linéaires homogènes)
Un système d’équations linéaires homogène est un système dans lequel toutes les équations ont un
second membre nul. On le note en général pSHq, et il s’écrit sous la forme

pSHq :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ 0K
a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ 0K

... ... ... ...
ai1x1 ` ai2x2 ` ¨ ¨ ¨ ` ainxn “ 0K

... ... ... ...
am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn “ 0K.

Exemple 4.2.2 Considérons le système linéaire homogène suivant

pSHq :

$

&

%

x1 ` 2x2 ´ x3 “ 0
2x1 ` 4x2 ´ 2x3 “ 0
3x1 ` 6x2 ´ 3x3 “ 0.

On en extrait les éléments suivants
(a) Inconnues sont x1, x2, x3.
(b) Coefficients du système sont

a11 “ 1, a12 “ 2, a13 “ ´1, a21 “ 2, a22 “ 4, a23 “ ´2, a31 “ 3, a32 “ 6, a33 “ ´3.

(c) Second membre est nul
pb1, b2, b3q “ p0, 0, 0q.

Définition 4.2.3 (Solution d’un système)
1. On appelle solution d’un système d’équations linéaires pSq tout n´uplet px1, . . . , xnq P Kn qui
vérifie simultanément toutes les équations du système. Autrement dit, si l’on remplace chaque incon-
nue xj par sa valeur dans le n´uplet, toutes les égalités du système doivent être satisfaites.
2. Un système linéaire pSq est dit
(a) Compatible s’il existe au moins un n´uplet px1, . . . , xnq P Kn qui en est une solution. Parmi
les systèmes compatibles, on distingue
• Les systèmes compatibles déterminés, qui admettent une solution unique.
• Les systèmes compatibles indéterminés, qui admettent une infinité de solutions.
(b) Incompatible si aucun n´uplet de Kn ne satisfait simultanément l’ensemble des équations.
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Remarque 4.2.1
1. Un système linéaire homogène est toujours compatible, car il admet au moins la solution triviale
(ou nulle)

px1, ..., xnq “ p0K, 0K, ..., 0Kq .

2. Un système homogène peut admettre d’autres solutions que la triviale (appelées solutions non
triviales), en particulier lorsque le nombre d’inconnues est strictement supérieur au rang du système.
Dans ce cas, il existe une infinité de solutions.
3. Géométriquement, les équations d’un système homogène représentent des droites, des plans ou des
hyperplans passant tous par l’origine. Ainsi, le vecteur nul appartient toujours à leur intersection.
Dans le cas de deux équations à deux inconnues, cela correspond à deux droites passant par l’origine
du plan.

Exemple 4.2.3
1. Système compatible déterminé (solution unique). Considérons le système linéaire suivant

pS1q :

$

&

%

x`y`z“ 2
2x´y`z“ 3
3x `z“4.

Ici, les trois équations sont indépendantes et ne se contredisent pas. Leur intersection correspond à
un seul point de l’espace R3. Le système admet une solution unique : il est compatible déterminé.
2. Système compatible indéterminé (infinité de solutions). Considérons le système linéaire
suivant

pS2q :

$

&

%

x` y` z“ 2
2x`2y`2z“ 4
3x`3y`3z“6.

On remarque que la deuxième équation est le double de la première, et la troisième est son triple.
Les trois équations expriment donc la même relation. Le système admet une infinité de solutions : il
est compatible indéterminé.
3. Système incompatible (aucune solution). Considérons le système linéaire suivant

pS3q :

$

&

%

x`y`z“ 1
x`y`z“ 2
x´y`z“0.

Les deux premières équations sont contradictoires : elles décrivent deux plans parallèles distincts (qui
n’ont aucun point commun). Quelle que soit la troisième équation, il n’existe aucun triplet px, y, zq
qui satisfasse en même temps les deux premières. Le système n’a aucune solution : il est incompatible.

Lorsqu’on résout un système d’équations linéaires, il est souvent utile de transformer les équations
pour simplifier leur écriture, tout en conservant l’ensemble des solutions. Par exemple, on peut
échanger deux équations, multiplier une équation par un scalaire non nul, ou ajouter à une équation
un multiple d’une autre. Ces transformations produisent un nouveau système qui, bien qu’écrit
différemment, possède exactement les mêmes solutions que le système initial. On dit alors que les
deux systèmes sont équivalents.

Définition 4.2.4 (Systèmes équivalents)
Deux systèmes d’équations linéaires pS1q et pS2q sont dits équivalents s’ils possèdent exactement le
même ensemble de solutions. Autrement dit, un n´uplet px1, . . . , xnq P Kn est solution de pS1q si et
seulement s’il est aussi solution de pS2q.
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Cette notion est particulièrement utile, car elle permet de transformer un système complexe en un
système équivalent plus simple à résoudre, sans modifier ses solutions.

Exemple 4.2.4
1. Considérons les deux systèmes suivants à deux inconnues x1 et x2

pS1q :
"

´x1`x2“2
2x1´x2“1 , pS2q :

"

´x1`x2“ 2
x1 “3.

Les deux systèmes pS1q et pS2q sont équivalents, car ils ont exactement les mêmes solutions. En effet :
On remarque que le système pS2q est obtenu à partir de pS1q en ajoutant les deux équations de pS1q

p´x1 ` x2q ` p2x1 ´ x2q “ 3 ùñ x1 “ 3.

En remplaçant dans la première équation ´x1 ` x2 “ 2, on obtient

x2 “ 5.

Ainsi, les deux systèmes ont la même solution unique

x1 “ 3, x2 “ 5.

Ils sont donc équivalents.
2. Considérons les deux systèmes

pS1q :

$

&

%

x1` x2`x3“3
2x1´ x2`x3“0
x1`2x2 “4

, pS2q :

$

&

%

x1` x2` x3“ 3
x1`2x2 “ 4
x1´ x2`2x3“´1.

Les systèmes pS1q et pS2q sont équivalents. En effet, en procédant par substitution à partir de pS1q,
on trouve la solution unique :

x1 “
1
2 , x2 “

7
4 , x3 “

3
4 .

De plus, ce même triplet
`1

2 ,
7
4 ,

3
4

˘

satisfait également toutes les équations de pS2q. Ainsi, pS1q et pS2q

possèdent exactement le même ensemble de solutions et sont donc équivalents.

4.2.2 Représentations et interprétations d’un système linéaire

Un système linéaire peut être vu de plusieurs façons. Chaque représentation donne un point de
vue différent mais complémentaire. Les trois interprétations principales sont les suivantes :

1. Interprétation matricielle : Le système est représenté sous forme d’une égalité entre une matrice
de coefficients, un vecteur d’inconnues et un vecteur de résultats. Cette forme est particulièrement
adaptée aux méthodes de résolution systématiques, comme l’élimination de Gauss ou l’inversion
matricielle.

2. Interprétation en termes d’applications linéaires : le système est vu comme l’image d’un vecteur
par une application linéaire. Cette perspective permet l’étude du système à travers les notions de
noyau, d’image, d’injectivité et de surjectivité de l’application.

3. Interprétation en termes de combinaisons linéaires. Chaque équation est interprétée comme une
contrainte sur une combinaison linéaire de vecteurs. Résoudre le système revient alors à déterminer
si un vecteur donné peut être exprimé comme une combinaison linéaire d’un ensemble de vecteurs
(les colonnes de la matrice des coefficients).
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Définition 4.2.5 (Interprétation matricielle)
Soit pSq un système linéaire de m équations à n inconnues suivant

pSq :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

a11x1` a12x2`¨ ¨ ¨` a1nxn“ b1
a21x1` a22x2`¨ ¨ ¨` a2nxn“ b2

... ... ... ... ...
ai1x1` ai2x2`¨ ¨ ¨` ainxn“ bi

... ... ... ... ...
am1x1`am2x2`¨ ¨ ¨`amnxn“bm

(a) Écriture matricielle. Ce système peut être représenté sous forme matricielle

AX “ B,

où
A “ paijq1ďiďm

1ďjďn
P Mm,npKq est la matrice des coefficients du système, appelée matrice associée au

système pSq.

X “

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

est la matrice colonne des inconnues.

B “

¨

˚

˚

˚

˝

b1
b2
...
bm

˛

‹

‹

‹

‚

est la matrice colonne des constants (ou second membre).

Ainsi, le système (S) s’écrit simplement

pSq : AX “ B ðñ

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... . . . ... ... ...
ai1 ai2 ¨ ¨ ¨ aij ¨ ¨ ¨ ain
... ... ... ... . . . ...
am1 am2 ¨ ¨ ¨ amj ¨ ¨ ¨ amn

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

x1
x2
...
xi
...
xn

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

b1
b2
...
bi
...
bm

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

(b) Système homogène. Si le second membre est nul, c’est-à-dire B “ 0m,1, alors le système est
dit homogène et s’écrit

pSHq : AX “ 0m,1.

(c) Résolution. Résoudre le système pSq, c’est trouver toutes les matrices colonnes X (c’est-à-dire
tous les n´uplets px1, ..., xnq) qui satisfont l’équation matricielle

AX “ B.

Exemple 4.2.5 Considérons le système suivant à trois équations et trois inconnues

pSq :

$

&

%

2x1`3x2´ x3“ 5
4x1´ x2`2x3“ 6

´3x1`2x2` x3“´4.

(i) Ce système peut s’écrire sous forme matricielle

pSq : AX “ B ðñ

¨

˝

2 3 ´1
4 ´1 2
´3 2 1

˛

‚¨

¨

˝

x1
x2
x3

˛

‚“

¨

˝

5
6
´4

˛

‚.
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Après calcul (par substitution), on trouve

px1, x2, x3q “

ˆ

5
3 ,

8
15 ,´

1
15

˙

.

(ii) Le système homogène pSHq associé à pSq est obtenu en remplaçant le second membre par le
vecteur nul

pSHq :

$

&

%

2x1`3x2´ x3“ 0
4x1´ x2`2x3“ 0
´3x1`2x2` x3“0.

ou, en forme matricielle

pSHq : AX “ 0p3,1q ðñ

¨

˝

2 3 ´1
4 ´1 2
´3 2 1

˛

‚¨

¨

˝

x1
x2
x3

˛

‚“

¨

˝

0
0
0

˛

‚.

Après avoir présenté la représentation matricielle d’un système linéaire, on peut utiliser cette
représentation pour identifier des formes particulières de systèmes, appelées systèmes triangulaires.
Ces systèmes sont utiles car ils permettent de résoudre rapidement les équations par substitution et
servent de base à des méthodes plus générales, comme l’élimination de Gauss.

Définition 4.2.6 (Systèmes triangulaires)
Soit pSq un système d’équations linéaires carré, c’est-à-dire un système de n équations à n inconnues
x1, ..., xn à coefficients dans K . On note A “ paijq la matrice des coefficients de ce système. Alors
1. Système triangulaire inférieur. On dit que le système pSq est triangulaire inférieur si ses
coefficients vérifient la condition suivante

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu : i ă j ùñ aij “ 0K.

Autrement dit, tous les coefficients au-dessus de la diagonale principale de la matrice A sont nuls :
la matrice A est dite triangulaire inférieure. Le système s’écrit alors sous la forme

pSq :

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

a11x1 “ b1
a21x1 ` a22x2 “ b2
a31x1 ` a32x2 ` a33x3 “ b3

... ... ... ...
ai1x1 ` ai2x2 ` ¨ ¨ ¨ ` aiixi “ bi

... ... ... ... ...
an1x1 ` an2x2 ` ¨ ¨ ¨ ` annxn “ bn

La résolution d’un tel système se fait facilement par substitution directe, en commençant par la
première équation (celle de x1), puis en substituant successivement les inconnues déjà déterminées
dans les équations suivantes.
2. Système triangulaire supérieur. On dit que le système pSq est triangulaire supérieur si ses
coefficients satisfont

@pi, jq P t1, 2, ..., nu ˆ t1, 2, ..., nu : i ą j ùñ aij “ 0K.

Cela signifie que la matrice A “ paijq est triangulaire supérieure, c’est-à-dire que tous les coefficients
en dessous de la diagonale principale sont nuls. Le système s’écrit alors sous la forme

pSq :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1
a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2

... ... ...
aiixi ` ¨ ¨ ¨ ` ainxn “ bi
... ... ...

annxn “ bn.
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Dans ce cas, la résolution du système se fait également par substitution directe, mais en partant de
la dernière équation (celle de xn), puis en remontant vers la première.

Exemple 4.2.6
1. Considérons le système suivant à trois inconnues x1, x2, x3

pS1q :

$

&

%

2x1 “ 4
´x1`3x2 “ 1
4x1´2x2`5x3“9.

Ce système est un système triangulaire inférieur, car tous les coefficients situés au-dessus de la
diagonale principale sont nuls. Sa matrice des coefficients est

A1 “

¨

˝

2 0 0
´1 3 0
4 ´2 5

˛

‚.

2. Considérons maintenant le système suivant à trois inconnues x1, x2, x3

pS2q :

$

&

%

3x1´ x2`2x3“ 5
4x2´ x3“ 1

6x3“12.

Ce système est triangulaire supérieur, car tous les coefficients situés en dessous de la diagonale
principale sont nuls. Sa matrice des coefficients est

A2 “

¨

˝

3 ´1 2
0 4 ´1
0 0 6

˛

‚.

Lorsqu’on étudie un système linéaire complet AX “ B, il est souvent utile de relier ses solutions à
celles du système homogène associé AX “ 0. En effet, une fois qu’on connaît une solution parti-
culière du système complet, on peut obtenir toutes les autres solutions en ajoutant à cette solution
particulière toutes les solutions du système homogène. Cette idée permet de décrire complètement
l’ensemble des solutions d’un système linéaire non homogène.

Proposition 4.2.1 Soient A P Mm,npKq une matrice de coefficients, X0 P Mn,1pKq un vecteur
colonne et B PMm,1pKq le vecteur des termes constants. Supposons que

AX0 “ B.

Alors on dit que X0 est une solution particulière du système complet

pSq : AX “ B.

Dans ce cas, pour toute X PMn,1pKq, on a X est solution de pSq si et seulement si

X “ X0 `XH ,

où XH est une solution du système homogène associé

AX “ 0m,1.
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Remarque 4.2.2 L’ensemble des solutions du système AX “ B est obtenu en ajoutant à une so-
lution particulière X0 toutes les solutions de l’équation homogène AX “ 0. Ainsi, toute solution
générale d’un système linéaire complet (non homogène) est la somme d’une solution particulière du
système complet et d’une solution générale du système homogène associé.

Preuve.
1. (ùñ) Montrons l’implication directe. Supposons que X PMn,1pKq soit une solution du système
complet, c’est-à-dire

AX “ B.

Par hypothèse, on a aussi
AX0 “ B.

En soustrayant les deux égalités, on obtient

AX ´ AX0 “ A pX ´X0q “ 0m,1.

Posons
XH “ X ´X0.

Alors,
AXH “ 0m,1,

donc XH est une solution du système homogène. Par conséquent

X “ XH `X0.

Ceci montre que X peut bien s’écrire comme la somme de X0 et d’une solution XH du système
homogène.
2. (ðù) Montrons l’implication réciproque. Supposons que

X “ XH `X0.

Où
AX0 “ B,AXH “ 0m,1.

Alors
AX “ ApX0 `XHq “ AX0 ` AXH “ B ` 0m,1 “ B.

Ainsi, X est bien une solution de AX “ B. l

Exemple 4.2.7
1. Considérons le système suivant

pSq :

$

&

%

x1`2x2´ x3“ 4
3x1´ x2`2x3“´1
2x1` x2` x3“ 3.

On peut écrire ce système sous forme matricielle AX “ B, où

A “

¨

˝

1 2 ´1
3 ´1 2
2 1 1

˛

‚, X “

¨

˝

x1
x2
x3

˛

‚, B “

¨

˝

4
´1
3

˛

‚.
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Une solution particulière du système est

X0 “

¨

˚

˚

˝

0
7
32
3

˛

‹

‹

‚

.

On considère le système homogène associé AXH “ 03,1 où

XH “

¨

˝

x1
x2
x3

˛

‚.

La seule solution de ce système est la solution nulle

XH “

¨

˝

0
0
0

˛

‚.

L’ensemble des solutions du système complet est donc

X “ X0 `XH “

$

’

’

&

’

’

%

¨

˚

˚

˝

0
7
32
3

˛

‹

‹

‚

,

/

/

.

/

/

-

.

2. Considérons le système linéaire

pSq :

$

&

%

x1` x2` x3“ 3
2x1`2x2`2x3“ 6
x1´ x2` x3“1.

La forme matricielle du système est AX “ B, avec

A “

¨

˝

1 1 1
2 2 2
1 ´1 1

˛

‚, X “

¨

˝

x1
x2
x3

˛

‚, B “

¨

˝

3
6
1

˛

‚.

Une solution particulière du système est

X0 “

¨

˝

1
1
1

˛

‚.

Les solutions du système homogène associé AX “ 03,1 sont toutes les combinaisons de la forme

XH “ t

¨

˝

´1
1
0

˛

‚, t P R.

Ainsi, l’ensemble des solutions du système complet est

X “ X0 `XH “

$

&

%

¨

˝

1
1
1

˛

‚` t

¨

˝

´1
1
0

˛

‚, t P R

,

.

-

.

On voit que le système admet une infinité de solutions, donc il est compatible indéterminé.
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Après avoir présenté l’interprétation d’un système linéaire sous forme matricielle, on peut l’aborder
sous une autre perspective : l’interprétation en termes de combinaisons linéaires. Dans cette approche,
le second membre du système est considéré comme une combinaison linéaire des colonnes de la matrice
des coefficients. Cela permet de relier directement la résolution du système à la notion d’espace
engendré par les colonnes et de mieux comprendre l’existence et l’unicité des solutions.

Définition 4.2.7 (Interprétation d’un système linéaire en termes de combinaisons li-
néaires)
Soit pSq un système linéaire de m équations à n inconnues suivant

pSq :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1
a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2

... ... ... ...
ai1x1 ` ai2x2 ` ¨ ¨ ¨ ` ainxn “ bi

... ... ... ...
am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn “ bm.

(a). Décomposition par colonnes. Pour tout j de t1, 2, ..., nu, notons

Cj “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a1j

a2j
...
aij
...
amj

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

le j´ème vecteur colonne de A. Soit

B “

¨

˚

˚

˚

˚

˚

˚

˚

˝

b1
b2
...
bi
...
bm

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

le vecteur colonne des seconds membres. Alors l’égalité matricielle AX “ B s’écrit comme une
combinaison linéaire des colonnes

x1

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11
a21
...
ai1
...
am1

˛

‹

‹

‹

‹

‹

‹

‹

‚

` x2

¨

˚

˚

˚

˚

˚

˚

˚

˝

a12
a22
...
ai2
...
am2

˛

‹

‹

‹

‹

‹

‹

‹

‚

` ¨ ¨ ¨ ` xj

¨

˚

˚

˚

˚

˚

˚

˚

˝

a1j

a2j
...
aij
...
amj

˛

‹

‹

‹

‹

‹

‹

‹

‚

` ¨ ¨ ¨ ` xn

¨

˚

˚

˚

˚

˚

˚

˚

˝

a1n

a2n
...
ain
...

amn

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

b1
b2
...
bi
...
bm

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

c’est-à-dire
x1C1 ` x2C2 ` ...` xjCj ` ...` xnCn “ B.

Autrement dit, le vecteur B est une combinaison linéaire des colonnes de la matrice A, avec les xj

comme coefficients scalaires.
(b). Résolution du système pSq. Résoudre pSq revient à trouver tous les n´uplets px1, . . . , xnq

qui expriment B comme combinaison linéaire des colonnes C1, . . . , Cn.
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(c) Condition d’existence de solutions. Le système pSq admet au moins une solution si et
seulement si B appartient à l’espace engendré par les colonnes de A

B P V ectpC1, . . . , Cnq.

(d) Système homogène associé. Le système homogène associé pSHq est

x1C1 ` x2C2 ` ¨ ¨ ¨ ` xnCn “ 0m,1,

c’est-à-dire AX “ 0m,1. Résoudre pSHq consiste à trouver tous les n´uplets px1, . . . , xnq P Kn qui
satisfont cette relation.
(e) Existence de solutions non triviales du système homogène. Le système homogène pSHq

possède des solutions non triviales (autres que le vecteur nul) si et seulement si les colonnes C1, . . . , Cn

sont linéairement dépendantes. Autrement dit

Dpx1, . . . , xnq P Kn
zt0Ku : x1C1 ` ¨ ¨ ¨ ` xnCn “ 0m,1.

Exemple 4.2.8 Considérons le système suivant

pSq :

$

&

%

2x1`3x2´ x3“ 5
4x1´ x2`2x3“ 6

´3x1`2x2` x3“´4.

(i) Écriture par colonnes. Les colonnes de la matrice des coefficients sont

C1 “

¨

˝

2
4
´3

˛

‚, C2 “

¨

˝

3
´1
2

˛

‚, C3 “

¨

˝

´1
2
1

˛

‚.

et le second membre est

B “

¨

˝

5
6
´4

˛

‚.

Le système s’écrit donc comme combinaison linéaire des colonnes

x1C1 ` x2C2 ` x3C3 “ B,

c’est-à-dire

x1

¨

˝

2
4
´3

˛

‚` x2

¨

˝

3
´1
2

˛

‚` x3

¨

˝

´1
2
1

˛

‚“

¨

˝

5
6
´4

˛

‚.

Le système revient à chercher des scalaires x1, x2, x3 tels que la combinaison linéaire des vecteurs
C1, C2, C3 donne le vecteur second membre B.
(ii) Dans le cas du système homogène pSHq, il s’agit de résoudre

x1C1 ` x2C2 ` x3C3 “ 03,1,

C’est-à-dire, on cherche toutes les combinaisons linéaires nulles des vecteurs C1, C2, C3.

Une fois que nous avons étudié l’interprétation d’un système linéaire à travers les combinaisons
linéaires, nous allons maintenant explorer une nouvelle approche : l’interprétation en termes d’appli-
cations linéaires. Cette perspective permet de relier un système linéaire à des notions fondamentales
telles que l’image, le noyau, l’injectivité et la surjectivité. Elle offre ainsi une meilleure compréhen-
sion du fonctionnement du système et des conditions qui déterminent s’il admet une solution unique,
plusieurs solutions ou aucune solution.
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Définition 4.2.8 (Interprétation d’un système linéaire en termes d’applications linéaires)

Considérons le système linéaire pSq de m équations à n inconnues

pSq :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1
a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2

... ... ... ...
ai1x1 ` ai2x2 ` ¨ ¨ ¨ ` ainxn “ bi

... ... ... ...
am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn “ bm.

Soit A “ paijq PMm,npKq la matrice des coefficients, x “ px1, . . . , xnq P Kn et b “ pb1, . . . , bmq P Km.
(a) Lien avec une application linéaire. On associe au système l’application linéaire

f : Kn ÝÑ Km

x ÞÝÑ fpxq “ Ax.

Dans ce cadre, le système linéaire pSq correspondant s’écrit alors sous la forme vectorielle

fpxq “ b.

(b) Résolution du système. Résoudre pSq revient à chercher l’ensemble des solutions

tx P Kn : fpxq “ bu “ f´1
ptbuq,

c’est-à-dire les antécédents de b par f .
(c) Condition d’existence de solutions. Le système admet au moins une solution si et seulement
si

b P Impfq.

Autrement dit, le vecteur second membre b doit appartenir à l’image de f , qui est exactement le
sous-espace vectoriel engendré par les colonnes de A.
(d) Système homogène associé. Le système homogène associé pSHq est donné par

fpxq “ 0Km ðñ Ax “ 0pm,1q.

(e) Noyau de l’application. Résoudre le système pSHq, c’est donc déterminer le noyau de f ,

kerpfq “ tx P Kn : fpxq “ 0Kmu .

(f) Solutions non triviales du système homogène. Le système homogène pSHq admet des
solutions non triviales (autres que la solution nulle) si et seulement si

kerpfq ­“ t0Knu ðñ dimpker fq ą 0,

c’est-à-dire si les colonnes de A sont linéairement dépendantes.

Exemple 4.2.9 Considérons le système linéaire pSq suivant à trois équations et trois inconnues

pSq :

$

&

%

2x1`3x2´ x3“ 5
4x1´ x2`2x3“ 6

´3x1`2x2` x3“´4.
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Soit

A “

¨

˝

2 3 ´1
4 ´1 2
´3 2 1

˛

‚, x P R3, b “ p5, 6,´4q .

(a) Lien avec une application linéaire. On associe au système l’application linéaire

f : R3 ÝÑ R3

x ÞÝÑ fpxq “ Ax,

c’est-à-dire
fpx1, x2, x3q “ p2x1 ` 3x2 ´ x3, 4x1 ´ x2 ` 2x3,´3x1 ` 2x2 ` x3q.

Le système pSq peut alors s’écrire sous la forme vectorielle

fpxq “ b.

(b) Résolution du système. Résoudre pSq revient à chercher l’ensemble des solutions

tx P R3 : fpxq “ bu “ f´1
ptbuq,

c’est-à-dire les antécédents de b par l’application linéaire f . On obtient

tx P R3 : fpxq “ bu “

"ˆ

5
3 ,

8
15 ,

´1
15

˙*

.

(c) Condition d’existence de solutions. Le système admet au moins une solution si et seulement
si

b P Impfq.

Autrement dit, le vecteur b “ p5, 6,´4q doit appartenir au sous-espace de R3 engendré par les colonnes
de A. Ici b P Impfq puisque

Impfq “ R3.

(d) Système homogène associé. Le système homogène associé est donné par

fpxq “ 0R3 ðñ Ax “ 0p3,1q.

(e) Noyau de l’application. Résoudre le système homogène, c’est déterminer le noyau de f

kerpfq “ tx P R3 : fpxq “ 0R3u.

On obtient
kerpfq “ tp0, 0, 0qu.

4.2.3 Systèmes linéaires : classification et conditions d’existence des so-
lutions

Les systèmes d’équations linéaires occupent une place centrale en algèbre linéaire et apparaissent
dans de nombreux domaines scientifiques. Lorsqu’on en étudie un, deux questions fondamentales se
posent : le système possède-t-il des solutions ? et combien en existe-t-il ?.

Répondre à ces questions conduit à classer les systèmes linéaires selon le nombre de solutions qu’ils
admettent : un système peut être déterminé (une seule solution), incompatible (aucune solution) ou
indéterminé (une infinité de solutions). Cette distinction constitue la base de l’analyse des systèmes
et oriente le choix des méthodes de résolution (par exemple la substitution ou le pivot de Gauss).
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4.2.3.1 Classification des systèmes linéaires

Le comportement d’un système dépend des relations entre ses équations, qui peuvent être co-
hérentes ou contradictoires, indépendantes ou dépendantes. Ces différentes situations conduisent à
une classification générale des systèmes. Ainsi, tout système d’équations linéaires admet nécessaire-
ment l’un et un seul des trois types suivants de solutions : il peut avoir une solution unique, aucune
solution, ou bien une infinité de solutions.

Corollaire 4.2.1 Tout système d’équations linéaires admet nécessairement l’un et un seul des trois
types suivants de solutions
(a) Une solution unique : Le système est alors dit déterminé ; les équations sont cohérentes et
linéairement indépendantes, ce qui permet de trouver une unique combinaison de valeurs pour les
variables inconnues.
(b) Aucune solution : Le système est dit incompatible ou incohérent, c’est-à-dire que certaines
équations se contredisent et qu’il est impossible de satisfaire toutes les équations simultanément.
(c) Une infinité de solutions : Le système est dit compatible indéterminé ; les équations sont
cohérentes mais linéairement dépendantes, de sorte qu’il existe une infinité de combinaisons de valeurs
qui satisfont toutes les équations.

Exemple 4.2.10
1. Système déterminé (solution unique). Considérons le système suivant à trois équations et
trois inconnues

pS1q :

$

&

%

x` y`z“ 3
x´ y`z“ 1
x`2y´z“4.

Soustrayons la deuxième équation de la première, on obtient

y “ 1.

Remplaçons y “ 1 dans la première (ou la deuxième) équation

x` z “ 2.

(Vérification avec la deuxième x´ 1` z “ 1 ùñ x` z “ 2, cohérent.)
Remplaçons y “ 1 dans la troisième équation

x` 2 ¨ 1´ z “ 4 ùñ x´ z “ 2.

On obtient le système linéaire en x et z
#

x` z “ 2

x´ z “ 2.

En additionnant les deux équations
2x “ 4 ùñ x “ 2.

Puis
z “ 2´ x “ 2´ 2 “ 0.

Ainsi la solution unique du système est

px, y, zq “ p2, 1, 0q.
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Le système pS1q admet une unique solution (toutes les équations sont cohérentes et indépendantes).
2. Système incompatible (aucune solution). Considérons le système

pS2q :

$

&

%

x`y`z“ 1
x`y`z“ 2
x´y`z“0.

Observons les deux premières équations

x` y ` z “ 1 et x` y ` z “ 2.

Ces équations imposent des conditions contradictoires : une même somme x`y`z ne peut pas valoir
à la fois 1 et 2. Cette contradiction montre que le système est incompatible, il n’existe aucun triplet
px, y, zq P R3 satisfaisant simultanément les trois équations. Ainsi le système n’a aucune solution. Le
système pS2q est incompatible (contradictions entre équations).
3. Système compatible indéterminé (une infinité de solutions). Considérons le système

pS3q :

$

&

%

x` y` z“ 3
2x`2y`2z“ 6
x´ y` z“1.

La deuxième équation est simplement le double de la première, elle n’apporte aucune condition sup-
plémentaire. On réduit donc le système à

"

x`y`z“ 3
x´y`z“1.

C’est un système de 2 équations à 3 inconnues, donc il reste une liberté dans le choix des solutions.
En posant z “ t P R (paramètre libre). On résout le système, on obtient les solutions sont données
par

px, y, zq “ p2´ t, 1, tq, t P R.

Il existe donc une infinité de solutions. Le système pS3q admet une infinité de solutions.

4.2.3.2 Conditions d’existence et de nombre de solutions d’un système linéaire

Après avoir classé les systèmes linéaires, il est naturel de se demander s’il existe un critère général
permettant de déterminer l’existence et le nombre de solutions d’un tel système. Ce critère est donné
par le théorème de Rouché–Fontené, un résultat fondamental de l’algèbre linéaire qui relie le rang
d’un système aux différentes situations possibles pour ses solutions.

Le théorème de Rouché–Fontené énonce une condition nécessaire et suffisante pour qu’un système
d’équations linéaires admette au moins une solution et indique également s’il en existe une seule ou
une infinité. Avant d’énoncer ce théorème, il est indispensable d’introduire la notion de rang d’un
système linéaire, un outil essentiel pour analyser et déterminer le nombre de solutions d’un système.

Définition 4.2.9 (Rang d’un système linéaire)
Soit pSq un système de m équations linéaires à n inconnues, de matrice des coefficients A PMm,npKq
et b P Km est le vecteur des seconds membres.
1. On appelle rang du système pSq le rang de sa matrice des coefficients A,

rgpSq “ rgpAq.
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Ce rang peut être caractérisé de plusieurs manières équivalentes,
(a) rgpSq est la dimension du sous-espace vectoriel V ectpC1, . . . , Cnq Ă Km, où C1, . . . , Cn désignent
les colonnes de A.
(b) Équivalemment, rgpSq est le nombre maximal de colonnes linéairement indépendantes de A.
(c) Enfin, si l’on associe à A l’application linéaire canoniquement définie par

f : Kn ÝÑ Km

x ÞÝÑ fpxq “ Ax,

alors le rang du système est également le rang de cette application

rgpSq “ rgpfq “ dimpImfq.

Exemple 4.2.11 Considérons le système

pSq :

$

&

%

x1` x2` x3“ 1
2x1`3x2` x3“ 2
3x1`4x2`2x3“3.

La matrice des coefficients est

A “

¨

˝

1 1 1
2 3 1
3 4 2

˛

‚PM3,3pRq.

(a) Colonnes et dépendance linéaire. Les colonnes sont

C1 “

¨

˝

1
2
3

˛

‚, C2 “

¨

˝

1
3
4

˛

‚, C3 “

¨

˝

1
1
2

˛

‚.

On constate la relation linéaire
C3 “ 2C1 ´ C2,

donc les colonnes sont linéairement dépendantes. Par conséquent

V ectpC1, C2, C3q “ V ectpC1, C2q.

Par conséquent le rang des colonnes (le rang de la matrice A) vaut

rgpSq “ rgpAq “ 2.

(b) Le nombre maximal de colonnes linéairement indépendantes est le rang, donc 2.
(c) L’application associée est

f : R3
ÝÑ R3, fpx1, x2, x3q “ px1 ` x2 ` x3, 2x1 ` 3x2 ` x3, 3x1 ` 4x2 ` 2x3q.

Son image est le sous-espace engendré par les colonnes

Impfq “ V ectpC1, C2q.

Donc
rgpSq “ rgpfq “ 2.
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Corollaire 4.2.2 (Propriétés du rang d’un système linéaire)
Soit pSq un système de m équations linéaires à n inconnues, de matrice des coefficients A PMm,npKq
et de second membre b P Km. On définit le rang du système par

rgpSq “ rgpAq.

1. Bornes du rang. Le rang d’un système vérifie toujours

0 ď rgpSq “ rgpAq ď minpm,nq.

2. Invariance par opérations élémentaires. Le rang d’un système est invariant par opérations
élémentaires effectuées sur les lignes, c’est-à-dire sur les équations du système. En d’autres termes,
rgpSq ne change pas lorsqu’on applique aux lignes de A,
(a) la permutation de deux lignes, la multiplication d’une ligne par un scalaire non nul,
(b) l’addition à une ligne d’un multiple d’une autre ligne.

Exemple 4.2.12
1. Bornes du rang. Considérons le système

pSq :
"

x1`2x2`3x3“ 1
2x1`4x2`6x3“2.

La matrice des coefficients est

A “

ˆ

1 2 3
2 4 6

˙

.

On remarque que la deuxième équation est un multiple de la première (L2 “ 2L1). Ainsi,

rgpSq “ rgpAq “ 1,

et
0 ď 1 ď minp2, 3q “ 2.

2. Invariance par opérations élémentaires. Considérons le système

pSq :

$

&

%

x1`2x2` x3“ 1
2x1`4x2`2x3“ 2
3x1`6x2`3x3“3.

La matrice des coefficients est

A “

¨

˝

1 2 1
2 4 2
3 6 3

˛

‚.

Toutes les équations sont proportionnelles (L2 “ 2L1, L3 “ 3L1), donc

rgpSq “ 1.

Si l’on applique une opération élémentaire (par exemple. L2 ÐÝ L2´2L1), on obtient une ligne nulle
mais le rang reste 1. Cela montre l’invariance du rang par opérations élémentaires.
3. Rang maximal. Considérons le système

pSq :
"

x1`2x2` x3“ 0
2x1` x2`3x3“1.
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La matrice des coefficients est

A “

ˆ

1 2 1
2 1 3

˙

.

Les deux lignes ne sont pas proportionnelles, donc elles sont linéairement indépendantes. Ainsi,

rgpSq “ 2 “ minp2, 3q.

ce qui est le rang maximal possible.

Une fois la notion de rang d’un système linéaire définie et ses propriétés étudiées, nous pouvons
maintenant énoncer le critère général qui détermine l’existence et le nombre de solutions d’un système
d’équations linéaires. Ce critère est donné par le théorème de Rouché-Fontené, également appelé
théorème de Kronecker-Capelli.

Théorème 4.2.1 (Théorème de Fontené-Rouché) Considérons un système pSq de m équations
linéaires à n inconnues, à coefficients dans K et de rang r. Trois cas sont possibles.
• Si r “ m “ n alors le système pSq est de Cramer. Il admet une unique solution.
• Si r “ m ă n alors le système pSq admet une infinité de solutions, quel que soit le vecteur des
seconds membres.
• Si r ă m alors le système pSq admet au moins une solution si, et seulement si, le système est
compatible. Dans ce cas :
• Si r “ m, il admet une solution unique,
• Si r ă m, il admet une infinité de solutions.

Exemple 4.2.13
1) Cas de solution unique. Considérons le système suivant de trois équations linéaires à trois
inconnues

pSq :

$

&

%

x1` x2`x3“ 6
x1´ x2`x3“ 2
x1`2x2´x3“3.

Ce système peut s’écrire sous forme matricielle

AX “ B ðñ

¨

˝

1 1 1
1 ´1 1
1 2 ´1

˛

‚

¨

˝

x1
x2
x3

˛

‚“

¨

˝

6
2
3

˛

‚.

On calcule le déterminant de la matrice des coefficients

detpAq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1
1 ´1 1
1 2 ´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 4 ­“ 0.

Comme detpAq ­“ 0, on a
r “ 3 “ m “ n.

Ainsi, le système pSq est un système de Cramer et admet une solution unique

px1, x2, x3q “

ˆ

3
2 , 2,

5
2

˙

.

2. Système compatible, rang ă m ( infinité de solutions). Considérons le système suivant
de deux équations linéaires à trois inconnues

pSq :
"

x1` x2` x3“ 4
2x1`2x2`2x3“8.
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Ce système peut être mis sous forme matricielle

AX “ B ðñ

ˆ

1 1 1
2 2 2

˙

¨

˝

x1
x2
x3

˛

‚“

ˆ

4
8

˙

.

On remarque que la deuxième ligne est le double de la première (L2 “ 2L1), les deux lignes sont
linéairement dépendantes, donc le rang de la matrice des coefficients est donc

r “ 1 ă m “ 2 ă n “ 3.

Le rang du système est strictement inférieur au nombre d’inconnues, donc le système est compatible
et admet une infinité de solutions. Une solution générale peut s’écrire en exprimant une variable en
fonction des autres

"

x1 “ 4´ x2 ´ x3
x2, x3 P R.

3. Système avec rang “ m ă n (compatible avec solutions infinies). Considérons le système
suivant de deux équations linéaires à trois inconnues

pSq :
"

x1`x2`x3“ 3
2x1´x2`x3“1.

Sous forme matricielle

AX “ B ðñ

ˆ

1 1 1
2 ´1 1

˙

¨

˝

x1
x2
x3

˛

‚“

ˆ

3
1

˙

.

Les deux lignes ne sont pas proportionnelles, donc elles sont linéairement indépendantes et le rang
de la matrice des coefficients est donc

rgpAq “ r “ 2 “ m “ 2 ă n “ 3.

Le rang est égal au nombre d’équations mais inférieur au nombre d’inconnues, le système est com-
patible et admet une infinité de solutions, quelle que soit la valeur du second membre p3, 1q. Une
solution générale peut s’écrire

$

&

%

x1 “
4´2x3

3
x2 “

5´x3
3

x3 P R.

4.2.4 Matrice augmentée d’un système linéaire

Pour résoudre un système d’équations linéaires, il est souvent pratique de rassembler tous les
coefficients des inconnues et les termes constants dans une seule matrice, appelée matrice augmentée
ou matrice complète. Cette représentation présente plusieurs avantages. Elle permet d’appliquer
efficacement des méthodes de résolution telles que la méthode de Gauss ou la méthode de Gauss-
Jordan. Elle facilite également l’exécution des opérations élémentaires sur les lignes. Enfin, elle aide à
déterminer si le système est compatible, c’est-à-dire s’il admet au moins une solution, ou incompatible,
c’est-à-dire s’il n’admet aucune solution.
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Définition 4.2.10 Soit pSq un système d’équations linéaires de m équations à n inconnues x1, ..., xn

à coefficients dans K ,

pSq :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1
a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2

... ... ... ...
ai1x1 ` ai2x2 ` ¨ ¨ ¨ ` ainxn “ bi

... ... ... ...
am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn “ bm.

1. On appelle matrice augmentée (ou matrice complète) du système pSq la matrice notée pA | Bq,
obtenue en ajoutant la colonne des seconds membres B à droite de la matrice des coefficients A, où
(a) A “ paijq PMm,npKq est la matrice des coefficients du système.
(b) B “ pbiq PMm,1pKq est le vecteur colonne des termes constants (ou second membre).
2. La matrice augmentée s’écrit alors sous la forme

pA | Bq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... . . . ... ... ...
ai1 ai2 ¨ ¨ ¨ aij ¨ ¨ ¨ ain
... ... ... ... . . . ...
am1 am2 ¨ ¨ ¨ amj ¨ ¨ ¨ amn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1
b2
...
bi
...
bm

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Remarque 4.2.3 (Remarques sur la matrice augmentée)
1. Nature de la matrice augmentée. La matrice augmentée n’est pas une matrice au sens clas-
sique (appartenant à un espace vectoriel de matrices). Il s’agit d’une notation combinée qui regroupe,
dans un même tableau, la matrice des coefficients et la colonne des seconds membres. Cette présen-
tation facilite l’écriture et les manipulations algébriques lors de la résolution d’un système linéaire.
2. Lien avec les opérations élémentaires.
Les opérations élémentaires sur les lignes d’un système linéaire s’appliquent directement à la matrice
augmentée. Ainsi, si un système pSq est transformé en un système équivalent pS 1q par une suite
d’opérations élémentaires, alors la matrice augmentée de pS 1q s’obtient en appliquant exactement les
mêmes opérations à la matrice augmentée de pSq.
3. Rôle fondamental de la matrice augmentée. La matrice augmentée constitue un outil cen-
tral dans l’étude des systèmes linéaires. Elle permet notamment
• de résoudre le système par des méthodes algébriques systématiques (telles que l’élimination de Gauss
ou de Gauss-Jordan),
• d’étudier la compatibilité du système (c’est-à-dire, déterminer s’il admet au moins une solution),
• d’analyser la nature de l’ensemble des solutions (solution unique, infinité de solutions, ou aucune
solution).

Exemple 4.2.14 Considérons le système linéaire suivant

pSq :

$

&

%

x1`2x2` x3“ 6
2x1` x2`3x3“ 14

´3x1`4x2´2x3“´2.

La matrice augmentée associée au système pSq est

pA | Bq “

¨

˝

1 2 1
2 1 3
´3 4 ´2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6
14
´2

˛

‚.
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Étape 1 : Élimination des coefficients de x1 dans les lignes L2 et L3.
On veut annuler les coefficients de x1 des lignes 2 et 3. On effectue

L2 ÐÝ L2 ´ 2L1, L3 ÐÝ L3 ` 3L1.

On obtient alors la matrice augmentée suivante
¨

˝

1 2 1
0 ´3 1
0 10 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6
2
16

˛

‚.

Étape 2 : Élimination du coefficient de x2 dans la troisième ligne L3.
On cherche maintenant à annuler le coefficient 10 de x2 dans la troisième ligne. Pour cela, on effectue
l’opération

L3 ÐÝ L3 `
10
3 L2.

On obtient alors la matrice augmentée
¨

˝

1 2 1
0 ´3 1
0 0 13

3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6
2
68
3

˛

‚.

Étape 3. Retour en arrière (substitution). De la troisième ligne

13
3 x3 “

68
3 ùñ x3 “

68
13 .

De la deuxième ligne
´3x2 ` x3 “ 2,

donc
x2 “

14
13 .

De la première ligne
x1 ` 2x2 ` x3 “ 6,

donc
x1 “ ´

18
13 .

Solution finale

px1, x2, x3q “

ˆ

´
18
13 ,

14
13 ,

68
13

˙

.

2. Considérons le système

pSq :

$

&

%

x1`2x2´ x3“ 1
2x1`4x2´2x3“ 2
´x1´2x2` x3“´1.

La matrice augmentée associée est
¨

˝

1 2 ´1
2 4 ´2
´1 ´2 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
2
´1

˛

‚.

On cherche à annuler les coefficients de la première colonne en lignes 2 et 3 par des opérations sur
les lignes. On effectue

L2 ÐÝ L2 ´ 2L1, L3 ÐÝ L3 ` L1.
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La matrice augmentée devient donc
¨

˝

1 2 ´1
0 0 0
0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
0
0

˛

‚.

Après élimination, il ne reste qu’une équation indépendante

x1 ` 2x2 ´ x3 “ 1.

Les deux autres lignes sont nulles, ce qui montre que le rang de la matrice des coefficients est r “ 1,
le système est donc compatible. La solution générale s’obtient facilement

x1 “ 1´ 2x2 ` x3.

4.3 Résolution des systèmes linéaires

Résoudre un système d’équations linéaires consiste à trouver toutes les valeurs des inconnues qui
satisfont toutes les équations du système. Plusieurs méthodes existent. La méthode de substitution
consiste à isoler une variable dans une équation, puis à la remplacer dans les autres, en répétant
le processus jusqu’à trouver toutes les inconnues. Cette méthode est simple mais devient difficile
pour les systèmes de grande taille. La méthode de Cramer s’applique aux systèmes carrés dont la
matrice des coefficients est inversible, et permet de calculer chaque inconnue directement à l’aide des
déterminants. Elle est rapide pour les petits systèmes mais coûteuse pour les grands. La méthode du
pivot de Gauss transforme le système en une forme échelonnée en utilisant des opérations sur les
lignes, puis permet de déterminer les inconnues par substitution inverse. Cette méthode est efficace,
systématique et particulièrement adaptée aux grands systèmes.

4.3.1 Méthode de substitution, principe, algorithme et exemples

La méthode de substitution consiste à choisir l’une des équations du système pour exprimer une
variable en fonction des autres, puis à remplacer cette expression dans les équations restantes. En
répétant ce procédé, on réduit progressivement le nombre d’inconnues jusqu’à obtenir une équation à
une seule variable, dont la résolution permet ensuite de déterminer successivement toutes les autres
inconnues.

Principe de la méthode de substitution. Soit pSq un système d’équations linéaires. La
méthode de substitution se déroule comme suit :
• Isoler une inconnue dans l’une des équations du système.
• Remplacer cette inconnue par son expression dans toutes les autres équations.
• Répéter le processus jusqu’à obtenir une équation ne comportant qu’une seule inconnue.
• Résoudre cette équation, puis remonter les substitutions pour calculer successivement les autres
inconnues.

Algorithme 4.3.1 (cas général)
Entrée : un système de m équations à n inconnues.
Sortie : l’ensemble des solutions (unique, infinies ou aucune).
Étapes de l’algorithme.
Étape 1 : Choix et isolement d’une variable
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• Choisir une équation dans laquelle une inconnue peut être facilement isolée.
• Isoler cette inconnue dans cette équation, par exemple xi sous la forme

xi “ fipx1, . . . , xi´1, xi`1, . . . , xnq,

où fi est une combinaison linéaire des autres variables.
Étape 2 : Substitution
• Remplacer xi par son expression dans toutes les autres équations du système.
• Cette opération élimine xi et conduit à un nouveau système pS 1q de pm´ 1q équations à pn´ 1q
inconnues.
Étape 3 : Réduction du système
• Répéter les étapes 1 et 2 sur le système réduit pS 1q.
• Poursuivre le processus jusqu’à obtenir une équation à une seule inconnue.
• Résoudre cette dernière équation pour déterminer la valeur de l’inconnue correspondante.
Étape 4 : Remontée des valeurs
• Une fois la dernière inconnue calculée, remonter progressivement les substitutions.
• Substituer la valeur trouvée dans l’équation précédente pour calculer une nouvelle variable.
• Répéter ce processus jusqu’à ce que toutes les variables x1, x2, . . . , xn soient déterminées.
Étape 5 : Analyse des solutions (Conclusion)
• Si le système conduit à une contradiction, il n’a pas de solution.
• Si toutes les inconnues sont déterminées, il admet une solution unique.
• Si certaines inconnues dépendent de paramètres libres, le système a une infinité de solutions.

Exemple 4.3.1
1. Système carré (Résolution par substitution). Résolvons le système suivant par substitution

pS1q :

$

&

%

x` y`z“ 6
2y´z“ 3

x´ y`z“2.

Étape 1 : Isolement. Isolons x à partir de la première équation

x “ 6´ y ´ z.

Étape 2 : Substitution. Remplaçons x dans la troisième équation

p6´ y ´ zq ´ y ` z “ 2.

En simplifiant, on obtient
y “ 2.

Étape 3 : Substitution pour z. Remplaçons y “ 2 dans la deuxième équation

2p2q ´ z “ 3 ùñ z “ 1.

Étape 4 : Remontée pour x. Remplaçons y “ 2 et z “ 1 dans l’expression de x

x “ 6´ 2´ 1 “ 3.

Conclusion. La solution unique du système pS1q est

px, y, zq “ p3, 2, 1q.
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2. Système non carré (Résolution par substitution). Considérons maintenant le système
suivant à deux équations et trois inconnues

pS2q :
"

x`y`z“ 4
2x´y`z“1.

Étape 1 : Isolement. Isolons x à partir de la première équation

x “ 4´ y ´ z. (4.1)

Étape 2 : Substitution. Remplaçons x dans la deuxième équation

3y ` z “ 7. (4.2)

Étape 3 : Paramétrisation. On exprime une variable en fonction de l’autre. Par exemple, isolons
z dans l’équation p4.2q

z “ 7´ 3y.
Étape 4 : Calcul de x. Remplaçons les expressions de y et z dans l’équation p4.1q,

x “ 2y ´ 3.

Conclusion. Le système admet une infinité de solutions, dépendant du paramètre libre y P R,
$

&

%

x “ 2y ´ 3
z “ 7´ 3y
y P R.

Corollaire 4.3.1 (Remarques sur l’applicabilité de la méthode de substitution)
La méthode de substitution peut être appliquée à tout système linéaire, qu’il soit carré ou non carré,
à condition que le système soit compatible, c’est-à-dire qu’il admette au moins une solution.
(a) Pour un système carré : La méthode fonctionne efficacement et, si le système est déterminé
(c’est-à-dire si les équations sont linéairement indépendantes), elle conduit généralement à une solu-
tion unique.
(b) Pour un système non carré. Deux cas peuvent se présenter :
(i) Système sous-déterminé (plus d’inconnues que d’équations) : La substitution reste applicable. Cer-
taines variables sont alors exprimées en fonction d’autres, ce qui conduit à une solution paramétrique,
c’est-à-dire une infinité de solutions dépendant d’un ou plusieurs paramètres libres.
(ii) Système surdéterminé (plus d’équations que d’inconnues) : La méthode permet souvent de détec-
ter une éventuelle contradiction entre les équations. Si certaines équations sont redondantes (elles
ne fournissent pas de nouvelles informations), le système peut tout de même admettre une solution
unique ou paramétrique. En revanche, si une contradiction apparaît, cela signifie que le système est
incompatible (aucune solution).

Exemple 4.3.2
1. Pour un système carré. Par exemple, le système pS1q présenté précédemment (plus haut.)
2. Système non carré sous-déterminé. Par exemple, le système pS2q présenté précédemment
(plus haut.)
3. Pour un système non carré surdéterminé. Considérons le système suivant

pS3q :

$

&

%

x`y“ 2
x´y“ 0

2x`y“5.
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Ce système est non carré (3 équations, 2 inconnues) et surdéterminé.
• Résolvons les deux premières équations. En les additionnant

x “ 1.

Remplaçons dans la deuxième équation
y “ 1.

• Vérification dans la troisième équation,
3 “ 5.

Contradiction, la troisième équation n’est pas satisfaite. Le système est donc incompatible et n’admet
aucune solution.

Conclusion 4.3.1 La méthode de substitution est facile à utiliser et convient bien aux petits systèmes
d’équations. Cependant, lorsque le système comporte un grand nombre d’équations ou d’inconnues,
son application devient fastidieuse et exige de nombreux calculs, ce qui la rend peu pratique. Dans
ces situations, il est préférable d’utiliser des méthodes plus systématiques et efficaces, telles que la
méthode du pivot de Gauss, particulièrement adaptée aux systèmes de grande taille.

4.3.2 Méthode de Cramer

La méthode de Cramer est une technique classique pour résoudre les systèmes linéaires carrés,
lorsque la matrice des coefficients est inversible (c’est-à-dire que son déterminant est non nul). Elle
permet de calculer chaque inconnue du système sous forme de quotient de deux déterminants. Cette
méthode porte le nom du mathématicien suisse Gabriel Cramer, qui l’a introduite au 18e siècle.

Définition 4.3.1 On appelle système de Cramer tout système linéaire carré AX “ B avec A P

MnpKq est la matrice des coefficients, X P Mn,1pKq le vecteur des inconnues, et B P Mn,1pKq le
vecteur des termes constants tel que le déterminant de sa matrice des coefficients soit non nul

detpAq ­“ 0K.

Dans ce cas, le système est dit compatible déterminé : il admet une unique solution dans Kn, que
l’on peut calculer explicitement à l’aide de la méthode de Cramer.

Principe de la méthode (Exemple explicatif, cas 2ˆ 2)
Considérons le système linéaire

pSq :
"

a11x1`a12x2“ b1
a21x1`a22x2“b2,

où
A “

ˆ

a11 a12
a21 a22

˙

PM2pKq, X “

ˆ

x1
x2

˙

PM2,1pKq, B “
ˆ

b1
b2

˙

PM2,1pKq.

On suppose detpAq ­“ 0K.

Calcul de x1. Pour éliminer x2, on multiplie la première équation par a22 et la seconde par a12

pSq ðñ

"

a22a11x1`a22a12x2“ a22b1
a12a21x1`a12a22x2“a12b2.

En soustrayant la deuxième équation de la première, on obtient

pa22a11 ´ a12a21qx1 “ a22b1 ´ a12b2.
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Ainsi
x1 “

a22b1 ´ a12b2

a11a22 ´ a12a21
“

detpA1q

detpAq ,

où

A1 “

˜

b1 a12

b2 a22

¸

,

est la matrice obtenue en remplaçant la première colonne de A par le vecteur B. On vérifie que

detpA1q “ b1a22 ´ b2a12.

Calcul de x2. Pour éliminer x1, on multiplie la première équation par a21 et la seconde par a11

pa11a22 ´ a12a21qx2 “ a11b2 ´ a21b1.

On en déduit
x2 “

a11b2 ´ a21b1

a11a22 ´ a12a21
“

detpA2q

detpAq ,

où

A2 “

˜

a11 b1

a21 b2

¸

,

est la matrice obtenue en remplaçant la deuxième colonne de A par le vecteur B. On a bien

detpA2q “ a11b2 ´ a21b1.

Cet exemple illustre le principe fondamental de la règle de Cramer chaque inconnue s’obtient en
remplaçant, dans la matrice des coefficients, la colonne correspondant à cette inconnue par le vecteur
des termes constants, puis en calculant le rapport entre le déterminant ainsi obtenu et celui de la
matrice initiale. Avant d’énoncer la règle de Cramer dans le cas général, rappelons que lorsqu’un
système linéaire carré AX “ B a une matrice des coefficients A inversible (c’est-à-dire lorsque
detpAq ­“ 0K), il admet toujours une unique solution. La règle de Cramer fournit alors une formule
explicite pour chacune des inconnues en fonction des déterminants de certaines matrices construites
à partir de A et du vecteur B. Dans ce contexte, on peut énoncer le résultat suivant.

Théorème 4.3.1 (Règle de Cramer) Soit AX “ B un système linéaire carré d’ordre n, où

A PMnpKq, X “

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

PMn,1pKq, B “

¨

˚

˚

˚

˝

b1
b2
...
bn

˛

‹

‹

‹

‚

PMn,1pKq.

On suppose que
detpAq ­“ 0K.

Alors le système admet une unique solution X P Kn, donnée pour tout j P t1, 2, ..., nu par

xj “
detpAjq

detpAq ,

où, pour chaque j, la matrice Aj est obtenue en remplaçant la j´ième colonne de A par le vecteur
B,

Aj “

¨

˚

˚

˚

˝

a11 . . . a1i´1 b1 a1i`1 . . . a1n

a21 . . . a2i´1 b2 a2i`1 . . . a2n
... ... ... ... ...
an1 . . . ani´1 bn ani`1 . . . ann

˛

‹

‹

‹

‚

.
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De manière équivalente, si l’on note C1, C2, . . . , Cn les colonnes de A, on peut écrire

@j P t1, 2, . . . , nu : xj “
detpC1, C2, . . . , Cj´1, B, Cj`1, . . . , Cnq

det pAq .

Ainsi, le numérateur correspond au déterminant de la matrice obtenue en remplaçant la colonne Cj

par le vecteur B.

Algorithme 4.3.2 (Algorithme de la Méthode de Cramer)
Objectif : Résoudre un système linéaire de n équations à n inconnues de la forme

AX “ B.

Entrées :
• A PMnpKq : matrice des coefficients,
• B PMn,1pKq : vecteur des constantes.
Précondition :
• A est carrée et inversible, c’est-à-dire

detpAq ­“ 0K.

Sortie :
• Le vecteur X PMn,1pKq, solution unique du système AX “ B.
Étapes de l’algorithme :
1. Vérification de la compatibilité du système :
• Calculer detpAq.
• Si detpAq “ 0K, le système n’a pas de solution unique - arrêt de l’algorithme-. Sinon, poursuivre.
2. Initialisation du vecteur solution :
• Définir vecteur colonne des inconnues

X “

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

.

3. Calcul des composantes de la solution (règle de Cramer) :
Pour chaque j P t1, 2, . . . , nu :
• Construire la matrice Aj en remplaçant la j´ième colonne de A par le vecteur B.
• Calculer detpAjq.
• Déduire

xj “
detpAjq

detpAq .

4. Assemblage de la solution :
Après avoir calculé toutes les composantes xj, on obtient

X “

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

.
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Exemple 4.3.3 Considérons le système suivant de trois équations à trois inconnues

pSq :

$

&

%

x1` x2` x3“ 6
x1´ x2`3x3“14
x1`2x2` x3“ 8.

Étape 1 : Mise sous forme matricielle. On introduit

A “

¨

˝

1 1 1
1 ´1 3
1 2 1

˛

‚, X “

¨

˝

x1
x2
x3

˛

‚, B “

¨

˝

6
14
8

˛

‚.

Le système devient alors
AX “ B.

Étape 2 : Vérification de la condition de Cramer. Le déterminant de la matrice des coeffi-
cients est

detpAq “

∣∣∣∣∣∣∣
1 1 1
1 ´1 3
1 2 1

∣∣∣∣∣∣∣ “ ´2 ­“ 0.

Ainsi, A est inversible, et le système est bien un système de Cramer : il admet donc une solution
unique.
Étape 3 : Calcul des déterminants auxiliaires. Pour appliquer la règle de Cramer, on remplace
successivement chaque colonne de A par le vecteur B.
(a) Première colonne remplacée

A1 “

¨

˝

6 1 1
14 ´1 3
8 2 1

˛

‚, detpA1q “ 4.

(b) Deuxième colonne remplacée

A2 “

¨

˝

1 6 1
1 14 3
1 8 1

˛

‚, detpA2q “ ´4.

(c) Troisième colonne remplacée

A3 “

¨

˝

1 1 6
1 ´1 14
1 2 8

˛

‚, detpA3q “ ´12.

Étape 4 : Calcul des inconnues. La règle de Cramer donne

x1 “
detpA1q

detpAq “
4
´2 “ ´2, x2 “

detpA2q

detpAq “
´4
´2 “ 2, x3 “

detpA3q

detpAq “
´12
´2 “ 6.

La solution unique est donc

X “

¨

˚

˝

´2
2
6

˛

‹

‚

.

Étape 5 :Vérification. Substituons p´2, 2, 6q dans les équations originales

x1 ` x2 ` x3“´2` 2` 6 “ 6
x1 ´ x2 ` 3x3“´2´ 2` 18 “ 14
x1 ` 2x2 ` x3“´2` 4` 6 “ 8.

Les trois égalités sont satisfaites ; la solution est bien correcte.
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Conclusion 4.3.2 La méthode de Cramer est une méthode simple mais puissante pour résoudre les
systèmes carrés de la forme AX “ B, lorsque la matrice des coefficients A est inversible. Elle met
bien en évidence le lien entre le déterminant et l’unicité de la solution. Cependant, lorsque le système
contient un grand nombre d’équations, le calcul des déterminants devient long et compliqué. C’est
pourquoi on utilise généralement d’autres méthodes, comme la méthode de Gauss, pour les systèmes
plus grands.

Le résultat suivant établit une équivalence fondamentale entre quatre propriétés liées à une matrice
carrée : son inversibilité, la nature de ses systèmes associés, et son rang.

Proposition 4.3.1 Soit A une matrice carrée deMnpKq. Les assertions suivantes sont équivalentes
(a) A est inversible.
(b) Pour tout second membre B P Mn,1pKq, le système linéaire pSq : AX “ B est un système de
Cramer.
(c) Le système homogène AX “ 0Mn,1pKq n’admet que la solution triviale X “ 0Mn,1pKq.
(d) La matrice A est de rang maximal, c’est-à-dire rgpAq “ n.

Preuve. Nous allons démontrer l’équivalence en suivant le cycle logique suivant

paq ùñ pbq ùñ pcq ùñ pdq ùñ paq.

(i) paq ùñ pbq. Si A est inversible, alors pour tout B PMn,1pKq, on peut écrire

AX “ B ùñ X “ A´1B.

Il existe donc une unique solution pour tout second membre B, ce qui signifie que le système AX “ B
est un système de Cramer.
(ii) pbq ùñ pcq. Si pour tout B le système AX “ B admet une solution unique, alors en particulier
pour B “ 0Mn,1pKq, on a

AX “ 0Mn,1pKq ùñ X “ 0Mn,1pKq.

Donc le système homogène n’admet que la solution triviale.
(iii) pcq ùñ pdq. Si le système homogène AX “ 0Mn,1pKq n’admet que la solution trivialeX “ 0Mn,1pKq,
cela signifie que les colonnes de A sont linéairement indépendantes. Or, pour une matrice carrée, cela
équivaut à dire que son rang est maximal c’est-à-dire

rgpAq “ n.

(iiii) pdq ùñ paq. Si rgpAq “ n, alors les colonnes de A forment une base de Kn, ce qui implique que
le déterminant de A est non nul. Ainsi, A est inversible. Ce qui prouve que les quatre propriétés sont
équivalentes. l

4.3.3 Méthode du pivot de Gauss

Après avoir présenté la méthode de Cramer, nous introduisons la méthode du pivot de Gauss, ou
méthode d’élimination de Gauss, qui est particulièrement adaptée aux systèmes linéaires de grande
taille. Contrairement à la méthode de Cramer, qui devient lourde pour les grands systèmes, cette
méthode transforme le système initial en un système équivalent sous forme échelonnée, ce qui simplifie
grandement la résolution. Pour cela, on effectue des opérations élémentaires sur les lignes afin de créer
des zéros sous les pivots, c’est-à-dire sous les coefficients principaux de la matrice. Une fois la forme
échelonnée obtenue, les inconnues se déterminent facilement par substitution inverse, en commençant
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par la dernière équation non triviale. Cette méthode est fiable, car ces transformations ne changent
pas l’ensemble des solutions du système.

La validité de la méthode du pivot de Gauss repose sur un résultat fondamental : les transforma-
tions appliquées au système ne changent pas son ensemble de solutions.

Proposition 4.3.2 (Invariance des solutions par opérations élémentaires)
Les opérations élémentaires sur les lignes d’un système linéaire ne modifient pas son ensemble de
solutions. Autrement dit, deux systèmes obtenus l’un à partir de l’autre par une suite d’opérations
élémentaires sur les lignes sont équivalents, c’est-à-dire qu’ils possèdent exactement les mêmes solu-
tions.

Avant de présenter en détail l’algorithme de Gauss, il est essentiel de comprendre la notion de
système linéaire échelonné. Cette notion permet de représenter le système sous une forme simplifiée,
où les équations sont organisées de manière à isoler progressivement les inconnues. Comprendre cette
structure est fondamental, car l’algorithme de Gauss repose sur la transformation du système initial
en une forme échelonnée, ce qui rend la résolution des inconnues plus directe et systématique.

Définition 4.3.2 (Système linéaire échelonné)
Un système linéaire est dit échelonné lorsque, dans sa représentation sous forme d’équations ou de
matrice augmentée, chaque ligne comporte un nombre de zéros initiaux strictement supérieur à celui
de la ligne précédente. Autrement dit, le premier coefficient non nul (appelé pivot) de chaque ligne
apparaît plus à droite que celui de la ligne précédente.

Remarque 4.3.1
1. Importance de la forme échelonnée. La forme échelonnée d’un système linéaire joue un rôle
essentiel dans sa résolution. Une fois le système transformé sous cette forme, on peut appliquer la
méthode de substitution arrière : on commence par résoudre la dernière équation non nulle, qui ne
fait intervenir qu’une seule inconnue, puis on remonte progressivement en utilisant les équations
précédentes pour déterminer les autres inconnues.
2. Interprétation matricielle. Lorsqu’un système linéaire est écrit sous forme matricielle, chaque
ligne de la matrice correspond à une équation du système. En forme échelonnée, la matrice présente
une structure en « marche d’escalier » : le nombre de zéros initiaux augmente de ligne en ligne. Plus
précisément, la première ligne non nulle commence par un certain nombre de zéros, la suivante en
contient davantage, et ainsi de suite, traduisant le décalage progressif des pivots vers la droite.

Définition 4.3.3 (Définition formelle)
Soient m,n P N˚. Un système d’équations linéaires à m équations et n inconnues x1, . . . , xn, à
coefficients dans un corps K, est dit échelonné s’il est nul ou s’il est de la forme

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

a1,j1xj1 ` a1,j1`1xj1`1 ` ¨ ¨ ¨ ` a1,nxn “ b1
a2,j2xj2 ` ¨ ¨ ¨ ` a2,nxn “ b2

... ... ...
ar,jrxjr ` ¨ ¨ ¨ ` ar,nxn “ br

0K “ br`1
... ...

0K “ bm,

avec r P N˚ tel que r ď m, 1 ď j1 ă j2 ă ¨ ¨ ¨ ă jr ď n, et pour tout k P t1, . . . , ru, on a ak,jk
­“ 0K (le

pivot de la ligne k). Les indices j1, j2, . . . , jr désignent la position des premiers coefficients non nuls
dans chaque ligne. Leur croissance stricte traduit le décalage progressif des pivots vers la droite, ce
qui caractérise la structure échelonnée du système.
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Remarque 4.3.2 (Vérification de la validité mathématique)
1. Nombre d’équations et d’inconnues :
• Le système est posé avec m équations et n inconnues, ce qui correspond au cadre standard d’un
système linéaire.
2. Structure des équations non nulles (de 1ère à la r´ième) :
• Chaque équation non nulle commence par un terme non nul ak,jk

xjk
, éventuellement suivi de termes

en xjk`1, . . . , xn.
• Les indices des pivots j1, . . . , jr sont strictement croissants, ce qui garantit que chaque pivot apparaît
plus à droite que le précédent. C’est la condition essentielle caractérisant la forme échelonnée.
3. Conditions sur les coefficients :
• Pour tout k P t1, . . . , ru, le pivot de la k´ième ligne est non nul, autrement dit

ak,jk
­“ 0K,

ce qui assure l’existence d’un pivot dans chaque ligne non nulle.
4. Lignes nulles : Les équations r ` 1 à m sont nulles à gauche (tous les coefficients à gauche
sont nuls). Dans la forme échelonnée, ces lignes s’écrivent bi “ 0K pour i ą r.

Exemple 4.3.4
1. Considérons le système suivant à trois équations et quatre inconnues x1, x2, x3, x4 sur R :

pS1q :

$

&

%

x1 ` 2x2 ´ x3 ` x4 “ 5
x2 ` 3x3 ´ x4 “ 2

x4 “ 1.

Analyse d’un système échelonné.
(a) Dimensions du système.
• Nombre d’équations, m “ 3.
• Nombre d’inconnues, n “ 4.
• Nombre de lignes non nulles, r “ 3.
(b) Vérification des pivots.
• Ligne 1 : pivot xj1 “ x1, position j1 “ 1, coefficient a11 “ 1 ­“ 0.
• Ligne 2 : pivot xj2 “ x2, position j2 “ 2, coefficient a22 “ 1 ­“ 0.
• Ligne 3 : pivot xj3 “ x4, position j3 “ 4, coefficient a34 “ 1 ­“ 0.
(c) Croissance des indices de pivot

j1 “ 1 ă j2 “ 2 ă j3 “ 4.

Toutes les conditions de la définition formelle sont satisfaites. Ce système est donc échelonné, le
nombre de zéros initiaux augmentant strictement d’une ligne à l’autre, 0, 1, 2.
2. Considérons le système suivant à coefficients dans R suivant

pS2q :

$

&

%

x2 ´ x3 ` x5 “ 0
x3 ` 2x4 “ 3

x5 “ 7.

(a) Dimensions du système.
Nombre d’équations, m “ 3.
Nombre d’inconnues, n “ 5.
Nombre de lignes non nulles, r “ 3.
(b) Vérification des pivots.
Ligne 1 : pivot en x2, j1 “ 2, a12 “ 1 ­“ 0.
Ligne 2 : pivot en x3, j2 “ 3, a23 “ 1 ­“ 0.
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Ligne 3 : pivot en x5, j3 “ 5, a35 “ 1 ­“ 0.
(c) Croissance des indices de pivot.

j1 “ 2 ă j2 “ 3 ă j3 “ 5.

Toutes les conditions de la définition formelle sont satisfaites. Le système est donc échelonné, le
nombre de zéros initiaux augmentant strictement d’une ligne à l’autre.
3. Système linéaire non échelonné. Considérons le système suivant à trois équations et quatre incon-
nues à coefficients dans R

pS3q :

$

&

%

x1 ` 2x2 ` x3 ´ x4 “ 3
2x1 ` x2 ´ x3 ` 4x4 “ 1

x3 ` x4 “ 2.

(a) Vérification des pivots.
Ligne 1 : le premier coefficient non nul est celui de x1, donc pivot en x1, j1 “ 1.
Ligne 2 : le premier coefficient non nul est également celui de x1, donc pivot en x1, j2 “ 1.
Ligne 3 : les coefficients de x1 et x2 sont nuls, le pivot est donc en x3, j3 “ 3.
(b) Analyse de la croissance des indices de pivot.

j1 “ 1, j2 “ 1, j3 “ 3.

La condition de stricte croissance des indices de pivot (j1 ă j2 ă j3) n’est pas satisfaite car j1 “ j2 “ 1
(le nombre de zéros initiaux n’augmente pas strictement de la ligne 1 à la ligne 2). Alors ce système
n’est pas échelonné.
2. Considérons le système à 3 équations et 3 inconnues suivant

pS4q :

$

&

%

x`2y`3z“ 4
y` z“ 2

z“1.

• La première équation commence par le terme x, dont le coefficient est non nul. Il y a donc 0 zéros
initiaux.
• La deuxième équation ne contient pas de x, mais commence par y, dont le coefficient est non nul.
Il y a donc 1 zéro initial (devant y).
• La troisième équation ne contient ni x ni y, elle commence par z, dont le coefficient est non nul.
Il y a donc 2 zéros initiaux (devant z).
On constate que le nombre de zéros initiaux augmente strictement d’une ligne à l’autre : 0, 1, 2. Ainsi,
le système est échelonné, conformément à la définition.

4.3.3.1 Principe de la méthode du pivot de Gauss

La méthode du pivot de Gauss transforme un système linéaire en un système équivalent sous
forme échelonnée, ce qui rend sa résolution plus facile grâce à la substitution arrière. Pour cela, on
utilise des opérations sur les lignes qui ne changent pas les solutions : permuter deux lignes, multiplier
une ligne par un nombre non nul, ou ajouter à une ligne un multiple d’une autre. Ces opérations
permettent de créer des zéros sous les pivots, les premiers coefficients non nuls de chaque ligne,
formant ainsi une matrice triangulaire supérieure. Ensuite, on résout le système en commençant par
la dernière équation et en remontant progressivement pour trouver toutes les inconnues.
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4.3.3.1.1 Mise en œuvre de la méthode du pivot de Gauss (forme équationnelle) Soit
pSq un système de m équations linéaires à n inconnues x1, . . . , xn, à coefficients dans K,

pSq :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1
a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2

... ... ... ...
ai1x1 ` ai2x2 ` ¨ ¨ ¨ ` ainxn “ bi

... ... ... ...
am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn “ bm.

Étape 1 : Choix du premier pivot. On commence par examiner le coefficient a11 situé en haut
à gauche. Trois cas peuvent se présenter :
Cas 1 : a11 ­“ 0K. On choisit a11 comme pivot. On élimine les coefficients situés sous le pivot dans la
première colonne (c’est-à-dire a21, a31, ..., am1) en effectuant, pour chaque i P t2, . . . ,mu, l’opération
élémentaire

Li ÐÝ Li ´ a
´1
11 ai1L1.

Variante sans fractions (utile pour les calculs entiers ou symboliques)

Li ÐÝ a11Li ´ ai1L1.

Ces opérations transforment tous les coefficients situés sous le pivot en zéros, donnant le système

pS1q :

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

a11x1 ` a12x2 ` a13x3 ` ¨ ¨ ¨ ` a1nxn “ b1
a122x2 ` a123x3 ` ¨ ¨ ¨ ` a12nxn “ b12

a233x3 ` ¨ ¨ ¨ ` a23nxn “ b23
. . . ...

a1i2x2 ` ...` a
1
inxn “ b1i

... ...
a1m2x2 ` ...` a

1
mnxn “ b1m

Cas 2 : Si a11 “ 0K, alors dans ce cas, on recherche une ligne Li (avec i ą 1) telle que ai1 ­“ 0K, puis
on effectue une permutation de lignes Li Ø L1. On revient alors au cas 1 avec un pivot non nul.
Cas 3 : Si tous les coefficients de la première colonne sont nuls, i.e.

@i P t1, ...,mu : ai1 “ 0K.

Dans ce cas, la première colonne est entièrement nulle,

pSq :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0Kx1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1
0Kx1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2

... ... ... ...
0Kx1 ` ai2x2 ` ¨ ¨ ¨ ` ainxn “ bi

... ... ... ...
0Kx1 ` am2x2 ` ¨ ¨ ¨ ` amnxn “ bm

On ignore alors l’inconnue x1 et on poursuit la méthode sur le système réduit formé des colonnes
restantes.

Étape 2 : Répétition du processus

On applique la même méthode à la sous-matrice restante du système réduit pS1q en ignorant
la première ligne et la première inconnue x1. On choisit un nouveau pivot a122, et on annule les
coefficients situés sous ce pivot, dans la colonne correspondante.
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• Si le nouveau pivot est nul, on effectue une permutation de lignes pour obtenir un pivot non
nul (comme dans le Cas 2).

• Si tous les coefficients de la colonne sont nuls, on ignore la variable correspondante (comme
dans le Cas 3).

On répète ce processus jusqu’à ce que la matrice associée au système devienne échelonnée supé-
rieure, c’est-à-dire qu’elle contient des zéros sous les pivots.

4.3.3.1.2 Méthode du pivot de Gauss avec la matrice augmentée Soit un système linéaire
pSq dem équations à n inconnues x1, x2, ..., xn , à coefficients dans un corpsK. On associe à ce système
sa matrice augmentée

pA | Bq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2j ¨ ¨ ¨ a2n
... ... . . . ... ... ...
ai1 ai2 ¨ ¨ ¨ aij ¨ ¨ ¨ ain
... ... ... ... . . . ...
am1 am2 ¨ ¨ ¨ amj ¨ ¨ ¨ amn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1
b2
...
bi
...
bm

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Étape 1 : Choix et utilisation du premier pivot. On commence par le premier coefficient a11,
appelé pivot.
Cas 1 : Si a11 ­“ 0K, alors on utilise a11 comme pivot pour annuler tous les coefficients situés en
dessous dans la première colonne

@i P t2, ...,mu : Li ÐÝ Li ´
ai1

a11
L1.

Une version équivalente sans fractions

@i P t2, ...,mu : Li ÐÝ a11Li ´ ai1L1.

On obtient alors une nouvelle matrice pA1 | B1q où tous les coefficients en dessous du pivot sont nuls

pA1
| B1

q “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1j ¨ ¨ ¨ a1n

0K a122 ¨ ¨ ¨ a12j ¨ ¨ ¨ a12n
... ... . . . ... ... ...

0K a1i2 ¨ ¨ ¨ a1ij ¨ ¨ ¨ a1in
... ... ... ... . . . ...

0K a1m2 ¨ ¨ ¨ a1mj ¨ ¨ ¨ a1mn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1
b12
...
b1i
...
b1m

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Cas 2 : a11 “ 0K

• Si un des ai1 ­“ 0K pour i ą 1, on permutera la ligne Li avec L1 pour obtenir un pivot non nul.

• Sinon, toute la première colonne est nulle : on ignore la colonne et la variable x1, et on passe à
la suite.
Étape 2 : Itération du processus

On répète la même méthode sur la sous-matrice obtenue en supprimant la première ligne et la
première colonne.

• On choisit le pivot suivant (exemple. a22), puis on élimine les coefficients en dessous.
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• Si ce pivot est nul, on permutera avec une ligne en dessous ayant un coefficient non nul dans la
même colonne.

• On répète ce processus jusqu’à obtenir une matrice échelonnée supérieure, c’est-à-dire avec des
zéros sous tous les pivots.

• Une fois le système échelonné, on résout par substitution inverse (de bas en haut), en trouvant
les inconnues une par une.

Suite à l’explication du principe de la méthode de Gauss, on donne maintenant l’algorithme de
Gauss, qui décrit étape par étape la procédure systématique pour transformer un système linéaire
en système échelonné supérieur et le résoudre.

Algorithme 4.3.3 (Algorithme du pivot de Gauss)
Objectif : Transformer un système linéaire en un système échelonné (ou triangulaire supérieur)
équivalent, en utilisant des opérations élémentaires sur les équations.
Étape 0 : Préparation
On considère un système linéaire de m équations à n inconnues.
Étape 1 : Choix du pivot dans une colonne
On commence par la colonne k (initialement k “ 1) :
1. Chercher le premier coefficient non nul akk dans la colonne k, à partir de la ligne k.
2. Trois cas possibles :
Cas 1 : akk ­“ 0K, ce coefficient est un pivot valide, on le garde.
Cas 2 : akk “ 0K mais il existe un aik ­“ 0K en dessous ; alors échanger les lignes Lk et Li et revenir
au cas 1.
Cas 3 : Tous les aik “ 0K pour i ě k ; alors aucun pivot possible dans cette colonne. La variable xk

devient libre et on passe à la colonne suivante.
Étape 2 : Élimination sous le pivot
Une fois le pivot akk choisi, pour chaque ligne i ą k, on remplace l’équation Li par :

Li ÐÝ Li ´
aik

akk

Lk.

Cela permet de créer un zéro en position aik, juste sous le pivot.
Étape 3 : Répéter le processus
1. Répéter les étapes 1 et 2 pour les lignes et colonnes restantes.
2. Ignorer les lignes déjà traitées (au-dessus du pivot courant) et les colonnes des pivots déjà choisis.
3. Continuer tant qu’il reste des lignes à traiter et des colonnes où choisir un pivot.
Fin de l’algorithme
À la fin, le système est transformé en système échelonné supérieur, avec chaque pivot à droite de
celui de la ligne précédente. On peut alors résoudre le système par substitution inverse (remontée).

Exemple 4.3.5 Soit le système suivant à résoudre

pSq :

$

&

%

´ x2 ` 2x3 ` 13x4 “ 5
x1 ´ 2x2 ` 3x3 ` 17x4 “ 4

´x1 ` 3x2 ´ 3x3 ´ 20x4 “ ´1.

1) Le premier pivot doit apparaître dans la première colonne. Or, le coefficient de x1 dans la première
équation est nul. On échange donc la première ligne avec la deuxième

L1 Ø L2,
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on obtient

pSq ðñ

$

&

%

x1 ´ 2x2 ` 3x3 ` 17x4 “ 4
´ x2 ` 2x3 ` 13x4 “ 5

´x1 ` 3x2 ´ 3x3 ´ 20x4 “ ´1.
Le pivot est maintenant a11 “ 1. Ce pivot sert de base pour éliminer tous les autres termes sur la
même colonne.
Pour annuler le coefficient de x1 dans la 3-ème ligne, on effectue l’opération élémentaire

L3 ÐÝ L3 ` L1.

Ce qui donne

pSq ðñ

$

&

%

x1 ´ 2x2 ` 3x3 ` 17x4 “ 4
´ x2 ` 2x3 ` 13x4 “ 5

x2 ´ 3x4 “ 3.
On multiplie la deuxième ligne par ´1 pour obtenir un pivot égal à 1 (L2 ÐÝ ´L2, normalisation du
pivot en position p2, 2q). On obtient

pSq ðñ

$

&

%

x1 ´ 2x2 ` 3x3 ` 17x4 “ 4
x2 ´ 2x3 ´ 13x4 “ ´5
x2 ´ 3x4 “ 3.

On élimine x2 dans la 3-ème ligne en effectuant l’opération élémentaire

L3 ÐÝ L3 ´ L2.

Ce qui donne

pSq ðñ

$

&

%

x1 ´ 2x2 ` 3x3 ` 17x4 “ 4
x2 ´ 2x3 ´ 13x4 “ ´5
2x3 ` 10x4 “ 8.

On divise la dernière ligne par 2 pour obtenir un pivot égal à 1 (L3 ÐÝ
1
2L3,normalisation du pivot

en position p3, 3q). Ce qui donne

pSq ðñ

$

&

%

x1 ´ 2x2 ` 3x3 ` 17x4 “ 4
x2 ´ 2x3 ´ 13x4 “ ´5

x3 ` 5x4 “ 4.

Le système est maintenant sous forme échelonnée, ce qui le rend très simple à résoudre. En choisissant
x4 comme variable libre, on peut exprimer x1, x2, x3 en fonction de x4. On commence par la dernière
équation et on remonte par substitution. Alors

x3 ` 5x4 “ 4 ùñ x3 “ 4´ 5x4.

En remplaçant x3 dans la deuxième équation on obtient

x2 “ 3` 3x4.

En remplaçant x2 et x3 dans la première équation, on obtient

x1 “ ´2` 4x4.

Ce qui permet d’obtenir toutes les solutions du système

S “ tp´2` 4x4, 3` 3x4, 4´ 5x4, x4q : x4 P Ru .
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2) Écriture sous forme de matrice augmentée. On réécrit le système initial pSq sous la forme
de la matrice augmentée

pA | Bq “

¨

˝

0 ´1 2 13
1 ´2 3 17
´1 3 ´3 ´20

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

5
4
´1

˛

‚.

On applique maintenant les étapes de la méthode de Gauss sur la matrice augmentée.
Étape 1 : Étant donné que le premier pivot doit être non nul (a11), on échange

L1 Ø L2.

On obtient

pAp1q | Bp1qq “

¨

˝

1 ´2 3 17
0 ´1 2 13
´1 3 ´3 ´20

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4
5
´1

˛

‚.

Étape 2 : Pour annuler le coefficient de x1 dans la 3ème ligne

L3 ÐÝ L3 ` L1.

On obtient

pAp2q | Bp2qq “

¨

˝

1 ´2 3 17
0 ´1 2 13
0 1 0 ´3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4
5
3

˛

‚.

Étape 3 : Normalisation du pivot p2, 2q. Multiplier la deuxième ligne par ´1 pour obtenir un pivot
égal à 1

L2 ÐÝ ´L2.

On obtient

pAp3q | Bp3qq “

¨

˝

1 ´2 3 17
0 1 ´2 ´13
0 1 0 ´3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4
´5
3

˛

‚.

Étape 4 : Élimination sous le pivot p2, 2q. Pour annuler le coefficient de x2 dans la 3ème ligne

L3 ÐÝ L3 ´ L2.

On obtient

pAp4q | Bp4qq “

¨

˝

1 ´2 3 17
0 1 ´2 ´13
0 0 2 10

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4
´5
8

˛

‚.

Étape 5 : Normalisation du pivot p3, 3q. Diviser la troisième ligne par 2 pour obtenir un pivot égal
à 1

L3 ÐÝ
1
2L3.

On obtient

pAp5q | Bp5qq “

¨

˝

1 ´2 3 17
0 1 ´2 ´13
0 0 1 5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4
´5
4

˛

‚.

Le système équivalent sous forme échelonnée est

pSq ðñ

$

&

%

x1´2x2`3x3`17x4“ 4
x2´2x3´13x4“´5

x3` 5x4“ 4.

On choisit x4 comme variable libre, la solution générale donc du système est

S “ tp´2` 4x4, 3` 3x4, 4´ 5x4, x4q : x4 P Ru .
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Conclusion 4.3.3 La méthode du pivot de Gauss est une technique fondamentale pour résoudre les
systèmes d’équations linéaires. Elle transforme un système initial en un système échelonné, plus fa-
cile à résoudre grâce à la substitution arrière.
(a) Avantages :
• Simple à comprendre et à appliquer.
• Convient à tous les types de systèmes.
• Réalisable manuellement ou par ordinateur.
• Sert de base à d’autres méthodes, comme Gauss-Jordan ou le calcul de l’inverse de matrices.
• Efficace dans la majorité des situations.
(b) Limites :
• En calcul numérique, les arrondis successifs peuvent introduire des erreurs.
• En calcul exact, l’apparition de fractions complexes peut rendre les calculs lourds.
• Pour les systèmes très grands ou très creux, d’autres méthodes spécialisées peuvent être plus adap-
tées.
Malgré ces limites, le pivot de Gauss reste une méthode fiable, polyvalente et incontournable, consti-
tuant un fondement solide pour l’étude des systèmes linéaires en mathématiques et en informatique.
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Conclusion du chapitre

Ce chapitre a présenté les notions essentielles : définition d’un système linéaire, ses différentes
représentations (matricielle, vectorielle et en termes d’applications linéaires), ainsi que des concepts
clés tels que le rang, le noyau et l’image. Nous avons montré qu’un système peut avoir une solution
unique, aucune solution ou une infinité de solutions, selon le rang de sa matrice des coefficients.
Plusieurs méthodes de résolution ont été étudiées : la substitution, simple et adaptée aux petits
systèmes ; la règle de Cramer, efficace pour les systèmes carrés de rang maximal ; et la méthode du
pivot de Gauss, plus générale et adaptée aux systèmes complexes. En résumé, ce chapitre fournit
les bases théoriques et pratiques nécessaires pour comprendre et résoudre efficacement les systèmes
linéaires, ouvrant la voie à des notions plus avancées d’algèbre linéaire et à de nombreuses applications
scientifiques et techniques.
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Ce document propose un parcours structuré à travers les concepts essentiels de l’algèbre linéaire,
spécialement conçu pour les étudiants de première année en mathématiques et informatique. Il com-
mence par l’étude des espaces vectoriels, en présentant les notions fondamentales de lois de compo-
sition, sous-espaces, familles libres, génératrices et bases, ainsi que la dimension finie, qui permet de
travailler avec des représentations concrètes.

La deuxième partie est consacrée aux applications linéaires, qui relient naturellement les espaces
vectoriels. Sont abordées leur définition, leurs propriétés fondamentales et leurs cas particuliers, tels
que les endomorphismes, isomorphismes et projecteurs. Les outils centraux — noyau, image, rang et
théorème du rang — permettent d’analyser ces applications de manière rigoureuse.

Enfin, les matrices et les systèmes d’équations linéaires illustrent les applications pratiques de l’al-
gèbre linéaire. Les matrices offrent un moyen efficace de représenter et de manipuler les applications
linéaires, tandis que les systèmes d’équations permettent de résoudre des problèmes concrets.

Ce manuscrit met en évidence l’unité et la cohérence de l’algèbre linéaire : chaque notion, des
espaces vectoriels aux applications et à leur représentation matricielle, s’articule avec les autres pour
former un ensemble logique et solide. Il constitue une base indispensable pour aborder des études plus
avancées en mathématiques, informatique, physique, optimisation ou apprentissage automatique.
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