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RESUME

Ce manuscrit, issu du cours d’Algebre 2 destiné aux étudiants de premiere année L.M.D.
en mathématiques et informatique, propose un parcours pédagogique cohérent et struc-
turé a travers les concepts fondamentaux de I'algebre linéaire. Il aborde successivement
les notions essentielles relatives aux espaces vectoriels, aux sous-espaces, aux familles
libres et génératrices, ainsi qu'aux bases et a la dimension. L'étude se poursuit avec
les applications linéaires, leurs principales propriétés, le noyau et I'image, ainsi que les
opérations entre applications et le théoreme du rang. Un lien étroit est ensuite établi
entre les applications linéaires et les matrices, incluant la présentation des matrices de
passage, du déterminant et de l'inversion des matrices. Enfin, les notions théoriques sont
appliquées a la résolution des systemes d'équations linéaires, a I'aide de différentes mé-
thodes telles que la substitution, la méthode de Cramer et le pivot de Gauss. Chaque
section est riche en explications théoriques et en exemples pratiques, ce qui permet aux
étudiants d'acquérir une compréhension solide des fondements de |'algebre linéaire et de
ses applications.

ABSTRACT

This manuscript, developed from the Algebra 2 course intended for first-year L.M.D.
students in mathematics and computer science, presents a coherent and systema-
tically organized exploration of the core concepts of linear algebra. The text sequentially
introduces the fundamental notions of vector spaces, subspaces, linearly independent and
spanning sets, as well as the concepts of basis and dimension. It then examines linear
mappings, emphasizing their properties, the notions of kernel and image, operations on
linear mappings, and the rank theorem. A strong connection is subsequently establi-
shed between linear mappings and their matrix representations, including topics such as
change-of-basis matrices, determinants, and matrix inversion. The theoretical framework
is then applied to the study and solution of linear systems of equations, through classical
methods such as substitution, Cramer’s rule, and the Gaussian elimination method. Each
section is rich in theoretical explanations and practical examples, allowing students to
develop a strong understanding of the fundamentals of linear algebra and its applications.



Introduction Générale

Ce document constitue un support de cours structuré et approfondi en algebre linéaire, organisé en
quatre chapitres principaux. Il offre une présentation progressive et rigoureuse des concepts fondamentaux
qui forment le socle de cette discipline mathématique essentielle. Rédigé dans le cadre du module Algébre
2, il s’adresse principalement aux étudiants de premiére année du systeme L.M.D. en mathématiques et
en informatique, ainsi qu'a toute personne désireuse d'acquérir des bases solides en algebre. L'objectif de
ce manuscrit est de guider les étudiants vers une compréhension claire, cohérente et durable des notions
fondamentales de |'algebre linéaire, les préparant ainsi a I'étude de notions plus avancées. Le contenu suit
fidelement le programme récemment révisé, conformément au canevas officiel de formation.

La structure du cours s’organise autour de quatre chapitres principaux. Le premier chapitre introduit la
notion fondamentale d’espace vectoriel, en abordant les lois de composition externes et les parties stables.
Sont ensuite développées les notions de sous-espaces vectoriels, de familles libres, liées et génératrices,
ainsi que la notion de base. La dimension finie est étudiée a travers des résultats essentiels tels que le
théoreme de la base extraite et le théoréme de la base incompléte. Le chapitre se conclut par I'étude de la
somme directe, des sous-espaces supplémentaires et de la formule de Grassmann, permettant d'analyser
et de décomposer la structure des espaces vectoriels.

Le deuxiéme chapitre est consacré aux applications linéaires, ces transformations qui préservent la
structure vectorielle. Aprés la définition des applications linéaires, endomorphismes, isomorphismes, auto-
morphismes et formes linéaires, il présente des applications particuliéres telles que projections, symétries,
affinités et projecteurs. Les propriétés fondamentales sont détaillées, notamment la préservation des com-
binaisons linéaires et la caractérisation par I'image d'une base. Les opérations sur les applications linéaires
et le groupe linéaire sont étudiés, tandis que les concepts de noyau, d'image, de rang et le théoréme du
rang fournissent des outils puissants pour leur analyse.

Le troisieme chapitre établit le lien fondamental entre applications linéaires et matrices. |l couvre les
définitions de base, les types de matrices, les opérations matricielles et les opérations élémentaires, ainsi
que la représentation matricielle des applications linéaires. Les changements de base et les matrices de
passage sont abordés, de méme que le déterminant et son réle dans l'inversion des matrices.

Le quatrieme chapitre applique les concepts précédents a la résolution des systemes linéaires. Il exa-
mine les représentations matricielles, les conditions d'existence de solutions et présente des méthodes de
résolution telles que la substitution, la méthode de Cramer et le pivot de Gauss.

Cette progression logique, combinant théorie et exemples concrets, constitue un outil pédagogique es-
sentiel pour I'apprentissage de |'algebre linéaire, tant en mathématiques pures que dans ses applications en
informatique, physique et ingénierie. Nous espérons que ce polycopié répondra aux attentes des étudiants
et contribuera a leur réussite académique.

Pour toute remarque ou suggestion visant a améliorer ce cours, vous pouvez me contacter a |'adresse
suivante : m.kecies@centre-univ-mila.dz


m.kecies@centre-univ-mila.dz

Chapitre 1

Espaces vectoriels

Ce premier chapitre est consacré a 1’étude des espaces vectoriels, qui constituent le fondement
de T'algebre linéaire et un outil essentiel dans de nombreux domaines des mathématiques et de
I'informatique. Un espace vectoriel est une structure algébrique qui généralise la notion de vecteur
de la géométrie usuelle et permet de manipuler des objets abstraits tout en préservant des opérations
fondamentales telles que 'addition et la multiplication par un scalaire.

Le chapitre débute par la définition et les propriétés des espaces vectoriels, illustrées par des
exemples concrets et variés. Il introduit ensuite la notion de sous-espace vectoriel, indispensable pour
comprendre la structure interne d’un espace et organiser ses éléments. Une attention particuliere est
portée aux concepts de familles de vecteurs, de combinaisons linéaires, de dépendance et indépendance
linéaire, ainsi qu’aux notions de base et de dimension, qui jouent un réle central dans toute la suite
du cours.

Ces notions sont enrichies par I’étude des sous-espaces supplémentaires, de la somme directe et
de la dimension d'une somme, qui permettent d’analyser la décomposition des espaces vectoriels et
de mieux appréhender leur organisation.

Enfin, le chapitre introduit des résultats fondamentaux tels que la formule de Grassmann, consti-
tuant un outil puissant pour travailler avec des sous-espaces et comparer leurs dimensions.

Ainsi, ce chapitre offre une introduction claire, progressive et structurée aux fondements de ’al-
gebre linéaire, en établissant les bases indispensables pour 1’étude ultérieure des applications linéaires,
des matrices et des systemes d’équations linéaires.

Dans tout ce chapitre (K, +, ) désigne un corps commutatif et en général, K =R ou K = C.

1.1 Lois de composition externes.

Avant de pouvoir définir rigoureusement la notion d’espace vectoriel, il est essentiel de comprendre
les types d’opérations qui interviennent dans cette structure. En algebre, et plus particulierement dans
I’étude des espaces vectoriels, on distingue deux types fondamentaux de lois : les lois de composition
internes et les lois de composition externes.

La loi de composition interne permet de combiner deux éléments appartenant au méme ensemble,
comme l'addition de deux vecteurs. En revanche, la loi de composition externe fait intervenir un
élément extérieur a ’ensemble, généralement issu d'un corps de scalaires, et permet ainsi de faire
agir un scalaire sur un vecteur. Cette derniere joue un role central dans la définition et I’étude des
espaces vectoriels, car elle établit le lien entre les vecteurs et les scalaires.
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Définition 1.1.1 Loi de composition externe (LCE)
Soient E un ensemble et Q) un autre ensemble (souvent un corps).
1. On appelle loi de composition externe (abrégée LCE) sur E toute application notée T définie par

T:OxFEF: — F
(A, ) — Az,

ot les éléments de () sont appelés opérateurs ou scalaires.
2. Cette loi associe a chaque couple (\,x), formé d’un scalaire et d’un élément de E, un nouvel
élément de E.

Notation 1.1.1 Par convention, cette loi est généralement notée de facon multiplicative a [’aide
d’un point central -. Ainsi, limage de (\,x) est notée \ - x.

Exemple 1.1.1
1. Considérons l’ensemble E = R™ et le corps 2 = R. On définit la loi de composition externe
sutvante

VAe R, Vx = (21,29, ..., x,) € R" : X - = (Axy, Axo, ..., Azy).
C’est une loi de composition externe classique : elle permet de multiplier un vecteur de R™ par un
scalaire réel. Elle correspond a la multiplication usuelle d’un vecteur par un scalaire.
2. Soit E = R [X], l’ensemble des polynomes da une indéterminée X a coefficients réels, et Q = R. La
multiplication - d’un polynome P € R[X] par un scalaire A € R est une loi de composition externe
sur R[X] a opérateurs dans R définie par

S RxR[X]: — R[X]

(A, P) — AP,
le polynome X - P obtenu en multipliant chaque coefficient de P par \. Par exemple, si

P=2X%+3X +1,
alors

5.-P=10X*+15X + 5.
3. Soit E = F(R,R), l’ensemble des applications de R dans R, et Q = R. On définit une loi
= Rx F(R,R): — F(R,R)

()‘7 f) — A f7

définie, pour tout v € R, par
VeeR: (A f)(x) =X f(x).

Il s’agit d’une loi de composition externe sur F(R,R) d opérateurs dans R. Cette LCE correspond
a la multiplication d’une application par un scalaire : on multiplie chaque valeur de application par

ce scalaire.
4. Soit E = RY = F(N,R), l'ensemble des suites réelles, et Q = R. Définissons une loi

SRxRY: — RN
(A, u) — A u = (Auy),

Autrement dit, pour toute suite u = (up)nen €t tout réel X\ € R, on définit une nouvelle suite A - u
dont les termes sont donnés, pour tout n € N | par

AN-w)p =X up.

Il s’agit d’une loi de composition externe sur RN a opérateurs dans R. Cette loi correspond a la
multiplication d’une suite par un scalaire : chaque terme de la suite est multiplié par le méme nombre
réel.
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1.1.1 Partie stable par une loi externe

Définition 1.1.2 (Partie stable par une loi externe)

Soit E un ensemble muni d’une loi de composition externe T' a opérateurs dans §2. Soit F' une partie
de E.

1. Partie stable.

(a) On dit que la partie F' est stable par la loi externe T si et seulement si

YAeQ Vre F: \NlxeF.

Cela signifie que la restriction de la lot T a Q) x F définit également une loi de composition externe
sur F'.

(b) La stabilité signifie que lorsqu’on applique la loi externe a un élément de F, le résultat appartient
encore a F'.

2. Partie non stable.

(a) On dit que F' n’est pas stable (ou non stable) par la loi externe T' s’il existe au moins un scalaire
A€ Q et un élément x € F tels que l'image T'(\, x) ne soit pas dans F. Autrement dit

INeQ,dre F: \NTx ¢ F.

(b) Une partie est non stable si, en appliquant la loi externe a un de ses éléments, on peut obtenir
un résultat qui n’est pas dans cette partie.

Exemple 1.1.2
1. Dans R[X], considérons ’ensemble suivant

F =R,[X]={PeR[X]:deg(P)<n} (neN),

I’ensemble des polynomes de degré inférieur ou égal a n, alors F' est stable par la loi externe - définie

. S RxR[X]: — R[X]
(A, P) — AP

En effet, soient A € R, P € R,[X], alors

. deg(OR[X]) = —00 <N, stA=0
deg(A- P) = { deg(P) <n, si A % 0.

Ainsi A - P e R,[X].

2. Dans R[X], considérons ’ensemble suivant
F ={PeR[X]:deg(P)=n} (neN),

I’ensemble des polynomes de degré exactement égal a n. Alors F n’est pas stable par la loi externe -.
En effet, soit P=X"e€ F, et A\ =0, alors

AP = OR[X]'

Or deg(Og[x]) = —o0 < n. Alors A\- P ¢ F, ce qui montre que F' n’est pas stable par la loi externe -.
3. Dans E = RN, l’ensemble des suites réelles, considérons

F={x=(2,)nen,IN e N,Vn = N : x, = 0},

I’ensemble des suites nulles @ partir d’un certain rang. Alors F est stable par la loi externe - définie
par
RxRY: — RN
(A z) — Az = (Azp)n.

b}
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En effet, soit x € F, alors il existe N € N tel que x, = 0 pour tout n = N. Pour tout A € R, on a
alors

(A-z), = Az, =0, pour tout n = N.

donc A -x € F. Ainsi, F' est stable par la loi externe.
4. Dans R™, considérons [’ensemble suivant

F' est stable par la loi externe - définie par
VA e R, Vo = (21,29, ....,2,) E R" : X\ -z = (Axq, A\xo, ..., ATy,).
En effet, soient e R,z = (0,0,...,0) € F, alors
Az =(0,0,...,0) € F.

Ainsi, F est stable par la loi externe.
5. Dans E = F(R,R), considérons la partie F' suivante de E

F={feFRR),VzeR: f(z)> 0},

[’ensemble des applications strictement positives sur R, alors F' n’est pas stable par la loi externe -
définie par
Rx F(R,R): — F(R,R)
(A, f) — A
car la stabilité n’est assurée que pour les scalaires positifs A\ > 0. En effet, soient A€ R, f € F, alors
A feF siet seulement si
VeeR:Af(z) > 0.

Alors

e SiA>0, alors A\f(x) > 0 pour tout z, donc \- f € F.

e SiA<0, alors \f(x) <0 pour tout z, donc \- f ¢ F.

Ainst, il existe des scalaires A € R (comme A =0 ou A = —1) tels que X\ - f ¢ F', ce qui montre que
F' n’est pas stable par la loi externe.

6. Dans R?, considérons la partie suivante

F={(z,y)eR*: 2> 0},
alors F n’est pas stable par la loi externe - définie par
YAe R, Vo = (21,20) e R*: X2 = Ay, Ax),
car,

AN =-1eR, 32 = (2,1) e F mais N -2’ = (-2,—1) ¢ F.

Apres avoir introduit la notion de loi de composition externe, nous pouvons a présent définir la
structure d'un espace vectoriel. Cette loi joue un réle central, car elle permet de relier les scalaires
(éléments d'un corps K) aux vecteurs (éléments d'un ensemble E). Grace a elle, on peut multiplier
un vecteur par un scalaire, ce qui est fondamental pour les opérations linéaires.

6
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Définition 1.1.3 (Espace vectoriel sur un corps K)
On appelle espace vectoriel sur le corps K tout ensemble E muni d’une loi de composition interne
(addition vectorielle)
+:ExFE: — F
(,y)  +— x+y,

et d’une loi de composition externe - (multiplication par un scalaire)

2 KxFE: — FE
Ny) — Ay,

satisfaisant les propriétés suivantes

1. (E,+) est un groupe commutatif. On note O ’élément neutre (appelé vecteur nul) et —x 'opposé
d’un vecteur v € E.

2. Distributivité (a droite) de la loi externe par rapport a l'addition dans K

Vao,fe K VxeE: (a+ ) x=a-x+ [ x.
3. Distributivité (a gauche) de la loi externe par rapport a l'addition dans E
Vaoe K\Vr,ye E:a-(z4+y)=a-x+a-y.
4. Compatibilité avec la multiplication scalaire
Va,fe K Vxe E:(a-0)-x=a-(f ).

5. Elément neutre du corps
VeeE:1lg -z =x.

On dit alors que (E,+,-) est un espace vectoriel sur K ou K—espace vectoriel. Les éléments de K
sont appelés scalaires, ceur de E, vecteurs. L’élément neutre de (E,+), O est appelé vecteur nul.

Notation 1.1.2 Par convention
e un espace vectoriel sur K est noté K—ew,
e et un espace vectoriel tout court peut étre abrégé ev (sans précision sur le corps).

Exemple 1.1.3 (Principaux eremples d’espaces vectoriels)

1. Tout corps (K, +,-) est un espace vectoriel sur lui-méme, avec ses propres lois d’addition et de
multiplication. En particulier, R et C sont des R—espaces vectoriels pour les lois usuelles.

2. Espaces vectoriels R" : L’ensemble R" des n—uplets de réels est un R—espace vectoriel avec
e Addition (loi interne)

Vo= (21, 20), Yy = (Y1, Yn) ER" :x +y = (21 + Y1, o0 T + Yn) -
o Multiplication par un scalaire (loi externe)
VAeR Ve = (21,....,x,) ER" : X2 = Ay, .., Ay

3. Espace vectoriel des applications F(X,E) : Soit X un ensemble non vide et soit E un
K—espace vectoriel. On définit sur l'ensemble F (X, E) des applications définies sur X a valeurs
dans E, une addition +

+:F(X,E) x F(X,E): — F(X,E)
(f.9) —  f+g,
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donnée par
Vee X :(f+g)(x) = fz)+g(x),

une multiplication par un scalaire -

donnée par

Vee X :(A-f)(z) =X f(x).

Avec ces deux lois, (F(X, E),+,-) est un K—espace vectoriel. Son vecteur nul est lapplication iden-
tiquement nulle sur X a valeurs dans E.

OJ:(X,E):X — F

5. Espace vectoriel des polynémes K |[X] : L'ensemble K[ X] des polynomes a coefficients dans
K est un espace vectoriel sur K. La loi de composition interne sur K[X| est l'addition de polynomes
et la loi de composition externe est la multiplication d’un polynome par un élément de K.

VP = (an)n€N7Q = (bn)neN € K[X] P+ Q =5 = (Sn)nENa

telle que
Sp = Gy + by, VN € N,

et
YA e K, VP = (ap)nen € K[X]: XA P = Q = (Atp)nen.

Les vecteurs de K[X] sont les polynomes et les scalaires sont les éléments de K. Le vecteur nul est
le polynome nul,

Okpxy = (O, Ok, o, O, -..) = 0.1+ 0.X + 0.X% + ... e K[X] .

Proposition 1.1.1 (Régles de calcul dans un espace vectoriel)

Soit (E,+,-) un K—espace vectoriel. Pour tous scalaires o, B, A de K et pour tous vecteurs x,y de
E, ona

OK'l’:OE €t)\‘OE=0E.

ANz =0<= \=0k ouz=0g.

a-(r—y)=a-z—a-y.

(a—p) z=a-x—p- .

—Ax)=(=A)-z=X(—2).

GU W=

Ces identités sont des conséquences directes des axiomes de 1'espace vectoriel. Elles jouent un role
fondamental en facilitant les calculs algébriques, notamment dans la résolution d’équations vecto-
rielles, la manipulation de combinaisons linéaires, ou encore I’étude des applications linéaires. Elles
constituent donc un outil indispensable pour le raisonnement en algebre linéaire.

Preuve. Les démonstrations des propriétés sont des manipulations sur les axiomes définissant les
espaces vectoriels.
1. Soit x € E, alors

O]K'iL‘Z(OK+OK)'$=OK'$+OK'$.

En additionnant (—0k - z) a droite et a gauche dans cette derniere égalité, on obtient

OK'.T:OE.
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Soit A\ € K, alors

En additionnant (=X - 0g) a droite et & gauche dans cette derniére égalité, on obtient
A 0p =0g.

2. (i) Sens réciproque < : Cette implication découle immédiatement des deux premieres propriétés
des espaces vectoriels.
(ii) Sens direc =: Supposons que

e Si A = Ok, alors I'implication est vérifiée (ou si A = Ok, on a bien A = Og ou x = Op).
e Si A\ + Ok, alors )\ est inversible dans le corps K. En multipliant par A\~! les deux membres de
I’égalité, il vient

ANz =2 0p = (/\_1~/\) -x=0g

:>1]KZE=0E

Maintenant, supposons que = £ 0g. Alors nécessairement A = Ok, car sinon (comme ci-dessus) on
pourrait multiplier I’égalité X - x = Op par A™1, ce qui impliquerait x = Og, ce qui contredirait notre
hypothese.

3. Soient ae K et x,y € E, alors

a-r=a-(x+0p)=a-(@+(-y+y)=a-(z-y)+y) =a-(-y)+a-y.
En rajoutant & chaque membre de I’égalité le symétrique — (- y) de (« - y), on obtient
a-(r—y)=a-z—a-y.
4. Soient a, B e K et x € E, alors
a-x=(a+0k)-z=(a+(-0+0) - z2={(a=p)+p) - z=(a=p)-x+ -
En rajoutant & chaque membre de 'égalité le symétrique — (5 - x) de (/3 - ), on obtient
(a=p) z=a-xz—[F- .
5. Soient A € K et x € F, alors
Az+(=A)-z2=A=N)-2=0 -2=0g.
Il en résulte que (—\) - = est le symétrique de A - z, i.e,
—(A-x)=(=A) -z

D’autre part, on a
Axz+A-(—x)=A-(r—x)=X -0 =0pg.

Il en résulte que A - (—x) est bien le symétrique de A - z, i.e,
—(A-x)=X(—x2).
O

La notion de combinaison linéaire permet d’introduire des concepts essentiels tels que 'espace
engendré par une famille de vecteurs, la dépendance linéaire, les sous-espaces vectoriels, ou encore la
notion de base d'un espace vectoriel.
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Définition 1.1.4 (Combinaison linéaire)
1. Soient xy,...,x, des vecteurs d’un K—espace vectoriel (E,+,-). On appelle combinaison linéaire
de ces vecteurs tout vecteur x € E qui s’écrit sous la forme

n
T=MNT1+ ATy + ... + A\, = Z)\ixi
i=1
0l A1, Ag, ..., Ay € K sont des scalaires appelés coefficients de la combinaison linéaire.
2. En particulier, si x = \jx1, on dit que x est colinéaire 4 x1 (ou : x et x1 sont colinéaires).

Exemple 1.1.4
1. Dans l’espace R3, tout vecteur x = (ay,an, a3) € R® est une combinaison linéaire des vecteurs
suivants

1 = (1,0,0),22 = (0,1,0) ,23 = (0,0, 1).
En effet,

x = (o, 00,3) = a1 (1,0,0) + a3 (0,1,0) + a3 (0,0,1) = a1 + oy + azzs.

Les scalaires aq, ag et az sont les coefficients de la combinaison linéaire.
2. Dans 'espace des polynomes Ry [ X, le polynome P = 3 — X + 2X? est une combinaison linéaire
des polynomes suivants

P =1P=X,P=X>

car on peut écrire
P =3P+ (—1) P, + 2Ps.

Les coefficients de la combinaison linéaire sont 3, —1 et 2.
3. Dans l'espace des applications F(R,R), considérons les applications suivantes

fi(z) =sinx, fo(x) = cosz, f(x) = V2sinz — cos .

On a alors
f(@) = V2fi(z) + (1) falx).

Lapplication f est donc une combinaison linéaire de fi et fa, avec coefficients v/2 et —1.

1.2 Sous-espaces vectoriels

Une fois qu’un espace vectoriel est défini sur un corps donné, il est naturel de s’intéresser a cer-
taines parties de cet espace qui, elles-mémes, possedent une structure d’espace vectoriel. Ces parties
sont appelées sous-espaces vectoriels. Autrement dit, un sous-ensemble d’un espace vectoriel est
un sous-espace vectoriel s’il est stable a la fois par I’addition vectorielle et par la multiplication par
un scalaire, et s’il contient le vecteur nul. Cela signifie qu’il vérifie les mémes propriétés (ou axiomes)
que l'espace vectoriel lui-méme, mais a I'intérieur d’un ensemble plus petit.

Définition 1.2.1 (Sous-espace vectoriel)
1. Soit (E,+,-) est un K—espace vectoriel. Un sous-espace vectoriel de E est un sous-ensemble
F < FE qui est lui-méme un espace vectoriel, muni des mémes opérations d’addition vectorielle et
de multiplication par un scalaire que E. Autrement dit, F' est un sous-espace vectoriel de E si et
seulement st les trois conditions sutvantes sont vérifiées
(a) F' contient le vecteur nul de F,

OE e F.

10
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(b) F est stable par l'addition (loi interne),
Ve,ye F:x+yeF.
(c) F est stable par la multiplication par un scalaire (loi externe),

VAeK,Vxe F: A-xzeF.

Remarque 1.2.1

1. Un sous-espace vectoriel, c¢’est juste une partie d’un espace vectoriel qui ressemble elle-méme a un
espace vectoriel. Autrement dit, un sous-espace vectoriel est un "petit espace vectoriel contenu dans
un plus grand”, dans lequel on peut effectuer les mémes opérations que dans tout E, et ou les régles
restent valables.

2. Pour qu’un ensemble de vecteurs soit un sous-espace vectoriel, il suffit de vérifier trois choses
simples

e Présence du vecteur nul car c’est un élément essentiel de tout espace vectoriel.

e Stabilité par addition. Si on prend deux vecteurs dans le sous-ensemble, leur somme doit aussi
appartenir a ce sous-ensemble.

o Stabilité par multiplication scalaire. Si on prend un vecteur du sous-ensemble et qu’on le multiplie
par n'importe quel scalaire du corps K, le résultat doit encore appartenir au sous-ensemble.

Exemple 1.2.1
1. Sous-espaces vectoriels triviaux. Soit E un K—espace vectoriel. Alors, les ensembles {0g}
(réduit au vecteur nul) et E lui-méme sont deux sous-espaces vectoriels de E. On les appelle les
sous-espaces vectoriels triviauz.
2. L’ensemble

F = {(x,y,z)€R3:x+2y—z=O},
est un sous-espace vectoriel de R3, car il est défini comme 'ensemble des solutions d’'une équation
linéaire homogeéne.
3. Sous-espace vectoriel des polynomes de degré borné. Pour tout entier naturel n € N,

[’ensemble
R, [X] ={PeR[X]:deg(P) <n},

des polynomes de degré inférieur ou égal a n, forme un sous-espace vectoriel de R[X].

4. Sous-espace vectoriel des applications paires et impaires. Soit F(R,R) l’espace vectoriel
des applications de R dans R. Alors

e [’ensemble des applications paires

P(R,R)={fe F(R,R): f estpaire} ={fecFRR),VreR: f(—x) = f(x)},

est un sous-espace vectoriel de F(R,R).
e De méme, ’ensemble des applications impaires

ZR,R)={feFR,R): f estimpaire} ={f e FR,R),VreR: f(—x) = —f(x)},

est aussi un sous-espace vectoriel de F(R,R).
5. Sous-espace vectoriel des suites réelles convergentes. L’ensemble

F = {:L‘ = (Tn)new € RY : nli_n)looxn € ]R} ,

des suites réelles convergentes forme un sous-espace vectoriel de RY, I'espace des suites réelles.
6. L’ensemble
F={(z,y,2)eR°:x+y+z=1},

n’est pas un sous-espace vectoriel de R, car il ne contient pas le vecteur nul (0,0,0).

11
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Proposition 1.2.1 (Caractérisation d’un sous-espace par la notion de combinaison li-
néaire)
Soit (E, +,-) un K—espace vectoriel, et soit F' une partie de E, alors

F' est un sous-espace vectoriel de F <=

(CL) OE e F
<= < (b) F est stable par combinaisons linéaires,
Ve,ye FVa,beK:a-x+p-yeF.

Ainsi, pour montrer qu’un sous-ensemble F est un sous-espace vectoriel, il suffit de vérifier que le
vecteur nul appartient a F, et que toute combinaison linéaire o - x + [ -y de deux éléments de F
appartient encore a F.

Preuve.

1. Sens direct (=>). Supposons que F' est un sous-espace vectoriel de E, alors il contient nécessaire-
ment le vecteur nul Og. Donc (a) est vérifiée. D’autre part, puisque F' est stable par addition et par
multiplication scalaire, alors pour tous x,y € F et tous «, 3 € K, on a

a-x+0-yekF,

ce qui prouve (b).

2. Sens réciproque (<=). Supposons maintenant que les deux conditions (a) et (b) sont satisfaites
(F est stable par combinaisons linéaires). Nous allons montrer que F' est un sous-espace vectoriel de
E

° Stabilité par addition. Soient x,y € F. En prenant o = § = 1k dans (b), on obtient
r+y=1lg-x+1g-ye F.
e Stabilité par multiplication scalaire. Soient € F' et a € K. On pose y = Og et 5 = Og. Alors
a-r+pf-y=a-z+0g=a-zeF.

Ainsi, F' est stable par addition et par multiplication par un scalaire. Donc F' est un sous-espace
vectoriel de . ]

Remarque 1.2.2 Le complémentaire ensembliste noté CE d’un sous-espace vectoriel F' dans E n’est
pas un sous-espace vectoriel de E, car CE ne contient pas le vecteur nul Og.

Proposition 1.2.2 (Intersection de sous-espaces vectoriels)

Soit (F;),.; une famille de sous-espaces vectoriels d’'un méme K—espace vectoriel E, alors (\F; est
el

un sous-espace vectoriel de E. Autrement dit I’intersection quelconque de sous-espaces vectoriels d’un

meéme espace vectoriel est elle-méme un sous-espace vectoriel.

Preuve. On pose

F:ﬂF

el
Nous allons montrer que F' est un sous-espace vectoriel de E, en vérifiant les deux conditions de
caractérisation des sous-espaces vectoriels.
(a) Le vecteur nul appartient a F. Comme chaque F; est un sous-espace vectoriel, on a Og € F;

pour tout ¢ € I. Donc,
Op € <ﬂF> — F,

el

12
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ce qui prouve que F' est non vide.
(b) Stabilité par combinaisons linéaires. Soient z,y € F et «, € K. Par définition de l'in-
tersection, x,y € F; pour tout i € I. Or, chaque F; étant un sous-espace vectoriel, il est stable par
combinaisons linéaires, donc

a-r+p-yeF,

pour tout ¢ € I. Par conséquent,

a-x+p-ye (ﬂFZ) =F

iel

Les deux conditions sont vérifiées, donc F' est un sous-espace vectoriel de E. O]

Remarque 1.2.3 La réunion (finie ou infinie) de deux sous-espaces vectoriels n'est pas un sous-
espace vectoriel en général. Par exemple, considérons les deux sous-espaces vectoriels de [’espace
(produit) R? définis par

Fi =R x {0} = {(21,0) : 21 € R} (l’axe des abscisses)

Fy ={0} x R ={(0,23) : 23 € R} (l'axe des ordonnées).

Alors U'ensemble Fy U Fy n'est pas un sous-espace vectoriel de R? puisque (1,0) € Fy U Fy et (0,1) €
F1 U F2 et
(1,0) + (0,1) = (1,1) ¢ F} U F5.

1.3 Familles libres, Familles liées, Familles génératrices et
Bases

Dans un espace vectoriel, on travaille souvent avec des ensembles de vecteurs appelés familles de
vecteurs. Ces familles peuvent avoir des propriétés différentes, selon la fagon dont les vecteurs "se
combinent" entre eux. Par exemple, une famille est dite libre si aucun vecteur ne peut étre obtenu a
partir des autres. Au contraire, une famille est liée s’il existe au moins un vecteur qui peut s’exprimer
comme une combinaison des autres. Une autre notion importante est celle de famille génératrice : ¢’est
une famille de vecteurs qui permet de former tous les vecteurs de I'espace, en faisant des combinaisons
linéaires. Autrement dit, elle "engendre" tout ’espace. Enfin, une base est une famille de vecteurs a
la fois libre et génératrice. Elle constitue un ensemble minimal de vecteurs permettant de représenter
tous les éléments de 'espace de maniere unique. Ces notions sont tres utiles pour mieux comprendre
la structure des espaces vectoriels et résoudre des problemes en algebre linéaire. C’est pourquoi nous
abordons dans cette partie la notion importante de famille libre et la notion contraire de famille liée
et de famille génératrice. Ces notions nous conduiront naturellement aux concepts de dimension et
de base.

Définition 1.3.1 (Famille de vecteurs) Soit E un K—espace vectoriel. Une famille finie de vec-
teurs ou un systeme fini de vecteurs de E est un ensemble fini de vecteurs xq,...,x, de E notée

{$1, Ty wuny $n}

Définition 1.3.2 (Dépendance et indépendance linéaire) Soient E un K—espace vectoriel et
{x1,...,x,} une famille de vecteurs de E.

13
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1. Familles libres. On dit que la famille (ou : le systéme) de vecteurs {xy,...,x,} est libre sur K
(ou les vecteurs xy, ..., x, sont linéairement indépendants sur K) si et si

V)\l,)\g, ,)\n eK: Z)\lxl = )\1.%'1 + )\21’2 + ...+ )\n:cn = OE - )\1 = )\2 = ..= )\n = OK

i=1

En d’autres termes, toute combinaison linéaire des vecteurs qui donne le vecteur nul n’est possible
que lorsque tous les coefficients sont nuls.

2. Familles liées : On dit que la famille (ou : le systéeme) de vecteurs {x1,...,x,} est lice sur K
(ou les vecteurs xy, ..., x, sont linéairement dépendants sur K) si et si la famille {x1, ..., x,} n’est pas
libre. Formellement

A, Aay ooy A € K* (non tous nuls) Z)\iwi = \21 + Aoxo + ... + Az, = Op.
i=1

Cela signifie qu’il existe au moins un vecteur de la famille qui peut s’écrire comme combinaison
linéaire des autres.

Exemple 1.3.1

1. Dans tout K—espace vectoriel E, une famille formée d’un seul vecteur {x} est
e [iée si et seulement si x = O,

e [ibre si et seulement si x + Op.

En effet, soit A € K. Considérons [’équation

e Six=0g, alors pour tout A e K, on a
A0 =0g.

Cela signifie qu’il existe au moins un scalaire X £ O (par exemple A = 1g ) qui satisfait I’équation.
Par définition, la famille {x} est donc liée.

e Six % Og, alors l’équation \-x = Og implique nécessairement A = Ok, car dans un espace vectoriel,
seul le produit d’un vecteur non nul par le scalaire nul donne le vecteur nul. Ainsi, la famille {x} est
libre.

2. Considérons la famille de vecteurs {1,i} dans C, alors

e Sur R : La famille {1,i} est libre, car 1 et i sont linéairement indépendants sur R.

e Sur C : La famille {1,i} est liée, car i peut s’exprimer comme un multiple compleze de 1,

1=1-1.
3. Dans l'espace R™, Considérons la famille de vecteurs suivante
{z1 = (1,0,...,0), 22 = (0,1,0,...,0), ..., x, = (0,0,..., 1)} .

Cette famille est libre sur R.
4. Dans le R—espace vectoriel F(R,R) des applications de R dans R, la famille {fi = cos, fo = sin}
est libre sur R. En effet, soient ay,as € R tels que

arfi1 + azfo = OrwrR)-
Cela équivaut a

VeeR:aifi(z) + asfo(r) =0 <= VreR:ajcosx + azsinz = 0.

14
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En particulier, pour x = 0, cette égalité donne ay = 0 et pour x = 27 , elle donne ag = 0. Donc la
famille { f1, f2} est libre sur R.
En revanche la famille {f; = cos?, fo = sin?, f3 = 1} de F(R,R) est liée car on a la relation de dé-
pendance linéaire

cos® +sin? —1 = 0.

Les coefficients de dépendance linéaire sont

a1 = 1,042 = 170532 —1.

Proposition 1.3.1 (Propriétés des familles libres et liées)

1. Toute famille contenant le vecteur nul est lice.

2. Soit A une famille de vecteurs d’un K—espace vectoriel E. On a alors

(a) Toute sous-famille d’une famille libre est libre. Autrement dit si A est libre et si A’ < A, alors
A’ est également libre.

(b) Toute sur-famille d’une famille liée est lie. Autrement dit si A est lice et si A < A", alors A’
est aussi liée.

Remarque 1.3.1

1. Si une famille est libre, cela signifie que aucun vecteur de cette famille ne peut étre obtenu comme
combinaison linéaire des autres. Donc, si on retire des vecteurs, on diminue les possibilités de dépen-
dance. Une sous-famille conserve donc cette propriété d’indépendance.

2. Une famille est liée si au moins un vecteur peut s’écrire comme combinaison linéaire des autres.
Si on ajoute d’autres vecteurs, on ne peut pas "casser” cette dépendance : elle reste présente, donc la
famille reste liée.

Preuve.
1. Soit A = {x1, ..., x,, } une famille de vecteurs de F, et supposons que O € A. Alors il existe un indice
i€{l,2,...,n} tel que z; = 0g. Considérons les scalaires \y = Ao = ... = \;_1 = Ay = ... = \, = O,

et \; = 1x. Alors
n
Z)\jiﬂj = )\1331 = 1K : OE = OE
j=1
mais tous les scalaires ne sont pas nuls (puisque ); = 1g). Cela montre qu’il existe une combinaison

linéaire non triviale des vecteurs de A qui donne le vecteur nul. Donc, la famille A est liée.
2. (a) Soit A = {x1, ..., z,} une famille libre de vecteurs de E. Une sous-famille de A est de la forme

A ={zj,...,x,} ol <j <jo<---<j.<navecr<n.

Puisque l'ordre des vecteurs dans la famille n’a pas d’'importance pour sa liberté, on peut supposer
que
A ={xy,... x.}.

Pour montrer que A’ est libre, soit Aq,..., \, € K tels que
)\11’1 + -+ /\Tl‘r = OE

Pour utiliser la liberté de la famille A, complétons cette combinaison linéaire avec des coefficients
nuls

>\r+1:"':>\n:OK7

ainsi on a
Mry+ o+ ANTy + Ap1 T + o+ Az, = 0.
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Par la liberté de A, on en déduit
A ==X\, =0

En particulier,
M= = A = Og,

ce qui prouve que A est libre.

b. On démontre cette propriété en prouvant sa contraposée : Si A" est libre, alors toute sous-famille
A < A est libre. Or, cette propriété est déja connue et démontrée : Toute sous-famille d’une famille
libre est libre. Ainsi, la contraposée étant vraie, I’énoncé initial est également vrai. Donc, si A < A’
et que A est liée, alors A’ ne peut pas étre libre. Cela signifie que A" est aussi liée. O

Apres avoir introduit les notions de familles libres et familles liées, nous pouvons maintenant
définir celles de familles génératrices et de bases, qui occupent une place centrale dans ’étude des
espaces vectoriels.

Dans I’étude des espaces vectoriels, on cherche souvent a exprimer I’ensemble des vecteurs d’un
espace a partir d’'un nombre limité de vecteurs. C’est précisément le réle des familles génératrices :
une famille de vecteurs est dite génératrice d’'un espace vectoriel si tout vecteur de cet espace peut
étre écrit comme une combinaison linéaire de ses éléments. Cependant, une famille génératrice peut
contenir des vecteurs redondants, c’est-a-dire qui peuvent étre exprimés a partir des autres. Pour
éliminer cette redondance, on s’intéresse aux bases, qui sont des familles a la fois génératrices et
libres. Autrement dit, une base permet de représenter chaque vecteur de ’espace de maniére unique,
sans relation de dépendance entre ses vecteurs.

Définition 1.3.3 (Sous-espace vectoriel engendré)
1. Soit E un K—espace vectoriel, A € P(E). On appelle sous-espace vectoriel engendré par A, et on
note Vect(A) ou (A), l'intersection de tous les sous-espaces vectoriels de E contenant A

Vect(A) = ﬂ F.

F sev de E et ACF

2. 51 A ={x,...,x,} est une famille finie de vecteurs de E, alors le sous-espace vectoriel engendré
par A est 'ensemble de toutes les combinaisons linéaires des vecteurs de la famille. Formellement

Vect(A) =< A >={x = \x1 + doo + ... + Ny 0 A1, Ag, o, Ay € K
Dans ce cas, on dit que la famille A engendre Vect(A), ou qu’elle est génératrice de ce sous-espace.
Remarque 1.3.2
1. Vect(A) est le plus petit sous-espace vectoriel de E contenant A, au sens de linclusion. Autrement

dit, tout sous-espace vectoriel de E qui contient A contient nécessairement Vect(A).
2. En particulier, si A = ¢ (I’ensemble vide), alors le sous-espace vectoriel engendré est

Vect(¢) = {0g}.

C’est-a-dire que [’espace engendré par [’ensemble vide est le sous-espace réduit au vecteur nul.
3. 51 E est un K—espace vectoriel, alors

Vect(E) = E.

Autrement dit, un espace vectoriel engendre lui-méme, ce qui est une conséquence immédiate de la
définition.

16



ESPACES VECTORIELS

Exemple 1.3.2
1. La famille de vecteurs {xy = (1,0,0),25 = (0,1,0),z3 = (0,0,1)} de l’espace vectoriel réel R? est
une famille génératrice de R®. En effet, tout vecteur (x,y,z) € R peut s’écrire comme

(2,9,2) = 2 (1,0,0) +/(0,1,0) + 2 (0,0,1) .

Autrement dit
R? = Vect({z; = (1,0,0), 2, = (0,1,0) , 25 = (0,0,1)}).

2. Plus généralement, la famille génératrice canonique de R" est donnée par
{e1 = (1,0,...,0),...,e, = (0,0,..., 1)},

ou chaque vecteur e; a un 1 en i—eéme position et 0 ailleurs.
3. Dans espace vectoriel K[ X] des polynomes a coefficients dans K, la famille infinie

{1,X,X° ..},

est une famille génératrice de K[X]. En effet, tout polynome de degré quelconque s’écrit comme une
combinaison linéaire finie de ces mondmes.

4. L’ensemble {1,1} < C est une famille génératrice de C considéré comme un espace vectoriel réel.
Tout nombre complexe z = a + ib peut s’écrire comme

z=a-14+0b-1 avec a,be R.
Ainsi,
C = Vect({1,13}).
5. Dans K,, [ X] Uespace des polynomes de degré inférieur ou égal a n,

{1,X,X27 ...,X”},

est une famille génératrice de K,, [X]. Tout polynome de degré < n est une combinaison de ces n+ 1
monomes de K, [ X].

Proposition 1.3.2 (Propriétés des familles génératrices)

1. Toute sur-famille d’une famille génératrice est génératrice. Si une famille A est géné-
ratrice d’'un espace vectoriel E, alors toute famille A" contenant A est également génératrice de E.
Autrement dit, si A< A" et Vect(A) = E, alors Vect(A') = E.

2. Inclusion des sous-espaces engendrés. Si deux familles A et B de E vérifient A < B, alors
Vect(A) c Vect(B). Formellement

Ac B= Vect(A) c Vect(B).
3. Espace engendré par l’union de deux familles. Pour toutes familles A et B de E, on a
Vect(Au B) = Vect(A) + Vect(B),

ot
Vect(A) + Vect(B) = {x = v1 +v9 : v1 € Vect(A),vy € Vect(B)},

est appelé la somme des sous-espaces vectoriels engendrés par A et B.
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Ayant posé les fondements avec les notions de familles libres, liées et génératrices, nous pouvons
maintenant introduire une notion centrale dans I’étude des espaces vectoriels : la base. Dans un espace
vectoriel F, une base est une famille de vecteurs qui vérifie deux propriétés essentielles. D’une part,
la famille est linéairement indépendante (ou libre), ce qui signifie qu’aucun vecteur de la famille ne
peut étre obtenu comme combinaison linéaire des autres. D’autre part, elle est génératrice de I’espace,
c’est-a-dire que tout vecteur de E peut s’écrire comme une combinaison linéaire des vecteurs de la
famille. La notion de base est fondamentale, car elle permet de coordonner les vecteurs, de mesurer
la dimension d’un espace, et de travailler efficacement avec les applications linéaires et les matrices.

Définition 1.3.4 (Bases et coordonnées)

1. Base. On dit qu’une famille de vecteurs B est une base d’un K—espace vectoriel (E, +,-) si, et
seulement si, elle vérifie les deux conditions fondamentales suivantes :

(i) La famille B est libre, c’est-a-dire que ses vecteurs sont linéairement indépendants ;

(ii) La famille B est génératrice de E, autrement dit

Vect(B) = E.

2. Caractérisation d’une base finie. Une famille finie B = {eq, ..., e,} d’éléments d’un K—espace
vectoriel E est une base de E si et seulement si

Vee E,A(\,...,\) eK":x = Z)‘iei'
i=1

Autrement dit, tout vecteur x € E admet une unique décomposition sous forme de combinaison
linéaire des vecteurs de B.

3. Coordonnées d’un vecteur. Si E admet une base finie B = {ey, ..., e,}, pour tout  de E, les
scalaires Ay, ..., A\, définis ci-dessus s’appellent les coordonnées (ou : composantes) de x sur la
base B. Plus précisément, \; s’appelle la i — éme coordonnée (ou : composante) de x dans la base B.

Exemple 1.3.3
1. La famille {1k}, réduite a ’élément neutre de la multiplication dans 1k, est une base de l’espace
vectoriel K sur lui-méme. En effet, tout élément a € K peut s’écrire de maniére unique comme

a=a-lg.

La famille {1k} est donc génératrice et libre, et constitue ainsi une base de K.
2. La base canonique de [’espace vectoriel R™ est la famille

{e1 = (1,0,...,0),...,e, = (0,0,...,1)}.

Cette famille est libre et génératrice de R™, donc c’est bien une base. Elle permet de représenter tout
vecteur x = (x1, Ta, ..., x,) de R™ comme

n
T = Z Ti€;.
i=1

3. La famille
{1,X, X7 ..},

forme la base canonique de ’espace K[ X] des polyndmes a coefficients dans un corps K. Cette famille
est libre et génératrice, mais elle est infinie. En particulier, pour tout entier naturel n, la famille

{1,X,X* .., X"},
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forme la base canonique de l'espace K, [X], constitué des polynomes de degré inférieur ou égal a n.
4. La famille {1,i} constitue une base de l’espace C sur R. En effet, tout nombre complexe z = a+ bi,
avec a,b e R, s’écrit de facon unique comme

z=a-1+b-1.

La famille {1,i} est donc libre et génératrice de C sur R.
On peut aussi formuler la définition précédente sous la forme suivante

Proposition 1.3.3 (Application des coordonnées dans une base).

Soit B = {vy,...,v,} une base d’un espace vectoriel E. Il existe alors une bijection linéaire, appelée
application des coordonnées dans la base B, définie par
¥B FE e K"
r=x01 4+ 20, —> (T1,...,T,)

Les scalaires x; sont appelés les coordonnées (ou composantes) du vecteur x dans la base B =
{v1,..., 0.}

Exemple 1.3.4 On considére ['espace vectoriel R3.
1. Avec la base canonique. Soit

B ={e; = (1,0,0), e3 = (0,1,0), e3 = (0,0,1)}.
Prenons le vecteur
r=(2,-1,3) e R
Dans la base B, on a immédiatement
r = 2e; — ley + 3es.

Les coordonnées de x dans B sont donc

ep(r) = (2,-1,3).
2. Avec une base différente. Soit maintenant
B ={v; = (1,1,0), v, = (0,1,1), vz = (1,0,1)}.
On veut exprimer x dans B'. On cherche (ay, g, az) € R? tels que
r = U1 + QU2 + Qi3v3.
Ce qui donne le systéme
ap + ag = 2,
o) +ag = —1,
o9 + a3z = 3.
En résolvant, on obtient
a1 = —270[2 = ]_,063 = 4.
Ainsi
r = —2u + luy + 4vs,

et ses coordonnées dans la base B’ sont

@B’(x) = <_27 1, 4)'

Cet exemple montre que les coordonnées d’un vecteur dépendent de la base choisie, mais
que la bijection pp décrite dans la proposition permet toujours de passer de E a K" en fixzant une
base.
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Remarque 1.3.3 La base de l’espace vectoriel réduit a {Og} est la famille vide ¢. En effet, cette
famille est a la fois libre (car elle ne contient aucun vecteur) et génératrice de {Og} (puisque la seule
combinaison linéaire possible, la somme vide, donne Og).

Une famille libre maximale, dans un espace vectoriel, est une famille de vecteurs qui est a la fois
libre et maximale, ce qui signifie qu’ajouter n’importe quel autre vecteur de I'espace a la famille la
rendrait liée.

Définition 1.3.5 (Famille libre maximale et famille génératrice minimale)

Soit E un K—espace vectoriel, F < E une famille (finie ou infinie) de vecteurs de E.

1. Famille libre maximale. On dit que F est une famille libre maximale ou famille indépendante
mazimale dans E st F est libre c’est-a-dire que ses vecteurs sont linéairement indépendants et est
mazximale pour linclusion parmi les familles libres de E, ce qui signifie que, pour tout v € E/F, la
famille F U {v} est liée. Formellement,

(i)F est libre.
(i) Yve E/F : F u {v} est liée.

2. Famille génératrice minimale. On dit que F est une famille génératrice minimale dans E
si F est génératrice de E et est minimale pour l'inclusion parmi les familles génératrices de FE,
c’est-a-dire que, pour tout v € F, la famille F/{v} n'est plus génératrice de E. Formellement,

{ (i) Vect(F) = E
(ii) Yv e F : Vect (F/{v}) + E.

Remarque 1.3.4

1. Famille libre maximale : Une famille libre est dite mazimale lorsque ’ajout de tout vecteur de
I’espace a cette famille la rend liée.

2. Famille génératrice minimale : Une famille génératrice est dite minimale lorsqu’il est impos-
sible d’en retirer un vecteur sans perdre la propriété d’engendrer tout [’espace.

3. Importance de la maximalité : La condition de mazimalité pour une famille libre signifie
qu’on ne peut pas ajouter d’autre vecteur a cette famille sans la rendre liée (non libre). Cela assure
que la base contient le minimum de vecteurs nécessaires pour engendrer tout [’espace.

4. Importance de la minimalité : La minimalité d’une famille génératrice est importante car
elle permet d’avoir une représentation la plus simple possible de [’espace vectoriel, avec le moins de
vecteurs indépendants nécessaires pour l’engendrer.

Apres avoir introduit les notions de famille libre maximale et de famille génératrice minimale,
nous pouvons maintenant présenter une caractérisation des bases d'un espace vectoriel. Dans un
espace vectoriel, les notions de base, famille libre maximale et famille génératrice minimale sont
équivalentes.

Proposition 1.3.4 (Caractérisation d’une base) Soit E un K—espace vectoriel, F < E une
famille (finie ou infinie) de vecteurs de E. Alors les assertions suivantes sont équivalentes

(a) F est une base de E.

(b) F est une famille libre mazimale

(c) F est une famille génératrice minimale de E.

Preuve. Pour établir I’équivalence des trois assertions, nous allons montrer

() = (b) = (¢) = (a),
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ce qui, par transitivité, prouvera 1’équivalence.

1. (a) = (b). Supposons que F est une base. Par définition, F est libre et engendre E. Soit v € E.
Comme v € Vect(F) = E, alors v s’écrit comme combinaison linéaire des éléments de F. Ainsi la
famille Fu {v} est liée. Donc on ne peut ajouter aucun vecteur sans perdre la liberté, ce qui montre
que F est maximale parmi les familles libres.

2. (b)) = (c). Supposons F libre et maximale pour 'inclusion parmi les familles libres.

e Preuve qu’elle engendre E : Si Vect(F) + E, choisissons v € E\Vect(F). Alors Fu {v} serait
encore libre (car v n’est pas combinaison des éléments de F), contredisant la maximalité. Donc
Vect(F) = E, F engendre E.

e Preuve de la minimalité : si I'on pouvait enlever un vecteur w € F et que F\{w} engendrait
encore F, alors w serait combinaison linéaire des autres, ce qui contredirait la liberté de F. Ainsi F
est une famille génératrice minimale.

3. Supposons F engendre E et soit minimale pour cette propriété. Si F était liée, il existerait une
relation linéaire non triviale entre ses éléments ; en particulier un vecteur w € F s’exprimerait comme
combinaison linéaire des autres. Alors F\{w} engendrerait encore F, ce qui contredirait la minimalité
de F. Donc F est libre. Comme F engendre F et est libre, c¢’est une base. ]

1.4 Espaces vectoriels de dimension finie

Dans cette section, nous introduisons la notion de dimension d’un espace vectoriel, ainsi que ses
principales propriétés. La notion de dimension joue un role fondamental dans 1’étude des espaces
vectoriels. Elle permet d’évaluer la « taille » d’un espace vectoriel, en indiquant combien de vecteurs
sont nécessaires, au minimum, pour engendrer tous les vecteurs de l’espace. On dit qu'un espace
vectoriel est de dimension finie lorsqu’il existe un ensemble fini de vecteurs permettant d’exprimer
tous les autres par combinaison linéaire. Autrement dit, I’espace peut étre entierement décrit a ’aide
d’un nombre fini de vecteurs. En revanche, si un espace nécessite une infinité de vecteurs pour
engendrer tous les autres, on dit qu’il est de dimension infinie.

Définition 1.4.1

1. On dit qu’'un K—espace vectoriel (E,+,-) est de dimension finie si, et seulement s’il admet au
moins une famille génératrice finie de vecteurs dans E, c’est-a-dire un ensemble fini de vecteurs dont
les combinaisons linéaires permettent d’engendrer tout [’espace.

1. Dans le cas contraire ( c’est-a-dire si aucune famille génératrice finie n’eziste), on dit que E est
de dimension infinie.

2. Par convention, 'espace nul E = {0g} qui ne contient que le vecteur nul, est considéré comme un
espace de dimension finie.

Exemple 1.4.1
1. Pour tout corps K et tout entier n € N*, [’espace K" est l’ensemble des n—uplets de scalaires dans
K est de dimension finie car il est engendré par une famille finie : les vecteurs canoniques

{61 = <1K7 OK, ceey OK), ey Ep = (OK, OK, ceey 1]1()} .

En particulier les espaces R™, C", qui sont respectivement les cas ou K = R et K = C, sont des espaces
vectoriels de dimension finie engendrés par leur base canonique.

2. Pour tout entier n € N*, Uespace K,, [X] formé des polynomes a coefficients dans K et de degré
inférieur ou égal a n est de dimension finie car, il est engendré par la famille finie {1, X, X?, ..., X"}.
En revanche, l'espace K [ X, qui contient tous les polynomes (de degré quelconque), n’est pas engendré
par une famille finie. Donc K[X] est de dimension infinie.
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Définition 1.4.2 (Dimension) Soit E un K—espace vectoriel de dimension finie.
1. Si E # {0g}, c’est-a-dire si E n’est pas réduit au seul vecteur nul, alors on appelle dimension de
E le cardinal ou le nombre d’éléments de toute base B de E, et on le note

d%{m(E) = Card(B).
2. Si E ={0g} est l'espace nul, on dit que E est de dimension 0, et l’'on pose par convention

d%(m(E) = 0.

Remarque 1.4.1

1. La dimension d’un K—espace vectoriel dépend du corps K sur lequel il est considéré. Un méme
ensemble peut avoir des dimensions différentes selon le corps de scalaires. Par exemple

(a) Si l'on considére C comme un espace vectoriel sur R (i.e., C est un R—espace vectoriel), alors

dﬁm((C) =2,
car la famille {1,i} est une base de C sur R.
(b) St l'on considére C comme un espace vectoriel sur lui-méme, alors

d%crn((C) =1,

car tout nombre compleze z s’écrit z = z - 1, donc la famille {1} est une base.
2. Pour tout K—espace vectoriel de dimension finie, on a

d%{m(E) =0<= F ={0g}.
Exemple 1.4.2
1. Soient Ey, ..., E, des espaces vectoriels de dimension finie sur le méme corps K. Alors
diKm(El X oo x By) = d%(m (Ey) + -+ d%(m (E,) .

En particulier, on a
d}cm((C ) = n,dﬁm(C ) = Zn,lem(R ) =n.
2. Pour les espaces de polynomes a coefficients dans K,

dim(K, [X]) = n + 1, dim(K [X]) = .

Intéressons-nous maintenant a la dimension d’'un sous-espace vectoriel d’un espace de dimension
finie.

Proposition 1.4.1 Soient (E, +,-) un K—espace vectoriel de dimension finie n et F' un sous-espace
vectoriel de E. On a
1. Le sous-espace F' est de dimension finie et

d%gm(F) < dﬁgm(E).

Autrement dit, toute base de F contient un nombre de vecteurs inférieur ou égal a celui d’une base
de E.

2. Le sous-espace F coincide avec E si et seulement si leurs dimensions sont égales. On a donc

E = F «— dim(F) = dim(F).
K K
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Dans un espace vectoriel de dimension finie, le cardinal de toute famille génératrice est minoré
par celui d’'une base, tandis que le cardinal de toute famille libre est majoré par celui d’'une base. Ces
propriétés sont extrémement importantes, car elles sont fréquemment utilisées en pratique. Nous les
résumons dans la proposition suivante.

Proposition 1.4.2 (Relations entre familles libres, génératrices, bases et dimension)
Soit E un K—espace vectoriel de dimension finie n. On a les propriétés suivantes

1. E admet au moins une base finie formée de n vecteurs.

2. Toutes les bases de E sont finies et onl exactement n vecteurs.

3. Toute famille libre contenant n vecteurs est une base de E.

4. Toute famille génératrice de E composée de n vecteurs est une base de E.

5. Toute famille de vecteurs de E ayant strictement plus de n éléments est lice (dépendante linéaire-
ment).

6. Toute famille de vecteurs de E ayant strictement moins de n éléments ne peut étre génératrice de
E.

Remarque 1.4.2

e Les points (1) et (2) assurent l'existence d’une base et l'unicité de la dimension.

o Les points (3) et (4) affirment qu’une famille libre mazimale ou une famille génératrice minimale
est nécessairement une base.

e Le point (5) indique qu’une famille trop nombreuse est forcément dépendante.

e Le point (6) indique qu’une famille trop petite ne peut pas engendrer tout ’espace.

Exemple 1.4.3
1. Existence d’une base de n vecteurs. Dans R3, la famille

B ={(1,0,0),(0,1,0), (0,0, 1)},

est une base de R3, formée de 3 vecteurs. Cela illustre que tout espace vectoriel de dimension n admet
une base de n vecteurs.
1. Toutes les bases ont n vecteurs. Dans R3, la famille

B' ={(1,1,0),(0,1,1),(1,0,1)},

est aussi une base de R®. Bien que différente de la base canonique, elle contient également 3 vecteurs,
ce qui montre que toutes les bases de R? ont le méme nombre de vecteurs.
3. Une famille libre de n vecteurs est une base. Considérons dans R? la famille

F = {(172)7 (3’ 1)}

Les vecteurs sont linéairement indépendants et R? est de dimension 2, donc F' est une base de R?.
4. Une famille génératrice de n vecteurs est une base. Dans R?, la famille

G = {<170)7 (17 1)}a

engendre R?. Comme elle contient 2 vecteurs (égale a la dimension de R?), elle est nécessairement
une base.
5. Une famille de plus de n vecteurs est liée. Dans R2, la famille

H = {(17 0)7 (07 1)’ (17 1)}’
contient 3 vecteurs, donc plus que la dimension de l’espace (2). Elle est liée, car

(1,1) = (1,0) + (0, 1).
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6. Une famille de moins de n vecteurs n’est pas génératrice. Dans R3, la famille
K ={(1,0,0),(0,1,0)},

contient seulement 2 vecteurs, donc moins que la dimension de R3. Elle ne peut pas engendrer tout
R3, car aucun vecteur de la famille n’a de composante non nulle sur le troisiéme aze.

Lorsqu’on travaille dans un espace vectoriel de dimension finie, il est souvent utile de réduire une
famille de vecteurs, parfois trop grande ou redondante, a une base, c’est-a-dire a une famille libre
qui génere tout 'espace. Le théoreme de la base extraite formalise cette idée en affirmant qu’a partir
de toute famille génératrice, on peut toujours extraire une base. Ce résultat est fondamental car il
permet d’identifier une base « minimale » au sein d’une famille donnée, facilitant ainsi I’étude et la
manipulation des vecteurs de ’espace.

Théoréme 1.4.1 (Théoréme de la base extraite).

Soient E un K—espace vectoriel de dimension finie non réduit a {Og} et F une famille génératrice
de E. Alors, on peut extraire de F une famille libre et génératrice de E. Autrement dit, il existe une
famille F' < F telle que F' soit une base de E.

Le théoreme de la base extraite énonce que, dans un espace vectoriel de dimension finie, toute
famille génératrice contient une base. Autrement dit, a partir d’'un ensemble de vecteurs qui engendre
tout I'espace, il est toujours possible de sélectionner un sous-ensemble formant une base, c¢’est-a-dire
un ensemble de vecteurs a la fois linéairement indépendants et générateurs.

Exemple 1.4.4 Considérons 'espace vectoriel R? et la famille suivante
F =1{(1,0,0),(0,1,0),(1,1,0),(0,0,1)}.

e Vérification que F est génératrice : Les vecteurs (1,0,0), (0,1,0) et (0,0,1) engendrent déja
R3, car pour tout (x,y,2) € R3, on peut écrire

(2., 2) = 2(1,0,0) + (0. 1,0) + 2(0,0, 1).

De plus, toute sur-famille d’une famille génératrice est également génératrice. Comme F contient
ces trois vecteurs, F est donc génératrice de R3.

o Extraction d’une base : Le théoreme de la base extraite assure qu’il existe une sous-famille
F' < F formée de 3 vecteurs (puisque dim(R?) = 3) qui soit une base. Par exemple

F' ={(1,0,0),(0,1,0), (0,0,1)},

est libre et génératrice, donc constitue une base extraite de F.

Le théoreme suivant est fondamental, car il fournit un procédé permettant de construire une base
a partir d’une famille libre. Il affirme qu’il est toujours possible, en ajoutant des vecteurs bien choisis,
de compléter une famille libre incompléte pour obtenir une base. Ce résultat, connu sous le nom de
théoreme de la base incompleéte, exprime que, dans tout espace vectoriel de dimension finie, toute
famille libre peut étre complétée en une base et, réciproquement, qu’il est possible d’extraire d’une
famille génératrice une sous-famille qui constitue une base.
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Théoréme 1.4.2 (Théoréme de la base incompléte) Soit (E,+, ) un K—espace vectoriel de
dimension n, et soit
L ={xy,x9,...,2,},

une famille libre de p (p < n) vecteurs de E. Soit
B = {e1,es,...,e,},

une base de E. Alors

1. Sip=mn, alors L est déja une (nouvelle) base de E.

2. Sip < n, alors on peut compléter L en une base de E en ajoutant exactement (n — p) vecteurs
supplémentaires de B.

Autrement dit, il existe des indices distincts iy, s, ...,1n—p € {1,2,...,n} tels que

{I’l,ZL‘Q, coey Lpy €4y, ...,einfp} s

soit une base de E.

Remarque 1.4.3

1. Le théoréme de la base extraite permet de réduire une famille génératrice trop grande a une base.
2. Le théoréme de la base incompléte permet de compléter une famille libre insuffisante pour en faire
une base.

3. Ensemble, ces résultats montrent que toute base d’un espace de dimension finie contient exactement
n vecteurs et que toute famille libre ou génératrice peut étre transformée en une base.

Exemple 1.4.5

1. Pour p = 1, on travaille dans R® avec la base canonique B = {ej,es,e3} ot ey = (1,0,0),
ey = (0,1,0), es = (0,0,1). Prenons L = {x1} avec x; = (1,1,0). Cette famille est libre et contient
un seul vecteur (p = 1 < 3), donc on peut la compléter avec exactement (n —p = 2) vecteurs pris
dans B. Par exemple, en ajoutant ey et e3 (indices iy = 1,i5 = 3), on obtient

{xl,el, 63} = {(17 1,0), (]_, 0,0), (0,0, 1)}

ces trois vecteurs sont linéairement indépendants, donc forment une base de R3.
2. Pour p = 2, toujours dans R? avec la base canonique B. On prend

x1 = (1,0,1), 20 = (0,1, 1).

Ces deuz vecteurs sont indépendants (p = 2 < 3). Il faut donc ajouter (n —p = 1) vecteur de B qui
ne soit pas dans l’espace engendré par x, et xo. On teste e = (1,0,0) (indices iy = 1) et on constate
qu’il ne peut pas s’écrire comme combinaison linéaire de x1 et xo. Ainsi,

{r1, 79,1} = {(1,0,1),(0,1,1),(1,0,0)},

est une famille libre de trois vecteurs, donc une base de R3.

Le rang d’une famille finie de vecteurs est défini comme la dimension du sous-espace vectoriel
engendré par cette famille. Autrement dit, il représente le nombre maximal de vecteurs linéairement
indépendants que l'on peut extraire de cette famille.

Définition 1.4.3 (Rang d’une famille)
Soit (E,+,-) un K—espace vectoriel, et soit F = {x1,,...,x,} une famille finie de vecteurs de
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E. Le rang de F, noté rg(F), est la dimension du sous-espace vectoriel engendré par cette famille,
autrement dit
rg(F) = d%gm(Vect(]:)).

Cela revient a dire que rg(F) est le nombre maximal de vecteurs linéairement indépendants que [’on

peut extraire de F.

Exemple 1.4.6 Soit la famille de vecteurs de R?
F ={z;1=(1,0,0),25 = (0,1,0),z3 = (1,1,0)}.
On remarque que x3 est une combinaison linéaire des deux premiers vecteurs
T3 = T1 + Xa.

Cela montre que la famille F est linéairement dépendante. Alors on peut extraire de F la sous famille
F' = {x1, 22} qui est linéairement indépendant. Par conséquent,

rg(F) =rg(F') = 2.
Autrement dit, la famille F' = {1,229} est une base de Vect(F), on obtient

rg(F) = d%Rm(Vect(]:)) = Card(F') = 2.
Le rang vérifie les propriétés suivantes.

Proposition 1.4.3 (Propriétés du rang d’une famille de vecteurs)
1. Comparaison de rangs pour deux familles. Pour toutes familles finies F,F' d’éléments de
E, ona

FcF = rg(F)<rg(F).

Autrement dit, ajouter des vecteurs a une famille ne peut pas diminuer son rang. De plus,
max (rg(F),rg(F')) < rg(F o F') <rg(F) + rg(F').

Cela signifie que le rang de la réunion est au moins le plus grand des deux rangs, mais ne dépasse
jamais leur somme.

2. Si (E,+,-) est un K—espace vectoriel de dimension n, et F = {x1,xq,...,x,} une famille de
vecteurs de E, alors

(a). Le rang ne dépasse pas le nombre de vecteurs dans la famille,

rg(F) < m.
(b). Le rang ne dépasse pas non plus la dimension de l’espace,
rg(F) < min(m,n).

(c). Cas particuliers,
(i) Famille libre,
rg(F) =m <= F est libre.

(ii) Famille génératrice,
rg(F) =n <= Vect(F) = E.

(iii) Base de E,
rg(F) =m =n <= F est une base de E.

26



ESPACES VECTORIELS

1.5 Somme, somme directe, sous-espace supplémentaires

La somme de deux sous-espaces vectoriels permet de créer un nouveau sous-espace a partir de
deux autres. Ce nouveau sous-espace contient tous les vecteurs des deux sous-espaces de départ et
toutes les sommes possibles de ces vecteurs. C’est le plus petit sous-espace qui les contient tous les
deux. Cette opération est importante car elle permet de rassembler plusieurs sous-espaces en un seul,
tout en gardant les regles d'un espace vectoriel.

Définition 1.5.1 (Somme de sous-espaces vectoriels) Soient (E,+,-) K—espace vectoriel et
F\, F5 deux sous-espaces vectoriels de E. La somme de Fy et Fy est le sous-ensemble de E, noté
Fy + Fy, défini par
Fi+F,={rxeE v € F|,3x5€ F5 : x = x1 + 2} .
On peut aussi écrire
Fi+ Fy={x1 +xy: 21 € F1,29 € F5}.

Autrement dit, Fy + Fy est l'ensemble de toutes les sommes possibles d’un élément de Fy et d’un
élément de Fy. Chaque élément de Fy + Fy peut donc s’écrire sous la forme x = x1 + x9, avec x1 € F}
et xo9 € FQ.

Proposition 1.5.1 Si I et 5 sont deux sous-espaces vectoriels d’un K—espace vectoriel E, alors
F + F5 est lui-méme un sous-espace vectoriel de E.

Preuve. Soit
Fi+ F, = {$1+$225L‘1€F1, ZEQEFz}.

Montrons que F; + Fy est un sous-espace de FE.
(a) Stabilité par le vecteur nul. Comme Og € F} et Og € F», on a

OE:0E+OEEF1+F2.

(b) Stabilité par addition. Soient © = w; + vy et y = ug + vy dans F} + Fy, avec uy,us € Fy et
v1,v9 € Fy. Alors, en utilisant I'associativité et la commutativité de 'addition dans F/, on a

r+y=(uy +ug) + (v1 + va).

Comme F et F, sont des sous-espaces, u; + us € Fy et vy + vy € Fy, donc x +y € Fy + Fs.
(c) Stabilité par multiplication scalaire. Soit A € Ket x = u+v € Fy1+ Fy, avec u € Fy et v € Fy.
Alors

Ax = (Au) + (Av).

Comme Fj et F5 sont des sous-espaces, Au € F} et \v € Fy, donc A\x € F} + F5. Ainsi, F} + F5 est
bien un sous-espace vectoriel de E. O

Remarque 1.5.1 F; et F, sont eur-mémes deux sous-espaces vectoriels de Fy + Fs.

On peut regrouper les principales propriétés de la somme de deux sous-espaces vectoriels dans la
proposition suivante.

Proposition 1.5.2 (Propriétés de la somme de sous-espaces vectoriels) Soit E un K—espace
vectoriel et soient Iy, Fy, F3 trois sous-espaces vectoriels de E. Les propriétés suivantes sont vérifiées.

1. Commutativité,
F+ F,=F, + F.
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2. Inclusions de base,
F1 C F1 + FQ.

3. Caractérisation par inclusion,
(Fic Fy et Fy © Fy) < 1 + F;, c F3.
4. Compatibilité avec l’inclusion,
FicFy—=— F\+ I35 c I, + F;.

5. Idempotence,

F+ Fy = F.
6. Somme avec le sous-espace nul,
Fy +{0g} = Fy.
7. Somme avec l’espace tout entier,
FF+FE=F.

8. Associativité,
(Fy + F») + F3 = Fy + (Fy + F3).

Preuve. On rappelle que la somme de deux sous-espaces est définie par
F1+F2 = {x1+:1c2 | l’leFl, ZL‘QEFQ}.

1. Commutativité. Soit x € F; + F,. Alors * = x1 + x5 pour certains x; € Fj, x5 € F;. Par
commutativité de ’addition dans £ on a x = x5 + x1, donc x € Fy + F}. L’inclusion réciproque se
montre de la méme fagon, d’ou

P+ Fy, = Fy + F}.

2. Inclusions de base. Si x; € Fj alors x; = 21 + Og avec Og € F3, donc xy € F} + F5. Ainsi
Fi c Fy + 5. De méme F5 < Fy + F3.

3. Caractérisation par inclusion.

e Sens direct (=). Si I} < F3 et F, < Fj3, alors pour tout * = oy + x9 € [} + Fy on a x1, 25 € F3 et
donc z € F3 (puisque F3 est un sous-espace). D’ou

F1+F2 CF3.

e Sens réciproque («<=). Si F} + F, ¢ Fj, alors pour x1 € Fy on a 7 = 21 + 0g € F} + F, < F3, donc
Iy < F3. Méme raisonnement pour F5.

4. Compatibilité avec l’inclusion. Supposons F} < Fy. Soit x € F| + F3, alors ¢ = u + v avec
ue Fy, ve F3. Comme u € Fy onax e Fy+ F3. Donc

F1+F3CF2+F3.

5. Idempotence.
e L’inclusion F; < F; + F) est claire. En effet, pour tout u € F}, on peut écrire

u=1u+0g,

avec u € F1 et Og. Cela montre que u € Fy + F.

e Réciproquement, si x € F| + F; alors x = u + v avec u,v € F| et donc x € F| par stabilité de F;
par addition. D’ou F} + F; < Fi. En combinant les deux inclusions, on obtient bien F; + F} = F}.
6. Somme avec {Og}.
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Si x € F1 + {0g} alors x = u + Og = u pour un certain u € Fj, donc z € F;. L’inclusion réciproque
vient de (2) puisque {Og} < Fy. Ainsi Fy + {Og} = F}.
7. Somme avec F.
(i) Comme F; © E est un espace vectoriel, toute somme x + y avec x € F} et y € E est encore dans
E. Cela montre que

Fi+FEcCE.

(ii) Pour tout y € F on a y = 0g + y avec O € I}, donc y € Fy + E. Ainsi
EcFH +FE.

8. Associativité. Soit x € (Fy + Fy) + F3. Alors © = (u +v) + w avec u € Fy, v € Fy, w € F3. Par
associativité de l'addition dans E, z = u+ (v + w) et v+ w € Fy + F3, donc x € Fy + (Fy + F3).
L’inclusion inverse se démontre de maniére analogue en permutant les roles des sous-espaces. Ainsi

(Fy + F3) + F5 = Fy + (Fy + F3).
Cela acheéve la preuve des huit propriétés. O

Apres avoir présenté la notion de somme de deux sous-espaces vectoriels et étudié leurs propriétés,
il est naturel de s’intéresser a un cas particulier important, appelé somme directe. Dans la somme
ordinaire, un vecteur peut parfois s’écrire de plusieurs facons différentes comme somme d’un vecteur
du premier sous-espace et d’un vecteur du second. En revanche, dans une somme directe, chaque
vecteur de la somme possede une décomposition unique : il existe un seul couple formé d’un vecteur
du premier sous-espace et d'un vecteur du second dont la somme donne ce vecteur.

Définition 1.5.2 (Somme directe)

Soient (E,+,-) un K—espace vectoriel et Fy, Fy deux sous-espaces vectoriels de E. On dit que la
somme Fy + Fy est directe, et ['on note Fy @ Fy, lorsque les deux sous-espaces n’ont en commun que
le vecteur nul

F1 M F2 = {OE}

Autrement dit
Fi+F=F®F << Fnk= {OE}

Remarque 1.5.2 La somme directe est un cas particulier de la somme de deuzr sous-espaces; elle
impose la condition supplémentaire que leur intersection soit réduite au vecteur nul.

Exemple 1.5.1
1. Dans tout K—espace vectoriel (E,+, ), les sous-espaces E et {0g} sont en somme directe, c’est-
a-dire

car leur intersection est {Og}.
2. Dans R?, considérons les sous-espaces vectoriels

Fy =R x {0} = {(z,0) : z € R} (aze des abscisses),

Fo, ={0} x R={(0,y) : y € R} (azxe des ordonnées).

F1 M F2 = {(0,0)}

Ainsi
L+ F=F®F,.
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3. Soit E = F(R,R), lespace vectoriel de toutes les applications de R dans R. On considére les
sous-espaces vectoriels

P(R.R) = {f e E: f(—a) = f(z),¥x € R},
qui sont respectivement les espaces des applications paires et impaires. On observe que
P (R,R) nZ(R,R) = {0rrr)},
car la seule application a la fois paire et impaire est lapplication nulle. Ainsi

P (R,R) + Z(R,R) = P (R,R) ® Z(R, R).

Proposition 1.5.3 (Caractérisation de la somme directe)

Pour que deux sous-espaces vectoriels Fy, Fy d’un K—espace vectoriel (E,+,-) soient en somme
directe, il faut et il suffit que tout élément de F\ + Fy se décompose de fagcon unique en somme d’un
elément de F et d’un élément de Fy. Autrement dit

VIL'EFl—FFg,H!ZElEFl,E”ZL'QEFQZQS’Z.T:[—FIEQ.

Autrement dit, chaque vecteur de la somme directe admet une seule écriture comme somme d’éléments
provenant de chacun des sous-espaces.

Preuve.
1. Condition nécessaire : Supposons que F et F; soient en somme directe, c’est-a-dire que

Fi n Fy ={0g}.
Soit x € F} + F3, par définition de F} + Fy, il existe (z1,x2) € F} x Fy tel que x = x1 + 9. Supposons
qu’il existe une autre décomposition de x
T=1y+ Y2
avec (y1,y2) € F1 x Fy. On a alors
T+ T2 =Y1 T Y2=T1 — Y1 = Y2 — T2

Comme 1 —y; € F} et ys — x5 € Fy, et que F} N Fy = {0} (car F} et F» sont en somme directe), on
déduit que
T — Y1 =Y — T2 =0p.
Ainsi,
T1 = Y1 et X9 = Yo.

Cela prouve que la décomposition de x est unique.
2. Condition suffisante : Supposons que tout élément de F; + F, admette une décomposition
unique

T =21+ To,

avec r1 € F| et x5 € F5. Soit x € Fy n Fy, alors on peut écrire O de deux fagons
OEZOE—i-OE:SlJ-i-(—SU),

ouxe€ F, et —xe k.
Par unicité de la décomposition de O, on a nécessairement

r=0get —x=0g.
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Donc
z=0 E-
Ainsi
Fl M F2 = {OE},
ce qui montre que la somme est directe. O

Définition 1.5.3 (Sous-espaces supplémentaires)
Soient (E, +,-) un K—espace vectoriel et Fy, Fy deux sous-espaces vectoriels de E. On dit que F et
F5 sont supplémentaires dans E si et seulement si B = F} @ F5. Cela signifie que

Fin Fy ={0g}
E:Fl@F2<:> et
E =1 + F.

Remarque 1.5.3 (Remarque importante)

Il ne faut pas confondre le complémentaire ensembliste E\F avec un supplémentaire de F' dans E.
e Un supplémentaire G est un sous-espace tel que £ = F @ G.

e Un complémentaire ensembliste E\F' est simplement ’ensemble des éléments de E qui n’appar-
tiennent pas a F. Il ne s’agit pas nécessairement d’un sous-espace vectoriel et il n’a donc pas la
structure nécessaire pour former une somme directe avec F.

Exemple 1.5.2
1. Pour tout K—espace vectoriel (E,+,-), on a E et {Og} sont supplémentaires dans E.
2. Soit 'espace vectoriel R?. Soit

Fi =R x {0} = {(z,0) : z € R} (l'axe des abscisses)
F, ={0} x R={(0,y) : y e R} (l'axe des ordonnées),
deuz sous-espaces vectoriels de R?, alors on a Iy et Fy sont supplémentaires dans R?. Autrement dit
R:=F @ F>.

3. Soit E = F(R,R) l’espace vectoriel des applications de R dans R. Soit P (R,R), et Z (R, R)
deuz sous-espaces vectoriels de F(R,R) des applications paires et impaires respectivement, alors on
aP(R,R) et T(R,R) sont supplémentaires dans F(R,R). Autrement dit

FR,R)=P(R,R)®Z(R,R).

4. Dans E = C, posons
Fy = Vect({1}), Fy» = Vect({i}).

On sait que Fy et Fy sont des sous-espaces vectoriels de E.
o Sixe FynFy, alors x est a la fois réel et imaginaire pur donc x = 0 et

FnG={0}.

e Ona
Fy + Fy = Vect(1) + Vect(i) = Vect(1,i) = C,

Ainsi
E=FNoFL.
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Proposition 1.5.4 (Caractérisation des sous-espaces supplémentaires)

Deux sous-espaces vectoriels Fy, Fy d’un K—espace vectoriel (E,+,-) sont supplémentaires dans E,
si et seulement si tout élément de E se décompose de facon unique en somme d’un élément de F et
d’un élément de F,. Formellement, cela s’écrit

Vee E,3x e I, ase Fy:x =21 + 2o.

Autrement dit, chaque vecteur de E posséde une unique écriture comme somme d’éléments provenant
de chacun des sous-espaces supplémentaires.

Preuve.
1. Sens direct : Supposons que Fj et I3 soient supplémentaires

E = F1 +F27F1 M F2 = {OE}

(a). Existence de la décomposition : Comme F = F; + Fy, pour tout z € F, il existe x; € F} et
o € Fy tels que x = 21 + x».
(b). Unicité de la décomposition : Supposons que x ait deux écritures

T =1+ T2 =Y+ Yz
avec 1,y € I et xo,y2 € F5. On a alors
1 — Y1 = Y2 — Za.
Le membre de gauche est dans F} et celui de droite a F5. Ainsi
r1—yp e nFy={0g} = 21 =y
En remplacant dans 1’égalité de départ, on obtient aussi
T = Ya.

Ainsi, la décomposition est unique.
Sens réciproque : Supposons que tout xz € E se décompose de fagon unique en

r =2+ 2o,

avec x1 € F] et 19 € Fj.
(a). Somme : Par hypothése, pour chaque = € E, on peut trouver x; € F} et x5 € F; tels que

r =21+ Ty

Cela signifie que z € E, on a donc

E c Fi + Fs.
Comme l'inclusion

Fl + FQ e E,
est toujours vraie, on a

E=F + F.

(b). Intersection nulle : Si v e F} n F;, alors

veF] v=v+0g
A — A
ve v=0g+v,
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sont deux décompositions possibles. L’'unicité impose v = 0g. Donc
F1 M F2 = {OE}
(]

La proposition suivante fournit un critére simple et efficace pour vérifier que deux sous-espaces
vectoriels Fiet F, d'un espace vectoriel FE sont supplémentaires a partir de leurs bases.

Proposition 1.5.5 Soient E un K—espace vectoriel de dimension finie n et Iy, Fy deux sous-espaces
vectoriels de E munis d’une base By = {e1, ..., e,} pour Fy et d’une base By = {f1,..., f;} pour Fs.
Les assertions suitvantes sont équivalentes
(a) Fy et Fy sont supplémentaires dans F,

E=F&FL.
(b) La famille B = {ey, ... ,ep, f1,..., f;} est une base de E.

Preuve.
1. Sens direct : (a) = (b). Supposons que E = F; @ F,, donc

E=F1+F2 et FlﬁFQZ{OE}.
e Engendrement de F,
Vect(B) = E.

On a tout x € E s’écrit x = x1 + x5 avec 11 € F et x5 € 5. Comme B engendre Fi et By engendre
F5, 'union B = By u Bs engendre E. Ainsi

Vect(B) =E.

e Indépendance linéaire. Soient oy, ..., a,, f1, ..., B, € K tels que

D q
Z%ei + Z Bifi = Og.
i=1 j=1

Posons

u = Zp:OzZEi € Fl,U = quﬁjfj € FQ.
i=1

j=1
Alors

U+U=OE:>U=—UEF1QFQ.

Par hypothese, F; n Fy = {Og}, donc u = v = Op. Ainsi, toutes les coordonnées «; et 3; sont nulles,
et B est libre. Donc B est une base de F.

Sens réciproque : (b) = (a). Supposons maintenant que B = By U By soit une base de E.

e Somme. Comme B engendre F,

E =Vect(B) = Vect(By u By) = Vect(By) + Vect(By) = Fy + Fs.

e Intersection nulle. Soit x € F; n Fy. Alors x s’exprime uniquement & partir de vecteurs de
By (puisque z € F}) et uniquement a partir de vecteurs de By (puisque z € Fy). L’unicité de la
représentation dans la base B impose x = 0. Ainsi,

F1 M F2 = {OE}
On a donc E = F| + F; et Fy n Fy, = {0g}, ce qui signifie
E=F&®F,.
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Théoréme 1.5.1 (Existence d’un supplémentaire en dimension finie) Soit (E,+,-) un
K—espace vectoriel de dimension n, alors

(a) Tout sous-espace vectoriel F' de E admet au moins un supplémentaire dans E.

(b) St dim(F') = p, alors tout supplémentaire de F' dans E est de dimension (n — p).

Remarque 1.5.4 L’existence d’un supplémentaire est également garantie en dimension infinie.

Exemple 1.5.3
1. Dans R3soit

E =R F = Vect{(1,0,0),(0,1,0)}.
On a dim(FE) = 3, dim(F) = 2. Selon le théoréme, le supplémentaire G doit avoir dim(G) =3 -2 =
1.
Construction du supplémentaire : On choisit un vecteur v qui n’appartient pas a F'. Par exemple
v=(0,0,1). Alors
G = Vect{v} = Vect{(0,0,1)}.

Vérification. Chaque vecteur v = (1, %9, x3) € R? s’écrit
xr = (x1,22,0) + (0,0,23) € F + G.
Intersection nulle : F n G = {Ogs}, car aucun vecteur non nul de F' n’est dans G. Par conséquent
R*=F®G.
2. Dans R*, soit
E =R* F = Vect{ey, e},

avec
e1 = (1,0,0,0),es = (0,1,0,0).

Il est clair que dim(E) = 4, dim(F) = 2. Un supplément G doit avoir dim(G) =4 — 2 = 2.
Construction du supplémentaire : On choisit deux vecteurs indépendants de F', par exemple

G = Vect{ez = (0,0,1,0),e4 = (0,0,0,1)}.
Vérification : Chaque vecteur x € R* s’écrit comme
r = aey + fey + ves + deg € F + G.

Intersection : F n G = {Ors} car aucun vecteur non nul de F n'est dans G. Par conséquent
R'=F®G.

3. Un sous-espace peut avoir plusieurs supplémentaires différents. Dans R®, F = Vect{(1,0,0)} a
par ezemple G = Vect{(0,1,0),(0,0,1)} ou G' = Vect{(1,1,0),(0,0,1)}. La dimension du supplé-
mentaire est toujours déterminée : dim(G) = dim(E) — dim(F).

Dans 'étude des sous-espaces vectoriels, il est souvent nécessaire de relier la dimension de la
somme de deux sous-espaces a celles de chacun d’eux, ainsi qu’a la dimension de leur intersection. La
formule de Grassmann, également appelée formule des quatre dimensions, établit ce lien de maniere
simple et élégante. Cette formule tient compte du « double comptage » des vecteurs appartenant
simultanément aux deux sous-espaces et permet de calculer efficacement la dimension de leur somme.
Elle constitue un outil fondamental en algebre linéaire.
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Théoréme 1.5.2 (Dimension d’une somme de sous-espaces vectoriels, formule de Grass-
mann)
Soient E un K-espace vectoriel de dimension finie, Fy et Fy des sous-espaces vectoriels de E. Alors

d%m(Fl + Fy) = d%m (F1) + d%{m (Fy) — d%n(Fl N Fy).
En particulier, si Fy et Fy sont en somme directe (F1 ® Fy), on a
d%(m(Fl OF) = d%m (F1) + d%{m (Fy) .

Ainsi, la formule de Grassmann exprime que la dimension de la somme F| + Fy est égale a la somme
des dimensions de Fy et Fy, diminuée de la dimension de leur intersection F} n Fy.

Proposition 1.5.6 (Caractérisation de la supplémentarité en dimension finie)
Soient E un K-espace vectoriel de dimension finie, Fy et Fy des sous-espaces vectoriels de E. Alors

Fl M F2 = {OE}
FE = Fl (‘BFQ < et
dim(E) = dim(F}) + dim(Fy).

De maniere équivalente

E=F + F
E = F1 @ FQ <~ et
dim(£) = dim(F) + dim(Fy).

Remarque 1.5.5 Ces formulations montrent que, pour que deux sous-espaces soient supplémen-
taires :

(a) Leur intersection doit étre réduite au vecteur nul,

(b) La somme de leurs dimensions doit égaler celle de l’espace entier,

(c) Ou, de fagon équivalente, leur somme doit engendrer tout [’espace.
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Conclusion du chapitre

Ce chapitre a présenté les notions fondamentales des espaces vectoriels. Apres avoir introduit les
lois de composition et les sous-espaces vectoriels, il a développé les concepts de familles libres, liées,
génératrices et de bases. L’étude s’est ensuite concentrée sur les espaces vectoriels de dimension finie
et sur la notion de somme directe de sous-espaces.

Ces outils sont essentiels pour comprendre et manipuler les espaces vectoriels et trouvent des
applications en algebre linéaire, en géométrie et en analyse fonctionnelle. Les notions de base, de
dimension et de somme directe constituent des fondements indispensables pour I’étude ultérieure des
matrices et applications linéaires.
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Chapitre 2

Applications Linéaires

Dans ce chapitre, nous allons étudier les applications linéaires, une notion fondamentale de ’al-
gebre linéaire et tres utilisée en mathématiques comme en informatique. Une application linéaire est
une transformation entre espaces vectoriels qui conserve leur structure : elle respecte I'addition des
vecteurs et la multiplication par un scalaire.

Nous commencerons par définir ce qu’est une application linéaire et donnerons des exemples
simples. Nous verrons aussi des cas particuliers importants comme les endomorphismes, isomor-
phismes, automorphismes et formes linéaires. Ensuite, nous présenterons des applications particu-
lieres, telles que les projections, symétries, affinités et projecteurs, qui interviennent souvent dans la
modélisation et la résolution de problemes.

Nous étudierons ensuite les principales propriétés des applications linéaires, en particulier la pré-
servation des combinaisons linéaires, ainsi que l'importance des bases pour les déterminer. Nous
aborderons aussi les opérations possibles (somme, multiplication par un scalaire, composition, puis-
sances, nilpotence), qui montrent que 'ensemble des applications linéaires possede une structure
riche.

Une partie sera consacrée aux isomorphismes et au groupe linéaire, qui permettent d’identifier
des espaces de méme dimension comme étant équivalents du point de vue algébrique. Enfin, nous
introduirons des notions essentielles comme le noyau, 'image, la dimension, le rang et le théoréme
du rang, qui sont des outils puissants pour analyser les applications linéaires.

Ainsi, ce chapitre fournit les bases nécessaires pour comprendre et utiliser les transformations
linéaires, ouvrant la voie a de nombreuses applications en géométrie, en analyse, en informatique et
dans d’autres domaines scientifiques.

2.1 Définitions et premiers exemples

La structure d’espace vectoriel ne devient vraiment intéressante que si 'on introduit la notion
d’application linéaire. Il s’agit des applications entre espaces vectoriels qui, dans un sens que nous
allons préciser, «conservent la structure d’espace vectoriel».

Dans cette partie, (E, +,-) et (F, +, ) désignent deux espaces vectoriels définis sur un méme corps
(commutatif, en général K = R ou K = C). Ces espaces peuvent avoir des dimensions quelconques
(finies ou infinies), et pas nécessairement égales.

Définition 2.1.1 Soient (E,+,-) et (F,+,) deux espaces vectoriels sur un méme corps K.
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1. On appelle application linéaire (ou morphisme d’espaces vectoriels) de E dans F' toute application
[+ E— F qui vérifie les propriétés suivantes
(a) Conservation de l'addition des vecteurs

Vo,ye E: f(z +y) = f(x) + f(y).

(b) Conservation de la multiplication par un scalaire -
Vae K\VeeE: fla-x) =a- f(x).

Autrement dit, une application linéaire est une application qui préserve la structure d’un espace
vectoriel, c’est-a-dire qu’elle conserve 'addition des vecteurs et la multiplication par un scalaire.
2. On note Lx(FE, F) l'ensemble des applications linéaires de E dans F.

Certains types d’applications linéaires jouent un réle particulierement important. Nous en don-
nons ci-dessous les définitions.

Définition 2.1.2 (Cas particuliers)

Soient (E,+,-) et (F,+,-) deux K—espaces vectoriels et f : E — F une application linéaire. On
distingue plusieurs cas particuliers importants.

(1) Endomorphisme :

(a) Si E = F, on dit que [ est un endomorphisme de E. Autrement dit, il s’agit d’une application
linéaire qui envoie l’espace sur lui-méme.

(b) L’ensemble de tous les endomorphismes de E est noté Endg(E).

(2) Isomorphisme :

(a) Si f est bijective, alors on dit que f est un isomorphisme d’espaces vectoriels.

(b) Dans ce cas, E et F sont dits isomorphes, ce qui signifie qu’ils ont la méme dimension et la
méme structure algébrique. On note alors

E~x~F.

En pratique, un isomorphisme permet de considérer deuz espaces différents comme étant «essentiel-
lement les mémes».

(c) L’ensemble de tous les isomorphismes de E dans F est noté Isox(E, IF).

3. Automorphisme.

(a) Si f est a la fois un endomorphisme de E et un isomorphisme (c’est-a-dire bijectif), alors f est
un automorphisme de E.

(b) Un automorphisme est donc une application linéaire bijective de E dans lui-méme.

(c) L’ensemble de tous les automorphismes de E est noté Autg(E).

4. Forme linéaire.

(a) Si F =K, alors une application linéaire f : E —> K est appelée une forme linéaire sur E.

(b) L’ensemble de toutes les formes linéaires sur E est noté Lx(FE,K).

(c) Cet ensemble est un espace vectoriel lui-méme, appelé l’espace dual de E, et noté en général E*.
On a donc

E* = Lx(E,K).

Exemple 2.1.1 (Exemples classiques d’applications linéaires (et non linéaires))
Les applications linéaires sont trés nombreuses. Voici quelques exemples significatifs.
1. Identité. Pour tout K—espace vectoriel (E,+,-), Uapplication identité Idg de E est un automor-
phisme de E (linéaire, bijective, inverse égale d elle-méme).
2. L’application
f:R3 — R2
(x1,m0,23) — f(21,%2,23) = (221 + T2, T2 — T3),
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est linéaire sur R. En effet, si x = (x1,x2,23), y = (Y1,Y2,Y3), et A€ R, alors on a
fle+y) = flzr+y, 22 +yo, 23 +y3) = 2(z1 + y1) + (22 + 92), (22 + v2) — (23 + y3))

= (221 + 22) + (2y1 + v2), (w2 — 23) + (y2 — ¥3)) = f(2) + f(v),
et

FfO-2) = f(Ax1, Az, Aws) = (2Ax1 + Az, Ay — Ax3) = A - (221 + @9, k9 — x3) = X - f(2).

Ainsi, f est bien une application linéaire.

Comme on peut s’en rendre compte par cet exemple, la linéarité de f tient au fait que les composantes
x; dans lespace d’arrivée (ici R?) apparaissent toutes d la puissance 1 : plus précisément chaque
composante dans [’espace d’arrivée est un polynome homogene de degré 1 en les x;. Nous verrons cela
d’une maniére plus précise dans la suite. Ainsi, par exemple, application

h:R3 — R2
)
) ) ) - 1 ) )
(x1,29,23) —> h(x1,29,23) = (2] — T2, T2 + T3)

n'est pas linéaire (ni a), ni b) de la définition ne sont satisfaites a cause du terme au carré.
3. Dérivation sur les polynomes. L’application

fR3[X] — Ry[X]
P [(P)=P

est une application linéaire sur R.
4. L’application
f:R? — C
(ZL‘,y) — f(fl‘,y)zl'-i-’iy,
est un isomorphisme sur R de R? dans C. En effet :
(a) Linéarité sur R. Soient (x1,y1), (12, 72) € R? et A € R. Alors

f(w, 1) + (w2,92)) = f(z1 + 22,51 +42) = (21 +22) +i(y1 +32) = f(@1,91) + f(22,92),

et
FOV-(z,90)) = f(Am, Adyn) = Azy + iy = A= (21 +iy1) = A fzn, ).

Donc f est linéaire sur R.
(b) Injectivité. Si f(x,y) = Oc, alors x + iy =0, ce qui implique x = 0 et y = 0. Donc

ker(f) = {(0,0)},

et f est injective.
(¢) Surjectivité. Tout nombre complexe z € C s’écrit z = a + ib avec a,b € R. Or z = f(a,b). Donc
f est surjective.
L’application f est linéaire, bijective, et donc un isomorphisme réel entre R? et C.
5. Linéarité de l'opérateur de dérivation sur un intervalle. Pour tout intervalle non vide I
de R, l'application

f:DU,R) — F(I,R)

g — f(g9) =g (dérivée de g),

est linéaire sur R telle que D(I,R) désigne le R—espace vectoriel des applications de I dans R
dérivables sur 1. En effet,
Soient g1,g92 € D(I,R) et Ae R. On a

flor+92) = (1 + 92) = g1 + 95 = f(g1) + fg2),
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et
f-g1) = (Ag1) = Agy = X f(g1).

Ainsi, f est linéaire sur R.
6. Linéarité de lopérateur d’intégration (forme linéaire). Pour tout intervalle non vide
[a,b] de R, Uapplication

f:C(la,b],R) — R

g — flg) = Sg(x)dx,

est une forme linéaire sur R telle que C(I,R) désigne le R—espace vectoriel des applications de 1

dans R continues sur I. En effet,
Soient g1, g2 € C([a,b] ,R) et A e R. Alors

b b

m@ﬂx+fgﬂ@¢w=ﬂm%+ﬂ@%

a

b

(m@ﬁ+m@%dw=J

a

f(91+92)zf

a

et
b b
ﬂxgn=fAmqu:y[mqu=Af@a

Ainsi, f est une forme linéaire sur l’espace vectoriel C([a,b],R).
7. L’application
f:R? — R?
(l’,y) — f(x7y):(y27x_y73x+2y)7

n’est pas linéaire sur R car
f<2 ’ (07 1)) = .f (072) = (47 _274) :+: (27 _2?4) =2 f(07 1)

8. Les applications suivantes
g:R — R
x > gi(z) = sin(x),

et
QQZR — R

r > go(z) = exp(x),
ne sont pas linéaires sur R. En effet, en général on a

sin(x + y) + sin(x) + sin(y) et exp(z + y) + exp(x) + exp(y),

tels que x,y € R. Donc les propriétés de linéarité ne sont pas vérifiées.

Proposition 2.1.1 (Caractérisation des applications linéaires)
Soient (E,+,-) et (F,+,") deur K—espaces vectoriels et f : E —> F une application. Alors [ est
une application linéaire sur K si et seulement si elle préserve les combinaisons linéaires, c’est-a-dire

VOé,/BEK,VZE,yEEIf(OZ'ZE—Fﬁ'y) :Oéf(x)_‘_/ﬁf(y)
Autrement dit, l'image par f d’une combinaison linéaire de vecteurs est égale da la combinaison linéaire

(avec les mémes coefficients) de leurs images.

Preuve.
1. Supposons que f soit une application linéaire. Soient z, y deux vecteurs de E et «, 8 deux scalaires
de K. Par définition de la linéarité, on a

flarz+p-y)=fla-z)+ f(B-y)=a flx)+ 5 fly)
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2. Réciproquement, Supposons maintenant que f vérifie la propriété précédente.
e En prenant a = 3 = 1 et (z,y) € E?, on obtient

flx+y)=flx 2+ 1k y) =l f(x) + 1 f(y) = f(2) + fy),
car
L f(z) = f(z) et 1k - f(y) = f(y).
ce qui montre que f respecte 'addition.

e En prenant 5 = Ok, on a

fla-z+0g-y) =a-f(z) +0x- fly) =a- f(z)+0p=a- f(z),
car Og - f(y) = Op. Or, puisque Og -y = O,
fla-z+0g) = fla ).
On a ainsi montré que

fla-z) =a-f(x).

Ce qui montre que f respecte la multiplication par un scalaire. Ainsi, f est bien une application
linéaire. L]

2.2 Applications linéaires particulieres

Les applications linéaires particulieres sont des relations importantes qui respectent la structure
des espaces vectoriels. Elles incluent, par exemple, 'inclusion canonique, les projections, les symétries,
les affinités et les projecteurs. Nous présentons maintenant quelques-unes de ces applications linéaires,
ainsi que leurs principales propriétés.

Définition 2.2.1 (Inclusion canonique)
Soient E un K—espace vectoriel, F' un sous-espace vectoriel de E. On définit l'inclusion (ou injection
canonique) par

irp:F — E

x — ip(x) =z,
Autrement dit, chaque vecteur de F est envoyé sur lui-méme, mais vu comme élément de E. Donc
i est bien une application linéaire injective.

Définition 2.2.2 (Projection canonique) Soient n € N*, E,, ..., E, des K—espaces vectoriels.
Pour chaque i € {1,...,n}, on définit la i—éme projection canonique, notée pr;, par

pri: By x---x E, — FE;
(X1, ..., Ty) — pri(x, .., T,) = T,

Autrement dit, la projection canonique pr; extrait simplement la i—éme composante d’un n—uplet.
Donc pr; est bien une application linéaire. Par exemple, pour n = 2

pri: By x By — By, (21, 22) —> 1,

pro: By x By — Ey, (7517%) = Z>.
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Proposition 2.2.1 Pour chaque i € {1,...,n}, la i—éme projection canonique
pri: By x -+ x B, — E;,

est une application linéaire.

Preuve. Soient u = (uy,...,u,) et v = (vy,...,v,) des éléments de E; x --- x F, et o € K. Alors
(i). Pour l'additivité,

pri(u+v) = pri(uy + v, ... Uy + V) = u; + v; = pri(u) + pri(v).
(ii) Pour ’homogénéité,
pri(a-u) = pri(au, ..., qu,) = a-u; = o - pri(u).

Ainsi, la projection canonique vérifie les deux propriétés de linéarité. Donc pr; est bien une application
linéaire. ]

Définition 2.2.3 (Symétrie par rapport ¢ un sous-espace vectoriel)
Soient E un K-espace vectoriel, F' et G deux sous-espaces vectoriels supplémentaires dans E (E =
Fa®Qq).
(a) On appelle symétrie par rapport a F parallélement a G, (ou de direction G), Uapplication sp
définie par,

Sp . E — B

r=zxp+zg > Sp(r)=1aF— 20

(b) De méme, on appelle symétrie par rapport 4 G parallélement a F, (ou de direction F'), l'applica-
tion sq définie par,

Ll E — F

r=xp+1g —> Sg(r)=16— TP

Proposition 2.2.2 Les applications sp et sg sont des endomorphismes de E.

Preuve.
1. Cas de sp.
(i) sp est bien définie. La définition de sp(z) fait intervenir la décomposition z = zp + 5. Comme
la somme est directe, cette décomposition est unique ; donc xr et g sont bien déterminés par z. Par
conséquent sg(z) est bien définie (ne dépend pas d’un choix).
(ii) Linéarité de sp. Soient © = xp + x5 et y = yp + yg avec rp,yr € F, x5, yc € G, et soit A € K.
Alors

sp(x+y) = (ar +yr) — (26 + ya) = (2r —26¢) + (yr — yc) = sr(x) + sp(y).

et
sSp(A-x) = Axp — Avg = AMzrp —xg) = A - sp(z).

Ainsi sy est linéaire.

(iii) Endomorphisme. Par construction sp(z) = rr — z¢ appartient & E pour tout E. Donc sp est
une application linéaire de F dans F, autrement dit un endomorphisme.

2. Cas de sg. On peut répéter les mémes étapes pour s, ou observer la relation simple

sa(r) =x¢ —xp = —(xp — 2g) = —sp(x).
Comme sp est linéaire, s 'est aussi. Cela achéve la preuve. ]
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Définition 2.2.4 (Affinité)

Soient E un K-espace vectoriel, F' un sous-espace vectoriel de E, G un supplémentaire de F' dans E
(c’est-a-dire E = F @ G ). Fizons un scalaire A € K.

1. On appelle affinité de base F, de direction G et de rapport X, application u définie par,

uw: FE=F®G — F

r=zp+zg +— ulz)=2xpr+ N\2g.

ouxp € F et vg € G désignent les composantes de x dans la décomposition directe E = F @ G.
2. L’application u vérifie :

SiA=1, alors u = Idg.

Si A =0, alors u est la projection sur F de direction G.

Si A = —1, alors u est la symétrie par rapport a F de direction G.

Si pr est la projection sur F parallélement a G, alors on a

u=Mdg+ (1—Npp.
Proposition 2.2.3 L’application u d’affinité est endomorphisme de E.

Preuve.
(i) u est bien définie. Pour tout = € F, la décomposition z = xp + x5 est unique car £ = F ® G.
Les composantes x et x¢ sont donc bien déterminées par x. L’expression u(x) = xp + Azg est donc
bien définie (ne dépend pas d’un choix).
(ii) Linéarité de u. Soient x,y € E et écrivons leurs décompositions uniques

r=1rp+20,y=yYr+Yyc (Tr,yr € Fiza,yc € G).
Alors,

r+y=(rr+yr)+ (e +ya),

avec xp + yr € F' et x¢ + yg € G. Par définition de u,

wz+y) = (rr+yr) + Mzeg +ye) = (xr + A\xg) + (yr + M\yg) = u(x) + u(y).

Soit «v € K, en écrivant
a- -z = (azrp) + (axg),

ou arp € F et axg € GG, on obtient
ula-x) =azxp + Mazg) = a- (vrp + A\xg) = a - u(zx).

Ainsi, u respecte 'addition et la multiplication par un scalaire, donc u est linéaire. De plus, par
définition u(x) € E pour tout x € E. Donc u est un endomorphisme de E. N

Définition 2.2.5 (Projecteurs)
Soient & un K—espace vectoriel, F,G deux sous-espaces vectoriels supplémentaires dans E, c’est-a-
dire E = F'® G, alors tout vecteur x € E s’écrit d’une maniére unique sous la forme

r=xp+xg,2p € F xge(.
1. Projecteur sur F parallélement a G. L’application

p: B — F
r=2xp+xrg +—— p1($)=$F7
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est appelée le projecteur sur F parallélement a G.
2. Projecteur sur G parallélement a F'. L’application

P B — F
r=xp+xrg +—— p2($)=$G;

est appelée le projecteur sur G paralléelement a F'.
3. On a les relations fondamentales

pt+p=Idg , pi=p1 , p5=np2
Proposition 2.2.4 Les applications p; et ps sont des endomorphismes de E.

Preuve. Soient x,y € E et A € K. On peut écrire

T =2 +2xg,Y=Yr +Ya,

avec rp,yr € F et xg,yq € G. Alors

r+y=(rp+yr)+ (xc +Yc),
ou
xp+yre Fxg+yeeG.

Par définition de pq,
pi(x+y)=xp +yr =pi(z) +p1(y).

De méme,
p(A-x) =p1(Axp + Axg) = Axp = A - pi(x).

Ainsi p; est linéaire, donc un endomorphisme de E. Le méme raisonnement s’applique a ps. ]

2.3 Propriétés fondamentales

Les applications linéaires possedent des propriétés fondamentales qui montrent qu’elles conservent
la structure des espaces vectoriels. Elles préservent notamment ’addition des vecteurs, la multipli-
cation par un scalaire, I’élément neutre et les opposés. Nous verrons aussi un résultat important :
la détermination d’une application linéaire. Il explique qu’il suffit de connaitre I'image des vecteurs
d’une base pour connaitre toute ’application linéaire.

Proposition 2.3.1 (Propriétés)

Toute application linéaire f € Lx(E, F) est un morphisme de groupes additifs entre les groupes (E, +)
et (F,+), donc

1. Conservation de l’élément neutre.

f(0g) = Op.

2. Conservation des opposés.
Vee E: f(—z) = —f(x).
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Preuve.
1. Conservation de I’élément neutre. Soit x € E. Comme Og est ’élément neutre de E, on a

r=x+0g.

En appliquant f des deux cotés
f(x) = f(z + 0p).
Or, par linéarité
f(x+0g) = f(z) + f(0r).

Donc

f(z) = f(z) + f(0p).
En simplifiant par f(x) dans le groupe additif (F, +), il vient

f(0r) = 0F.

2. Conservation des opposés. Soit x € E. Par définition de 'opposé, on a

x + (—l’) = OE

En appliquant f
f(x+ (=) = f(0r).
Par linéarité

fl@+ (=) = f(z) + f(—=).
D’apres (1), on sait que f(0g) = 0r. Donc

Ainsi
[]

Proposition 2.3.2 Soient (E,+,-) et (F,+,-) deur K—espaces vectoriels, f € Lx(E, F'). Alors, pour
tout entier n € N*, pour tous scalaires A, Ao, ..., A\, € K et tous vecteurs x1,xo,...,x, € E, on a

Fums + Xoza + oo+ M) = (ZM;%) = Auf(@1) + Aef(x2) + o+ Anf(2n) Z)\kf ).
k=1

En d’autres termes, toute application linéaire préserve les combinaisons linéaires.

Preuve. Pour tout n € N*  on note P(n) la propriété suivante
P(n) : fzr+dgxa+- -+ A1) = (Z )\kxk> = M f (1) + Ao f(22) -+ M f(20) Z)\kf k),
k=1

ou A, ..., \, eKetxy,...,x, € E. Montrons par récurrence sur n € N* la propriété P(n).
e Pourn=1,ona

fAry) = A f(z1),
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ce qui est vrai par la linéarité de f. Donc P(1) est vérifiée.
e Supposons que P(n) soit vraie pour un certain n € N*| ¢’est-a-dire

f <Zn: /\k$k> = z”: Aef (@)

Montrons que P(n + 1) est vraie. On a

n+1 n
f <Z )\k$k> =f <(Z )\k$k> + )\n+11’n+1> .
k=1 k=1

n+1 n
f (Z )\kiﬁk> =f (Z )\k;xk:> + f(Ans1Tn41)-
k=1 k=1

En utilisant ’hypothese de récurrence et la linéarité

Par la linéarité de f

n+1

f (Z Ak%) = Z Mef (@) + A1 f(2ps1) = 2 e f (k).
=1 =1

k=1

Donc P(n+1) est vérifiée. Par le principe de récurrence, la propriété P(n) est vraie pour tout n € N*.

0

L’application linéaire f préserve les combinaisons linéaires, ce qui est une propriété essentielle des
applications linéaires entre espaces vectoriels. Cela signifie que I'image d’'une combinaison linéaire de
vecteurs est la combinaison linéaire des images de ces vecteurs. La proposition suivante permet de
comprendre qu'une application linéaire définie entre un espace vectoriel de dimension n et un autre
espace vectoriel est entierement déterminée par I'image d’une base.

Proposition 2.3.3 (Détermination d’une application linéaire) Soit E un K—espace vectoriel
de dimension n, F' un K—espace vectoriel. On suppose que

(H1) B ={e1,...,e,} est une base de E.

(Ha) F ={wy1,...,Yn} est une famille de vecteurs de F'.

Alors,

1. Existence et unicité : Il existe une et une seule application linéaire

u: B — F,
telle que
Vie{l,...,n}:u(e;) =y (2.1)
2. Formule explicite. Pour tout vecteur x € E ayant pour coordonnées (A1,...,\,) € K" dans la

base B, c’est-a-dire

n
r = > Aeex,
k=1

on a

u(z) = 2 AUk
k=1

En particulier, une application linéaire est enticrement déterminée par les images des vecteurs d’une
base de l’espace de départ.
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Preuve.
1. (a) Unicité. Soit v: E —> F une autre application linéaire vérifiant (2.1)). Prouvons que u = v.
Soit z € E. Comme B est une base de F, il existe des scalaires uniques aq, ..., a, € K tels que
n
r = Z A€
k=1

Par linéarité, on a
et de méme,

Par conséquent, u(x) = v(x) pour tout x € E, ce qui entraine u = v.
(b) Existence. On construit une application u : E — F' de la maniére suivante : pour z € E,
écrivons (par décomposition unique dans la base B)

T =) \eex,
k=1
et posons
T) = Z Ak Yk-
k=1

Il faut vérifier que u est bien définie et linéaire, et qu’elle satisfait (2.1]).
(i) Bien-définie. La décomposition de = dans la base B est unique, donc les scalaires \;, sont uniques;

I’expression
n
Z )\kykv
k=1

ne dépend pas d’un choix et u(x) est bien définie.
(ii) Linéarité. Soient

n n
x=Z)\kekeE,x’=Z)\§cekeE,
k=1 k=1

et a, 5 € K. Alors

n

ar + fa’ = Z(oz)\k + BNp)erk,

k=1
d’ou

u(ax + Ba')

i M:

Oé)\k + BNy = o (Z Aka) +0- (Z )‘kyk> = o ufz) + - u(’).
k=1

Ainsi, u est bien linéaire.
(iii) Valeurs sur la base. Un vecteur de la base, disons e;, peut lui aussi s’écrire comme une
combinaison linéaire des vecteurs de la base B = {ey,...,e,}. En effet

ei=OK'61+0K-62+-~+1K‘ei+-~~+OK‘en.

Cela signifie que les coefficients \; sont tous nuls sauf le i*™, qui vaut 1g. En utilisant le symbole
de Kronecker 6; (qui vaut 1k si k = ¢ et Ok sinon), on écrit

n
€ = Z 5ki6k~
k=1
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Par définition de u, pour chaque 1,

U(Gz‘) =Uu (i 5ki€k> = i Okillk-
k=1 k=1

Puisque tous les dy; sont nuls sauf pour k = i, la somme garde seulement le terme y;, ainsi

u(e;) = ;.

Donc u existe et satisfait les conditions demandées.
2. Formule explicite. Par construction méme de u, si

T = Z e € F,
k=1
alors .
k=1
Cela acheve la preuve de I'existence, de I'unicité et de la formule explicite. O]

Remarque 2.3.1 (Conséquences importantes). Ce résultat montre que la connaissance de
l'image d’une base suffit a déterminer complétement une application linéaire. Autrement dit, une
application linéaire est enticrement caractérisée par les images des vecteurs d’une base de [’espace de
départ. Cette caractérisation a deuzr conséquences essentielles :

(a) elle offre une définition équivalente, souvent plus pratique, des applications linéaires ;

(b) elle constitue un outil de construction simple : il suffit de fizer une base de l'espace de départ
et de choisir arbitrairement une famille de vecteurs dans l’espace d’arrivée pour obtenir, de maniére
unique, une application linéaire associée.

Ce résultat met ainsi en évidence le role fondamental des bases dans l'étude et la construction des
applications linéaires.

Exemple 2.3.1
1. Soit E = R? et F = R?, avec la base canonique B = {e; = (1,0),e3 = (0,1)}. On définit

fler) = (2,1), f(e2) = (0,—1).

Alors pour tout (z,y) € R?,

f@,y) = fzer +yes) = xf(er) + yf(e2) = 27, 2 —y).

Alors
f: R — R?
(z,y) — [flz,y) =2z, z-y).
Donc [ est complétement déterminée par ses valeurs sur ey et es.
2. Soit E = Ry X| l'espace des polynémes réels de degré < 2 avec la base canonique B = {1, X, X?},
et F' = Ry[X]. On définit
f(1) =0, f(X) =1, f(X?) = 2X.

Alors pour tout P = a + bX + cX? € Ry[ X],
f(P) = fla+bX +cX?) =af(1) +bf(X) + cf(X?) = b+ 2cX.
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On obtient
f . RQ[X] — RQ[X]
P=a+bX +cX? — f(P)=0b+2cX.

3. Soit E=TR3, F =R, et B = {ey,es,e3} la base canonique. On définit

fler) =1, f(e2) = 0, f(e3) = —1.

Alors pour tout (z,vy,2) € R®, on a

f(xhy?Z) :x'f(61>+y'f(€2)+2'f(63) =xr—Z.
C’est une forme linéaire déterminée uniquement par ses valeurs sur la base. Alors

f:R® — R
(x,y,2) — f(z,y,2) =2— 2.

2.4 Opérations sur les applications linéaires

Une fois la notion d’application linéaire introduite, il est naturel de s’intéresser aux opérations
que l'on peut définir sur ’ensemble de toutes les applications linéaires entre deux espaces vectoriels.
Cet ensemble posseéde une structure particuliecrement riche : d’une part, il forme un espace vectoriel

) )
puisque 'on peut additionner deux applications linéaires et les multiplier par des scalaires; d’autre
part, il est stable par composition, ce qui confere une structure encore plus puissante dans le cas
des endomorphismes. Ainsi, I’étude de ces opérations permet non seulement de manipuler les appli-

)
cations linéaires comme des objets algébriques, mais aussi de préparer le terrain pour des notions
fondamentales en algebre linéaire telles que la représentation matricielle, la diagonalisation et les
endomorphismes.

2.4.1 Somme et multiplication par un scalaire

Définition 2.4.1 (Proposition) Soient E et F' deux espaces vectoriels sur un corps K.
1. Somme d’applications linéaires. Si f,g € Lx(E, F), on définit leur somme f + g par

Vee B (f +9)(z) = f(z)+ g(x).
2. Multiplication par un scalaire. Si f € Lx(FE,F) et A € K, on définit lapplication X - f par
Vee E: (A f)(x) =X f(z).

Alors f + g€ Lx(E, F), - f € Lx(E, F), c’est-a-dire que la somme et la multiplication par un sca-
laire d’applications linéaires sont encore des applications linéaires. En particulier, toute combinaison
linéaire de deux applications linéaires définies sur les mémes espaces vectoriels est une application
linéaire

VAN ueK\Vfge Ly(E,F): N f+pun-ge Lx(E,F).

Preuve.
1. Linéarité de la somme f + g. Soient f,g€ Lx(E, F) et z,y € E.
(a) Pour 'additivité, on a

(f+9)x+y) = flx+y) +g(xz+y)=f(r)+ fy) +9(r) + g(y) (par linéarité de f et g)
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= (f(@) +9(x) + (f(y) + 9() = (f + 9)(@) + (f + 9)(v)-
(b) Pour ’homogénéité. Si A € K alors
(f+9)A-z) = fh-2) +g(A- ),
= Af(x) + Ag(x), (par linéarité de f et g)
=X (f(@) +9(2)) = A-(f +9)().
Ainsi, f + g est linéaire.

2. Linéarité du multiple scalaire \- f. Soit f e Lx(E, F) et A e K.
(a) Pour 'additivité, on a

A-Nx+y) =A-flz+y) =X (f(x)+ f(y)) (par lindarité de f)
=X fl@)+ A fly) = flx) + (A )

(b) Pour 'homogénéité, si a € K, alors
A flax) =X flax) = X (- f(x)) (par linéarité de f)
=a-(A-fx)) =a-(A-f)@).

Ainsi, A - f est linéaire.
3. Combinaison linéaire. Soient f,g € Lx(E, F) et A\, u € K. Comme (A\f) et (ug) sont linéaires,
et que la somme de deux applications linéaires est linéaire, on a

M+ pg e Lx(E, F).
Vérification directe, pour tous xz,y € F et «, 5 € K,

(A + ug)(ax + By) = Af(ax + By) + pg(az + By),

= Maf(z) + B8f(y)) + plag(x) + Bg(y)),
= a(Af(x) + pg()) + B () + ng(y)),
= a(Af + pg)(x) + BOAS + ng)(y).
Donc (Af + pg) est bien linéaire. O

Corollaire 2.4.1 Soient E et F' deux espaces vectoriels sur le corps K. L’ensemble (Lx(E, F), +,-)
des applications linéaires de E vers F', muni de ['addition et de la multiplication par un scalaire
définies pour tout x € E par

(f+9)(z) = f(x) + g(2),
et
(A f)lx) =A- f(2),

est un K-espace vectoriel.

Preuve. Nous vérifions les axiomes d’'un espace vectoriel (les égalités sont vérifiées en évaluant en
un vecteur arbitraire x € E et en utilisant les axiomes de l'espace F).

1. Fermeture par addition et multiplication scalaire. D’apres la définition , ona Lg(E,F)
est stable par addition et stable par multiplication par un scalaire.

2. Commutativité de ’addition. Soient f,g € Lx(F, F'). Pour tout = € E,

(f +9)(x) = f(z) + g(x) = g(z) + fz) = (g + f)(x).
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Donc
f+9=9+1T
3. Associativité de ’addition. Soient f,g,h € Lx(F,F). Pour tout = € E,
[(f +9) +h](x) = (f + 9)(x) + h(z) = (f(z) + g(x)) + h(z) = f(2) + (9 + h)(z) = [ + (9 + h)]().
Donc
(f+9)+h=Ff+(g+h)

4. Elément neutre pour I’addition. L’application nulle 0 : E — F définie par 0(z) = 0 pour
tout x € E est linéaire et vérifie

(f +0)(z) = f(z) +0(z) = f(x) + 0F = f(z).
Donc f + 0 = f pour tout f € Lx(E, F). Ainsi 0 est I’élément neutre pour I’addition.
5. Tout élément a un opposé. Soit f € Lx(E, F'). Définissons 1'application
—f.F—F,

par pour tout z € F,

Alors — f est linéaire et

(f + (=) = f(z) + (=f)(z) = f(z) = f(z) = Op = O(x).
Donc
f+(=f)=0.
6. Distributivité de la multiplication par rapport a I’addition des vecteurs. Soient A € K
et f,g€ Lx(FE, F). Pour tout x € E,

A+ 9)(@) = Af +9)(@) = A(f(2) + g(z)) = Af(2) + Ag(z) = (Af)(z) + (Ag)(z) = (Af + Ag) ().
Donc

Af+9) = A+ Xg.
7. Distributivité de la multiplication par rapport a I’addition des scalaires. Soient \, 4 € K
et fe Lx(F,F). Pour tout z € E,

(A )x) = A+ p)flz) = Af (@) +p1f () = M) (@) + (wf) (@) = (A + 1) f) (@) = (A + pf) (2).
Donc

A+ p)f =X +uf
8. Compatibilité de la multiplication avec la multiplication dans K. Soient A\, € K et
f e Lx(E,F). Pour tout z € E,

(M) () = M) f (@) = Apf (x)) = M(wf)(2)) = (A(pf))(2).
Donc
(M) f = A(pf).
9. Elément neutre pour la multiplication par un scalaire. Soit f € Lx(FE, F'). Pour tout = € F,
(k- f)(@) = 1k - f(z) = f(2).
Donc
Ig-f=Ff.

Tous les axiomes étant vérifiés, Lk (E, F') est bien un K-espace vectoriel. ]

Proposition 2.4.1 Si E et F sont de dimensions finies, avec dim(E) = n et dim(F) = m, alors
Lx(E, F) est de dimension finie et

dim (Lx(E, F)) = m.n.
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2.4.2 Composition des applications linéaires

La composition des applications linéaires est un moyen de combiner deux applications linéaires
successives pour former une nouvelle application, tout en conservant les propriétés de linéarité. La
composition consiste a appliquer ces deux applications I'une apres l'autre, on commence par transfor-
mer un vecteur du premier espace a l’aide de la premiere application, puis on transforme le résultat
obtenu a l’aide de la seconde application pour arriver dans le troisieme espace.

Définition 2.4.2 (Composition des applications linéaires)
Soient E, F', et G trois espaces vectoriels sur un méme corps K. Sotent f : E — F etg: F — G
deux applications linéaires. La composition de f et g, notée go f, est application définie par

Vee E:(go f)(z) =g(f(z)).

Ainsi, on applique d’abord f au vecteur x, puis on applique g au résultat obtenu. Si
E L F 4 G

alors

gof E — G.

Exemple 2.4.1
1. (a) Soient les applications linéaires suivantes

f:R? — R?
(z,y) — flz,y) = (z +y,22,y — 1),

et
g:R¥ — R?

(%9) — g(x,y,Z):(JZ—y,y-i-Z).

Calculons la composition g o f : R? — R2. Alors

(9o N)zy) = g(f(z,y)

= glz+y22,y—x)
((z +y) — 22,2z + (y — 2))
(—7+y, z+y).
Ainst,
(go fz,y) = (—z+y, = +y)

(b) Calculons la composition fog:R> — R3. On a
(fog)x,y,2) = flg(z,y,2)) = fle—y, y+2) = (x—y) + (Y +2), 2z —y), (y+2) — (x—y)).
En simplifiant, on obtient

(fOQ)(I,’y,Z) = (.Z' + Z, 2z — 297 —T+ 2y + Z)

Ces deux compositions sont donc différentes (go f & fog) , ce qui illustre le fait général que la
composition d’applications linéaires n’est pas commutative.

Proposition 2.4.2 La composée d’applications linéaires compatibles est une application linéaire.
Autrement dit
Vf € L]K(E, F),Vg € L:K(F, G) :go f € £K<E, G)
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Preuve. Pour prouver que la composition de deux applications linéaires est une application linéaire,
nous devons démontrer qu’elle respecte les deux conditions de linéarité : 'additivité et I’homogénéité.
1. Additivité. Soient z,y e F

(gof)z+y) = g(flz+y))
= g(f(x)+ f(y)) (car f est linéaire)
= g(f(z)) +9(f(y)) (car g est linéaire)

2. Homogénéité. Soit Ae Ket x € F,

(o f)Az) = g(f(rz))
g(Af(x)) (car f est linéaire)
Ag(f(z)) (car g est linéaire)
— Mgo ).

Ainsi g o f est bien linéaire. ]

Proposition 2.4.3 (Compatibilité de la composition avec l'addition et la multiplication
par un scalaire) Soient E, F, et G trois espaces vectoriels sur un méme corps K.
(a) Distributivité a droite.

Vfi fo € Lx(E, F),Vg € Lx(F.G) : go (fi+ f2)) =go fitgo fo
(b) Distributivité a gauche.

VfeLe(E F)Vg1,92€ Lx(F,G) : (g1 +g2) o f =g1of+gaof.
(c) Compatibilité avec la multiplication par un scalaire.

VaeK,erEK(E,F),VgeﬁK(F,G):a-(gof)=(Oz-g)0f=gO(04'f).

Preuve.
1. Distributivité a droite. Soit z € E. Alors

(go(fi + f2))(@) g((fr + fo)())
gg 1(z) + fo(z)) (définition de la somme)
g

fi(z)) + g(fo(z)) (linéarité de g)
(g0 fi)(z) + (g0 f2)(x)
(go fi+go fo)(x).

Comme 1'égalité est vraie pour tout z € E, on en déduit

o(fit f2)=gofit+gofo
2. Distributivité a gauche. Soit x € E. Alors

(g1 +g2) o f)(z) = (91 +g2)(f(2))
= ¢1(f(z)) + g2(f(x)) (définition de la somme)
= (glof)(x)Jr(gQOf)( )
= (grof+gaof)(w)

Donc
(Gr+g)of=giof +gs0f.
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3. Compatibilité avec la multiplication par un scalaire. Soit « e Ket x € F. On a :

(algo f))(z) =

et également

Ainsi, on obtient

I
—~
Q
S
~—

(algo ))(x) = ag(f(z))

I
2
e
-
&

afgo f) = (ag)of=gol(af).

Toutes les propriétés sont donc démontrées.

O]

Une conséquence importante de la composition des applications linéaires est la notion de nil-
potence. Une application linéaire (ou un endomorphisme) est dite nilpotente lorsquune itération

suffisante de sa composition avec elle-méme conduit a I’application nulle.

Soit E' un K-espace vectoriel et soit f : E — F un endomorphisme de F. Pour tout entier k > 1,

on définit la puissance f* par

Définition 2.4.3
1. Application linéaire nilpotente. Un endomorphisme f de E est dit nilpotent si et seulement
s’il existe k € N* tel que

c’est-a-dire s’il existe k € N* tel que f*(x) = O pour tout x € E. Autrement dit un endomorphisme est

fr=foforof
|

k fois

fF =0,

dit nilpotent si sa composition avec elle-méme, répétée un certain nombre de fois, donne ’application

nulle.

2. Indice de nilpotence. Si [ est nilpotent, alors ’ensemble

{keN*: fF =0},

est une partie non vide de N*, donc admet un plus petit élément, noté v(f), et appelé indice de

nilpotence de f. On a

(a) Par définition de v(f), pour tout k € N*

(b) Pour tout k € N*

car

kE<uv(f)= f"+0.

k=v(f) = f"=0,

fk _ fkfv(f) o fv(f) - fk*v(f) 00 =0.

Remarque 2.4.1 Si ['espace E est de dimension finie, alors lindice de nilpotence d’un endomor-
phisme de E est nécessairement inférieur ou égal a dim (E).
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Exemple 2.4.2 On considere [’espace vectoriel
Rg[X] = {ao + CL1X + (ZQX2 + CL3X3 : Ao, a1, 09,03 € R},

formé des polynomes a coefficients réels de degré < 3. C’est un espace vectoriel de dimension 4. On
définit Uapplication linéaire
f . Rg[X:I — Rg[X:I
P f(P)=
ou P' désigne la dérivée usuelle de P. Alors f est nilpotente et son indice de nilpotence vaut
u(f) =4
En effet, pour tout P = ag + a1 X + ax X? + a3 X3 € R3[X], on a
f(P) = PW = ay + 205X + 3a3X?,
FA(P) = (fo £)(P) = [(f(P)) = f(PW) = P? =245 + 6a3 X
FPy=(fofof)(P ) (f2<P>> = f(P?) = P®) = 6as,
= f

FAP) = (Fofofof) (F3(P)) = f(P®) = PY =0,

Ainsi, [ est nilpotente d’indice v(f) = 4.
2. On définit l'application linéaire

fiR2 — R2
(z,y) — flz,y) = (y,0).

Alors, pour tout (z,y) € R?, on obtient

fxy) = (fo f)(z.y) = f(f(z,y) = f(y,0) = (0,0).
On en déduit que

f=0.
Donc f est une application linéaire nilpotente d’indice
o(f) = 2.

3. On définit l'application linéaire

g:R* — R?
(z,y) — g(z,y) = (~y,2).

Calculons les puissances successives de g. Tout d’abord, on a directement
9(z,y) = (-y, ).
En composant g avec lui-méme,
g*(2,y) = g (9(z,y)) = 9(~y,2) = (~z, ~y) = —(2,y),

ce qui montre que
¢* = —Idge.

On calcule ensuite
(. y) = g (¢*(x,y) = g(—z,—y) = (y,—2) = —g(z,y).
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d’ou
9’ =g
Par suite
4 o 3 _ _
g (z.y) = 9 (5 (x,9)) = gy, —2) = (z,y).

On retrouve donc
94 = IdRZ.

En composant g* et g on obtient
¢ =qgtog=1Idg20g=g.

Ainsi, pour tout (z,y) € R?,
9°(x,y) = g(z,y) = (~y, ).
Les puissances successives de g sont données par

9" =9, = —Idp2,g° = —g,9" = Idz,¢° = g.

La suite est donc périodique de période 4. Autrement dit, pour tout n € N,

(Idg> sin=0 mod (4),
g sin=1 mod (4),
g" = ( Justification par récurrence).
—Idg: sin=2 mod (4),
(—9 sin=3 mod (4).

En particulier, aucune puissance de g n’est ’application nulle, donc g n’est pas nilpotente.

2.5 Isomorphisme d’espaces vectoriels et groupe linéaire

Quand on étudie les espaces vectoriels, on cherche souvent a comparer leur structure. Deux espaces
peuvent paraitre différents, mais s’ils ont la méme dimension, ils possedent en réalité la méme « forme
algébrique» on dit alors qu’ils sont isomorphes. L’isomorphisme est donc une maniere d’identifier
deux espaces vectoriels de méme dimension et de les considérer comme équivalents.

Par ailleurs, si 'on regarde toutes les applications linéaires bijectives d’un espace vectoriel dans
lui-méme, on obtient un ensemble particulier qui est muni naturellement de la composition des appli-
cations. Cet ensemble forme ce qu’on appelle le groupe linéaire, qui rassemble toutes les applications
linéaires inversibles de I’espace et joue un role central en algebre et en géométrie.

Proposition 2.5.1 Soient E et F' deux espaces vectoriels sur le corps K, f € Lx(E, F). Si f est un
isomorphisme de E dans F, alors son inverse f~' : F — E est également un isomorphisme de F
dans E.

Preuve.
1. Existence de ’inverse. Comme f est un isomorphisme, elle est bijective (injective et surjective).
Par définition d'une application bijective, il existe une application inverse f=!: F — E telle que

flof=1Idg et fof'=Idp,

56



APPLICATIONS LINEAIRES

ou Idg et Idp sont les applications identités sur F et F.
2. Linéarité de f~!. Montrons que f~! est linéaire. Soient y;,y2 € F' et A\;, A\» € K. Comme f est
surjective, il existe x1, x5 € E tels que

flx) =y1 et f(z2) = 1o
Alors, par linéarité de f
My + Aoye = A f(x1) + Aaf(22) = fF( Mz + Aaxe).
En appliquant f~! des deux cotés
F 0wy + Aawe) = fFHF(Amy + Xaxa)) = Mizp + Aomo.
Or ;= f~'(y1) et w3 = f~(y2), donc
F7H 0y + Aaya) = Mf ) + Ao f (1),

ce qui prouve que f~! est linéaire. Puisque f~! est bijective et linéaire, c’est un isomorphisme de F'

dans F. ]

Définition 2.5.1 (Isomorphisme d’espaces vectoriels) Soient E et F deux espaces vectoriels
sur un méme corps K. On dit que E et F' sont isomorphes s’il existe une application linéaire bijective

f:E— F.
Une telle application f est appelée un isomorphisme de E sur F, et [’on note alors
ExF

Exemple 2.5.1
1. Isomorphisme entre R? et Ri[X]|. On considére les deuz espaces vectoriels sur R

]RQ = {($7y) ST,y € R}7R1[X] = {CL(] + alX 1 Qp,a1 € R}
On définit application f par

iR — Ry[X]
(ZL‘,y) — f(xay):x+yX'

(a) Vérification de la linéarité de f. Soient (x1,v1), (a2, 92) € R* et A € R, alors

J((@1,y1) + (22,92) = f(21 + 22,51 + y2) = (21 + 22) + (Y1 +12) X
= (v1 + 1 X) + (22 + 12 X) = f(w1,91) + f(22,92),

et
FOV-(z,y) = f(Az, Ay) = Ao+ Ay X = X f(x,y).

Ainsi, f est bien linéaire sur R.
(b) Vérification de la bijectivité.
(i) Injectivité : Si f(x,y) = 0, alors
r4+yX=0=014+0X = =0,y =0.
— ker(f) = {(0,0)}.
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donc f est injective.
(ii) Surjectivité : Tout polynome ag + a1 X € Ri[X], on a
flag,a1) = ap + a1 X.
o (ag,a) € R%. Donc f est surjective.
L application [ est linéaire et bijective, donc c’est un isomorphisme de R? sur Ri[X]. En d’autres

termes, les espaces R? et Ry[X] sont isomorphes.
2. Isomorphisme entre R? et C. On considére les espaces vectoriels sur R

R? = {(z,y) : v,y e R},C = {a +ib: a,be R},
On définit Uapplication f : R*> — C par

fx,y) =@ +iy.
(a) Vérification de la linéarité de f. Soient (x1,v1), (72,y2) € R? et A € R. Alors

f((@1,91) + (22,92)) = f(21 4+ 22,91 + y2) = (21 + 22) +i(y1 +y2) = fz1,01) + [(22,52).
et
F - (2,y) = FAz, Ay) = Az +idy = X- f(z,y).
Ainsi, f est linéaire.
(b) Vérification de la bijectivité.
(i) Injectivité. Si f(z,y) =0, alors

r+iy=0 = =0y =0.
— Ter(f) = {(0,0)}.

Donc f est injective.
(ii) Surjectivité. Pour tout z =a+ibe C, on a

fla,b) =a+ib = z.

Donc f est surjective.
L’application f est linéaire et bijective. Ainsi, f est un isomorphisme de R? sur C.

Proposition 2.5.2
1. Caractérisation des isomorphismes par la dimension. Soient E et F' deux espaces vecto-
riels sur un méme corps K, de dimension finie. Alors

E et F' sont isomorphes <= dim(F) = dim(F).

2. Isomorphisme avec K". Soit n € N*, tout espace vectoriel E de dimension finie n sur K est
isomorphe a K",
E ~ K"

Exemple 2.5.2
1. L’espace R? et l’espace des polynomes de degré < 2, Ro[ X, ont tous deur dimension 3. Donc ils

sont isomorphes
R3 a3 RQ [X]
<

3 (dim = 4) est isomorphe a R,
Rs[X] ~ R*.

2. L’espace R3[X] des polynomes de degré

Un isomorphisme explicite est

o Ry[X] . R*
ap + a1 X + ax X% + a3 X?® — (ag,a1,az,a3).
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Proposition 2.5.3 (Définition)
Soit E un espace vectoriel sur un corps K. L’ensemble

GL(E)={f:E— E: [ est linéaire et bijective},

muni de la composition o est un groupe, appelé groupe linéaire de E. En général, GL(E) n'est pas
commutatif (la composition d’applications ne commute pas en général).

Preuve. On vérifie les axiomes de groupe pour la loi o.
1. Stabilité pour loi interne. Si f,g € GL(FE), alors f et g sont linéaires et bijectives. La composée
go f est linéaire (composition d’applications linéaires) et bijective (composition de bijections). Ainsi
go f e GL(E).
2. Elément neutre. L’identité

ldg : E — F,

est linéaire et bijective, donc Idg € GL(FE); de plus, pour tout f € GL(E), on a
Idgpof=f=foldg.
3. Associativité. Pour toutes applications
fig,h: E— F,

on a
(hog)of=ho(gof).

En particulier, la composition est associative sur GL(FE).

4. Existence d’inverses. Si f € GL(FE), alors f est bijective; son inverse

f''E—EFE

est linéaire (inverse d’un isomorphisme linéaire) et bijective. Ainsi

[ e gL(E),
et
flof=1Idg=fof"
Les quatre axiomes étant satisfaits, (GL(F), o) est un groupe. O

2.6 Noyau, image d’une application linéaire

Dans I'étude des applications linéaires, deux notions fondamentales jouent un réle central pour
caractériser le fonctionnement d’une application : le noyau et I'image. Le noyau est I’ensemble des
vecteurs de ’espace de départ qui sont envoyés sur le vecteur nul. Il représente donc tous les vecteurs
annulés par 'application. L’image est I’ensemble des vecteurs de ’espace d’arrivée qui peuvent étre
obtenus a partir de vecteurs de I’espace de départ. Elle correspond a tous les résultats possibles de
I’application.

Définition 2.6.1 Soient (E,+,-) et (F,+,-) deux K—espaces vectoriels et f,e€ Lx(E, F) une appli-
cation linéaire. Alors
1. Noyau. On appelle noyau de f, noté ker(f), le sous-ensemble de E défini par

ker(f) = {v € E: f(z) = 0} = f ({0s}) < E.
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2. Image. On appelle image de f, et l'on note Im(f) ou encore f(F), le sous-ensemble de F' défini
par
Im(f)=f(F)={yeF,3zeE: f(z) =y} ={f(r)e F:xe E} c F.

Ainsi, limage de f regroupe ’ensemble des vecteurs de F' qui peuvent étre atteints par l'application
linéaire

Remarque 2.6.1

1. Interprétations équivalentes du mnoyau d’une application linéaire. Le noyau peut étre
vu de plusieurs maniéres équivalentes :

(a) Ensemble des vecteurs annulés par f. Le noyau est l’ensemble des vecteurs dont l'image par f
est le vecteur nul.

(b) Ensemble des solutions de l’équation f(x) = Op. Le noyau est l’ensemble des solutions de I’équa-
tion linéaire homogéne associée a f.

(¢) Ensemble des antécédents du vecteur nul. Le noyau est la préimage du singleton {Or} par f, notée
7 ({0r)).

2. Interprétations équivalentes de l’tmage d’une application linéaire. De la méme facon,
l’image peut étre interprétée de différentes manieres équivalentes :

(a) Ensemble des images des vecteurs de E. L’image est l’ensemble de tous les vecteurs y € F tels
qu’il existe x € E avec f(x) =y.

(b) Ensemble des valeurs prises par f. L’image regroupe toutes les valeurs que prend f(x) quand x
parcourt E.

(¢) Image directe de E par f. L’image correspond da l'image directe de ’espace E par f, notée f(F).
3. Noyau non vide. La linéarité de [ garantit que son moyau n’est jamais vide, car il contient
toujours au moins le vecteur nul Og, c’est-a-dire

Op € ker(f).

Exemple 2.6.1 Soit E = Ry[X]| lespace vectoriel des polyndmes réels de degré < 2. On définit
l'application linéaire
[ Ro[X] — R[X]
P — f(P) =P,

c’est-a-dire que f associe a chaque polynome son polynome dérivé.
1. Calcul du noyau : Soit P = ay + e, X + axX? e E. Alors

f(P) = Pl =ai + QCLQX.
Pour que P appartienne au noyau de f, il faut que f(P) = Ogpx]. Ceci équivaut d
ar =0 et ay=0.

Ainst,
ker(f) = {P =ap:ap € R} = Vect({P, = 1}),

c’est-a-dire l’ensemble des polynomes constants.
2. Calcul de l’'itmage : L’image est constituée de tous les polynomes qui peuvent s’écrire comme
f(P) pour un certain P € E. Or, on a vu que

f(P) = a1 + 2a,X,
qui est un polynome de degré < 1. Ainsi,
Im(f) = Ry[X],
c’est-a-dire [’ensemble des polynomes réels de degré < 1. Dans cet exemple, on a

ker(f) = R, I'm(f) = Ru[X].
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Proposition 2.6.1 (Image directe et réciproque d’un sous-espace vectoriel par une ap-
plication lineaire) Soient (E,+,-) et (F,+,-) deur K—espaces vectoriels et f,e Lx(E,F) une
application linéaire .

1. Pour tout sous-espace vectoriel Sy de E, l'image directe de Sy par f, notée f(S1) est un sous-espace
vectoriel de F'.  En particulier, limage Im(f) = f(FE) est un sous-espace vectoriel de F.

2. Pour tout sous-espace vectoriel Sy de F, l'image réciproque f~1(S3) de Sy par f est un sous-espace
vectoriel de E. En particulier, le noyau ker(f) de f est un sous-espace vectoriel de E.

Preuve.
1. Image directe. Soit S; un sous-espace vectoriel de E. Rappelons que

f(S1) ={f(z):xe S}

(i) Comme S est un sous-espace, O € S;. Par linéarité de f on a

f(OE) = 0F7
donc O € f(S1) et f(S1) est non vide.
(ii) Soient y1,y2 € f(S1) et o, € K. Par définition il existe x1,z5 € Sy tels que f(z1) = y; et
f(x2) = yo. Par linéarité de f on obtient
ayr + By2 = af(x1) + Bf(22) = flazs + Bxs).

Comme S, est stable par combinaison linéaire, ax; + S5 € S;. Par conséquent

ayr + By € f(S1).

Ainsi f(S) est stable par combinaisons linéaires et contiendra le vecteur nul; c¢’est donc un sous-
espace vectoriel de F'.
En prenant

Sl = Ea
on déduit que Im(f) = f(F) est un sous-espace de F' (puisque F est un sous-espace vectoriel de
lui-méme).
2. Image réciproque. Soit S; un sous-espace de F. On définit
fH(S) ={re B: f(z) € Ss}.
(i) Puisque O € Sy et f(0g) = Op, on a
Op € f_l(SQ)v

I’ensemble est non vide.
(ii) Soient xy, x5 € f71(S2) et a, B € K. Alors f(x1), f(x2) € Sy, par linéarité

flaxy + Brz) = af(z1) + Bf(z2).
Or S5 est un sous-espace, donc
af(x1) + Bf(x2) € Ss.
Il s’ensuit que
axy + By € [71(Sy).
Ainsi f71(S,) est stable par combinaisons linéaires et contient le vecteur nul, donc c’est un sous-
espace de F.

En prenant
S2 = {0},
on obtient
fH{0r}) = {z € B f(x) = 0p} = ker(f),
donc ker(f) est un sous-espace vectoriel de E. H
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Proposition 2.6.2 (Caractérisation de l’injectivité et de la surjectivité d’une applica-
tion linéaire)

Soient (E,+,-) et (F,+,-) deuzr K—espaces vectoriels et f € Lx(E, F) une application linéaire .

1. L’application linéaire f est injective si et seulement si ker(f) = {Og}.

2. L’application linéaire f est surjective si et seulement si Im(f) = F.

Preuve.
1) (a) Supposons que f est injective. Comme ker(f) est un sous-espace vectoriel de E, alors Op €

ker(f), donc
{0g} < ker(f).

D’autre part, soit z € ker(f), alors
f(x) =0p = f(Op).
Comme f est injective, on en déduit que x = Og. Ainsi,

ker(f) < {Og}.

Par double inclusion, on conclut que
ker(f) = {0g}.

(b) Réciproquement, supposons que ker(f) = {Og} et soient x1, x5 € E tels que f(x1) = f(x2). Par
linéarité de f, on en déduit que

f(x1) = f(x2) = f(21 — 22) = Op.

Donc, x1 — x9 € ker(f). Comme ker(f) = {Og}, on a x; — x9 = Op, c’est-a-dire que z; = 5. Ainsi, f
est injective.
2.0na

f est surjective <= Vye F,dze F: f(x) =y < f(F)=F < Im(f) = F.

Exemple 2.6.2
1. Soit f : R? — R? définie par

fl@y) = (z+y,x—y).
Le noyau de f est

ker(f) = {(z,y) e R?: f(2,y) = (0,0)} = {(z,y) e R*: (z +y,2 —y) = (0,0)} = {(0,0)}.
Ainsi, f est injective.
2. Soit f : R3 — R? définie par
f(l’,y,Z) = (ZL’—I—y7y—Z).

L’image de f est
Im(f) = {(IL‘—Fy,y-Z) : l‘,y,ZGR}.

On vérifie que

Im(f) = R?,

car pour tout (a,b) € R?, on peut trouver x,y,z € R tels que

f(x,y,2) = (a,b).

Ainsi, f est surjective.
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Proposition 2.6.3 (Applications linéaires et familles de vecteurs)

Soient (E,+,) et (F,+,-) deur K—espaces vectoriels et f € Lx(E, F) une application linéaire. Soit
L une famille de vecteurs de E.

(1) Conservation de la dépendance linéaire : Si L est linéairement dépendante dans E, alors
f(L) est linéairement dépendante dans F.

(2) Conservation de l’indépendance linéaire par réciproque : Si f(L) est linéairement in-
dépendante dans F', alors L est linéairement indépendante dans E.

(3) Conservation de l’ensemble générateur : Si L engendre E, alors f(L) engendre Im(f).
(4) Injection et l’indépendance linéaire : Si L est linéairement indépendante dans E et [ est
injective, alors f(L) est linéairement indépendante dans F.

(5) Surjection et engendrement : Si L engendre E, et f est surjective, alors f(L) engendre F.
(6) Caractérisation de la bijectivité : Si L est une base de E, alors

f est bijective (isomorphisme) <= f(L) est une base de F.

Preuve. Nous traitons les points un par un. Considérons une famille L de E et supposons que
cette famille est finie, alors
L ={x,29,...,2,} .

1. Conservation de la dépendance linéaire. Supposons que L est linéairement dépendante dans
FE, il existe des scalaires A1, Ao, ..., A\, non tous nuls tels que

AMT1 + Aoy + ... + Az, = O0g.
En appliquant f des deux cotés, et en utilisant la linéarité de f, on obtient

f(/\lxl + XoZg + ... + /\nl‘n) = /\1f(1'1) + )\2f<$2) + ...+ )\nf(ZL‘n) = f(OE) = 0p.

Comme au moins un A; est non nul, cela montre que f(L) est aussi est linéairement dépendante F.
2. Conservation de l'indépendance par réciproque. Supposons maintenant que f(L) est li-
néairement indépendante dans F'. Soient Ai, g, ..., A, € K, tels que

AT+ Aoxe + ...+ Nz, = 0.
En appliquant f des deux cotés, et en utilisant la linéarité de f, on obtient
f()\11'1 + Xoxo + ...+ )\nxn) = )\1f((L’1) + )\2f(l’2) + ...+ )\nf(ZL'n> = f(OE) = 0Op.

Comme f(L) est linéairement indépendante, alors tous les scalaires A; sont nuls. Cela signifie que L
est linéairement indépendante dans E.
3. Conservation de ’ensemble générateur. Supposons que L engendre FE et soit y € Im(f), alors
il existe x € F tel que y = f(z). Comme L engendre E, x s’écrit comme une combinaison linéaire
des vecteurs z;,

T =Mx1+ Aoxo+ ... + Ay, A, Ao, o A, € KL

En appliquant f des deux cotés, et en utilisant la linéarité de f, on obtient
y=f(z) = f\z1 + Xoxo + ... + Aumy) = M f(21) + Mo f(22) + ... + A f ().
Cela signifie que y € Im(f) est une combinaison linéaire des vecteurs f(z1), f(z2), ..., f(z,). Ainsi
Im(f) < Vect(f(L).

L’inclusion inverse est évidente, donc Im(f) = Vect(f(L)), c.-a-d. f(L) engendre I'm(f).
4. Indépendance et injectivité. Supposons que L est linéairement indépendante dans E et que
f est injective. Soient A1, A, ..., A\, € K, tels que
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En utilisant la linéarité de f, on obtient
f()\ll’l + XoZo + ...+ )\nxn) = f(OE)
Comme f est injective, donc
M1+ Ay + ... + A\, = 0p.

Comme L est linéairement indépendante, alors tous les scalaires \; sont nuls. Cela signifie que f(L)
est linéairement indépendante dans F'.

5. Surjectivité et engendrement. Supposons que L engendre E et que f est surjective. Comme
f est surjective,

Im(f) =F.

D’apres le point 3, f(L) engendre Im(f) = F. Ainsi, f(L) engendre F.

6. Caractérisation de la bijectivité.

(i) Supposons que f est bijective. Comme L est une base de E | f(L) est linéairement indépendante
(d’apres le point 4) et engendre F' (d’apres le point 5). Ainsi, f(L) est une base de F.

(ii) Supposons que f(L) est une base de F'. Alors f(L) est linéairement indépendante et engendre F'.
Soient x,y € F, alors

3!/\1,>\2, ceny )\n eK:zx = )\1.751 + )\2(132 + ...+ )\nxn
oy, ag, .y, € Ky = agry + anxg + ... + Q.

On obtient
flz) = fly) = f(Mx1 + Xz + ... + Nxy) = flaqmy + aoza + ... + apxy).
La linéarité de f implique que
Mf(z1) + daf(za) + oo + Mo f(T0) = a1 f(x1) + aof(za) + ... + an f(xy)

— ()\1 — 041) f(l‘l) + ()\2 — 042) f(il?g) “+ ...+ ()\n — an) f(ﬂfn) = 0p.

Comme f(L) est linéairement indépendante, on a

)\1—061=0K )\12(){1

)\Q—OQZOK )\2:a2
. ESd

Ap — ay, = Ok A = Q.

On obtient x = y. Ce qui montre que f est injective. De plus, comme f(L) engendre F, alors tout
élément de F' peut s’écrire comme combinaison linéaire des f(x;), ce qui montre que f est surjective.
Par conséquent, f est bijective. O

2.7 Rang d’une application linéaire et théoréme du rang

Le théoreme du rang est un résultat fondamental qui établit une relation clé entre la dimension
de 'espace de départ d'une application linéaire et les dimensions de son noyau et de son image. Cette
relation permet de déduire des propriétés importantes concernant l'injectivité, la surjectivité et la
bijectivité des applications linéaires.
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Définition 2.7.1 (Rang d’une application linéaire)

Soient (E,+,) et (F,+,-) deur K—espaces vectoriels de dimension finie et f € Lx(E, F) une appli-
cation linéaire.

1. On appelle rang de f, et on note rg(f) Uentier naturel défini par

ro(f) = dim(Im(f)).

En d’autres termes, le rang de f est la dimension de l'image de f.
2. Si d%@m(E) =n et B ={ey,ey,....,e,} est une base de E alors le rang de f est le rang de la famille

de vecteurs {f(e1), f(ea), ..., f(en)} = f(B). On a donc
r9(f) = 1g(f(B)) = dim(Vect(f(B)) = dim(Im(f))

Autrement dit, le rang de f est le nombre maximum de vecteurs linéairement indépendants que [’on
peut extraire de la famille f(B). Cela revient d la dimension de l’espace vectoriel engendré par f(B),

c’est-a-dire d%(m([m(f)).
3. De plus, on a
rg(f) < min {d%(m(E), dIiKm(F)} .

Remarque 2.7.1

1. Im(f) est bien de dimension finie, puisque Im(f) est un sous-espace vectoriel de F' et que F' est de
dimension finie, ou bien, autrement, parce que E est de dimension finie. Plus généralement, soient
E, F deuzx K—espaces vectoriels (non nécessairement de dimension finie), f € L(E, F). On dit que f
est de rang fini si et seulement si Im(f) est de dimension finie, et, dans ce cas, on appelle rang
de [ Uentier naturel, noté rq(f), défini par

ro(f) = di(Tm(f).

2. 8i d%n(E) =n et B ={ey, e,...,e,} est une base de E alors le rang de f est le rang de la famille
de vecteurs
{f(e1), fle2), ... f(en)} = f(B).
On obtient donc
rg(f) = rg(f(B)) = dim(Vect(f(B)).

Autrement dit, le rang de f est égal au nombre maximal de vecteurs linéairement indépendants que
lon peut extraire de la famille f(B). C’est donc la dimension de l’espace vectoriel engendré par cette
famille.

3. Pour toute f € Lx(E, F),

rg(f) < min {diKm(E), d%{m(F)} .

Exemple 2.7.1 Soit l'application linéaire f : R3 — R? définie par

flz,y) = (z +y,2x — 2).

On prend la base canonique B = {e; = (1,0,0),e2 = (0,1,0),e3 = (0,0, 1)}.O0n calcule les images des
vecteurs de B, on obtient

flen) = (1,0)
fle2) = (0,-1)
fles) = (1,2).

On cherche le nombre mazimal de vecteurs linéairement indépendants dans f(B). La famille f(B) est
de rang 2, car les vecteurs (1,0) et (0, —1) sont linéairement indépendants (ils ne sont pas colinéaires),
et (1,2) est une combinaison linéaire de ces deux vecteurs.
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Apres avoir introduit la notion de rang d’une application linéaire, nous pouvons établir le théoreme
du rang. Aussi appelé formule du rang, ce théoreme met en relation le noyau et 'image d’une
application linéaire définie sur un espace vectoriel de dimension finie. Plus précisément, si f est une
application linéaire de E vers F', alors la dimension de E est égale a la somme de la dimension du
noyau de f et de la dimension de son image.

Théoréme 2.7.1 (Théoréme du rang ou Formule du rang)
Sotent (E,+,-) et (F,+,-) deur K—espaces vectoriels et soit f € Lx(F, F) une application linéaire.
Si E est de dimension finie (mais F' n’est pas nécessairement de dimension finie), alors

d%(m(E) = d%{m ker(f) + d'km(]m(f)) = d%(m ker(f)) + rg(f). (2.2)

Ce théoréeme établit que la dimension de [’espace de départ E se décompose en la somme de la
dimension du noyau et du rang de f.

Remarque 2.7.2

1. Réle de l’hypothése de finitude de dim(FE). Elle garantit que ker(f) et Im(f) sont également
de dimension finie, ce qui rend le théoreme du rang bien défini :

(a) ker(f) est un sous-espace de E. Comme tout sous-espace d’un espace vectoriel de dimension finie,
il est nécessairement de dimension finie.

(b) Im(f) est engendré par les images des vecteurs d’une base de E. Or, une base de E est finie,
donc Im(f) est aussi de dimension finie.

2. Cas ou F est de dimension infinie. Le théoreme du rang reste valable. Méme si F' est
de dimension infinie, Im(f) reste fini-dimensionnel dés lors que E est de dimension finie. En effet,
dim(Im(f)) < dim(E). L’image est donc toujours contrélée par la dimension de E, indépendamment

de celle de F'.
Exemple 2.7.2 Soit l'application linéaire

f:R4 — R3
(x1, T, x3,04) +—— f(x1, 20,23, 14) = (1 — T2 + T3, 221 + 229 + 6x3 + 4y, —T1 — 223 — T4).

Calculons le rang de f et la dimension du noyau de f.
Premiére méthode. On calcule d’abord le noyau, on a

(x17x27$3ux4> € ker (f) — f<$1,I2,$37[L'4) = (07070)

r1— 2o +ax3=0
= < 2r1 + 229 + 623 + 424 =0
—Tr1 — 2.733 — Ty = 0
On résout ce systéme et on trouve qu’il est équivalent a
T1— 2o+ 2x3=0
To+x3+ x4 =0.
On choisit x3 et x4 comme paramétres et on trouve
ker (f) = {(—2x3 — x4, —x3 — T4, x3,24) : T3,24 € R}
={x3(-2,-1,1,0) + 24 (—1,—-1,0,1) : z3, 24 € R}
= Vect ({(_27 _17 17 0) ) (_17 _17 07 1>}) .
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Les deuz vecteurs définissant le noyau sont linéairement indépendants, donc
diRm(ker f) =2

On applique maintenant le théoréme du rang pour en déduire, sans calculs supplémentaires, la di-
mension de [image
dim(Imf) = diRm(R“) —dim(ker f) =4 -2 =2.

Donc le rang de [ est 2.
rg(f) = 2.

2. Deuxiéme méthode. On calcule d’abord l'image. Calculons les images des vecteurs de la base
canonique {e1, ez, e3,e4} de R

v = f(el) = f(l,0,0,0) = (1727 _1)7
V2 = f(62) = f(07 17070) = (_1?270)7
v3 = f<€3) = f(0707 170) = (1767 _2)7
Vg = f(€4) = f(0,0,0, 1) = (0747 1)'

L’image de f est l'espace engendré par ces quatre vecteurs
Im (f) = Vect({v1,ve,v3,v4}).
Nous cherchons la plus grande sous-famille libre parmi ces vecteurs. Observons les relations suivantes
V3 = 201 + Vg, Uy = U1 + Vo.
Ces égalités se vérifient en comparant coordonnées,
201 + vy =2(1,2,-1) + (—-1,2,0) = (2—1,4+2,-2+0) = (1,6, —-2) = vs,

et
V1 + Uy = (1727 _1> + (_17270) = (0747 _1> = V4.

Ainsi vg et vy sont combinaisons linéaires de vy et vo. Il suffit donc d’analyser l'indépendance linéaire
de vi et vy. Pour cela, supposons qu’il existe X € R tel que vy = Avy. En comparant la premiére
coordonnée on obtient —1 = X -1, donc A = —1. Mais en comparant la deuxieme coordonnée on
obtiendrait 2 = X -2 = =2, contradiction. Donc v1 et vy ne sont pas colinéaires et sont linéairement
indépendants. Par conséquent

Im (f) = Vect({vi,va}) et diRm(Imf) = 2.

On obtient
d%Rm(ker f)=2, d%Rm(Imf) = 2.

La formule du rang donne bien

dl]'Rm(R‘*) =4 = dim(ker f) + dim(Imf) =2+ 2 = 4.

Les deuzx méthodes sont cohérentes et fournissent les mémes résultats.

Exemple 2.7.3 Soit l'application linéaire

fiR[X] — R,[X]
P — f(P)=P".
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Ou P" est la dérivée seconde de P. Quel est le rang et la dimension du noyau de f ¢
1. Premiére méthode. On calcule d’abord le noyau. On a

Peker(f) <= f(P)=0
— P"=0
— P =q

— P=aX +0,

ot a,b € R sont des constantes. Cela prouve que ker (f) est engendré par les deux polynéomes 1 (le
polynéme constant) et X. Ainsi

ker (f) = Vect({1, X}).

Donc
diRm(ker(f)) = 2.

Par le théoreme du rang,

rg (f) = dim(Im(f)) = dim (R,[X]) — dim(ker(f)) = (n +1) =2 =n— 1.

2. Deuxiéme méthode. On commence par calculer l'image de f. La famille {1, X, X?, ..., X"} est
une base de l’espace de départ R,[X], donc

rg (f) = dim(Im(f)) = dim (Vect({f(1), f(X),..., F(X")})).
Calculons les images des éléments de cette base,
f(1) =0, f(X) =0,
et pour tout entier k = 2,
FXEY = (X5 = (kX" = k(k — 1) X2

Ainsi,
(FOX2), F(XP),. L, FX™) = {2,6X,12X2, .. nn — 1) X"},

Ces polynomes sont non nuls et deuz d deux de degrés distincts (0,1,...,n — 2). Ils sont donc
linéairement indépendants, et engendrent un espace de dimension (n — 1). On en déduit

rg(f)=n—1, sin=>2.
Par le théoréeme du rang, on obtient
dim(ker(f)) = dim (B, [X]) = rg (f) = (n+ 1) = (n— 1) = 2.

Cas particuliers.
(a) Sin =0, alors Ro[X] = Vect ({1}) et f = 0. Donc

dim(ker(f)) = 1,7g(f) = 0.
(b) Sin =1, alors Ri[X] = Vect ({1,X}), et encore f =0. Donc

dim(ker(£)) = 2,rg(f) = 0.
On obtient

" dim(ker(f)) = {
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Le résultat suivant stipule que ’on ne change pas le rang d’une application linéaire lorsque 1’on
compose celle-ci a gauche ou a droite par une application linéaire bijective.

Proposition 2.7.1 Soient E, F et G trois K—espaces vectoriels de dimensions finies, f une appli-
cation linéaire de E vers F' et g une application linéaire de F vers G.
1. Si f est bijective (isomorphisme) alors

rg(go f) =ry(g).

2. 8i g est bijective (isomorphisme) alors

rg(go f) =rg(f).

Preuve. Rappelons que, par définition,
rg(go f) = dim(Im(go f)) et Im(go[f)=g(f(E)).
1. Supposons f bijective (et g quelconque) et montrons que

rglgo f) =rg(g).
On a, en tenant compte que f(E) = F (puisque f est bijective),
rg(go f) = dim(g(f(E))) = dim(g(F)) = dim(Im(g)) = rg(g)
On a ainsi vérifié que
rglge f) =rg(g).
2. Supposons a présent g bijective (et f quelconque) et montrons que
rglge f) =rg(f).

On désigne par g lapplication de I'm(f) dans G définie comme la restriction de I'application g au
sous-espace Im(f), c’est-a-dire

9= 9lim(p)-
Appliquons le théoréeme du rang a ’application linéaire

g:Im(f) — G.
On a
rg (f) = dim(Im () = rg () + dim(ker (7))

On vérifie sans peine que

ker (g) < ker (g) .
On en déduit que d%gm(ker (9)) = 0 puisque, g étant bijective,

d%(m(ker (9)) =0.
De plus, d'une part par définition
rg (3) = dim(Im (3)) = dim(3(Im (£))) = dim(3(F(E))) (23)

et d’autre part
I(f(E)) =g(f(E)) (c’est immédiat).
Ainsi
rg(g) =rglgo f).
L’égalité s’écrit alors
rg(f) =rglgo f).
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Remarque 2.7.3 On déduit de la proposition que si f € Lx(E,F), g € Lxk(F,G) et h €
Lx(G,H) avec E,F,G et H quatre K-espaces vectoriels de dimensions finies, et si f et h sont
bijectives alors

rg(hogo f)=rg(g).

Autrement dit, on ne change pas le rang lorsque ’'on compose a gauche et a droite par des applications
linéaires bijectives.

2.7.1 Conséquences du théoreme du rang

Le théoreme du rang établit une relation fondamentale entre la dimension d'un espace vectoriel,
le noyau et l'image d’une application linéaire. Cette relation est valable indépendamment de la
dimension de l'espace d’arrivée F', qui peut étre finie ou infinie. Dans le cas particulier ou F' est
de dimension finie, le théoreme conduit a des conséquences importantes concernant 'injectivité, la
surjectivité et la bijectivité d’une application linéaire. Plus généralement, au-dela de sa formule, il
permet de caractériser la bijectivité, d’établir des liens entre rang, injectivité et surjectivité, et de
simplifier I’étude des systemes linéaires.

Proposition 2.7.2 (Caractérisation de linjectivité, la surjectivité et la bijectivité)
Soient (E,+,) et (F,+,-) deur K—espaces vectoriels de dimension finie et f € Lx(E, F') une appli-
cation linéaire. On a
1. Une application linéaire f est injective si et seulement si son rang est égal a la dimension de F,
c’est-a-dire

[ est injective <= rg(f) = d%(m(E).

2. Une application linéaire f est surjective si et seulement si son rang est égal d la dimension de F,
c’est-a-dire
[ est surjective < rg(f) = d%(m(F).

3. Une application linéaire f est bijective si et seulement si son rang est égal a la dimension de F' et
a la dimension de E, c’est-a-dire

f est bijective < rg(f) = d'ﬁ(m(F) = d%ﬁm(E).

Preuve. Ces propriétés découlent directement du théoreme du rang, qui établit la relation fonda-
mentale

dim(E) = dim (ker(f)) + dim(Im(f)) = dim (ker(f)) + rg(f).

En appliquant cette égalité, on déduit immédiatement les conditions nécessaires et suffisantes pour
que f soit injective, surjective ou bijective.

1.On a

f est injective <= ker(f) = {O0g} < rg(f) = d%m(E).
2.0n a

f est surjective < Im(f) = F < rg(f) = d%n(F).
3.0On a

f est bijective <= [ est injective et surjective <= rg(f) = d%(m(F) = d%gm(E).
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Cette proposition admet un corollaire essentiel. En général, pour qu'une application linéaire soit
bijective, il faut établir a la fois son injectivité et sa surjectivité. Toutefois, dans le cas ou les deux
espaces vectoriels ont la méme dimension finie, il suffit de vérifier I'une des deux propriétés seulement :
si I'application est injective, elle est automatiquement surjective, et réciproquement.

Corollaire 2.7.1 (Caractérisation des isomorphismes) Soient (E, +,-) et (F,+,") deux K—espaces
vectoriels de dimension finie et f € Lx(E, F) une application linéaire. Si d%n(E) = d%(m(F), alors

les propriétés d’injectivité, de surjectivité et de bijectivité de [ sont équivalentes. Autrement dit

f est bijective <= f est injective <= f est surjective.
Cela signifie que pour qu’une application linéaire entre deux espaces vectoriels de méme dimension
finie soit bijective, il suffit de vérifier soit ['injectivité, soit la surjectivité.
Preuve. C(C’est immédiat a partir du théoreme du rang. En effet, la propriété f est injective
équivaut a ker(f) = {Og}, donc d’apres le théoreme du rang, f est injective si et seulement si

d%m(]m(f)) = d%(m(E).

D’apres 'hypothese sur 1’égalité des dimensions de E et de F', ceci équivaut a

dim(Im(f)) = dim(F).

Cela équivaut donc a

Im(f) = F,
c’est-a-dire f est surjective. H
Exemple 2.7.4
1. Soit Uapplication linéaire
f:R? — R?

(z,y) — flz,y)=(z—y,z+y).

Une facon simple de montrer que l'application linéaire f est bijective est de remarquer que l’espace
de départ et lespace d’arrivée ont méme dimension. Ensuite on calcule le noyaun, soit (z,y) € R?,
alors

(z,y) € ker(f) = f(z,y) =0 <= (z—y,z+y)=(0,0)

=0
— {x—i—y > (z,y) = (0,0).
r—y =0
Ainsi

ker(f) = {(0,0)},

est réduit au vecteur nul, ce qui prouve que f est injective et done, par le corollaire [2.7.1], que f est
un isomorphisme (automorphisme).
2. Soit l'application linéaire

R — Ry[X]

(a,b) +— f(a,b) =a+bX,

ot R1[X] désigne l'espace des polynomes réels de degré inférieur ou égal a 1.
FEtape 1 : Comparaison des dimensions. On a

dim(R?) = 2,dim(R,[X]) = 2,
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car une base de R[X] est {1, X}. Ainsi, E et F' sont de méme dimension.
Etape 2 : Calcul du noyau. Soit (a,b) € R%. Alors

fla,b) =0 <= a+bX =0 dans Ry[X].

Ceci implique
a=0 e b=0.
Donc

ker(f) = {(0,0)}.

Le noyau est réduit au vecteur nul, donc f est injective. Comme dim(E) = dim(F), on en déduit que
[ est également surjective. Ainsi, f est bijective et constitue un isomorphisme entre R? et Ry[X].
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CONCLUSION DU CHAPITRE

Conclusion du chapitre

Dans ce chapitre, nous avons étudié les applications linéaires, leurs définitions, exemples et cas
particuliers. Nous avons vu leurs principales propriétés, les opérations qu’elles admettent, ainsi que
des notions essentielles comme le noyau, 'image, la dimension, le rang et le théoreme du rang.
Ces résultats permettent de caractériser I'injectivité, la surjectivité et la bijectivité des applications
linéaires, et jouent un role fondamental dans I’étude des systémes linéaires et dans la représentation
matricielle. Ce chapitre constitue donc une base indispensable pour la suite du cours et pour de
nombreuses applications en mathématiques et en informatique.
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Chapitre 3

Matrices

Les matrices sont un outil fondamental de 'algebre linéaire. Elles se présentent sous la forme
de tableaux de nombres disposés en lignes et en colonnes. Elles permettent de représenter des sys-
temes d’équations linéaires, de décrire des transformations géométriques et de manipuler des données.
Leur utilisation s’étend a de nombreux domaines tels que la physique, I'informatique, ’économie et
I'ingénierie.

Dans ce chapitre, nous nous intéressons aux matrices a coefficients dans un corps commutatif K
(généralement R ou C). Apres avoir introduit les définitions et notations de base, nous classerons les
matrices selon leur structure : matrices rectangulaires et carrées, matrices nulles, identité, diagonales,
triangulaires, ainsi que les matrices élémentaires qui forment la base canonique de I’espace matriciel.
Nous examinerons ensuite des opérations fondamentales sur les matrices : addition, multiplication
par un scalaire, transposition, produit matriciel, ainsi que leurs propriétés algébriques. Ces opérations
permettront de montrer que I’ensemble des matrices constitue un espace vectoriel de dimension finie et
qu’il possede des sous-espaces remarquables (diagonales, triangulaires, symétriques, antisymétriques).
Le chapitre aborde également des opérations plus spécifiques telles que les opérations élémentaires
sur les lignes et colonnes, outils indispensables pour simplifier les matrices et résoudre des systemes
linéaires. Cette étude sera complétée par 'analyse de la maniere dont les matrices représentent des
familles de vecteurs ou des applications linéaires, ce qui ouvre la voie & une compréhension plus
profonde des changements de bases et des matrices de passage. Une partie importante est consacrée
au déterminant des matrices carrées. Nous présenterons différentes méthodes de calcul, les propriétés
fondamentales de la fonction déterminant (multilinéarité, alternance, invariance par transposition,
etc.), et nous montrerons son role dans la caractérisation de I'inversibilité des matrices. Le lien entre
déterminant et comatrice sera mis en évidence a travers la formule explicite de I'inverse.

Enfin, ce chapitre propose une approche progressive et rigoureuse, en illustrant chaque concept
par des exemples concrets et des applications variées. L’objectif est de donner a I’étudiant les bases
nécessaires pour manipuler les matrices avec assurance et pour comprendre leur importance aussi
bien en mathématiques pures qu’en sciences appliquées.

3.1 Définitions et notations

Une matrice est un tableau rectangulaire de nombres disposés en lignes et en colonnes, géné-
ralement encadré par des parentheses ou des crochets. Elle occupe une place essentielle en algebre
linéaire, ou elle sert notamment a représenter les applications linéaires et a résoudre les systemes
d’équations. Les matrices trouvent aussi de nombreuses applications en physique, en informatique et
en économie.
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Définition 3.1.1 (Matrice)

Soient m,n € N* deux entiers naturels strictement positifs.

1. On appelle matrice a m lignes et n colonnes, a coefficients dans K toute application

A: {1,2,..,m} x{1,2,...,n} — K,

qui associe & chaque couple (i,7) un scalaire a;; € K. On écrit

A: {1,2,..,m} x{1,2,...n} — K
—> A(Z,j) = CL,;j (O’LL (l@j).

(i,7)

2. Représentation. Une matrice A se représente sous forme d’un tableau rectangulaire de m lignes

et n colonnes

A= (az‘j)ﬁﬁng = (aij);; =

a
a1

Qi1

Qm1

3. Terminologie.

11
21

41

Qm1

a2
a2

A2

Am2

a2
a22

A2

1 — eme ligne
M_\(___J

Am2

alj
a2j

aij

amj

j — eme colonne
. /

A1n
A2n,

Qin

amn

~
alj

A2,

OJZ']'

Q1n
Q2n,

Qin

(a) Le couple (m,n) est appelé la taille (ou : le format, le type) de la matrice A et on dit aussi que
A est une matrice de type (m,n) a coefficients dans K.

(b) L’indice i (variant de 1 a m) désigne le numéro de ligne.

(c¢) L’indice j (variant de 1 a n) désigne le numéro de colonne.
(d) Pour tout (i,7) € {1,2,...,m} x {1,2,...,n}, le scalaire a;; est appelé le coefficient (ou le terme)

de A situé a l'intersection de la i—eéme ligne et de la j—éme colonne de A.

4. Notation. On note M., ,(K) l’ensemble des matrices de type (m,n) et a coefficients dans K.

Définition 3.1.2 (Cas particulier : matrices carrées)
1. Sim = n, alors on dit que A est une matrice carrée d’ordre n. Elle s’écrit

a11
21

Qi1

anl

2. On note M,,(K) l’ensemble des matrices carrées d’ordre n a coefficients dans K.
3. Les scalaires (a;;) (1 < i < n) sont appelés les éléments diagonauz de A, et le n—uplet (a11, asa,

est appelé la diagonale de A.

12
22

A2

An2

alj
Clgj

aij

CLnj
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Exemple 3.1.1
1. Exemple de matrice rectangulaire : Soit la matrice Ay définie dans Ms2(R) par

1 -3
A=10 1
2 —1

Cette matrice a 3 lignes, 2 colonnes, et ses coefficients sont des réels.
2. Exemple de matrice carrée :
(a) Soit la matrice Ay définie dans M3(R) par

12 0
Ay=| —2 3 -1
0 1 1

1l s’agit d’une matrice carrée d’ordre 3, dont les coefficients sont des réels.
3. Exemple de matrice définie par une formule générale : Soit la matrice A3 = (a;;) €
M3 2(R), dont les coefficients sont définis par la relation

V(i,7) €{1,2,3} x {1,2} s a;; = ij + L.

En appliquant cette regle, nous obtenons

a1l Q12 2 3
As = Q21 Qg2 = 3 5
asy asp 4 7

Définition 3.1.3 (Egalité de deux matrices)
Soient

A = (aij) € My n(K), B = (bij) € My 4(K).

On dit que A et B sont égales, et l'on écrit A = B, si et seulement si

(i) elles ont le méme type, c’est-a-dire m = p et n = q (méme nombre de lignes et méme nombre de
colonnes) ;

(ii) et leurs coefficients correspondants sont égaux

V(i,j) € {1,2,...,m} x {1,2,...,n} : a;; = by.
En d’autres termes, deux matrices sont égales si elles ont la méme dimension et si chaque coefficient

de la premiere coincide avec le coefficient correspondant de la seconde.

Exemple 3.1.2
1. Cas d’égalité. Soient x,y € R et considérons les matrices A, B € Ms3(R) définies par

x 12 11 2
A:(o 22—y 3)’32(0 2 3)'

Pour que A = B, les deuz matrices doivent avoir le méme type (ce qui est le cas ici) et des coefficients
égauz deux a deux. Cela conduit au systéeme

r=1,
22—y =2
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La résolution donne v =1 et y = —1. Ainsi, A = B si et seulement si x =1 et y = —1.
2. Matrices de types différents. Considérons les matrices

1 2 127
A:(3 5)’32(3 5 8)'

La matrice A est de type (2,2), tandis que B est de type (2,3). Comme leurs dimensions différent,
les deux matrices ne peuvent pas étre égales (A + B).
3. Matrices de méme type mais avec un coefficient différent. Considérons enfin les matrices

-1 0 -1 0
- (1) e-(305)
Les deux matrices sont de type (2,2). Toutefois, leurs coefficients différent en position (2,2)

agy = 2 = by = 3.

Elles ne sont donc pas égales.

3.2 Matrices spéciales

Dans ce qui suit, nous allons introduire certaines matrices particulieres, appelées matrices spé-
ciales. Elles se répartissent en deux grandes catégories : Les matrices rectangulaires spéciales et les
matrices carrées spéciales. Chaque catégorie regroupe des matrices ayant des propriétés spécifiques
et jouant un roéle important en algebre linéaire ainsi que dans de nombreuses applications pratiques.

3.2.1 DMatrices spéciales rectangulaires

Une matrice rectangulaire est une matrice dont le nombre de lignes m est différent du nombre de
colonnes n (c’est-a-dire m # n). Parmi ces matrices, on distingue plusieurs cas particuliers d’impor-
tance.

Définition 3.2.1 Soit A = (a;j) € M,,(K) une matrice de type (m,n) a coefficients dans K. On
distingue plusieurs types de matrices rectangulaires spéciales :

(1) Matrice colonne. Sin =1, alors A est appelée matrice colonne ou unicolonne de type (m, 1)
notée

an
az1

;1

Am1

Autrement dit, une matrice colonne est une matrice qui ne posséde qu’une seule colonne. L’ensemble
des matrices colonnes a coefficients dans K est noté M, 1 (K).
(2) Matrice ligne. Sim =1, alors A est appelée matrice ligne ou uniligne de type (1,n) notée

AZ(GH Qg - Q1 aln)-

Autrement dit, une matrice ligne est une matrice qui ne possede qu’une seule ligne. L’ensemble des
matrices lignes d coefficients dans K est noté My ,,(K).

77



MATRICES

(8) Matrice nulle. La matrice A est dite nulle si et seulement si tous ses coefficients sont nuls. On
la note O, ,, et elle vérifie

V(i,7) €{1,...,m} x {1,...,n}: a;; = Ok.

Remarque 3.2.1

1. Les matrices ligne et colonne sont utiles pour représenter respectivement des vecteurs lignes et des
vecteurs colonnes ; on identifie souvent K™ (ou R") a M,,1(K).

2. La matrice nulle Oy, ,, joue le réle d’élément neutre pour l’addition dans l’espace vectoriel M, ,,(K).

Apres avoir vu les matrices nulles, lignes et colonnes, intéressons-nous maintenant a un autre
type fondamental : les matrices élémentaires ou Chaque matrice contient un seul coefficient non nul,
généralement égal a 1k, situé en une position particuliere, tandis que tous les autres coefficients
sont nuls. Ces matrices sont importantes car elles permettent de construire n’importe quelle matrice
comme une somme de matrices élémentaires et constituent ainsi la base canonique de 'espace des
matrices M., ,,(K). De plus, elles servent d’outil pratique pour étudier et manipuler les matrices et
les applications linéaires.

Définition 3.2.2 (Matrices élémentaires E; ;)

1. Pour tout couple (i,7) € {1,2,...,m} x {1,2,...,n}, on note E;; la matrice de M,,,,(K) dont
tous les coefficients sont nuls sauf celui situé a la position (i,7), qui est égal a 1x (I’élément neutre
pour la multiplication dans K). Chaque matrice élémentaire E;; a donc la forme

O Ox - Og --- Og
O Ox - Og --- Og

Eij = Ok Og - 1xg --- Og |’
Ok Og --- Og --- Og

ot le 1g est placé a l’intersection de la 1—ieme ligne et de la j—ieme colonne.
2. On peut également exprimer E; ; a l'aide du symbole de Kronecker o,,, défini par

5 — g, stz =1y
Y Ok, six F o,

on a
Eij = (Ok,i - 01)1<k<m -
1<

Alors le coefficient (k,l) de E;; s’écrit

1k, si (k1
(Eij)kg = Ok 015 = { K 50 (k l)

Remarque 3.2.2
1. Les matrices E;; forment une base de l’espace vectoriel M, ,(K). Autrement dit, toute matrice
A e My, n(K) peut s’exprimer de maniére unique comme une combinaison linéaire de ces matrices
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Dans cette décomposition, chaque coefficient a;; de A correspond au coefficient de la matrice élémen-
taire E; ; dans cette décomposition.
2. Le nombre total de matrices élémentaires de M, »(K) est égal au produit du nombre de lignes et
du nombre de colonnes

m.n,

ce qui correspond au nombre total de couples (i.e, le nombre de couples (i, j) possibles).

Exemple 3.2.1 Dans Ms3(R), il y a 2.3 = 6 matrices élémentaires,

Matrice | Position de 1 | Forme Matricielle Notation §
1 00 0110011 011021 011031
E 1’ 1 5 . 6 <k< — 5 ) 5 3 ) 5
1,1 ( ) ( 00 0 ) ( k,1 l,l)llzllfgg ( (5271 . 51’1 52’1 - (')‘2’1 . 53’1
010
Eis (1,2) ( 00 0 ) Ei5= (0k1 - 5l2)11§1l§§
0 01
Ei3 (1,3) ( 00 0 ) Ei5= (01 - 5l3)11§1l§§
000
FEs (2,1) Es1 = (0k2-611)1<k<2
1 00 1<I<3
000
Es o (2,2) Es1 = (0k2- 612)1<k<2
010 1<I<3
000
Es s (2,2) Ess = (0k2- 613)1<k<2 -
0 0 1 1<I<3

3.2.2 DMatrices spéciales carrées

Les matrices carrées sont des matrices ot le nombre de lignes mmm est égal au nombre de colonnes
nnn (c’est-a-dire m = n). Parmi elles, on trouve les matrices diagonales, la matrice identité, et les
matrices triangulaires (supérieures ou inférieures).

Définition 3.2.3 Soit A = (a;;) € M,,(K) une matrice carrée d’ordre n a coefficients dans K. On
distingue plusieurs types de matrices carrées spéciales :

(1) Matrice diagonale.

(i) Une matrice carrée A est dite diagonale si tous ses éléments situés hors de la diagonale principale
sont tous nuls. Formellement

V(i,7) €{1,2,....,n} x {1,2,...,n} : i + j = a;; = Ok.

Autrement dit, une matrice diagonale a la forme

ay; Ox - Og --- Og
Ox @z - Og --- Og
A= Ok Og - ay - Og
Ok Ox - Og - apm

(i) On note D,(K) l’ensemble des matrices diagonales d’ordre n a coefficients dans K.
(2) La matrice diagonale d’ordre n dont les éléments de la diagonale principale valent 1k est appelée
matrice unité et est notée I,,. Formellement

g, sit =7,
QAij = .. )
Ok, sit+ .
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Elle est de la forme

lxk Og --- Og --- Og
Og 1g --- Og --- Og
I = Ox Og - lg --- Og
O Ox -+ Og --- lg

(8) Matrice triangulaire. Une matrice triangulaire est une matrice carrée dont certains coefficients
sont nuls de maniére systématique, formant ainsi une structure en triangle. On distingue deux types
PTINCIPAUT,

(a) Matrice triangulaire inférieure :

(1) Une matrice carrée A = (a;;) est dite triangulaire inférieure si tous les coefficients situés au-dessus
de la diagonale principale sont nuls. Formellement

V(i,5) € {1,2,..,n} x {1,2,...,n} i < j —> a;; = Og.

Alors, elle est de la forme

a; Og -+ Og -+ Ok

Ay @9y -+ Og -+ Og
A =

ap Gz o oay oo Ok

Gp1 QAp2 " anj o App

Autrement dit, seuls les éléments situés sur la diagonale ou en dessous peuvent étre non nuls.

(ii) On note T, ine(K) lensemble des matrices Triangulaires inférieures d’ordre n d coefficients dans
K.

(b) Matrice triangulaire inférieure stricte. Une matrice carrée A = (a;;) est dite triangulaire
inférieure stricte si

V(i,j) e {1,2,...,n} x {1,2,...,n} :i < j = a;; = Ok.

Autrement dit, tous les éléments au-dessus de la diagonale principale sont nuls, et tous les éléments
sur la diagonale sont également nuls. Alors, elle est de la forme

0k Og - Og --- Og
ayy Ox -+ Og --- Og
A= ap  ai - Og -+ Ok
Ap1 Qpa - anj RN OK

(b) Matrice triangulaire supérieure.
(1) Une matrice carrée A = (a;;) est dite triangulaire supérieure si tous les coefficients situés en
dessous de la diagonale principale sont nuls. Formellement

V(i,7) €{1,2,....,n} x {1,2,...,n} : i > j = a;; = Ok.
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Alors, elle est de la forme

@11 Q2 - Q1 o Alp

Ok ap - ay -+ a
A=

Ok Ox -+ ay - ap

Ok Ox -+ Og - apm

Autrement dit, seuls les éléments situés sur la diagonale ou au-dessus peuvent étre non nuls.

(ii) On note T, sup(K) 'ensemble des matrices Triangulaires supérieures d’ordre n a coefficients dans
K.

(d) Matrice triangulaire supérieure stricte. Une matrice carrée A = (a;;) est dite triangulaire
supérieure stricte si

V(i,j)e{1,2,...,n} x{1,2,...,n} i > j = a;; = Ok.

Autrement dit, tous les éléments en dessous de la diagonale principale sont nuls, et tous les éléments
sur la diagonale sont également nuls. Alors, elle est de la forme

Ok a2 -+ aiy; - iy
Ox Og -+ ag; - agp
A= Ok Og -+ Og - ap,
Ok Og --- Og --- Ok

Exemple 3.2.2 Soient les matrices carrées de M3(R) suivantes

1 3 -1 03 —1 1 0 0 0 00
Ai=lo -2 5 |, 4a={00 5 |, 4= 5 20|, 4= 5 00],
0 0 4 00 0 2 1 3 210

alors Ay est triangulaire supérieure, Ao est triangulaire supérieure stricte, Az est triangulaire infé-
rieure et Ay est triangulaire inférieure stricte.

Définition 3.2.4 (Trace d’une matrice) Soit A = (a;;) € M, (K) une matrice carrée d’ordre
n. On appelle trace de la matrice A, et l'on note Tr(A), la somme des coefficients situés sur sa
diagonale principale. Autrement dit,

n
TT(A) = a1 +a9g + -+ Apn = Zau
i=1

Exemple 3.2.3

1. Soit
1 2 3
A=10 -1 4]e Mg(R)
2 5 0
Les éléments diagonaux sont a;; = 1, ass = —1, azg = 0. Ainsi,

Tr(A) =1+ (=1)+0=0.
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2. Soit
20
B = <5 3> € MQ(R)

Les éléments diagonaux sont by; = 2, bys = 3. Par conséquent,

3. Pour la matrice identité I,, d’ordre n

1 0 - 0
01 - 0

[n: . 5
0 0 1

les n éléments diagonaux valent 1, donc

Tr(l,)=14+1+---+1=n

3.3 Transposition, matrices symétriques et antisymétriques

L’une des opérations les plus importantes sur les matrices est la transposition. Elle consiste a
échanger les lignes et les colonnes d’une matrice : 1’élément placé en position (, j) devient I’élément
(7,7) dans la transposée. Cette opération permet de définir deux familles importantes de matrices
carrées. Une matrice est dite symétrique lorsqu’elle est égale a sa transposée, ce qui signifie que ses
éléments sont disposés de maniére symétrique par rapport & la diagonale principale. A l'inverse, une
matrice est dite antisymétrique lorsque sa transposée est égale a son opposée ; dans ce cas, la diagonale
est nécessairement nulle et les éléments situés de part et d’autre de la diagonale apparaissent avec
des signes contraires.

Définition 3.3.1 (Transposition)
Soit A = (aij)1<ism € Mmn(K). On appelle transposée de A la matrice notée 'A € M, ,,(K),
1<j<n
définie par
tA = (a]z>
Autrement dit, I’élément situé a la © — éme ligne et j — éme colonne de A devient [’élément situé a
la 7 — éme ligne et i — éme colonne de 'A.

Exemple 3.3.1
1. La transposée d’une matrice colonne est une matrice ligne et réciproqguement, alors si

a1
ag

-
I

EMml(K),AQZ(bl bg bj bn)EMlyn(K),
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alors
by
by

tAlZ(al ag - oa; - am)eMlm(K)aA2

7 b e Maa(K).

2 . Consiérons la matrice
1 2 3
A= <4 5 6) € Mgg(R)

C’est une matrice de taille (2,3). Sa transposée est la matrice

1
tA =12 € Mgz(R),
3

S O W~

qui est de taille (3,2). On observe que les lignes de A deviennent les colonnes de 'A.
3. Soit la matrice

1
A= 1[4 GMg(R).
7

co Ot N
O O W

Sa transposée est

4
3

00~

1
tA=12
3 69

On remarque que les éléments situés symétriquement par rapport a la diagonale principale ont été
échangés : par exemple a1o = 2 devient asy = 2, et ass = 6 devient azy = 6.

Définition 3.3.2 (Matrice symétrique, antisymétrique)
Si A e M, (K) est une matrice carrée d’ordre n, alors on distingue les cas suivants :

(1) A est symétrique si et seulement si
'A= A

C’est-a-dire si et seulement si
V(Z,j) € {1,2, ,TL} X {1,2, ,n} DAy = Qg

L’ensemble des matrices symétriques de M, (K) est noté S, (K).
(2) A est antisymétrique (ou skew-symétrique) si et seuelment si

tA=—A.
C’est-a-dire si et seulement si
V(i,j) e {1,2,...,n} x {1,2,...,n} : aj; = —a;;.

L’ensemble des matrices antisymétriques de M, (K) est noté A, (K).

Remarque 3.3.1 (Interprétation de la transposée d’une matrice)
1. Transposition et symétrie.
(a) La transposée d’une matrice A est obtenue en échangeant ses lignes et ses colonnes : la premiére
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ligne de A devient la premiére colonne de tA, la deuxiéeme ligne devient la deuxiéme colonne, et ainsi
de suite.

(b) La transposition peut étre vue comme une symétrie par rapport a la diagonale principale (celle
qui relie le coin supérieur gauche au coin inférieur droit),

e La diagonale principale reste inchangée.

e Chaque élément situé au-dessus de la diagonale est échangé avec son symétrique situé en dessous.
2. Matrices symétriques. Pour la matrice symétrique, on a

o foai=ay, sii=7
V(i,7) € {1,2,....,n} x {1,2,...,n}: { G — ay, sii L]
Cela signifie que les éléments sur la diagonale principale peuvent étre quelconques, mais que les
éléments hors diagonale sont symétriques par rapport a cette diagonale. En d’autres termes, une
matrice symétrique est invariante par transposition.
3. Matrices antisymétriques. Pour la matrice antisymétrique, on a
e Les éléments sont opposés par rapport a la diagonale principale.
o Tous les éléments diagonauz sont nuls, c’est-a-dire

V(i,7) € {1,2,....,n} x {1,2,...,n} :i = j = a; = Ok.

Cela signifie que toutes les coefficients diagonaux d’une matrice antisymétrique sont nuls.

Exemple 3.3.2 1. Considérons la matrice suivante

1 2 3
A= 2 50 S Mg(R)
3 06
Sa transposée est
1 2 3
fA=12 50
3 06
Puisque A = A, la matrice A est bien symétrique.
2. Considérons maintenant la matrice suivante
0 1 =5
B=| -1 0 2 |eM;3R)
5 =2 0
Sa transposée est
0 -1 5
'‘B=| 1 0 -2
-5 2 0
Puisque 'B = —B, la matrice B est bien antisymétrique.

3. La matrice unité d’ordre n notée I, est symétrique car

4. La seule matrice da la fois symétrique et antisymétrique est la matrice carrée nulle O, car tA = A
et *tA = —A impliquent A = —A, donc A = O,,.
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3.4 Opérations sur les matrices

On peut effectuer plusieurs opérations sur les matrices, comme l'addition, la multiplication, la
multiplication par un scalaire ou encore la transposition. Ces opérations sont fondamentales pour
résoudre des systemes d’équations, étudier des transformations linéaires ou manipuler des données
dans divers domaines. Dans cette section, nous allons présenter ces principales opérations et les
illustrer par des exemples concrets afin de mieux les comprendre.

3.4.1 Addition et opposé de matrices

Définition 3.4.1 Soient A = (a;;) € Mpyn(K) et B = (bij) € M o(K) deuz matrices de méme type
(m,n).
1. Addition de matrices. On appelle somme de A et B, et on note A+ B, la matrice S de type
(m,n) définie par
A+B=S= (Sij) € Mm,n(K)
avec
V(Z,j) € {1,27 ,m} X {1,27 ,n} PS8 = Qg + b”

Autrement dit, la somme de deuxr matrices de méme type s’obtient en additionnant élément par
élément leurs coefficients correspondants (ou en sommant “terme d terme” les éléments de A et de

B). On a donc

11 A2 - Ay o Qip bii b - blj o bip
Q21 Q22 -+ Qg5 -+ Ap by byy - ij o oy
A+ B = : : . : : : n

Aix Q2 Qi Qip bin bz e big o big
am1 Am2 ° Amj - Amp bml bm2 e bmj e bmn

ajp +bin aip+bip 0 ayy+by 0+ by

a1 +ba1  aga +bao - agj+by o agn + by

aip +bin apt+bn o atby o Qg+ b
Am1 + bml Am2 + bm2 ot Qmy + bmj Qg T bmn

2. Matrice opposée. L’opposé d’une matrice A = (a;;) € My, n(K), notée —A, est la matrice
définie par
—A= (—CZU) € Mm,n(K)

Autrement dit,

—ai1 —aQi2 - —ay o —0ain

—G21  —Q - —Az; . —d2p
—A=

—Qi TG TG Tn

—Am1 —Gm2 0 —Qmy 0 —Qmp

3. On définit la différence de deuxr matrices A et B de la facon suivante

A—B=A+ (-B).
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Autrement dit, on soustrait élément par élément les coefficients de B a ceur de A. C’est-a-dire que
soustraire B revient a additionner A et 'opposé de B.

Remarque 3.4.1

1. Compatibilité des matrices pour l’addition et la soustraction. L’addition ou la soustrac-
tion de deux matrices n’est possible que si elles sont de méme type, c’est-a-dire si elles possédent le
méme nombre de lignes et le méme nombre de colonnes.

2. Addition de matrices. Pour additionner deux matrices, on additionne les coefficients situés
auxr mémes positions dans chaque matrice. La matrice obtenue constitue leur somme.

3. Opposé d’une matrice. L’opposé d’une matrice A, noté —A, est la matrice dont chaque coeffi-
cient est l'oposé du coefficient correspondant de A.

4. Propriété fondamentale de l’opposé. La matrice —A est ['unique matrice vérifiant

A+ (-A)=(-A)+ A= 0Oy,

0t Op,p, désigne la matrice nulle de type (m,n).

Exemple 3.4.1 Soient les matrices de M 3(R) suivantes

2 -1 3 5 3 -1
A:(4 0 —2)’32(—2 7 4)'

1. Somme de matrices : La somme A+ B s’obtient en additionnant les coefficients correspondants

( 2+5 143 3+(-1)\ (7 2 2
A+B_(4+(—2) 0+7 —2+4)_(2 7 2)'

2. Opposé d’une matrice : L’opposé de B, noté —B, est la matrice dont chaque coefficient est
lopposé du coefficient correspondant de B

—5 -3 1
_32(2 —7 —4>'

3. Différence de matrices : La différence A — B se définit par A — B = A+ (—B), soit
([ 2-5 —1-3 3—(-1)\ [-3 —4 4
A-B= (4—(—2) 0-7 —2—4) - (6 —7 —6)'
3.4.2 Multiplication par un scalaire

La multiplication d’une matrice par un scalaire consiste a multiplier chacun des éléments de la
matrice par un nombre appartenant au corps K . Cette opération peut étre interprétée comme une
transformation qui "agrandit' ou 'réduit' la matrice en fonction de la valeur du scalaire, tout en
conservant la taille de la matrice.

Définition 3.4.2 Soient A = (a;j) € My, ,(K) et X € K un scalaire. La multiplication de A par A
est la matrice notée \ - A de M, ,,(K) définie par

avec
V(i,7) €{1,2,...,m} x {1,2,...,n} : 7 = X - a;.
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Autrement dit, on multiplie chaque élément de la matrice par le scalaire X. Ainsi

/\GH )\CL12 s /\alj T /\aln
/\CLQl )\a22 s )\CLQ]' s )\CLQn
A-A= )\ail )\aig s )\aij s )\am
A1 Az - Aamj - Aamn

Exemple 3.4.2 Soit la matrice suivante

2 -1 3
A:(4 0-4)’

et soit A = 2 € R. On effectue la multiplication, on obtient

4 -2 6
AA:(8 0-4)'

L’opération ne change pas la taille de la matrice : A et 2- A sont de type (2,3).

3.4.3 Propriétés de ’addition des matrices, de la multiplication par un
scalaire et de la transposée

L’addition des matrices, la multiplication par un scalaire et I’opération de transposition possedent
plusieurs propriétés fondamentales. Ces propriétés sont essentielles car elles montrent que ’ensemble
des matrices M, ,,(K) muni de ces opérations constitue un espace vectoriel (sur le corps K) et que
la transposition est une opération bien structurée.

Proposition 3.4.1
1. Addition de matrices. L’addition des matrices vérifie
(a) Commutativité,

VA, Be M;,,(K): A+ B =B+ A.

(b) Associativité,
VA, B,Ce Mpn(K): (A+B)+C=A+(B+C).

(c) Elément neutre. La matrice nulle est I’élément neutre de Uaddition
VAe Myn(K): A+ Oppn = Opn + A=A

(d) Elément opposé. Pour toute matrice A € My, ,(K), il existe une matrice (—A) € Miy,,(K) telle
que

A+ (—A) = (—A) + A = O

2. Multiplication par un scalaire. La multiplication par un scalaire satisfait
(a) Distributivité par rapport auz scalaires,

VA peKVAe My o(K): (A +p)- A=X-A+pu- A

La somme de deuz scalaires multipliée par une matrice est égale a la somme des produits de chaque
scalaire avec la matrice.
(b) Distributivité par rapport aux matrices,
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Un scalaire multiplié par une somme de matrices est égal a la somme des matrices multipliées sépa-
rément par ce scalaire.
(¢) Associativité mixte,

YA\ pneKVAe My o(K): (A-p)-A=X- (- A).

La multiplication d’une matrice par le produit de deux scalaires est équivalente a la multiplication
successive par chaque scalaire.
(d) Elément neutre,

VAe My, (K): 1x - A = A,

ou 1 est l'unité du corps K.
3. Propriétés de la transposée.
(a) Transposée d’une somme de matrices,

WA, B e My,(K): (A+ B) =t A+'B.

La transposée d’une somme est égale a la somme des transposées.
(b) Transposée d’une multiplication par un scalaire,

YA e K, VA e Mun(K) (A A) = XL A

Le scalaire reste inchangé et se multiplie a la transposée.
(c) Transposée de la transposée,

VA€ Myn(K) * (((A)) = A
Preuve. Soient A = (a;j), B = (b;;), C = (cij) € Myn(K) et A, p € K. Nous utilisons la définition
élémentaire : si X = (x;;) et Y = (y;;) sont deux matrices de méme taille, alors

X = Y < V('L,j) ZZEZ‘]‘ = yl]

1. Addition de matrices.
(a) Commutativité. Par définition

(A + B);; = a;j + b;; pour tout(, j).
Or dans le corps K 'addition est commutative
CL,‘j + bij = bz‘j + aij.

Donc
(A+ B);; = (B+ A);; pour tout(i, j),

d’ou
A+ B=B+A.

(b) Associativité. On a, pour tout (i, j),
(A+ B) + C)ij = (aij + bij) + ¢y,

et
(A + (B + C>)U = aij + (bl] + Cij).
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Dans K I'addition est associative, donc
(CLij + bZ]) + Cij = aij -+ (sz + Cij)-

Ainsi
((A+B)+C);j = (A+ (B + ());; pour tout (4, ),

donc
(A+B)+C=A+ (B+0C).

(¢) Elément neutre. Soit O,,, la matrice nulle (tous ses coefficients sont 0). Pour tout (4, 5),
(A + Om,n)ij = Qyj + OK = gy

Donc
A+ Opp = A

(d) Elément opposé. Définissons (—A) comme la matrice (—az;). Alors pour tout (i, ),
(A+ (=4))i = ai; + (—ai;) = O,

car

ai; + (—ai;) = Ok,
dans K. Donc

A+ (—A) = Ompn-

2. Multiplication par un scalaire.
(a) Distributivité par rapport aux scalaires. Soient A, € K et A, B € M,, ,(K). Pour tout (4, j),

(A + ) A)ij = (A + plaig = Aaij + pa; = (AA)y + (1A)i5.

Donc
(A + pu)A = A+ pA.

(En utilisant la distributivité dans K).
(b) Distributivité par rapport aux matrices. Pour tout (3, j),

D’ou I’égalité matricielle.
(c) Associativité mixte. Pour tout (i, 7),

(M) A)iz = (Awaij = Mpaiz) = (AMpA))ij,

puisque la multiplication dans K est associative.
(d) Elément neutre. Pour tout (i, j),

(Ig - A)ij = 1k - aij = agy,
puisque 1k est I'unité multiplicative de K. Donc
g - A= A.

3. Propriétés de la transposée.
(a) Transposée d'une somme de matrices. Pour des indices 7, j (de tailles adaptés),

(“(A+ B))ij = (A+ B)ji = aji + bji.
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D’autre part,
("“A+"B)ij = ("A)y + ('B)ij = aji + bjs.

Les deux coefficients coincident pour tout (i, j), donc
"(A+ B) =" A+'B.
(b) Transposée d’'une multiplication par un scalaire. Pour tout (i, j),
("(AA))ij = (AA)ji = Aays,

et
(N A)ij = A("A)ij = Aai.

Donc
t()\A) = \A.

(c) Transposée de la transposée. Par définition
("("A))i; = ("A)ji = ayy.
Ainsi tous les coefficients sont identiques, donc
frA) = A.
]

Remarque 3.4.2 Les preuves ci-dessus montrent que toutes les identités s’obtiennent en compa-
rant les coefficients a la position (i,7) et en utilisant simplement les propriétés algébriques du corps
K (associativité, commutativité, distributivité, existence d’un neutre et d’opposés). Par conséquent,
Uensemble M, »,(K) muni de laddition matricielle et de la multiplication par un scalaire est bien un
espace vectoriel sur K. De plus, ['opération de transposition est une application linéaire qui préserve
l'addition et la multiplication par un scalaire.

Proposition 3.4.2 L’ensemble (M, ,(K), +, ) muni de l'addition (loi interne) des matrices et de
la multiplication des matrices par un scalaire (loi externe) est un espace vectoriel sur K de dimension
finie m.n.

d%{m (Mo (K)) = m.n.

Preuve.

1. Pour démontrer que M,, ,(K) est un espace vectoriel, il suffit de vérifier que les axiomes définissant
un espace vectoriel sont satisfaits. Or, ces axiomes découlent directement des propriétés de l'addition
des matrices et de la multiplication par un scalaire, déja établies.

2. Pour déterminer la dimension de cet espace, considérons les matrices élémentaires unitaires £; ,
qui possedent un unique 1k en position (i,7) et des Ok ailleurs. Ces matrices forment une famille
libre et génératrice de M., ,,(K), constituant ainsi une base canonique de M,, ,,(K), de cardinal m.n
vecteurs. Ainsi, M, (K) est bien un espace vectoriel sur K de dimension m.n. ]

Corollaire 3.4.1 L’ensemble des matrices triangulaires supérieures (resp. triangulaires inférieures)
et l'ensemble des matrices triangulaires supérieures strictes (resp. triangulaires inférieures strictes)
sont des sous-espaces vectoriels de M, (K). En particulier, [’ensemble des matrices diagonales de
M, (K) constitue lui aussi un sous-espace vectoriel M., (K).
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Preuve.
1. Matrices triangulaires supérieures. Définissons

Trsup(K) = {A = (a;;) € M,(K) : a;; = Og pour tout i > j}.
(i) La matrice nulle O,, vérifie
a;; = Og pour tout 7 > j.
a;; = Og
donc Oy, € T}, sup (K).
(ii) Stabilité par addition. Si A = (a;;), B = (b;;) € T}, sup(K), alors pour tout ¢ > j on a
aij = b = O,
avec les coeflicients (A + B);; vérifient
a;j + bj; = Ok.

Ainsi T}, qup (K).
(ili) Stabilité par multiplication par un scalaire. Pour A € K et A = (a;;) € T}, 5up(K), si ¢ > j alors
(A-A);; = Aay; = 0. Donce A - AT, 4, (K). Ainsi, T}, sup(K) est un sous-espace vectoriel de M,,(K).
2. Matrices triangulaires supérieure strictes. Les mémes vérifications que pour T, s, (K) s’ap-
pliquent, avec la condition indexée par ¢ = j au lieu de 7 > j.
3. Matrices triangulaires inférieures.
(i) La matrice nulle O,, appartient a T, ;s (K) puisque tous ses coefficients sont nuls.
(ii) Soient A = (a;j), B = (bij) € Thine(K). Pour tout ¢ < j, on a a;; = Og et b;; = Ok, donc
(aij + bi;) = Ox,
ce qui montre que A + B € T}, in¢(K).
(iii) Soit A € K et A = (a;j) € Tpint(K). Alors pour tout ¢ < j, A-a;; = Og. Donc A+ A € T, jne(K).
Ainsi, T, 1,¢(K) est un sous-espace vectoriel de M., (K).
4. Matrices triangulaires inférieures strictes. Les mémes vérifications que pour 7}, in¢(K) s’ap-

pliquent, avec la condition indexée par ¢ < 7 au lieu de 7 < j.
5. Matrices diagonales. Définissons

D, (K) = {A = (a;;) € M,(K) : a;; = Og pour tout ¢ # j}.

(i) La matrice nulle O,, est diagonale, donc O,, € D,,(K).
(i) Si A = (a45), B = (b;j) € D, (K), alors pour i # j on a

A5 = bij = O,

donc

Ainsi
A+ Be D,(K).

(iii) Pour Ae K et A € D, (K), si i # j alors
()\A)U =)\~aij Z)\'OKZOK,

donc AA € D, (K). Donc D,,(K) est un sous-espace vectoriel.
Remarque. On peut aussi observer que

Dn (K) = Tn,sup<K) M Tn,inf(K)7

or l'intersection de deux sous-espaces vectoriels est toujours un sous-espace vectoriel. Cela fournit
une autre preuve que D, (K) est un sous-espace. ]
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Proposition 3.4.3 Soient m,n € N*. L’application

fiMpn(K) — M, (K)
AT A=A

est linéaire. Autrement dit, ['opération de transposition définit une application linéaire.

Preuve. La linéarité de f découle immédiatement des propriétés de la transposition établies pré-
cédemment (proposition [3.4.1]). ]

3.4.4 Produit matriciel

Nous allons a présent définir le concept de produit de matrices. Le produit de deux matrices,
appelé produit matriciel, est une opération particuliere qui n’est pas toujours possible. En effet,
toutes les matrices ne peuvent pas étre multipliées entre elles : il faut que leurs dimensions soient
compatibles. Cela signifie que le nombre de colonnes de la premiere matrice doit étre exactement
égal au nombre de lignes de la seconde. Lorsque cette condition est respectée, le produit est défini et
il donne une nouvelle matrice dont le nombre de lignes correspond a celui de la premiere matrice et
dont le nombre de colonnes correspond a celui de la seconde.

Définition 3.4.3 (Produit matriciel)

Soient A = (a;;) € My (K) une matrice de type (m,n) et B = (bi;) € M,,,(K) une matrice de type
(n,p). On définit le produit de A par B, noté A- B, comme la matrice C = (¢;;) € My, ,(K) de type
(m,p) dont les coefficients sont donnés, pour tout couple (i,7) € {1,2,....,m} x {1,2,....p}, par la
relation

n
Cij = Zaikbkj = ai]_b]_j + (ZZ'Qij + ...+ ambn]’.
k=1
Ainsi, lélément c;; du produit A - B est obtenu en effectuant la somme des produits des éléments de
la i—éme ligne de A avec ceuz de la j—eéme colonne de B.

Remarque 3.4.3

1. Le produit de deux matrices n’est défini que si leurs dimensions sont compatibles, c’est-a-dire
lorsque le nombre de colonnes de la premiére matrice est égal au nombre de lignes de la seconde.
Cette condition peut se résumer ainsi

(m,n) x (n,p) = (m,p).

2. Chaque coefficient c;; de la matrice AB, situé a l'intersection de la © — éme ligne et la j — eme
colonne, s’obtient en calculant le produit scalaire entre la i — eme ligne de A et la 7 — éme colonne
de B.

3. Méme lorsque les produits AB et BA existent et sont de méme type (par exemple pour deux matrices
carrées de méme ordre), on n'a en général pas AB = BA. Autrement dit, le produit matriciel n’est
pas commutatif.

Exemple 3.4.3 Soient les matrices suivantes

€ M3 (R).

)

1 -1 0
A:<3 ) —1)6/"‘2,3(1@)73:

— =
N DO DO
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Le produit AB est bien défini car le nombre de colonnes de A (qui est 3) est égal au nombre de lignes
de B (qui est aussi 3). Le résultat sera une matrice de type (2,2). On a donc

AB =(C = €11 Ci12
Ca1 (22 '
Les coefficients de C' sont obtenus en effectuant le produit scalaire des lignes de A avec les colonnes
de B,
c11 = airbiy + aigbay + asgbsy =1-14+(=1)-14+0-1=0
Cig2 = anblg + a12b22 + Cl13l732 =1-2 + (-1) -2 + 0-2=0
Cy1 = aglbll + a22b21 + a23b31 =3-1+ (—2) -1+ (—1) -1=0
Coo = A91b19 + Ao2bog + @93bsy = 3 -2 + (—2) -2+ (—1) -2=0.

On obtient
00

00

D’autre part, le produit BA est également défini, car B est de type (3,2) et A de type (2,3), ce qui
donne une matrice de type (3,3), notée D,

AB=C=(

) = Oy (matrice carrée nulle).

diy dy2 dis 7 =5 =2
BA=D = do1  dag d23 = 7 =5 =2
ds; dsa dss 7 -5 =2

Cet exemple illustre plusieurs faits importants sur le produit matriciel :

(a) Le produit AB peut étre la matrice nulle, méme si ni A ni B ne sont nulles.

(b) Le produit matriciel n’est pas commutatif en général, c’est-a-dire que AB + BA. Ici, AB = Oy +
BA.

A partir des propriétés bien connues des opérations algébriques sur les applications linéaires, on
peut établir des propriétés analogues pour les matrices.

Proposition 3.4.4 Le produit matriciel vérifie les propriétés fondamentales suivantes
1. Distributivité a gauche,

VAe My (K),VB,Ce M, ,(K):A-(B+C)=A-B+ A-C.
2. Distributivité a droite,
VA, Be M, ,(K),YCeM,,(K):(A+B)-C=A-C+B-C.
3. Compatibilité avec la multiplication par un scalaire,
Ve K,VAe M, ,(K),VBe M, ,(K): (M) -B=XA-B)=A-(\B).
4. Associativité du produit matriciel,
VAe My, (K),VBe M, ,(K),VCeM,, (K):(A-B)-C=A-(B-C).
5. Elément neutre d gauche/droite,
VAe My, o(K): A- I, =1,,- A=A
6. Produit par la matrice nulle,
VAe Mpyn(K): A-Opp = Opyp et Opp - A= Opp.
7. Transposition d’un produit,

VA€ Myn(K),VB € M,,(K): (A-B) =' B A.
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Preuve. Soient K un corps et A = (a;5), B = (b;j), C' = (¢;;) des matrices dont les tailles seront
précisées a chaque propriété. Les sommes et produits ci-dessous sont des sommes et produits dans
K.

1. Distributivité a gauche]. Soient A € M,,, ,(K), et B,C € M,, ,(K). Alors pour tout i € {1,...,m}

et je{l,...,p},

(A(B+C)) Z a;k, (bij + cry) Z airbi; + Z a;xcyj (distributivité dans K) = (AB);; + (AC);;.
k=1 k=1 k=1

Comme cette égalité vaut pour tous 7, j, on en déduit
AB+C)=AB+ AC.

telle que la notation (A(B + C)),; représente le coefficient de la matrice A(B + C') situé a la i — éme
ligne A et la j — éme colonne.

2. Distributivité a droite. Soient A, B € M,,, ,(K), et C € M,, ,(K). Alors pour tout i € {1,...,m}
et je{l,...,p},

n

(A+ B)C);; = > (am +bi) cg = Y, aimcr; + Y. binery = (AC)y; + (BC)y5.

k=1 k=1 k=1

D’ou
(A+ B)C = AC + BC.

3. Compatibilité avec la multiplication par un scalaire. Soient A € K, et A € M,, ,(K), B € M,, ,(K).
Alors pour tout i € {1,...,m} et je{1,...,p},

= > (Aag) by = A Z agbe; = M(AB);;.
k=1

k=1
De méme,
(AAB));; = . ai (\bgy) = A Y amby; = AAB)y;.
k=1 k=1
Ainsi

(M)B = \(AB) = A(AB).
4. Associativité du produit matriciel. Soient A € M,, ,,(K), B € M,,,(K), et C € M, ,(K). Fixons

ie{l,...,m}et je{l,...,r}. Par définition des produits matriciels,
p n p
((AB)C’)U = Z(AB ik Chj = Z Z a;rbor = Z Qir Z bepcr; | (réarrangement des sommes finies)
k=1 - =1 k=1

I
NgE

ay (BC)¢; = (A(BC))ij :

T
L

Comme ceci vaut pour tous ¢, 7, on conclut
(AB)C = A(BC).

(I’échange d’ordre des sommes est permis car il s’agit de sommes finies dans K.)
5. Elément neutre a gauche/droite. Soit A € M, ,(K). Rappel

(In)rs = Oy
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(delta de Kronecker). Pour tout i, j

n

(Al = Z aik(In)kj = 2 @i O = Qij.
k=1 k=1
et . .
(ImA)ij = Z(Im)ikakj = Z ik Qpj = Qjj-
k=1 k=1
D’ou

Al, = 1,,A = A.
6. Produit par la matrice nulle. Soit A € M,, ,,(K), pour tout i, j,

(AOn,p)ij = Z a;, - Og = Ok,

k=1
et
m
(OP»mA)ij = Z Ok - ar; = Ok.
k=1
D’ou les égalités annoncées.

7. Transposition d'un produit. Soient A € M,, ,(K) et B € M,, ,(K), alors pour tout ¢ € {1,...,p},
je{l,...,m}. Par définition,

(t<AB))¢j = (AB)ji = i ajkbki-

D’autre part,
n

n
(‘B'A),, = X (B)u(" A = ) briar.
k=1 k=1
Les deux sommes sont identiques terme a terme, donc

{(AB) =' B'A.

Toutes ces preuves s’appuient uniquement sur les propriétés élémentaires de I'addition et de la mul-
tiplication dans K et sur la définition terme a terme du produit matriciel. La non-commutativité du
produit matriciel se déduit simplement : dans la plupart des cas AB et BA n’ont pas la méme taille,
et méme lorsqu’ils sont définis et de méme taille on a en général AB # BA. ]

Proposition 3.4.5 Soient D = (dy;) et D' = (d};) deux matrices diagonales d’ordre n a coefficients
dans un corps K. Alors

1. Le produit A = D - D’ est une matrice diagonale.

2. Les coefficients diagonaux de A sont donnés par

Vie {1, ,n} Qi = dlld;z

Autrement dit

dud,, Og - 0g - Og

Ok doody, -+ Ox - Og

A= Ok Ok -+ dgd, -~ Og
Ok Ok - Og - dupd,,
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Preuve. Par définition d’'une matrice diagonale, pour tout couple d’indices (i, j) avec ¢  j, on a
dij = Ok, dj; = Ok.

Soit A = D - D" = (a;;) le produit. Les coefficients de A sont définis par la regle générale du produit
matriciel

n
U
Q5 = Z dzkdkj
k=1

Cas 1:i # j. Comme D est diagonale, dix = Ox pour tout k # i et comme D’ est diagonale, d}; = O
pour tout k # j.
Or ici ¢ # j. Dong, il n’existe aucun indice k qui soit a la fois ¢ et j. Ainsi tous les termes de la
somme sont nuls, donc

Ai5 = OK.

Cela montre que les coefficients hors diagonale de A sont nuls.
Cas 2 : 7 = j. La somme se réduit a un seul terme correspondant a k£ = ¢. On obtient

/
@i = dj; dj;.

On en conclut que A est bien une matrice diagonale, dont la diagonale est le produit terme a terme
des diagonales de D et D', ]

Apres avoir défini le produit de matrices, il est naturel de considérer le cas particulier ot une méme
matrice est multipliée plusieurs fois par elle-méme. C’est ce qui conduit a la notion de puissances
d’une matrice. Cette opération n’a de sens que pour les matrices carrées, puisque le produit A - A
n’est défini que si le nombre de colonnes de A est égal a son nombre de lignes.

Définition 3.4.4 (Puissances d’une matrice carrée)
Soit A € M,,(K) une matrice carrée d’ordre n. On définit les puissances entiéres naturelles de A de
la maniere suivante

AY =1, ou I, est la matrice identité d’ordre n,
ViE=1:AF=A- A ... A=A A1 = A1 4,
Y

k fois

autrement dit, A* est le produit de A par elle-méme k fois.

Exemple 3.4.4
1. Soit A = (a;;) € M,(R) la matrice carrée d’ordre n définie par

V(i,j) € {1,2,...,n} x {1,2,...,n} : a;; = 1.
Autrement dit, A est la matrice dont tous les coefficients sont égauzr a 1. Nous allons montrer que
Vk e N*: AF = p*=1A,
Le résultat est vrai pour k = 1, puisque
Al = A=n"A.

et de méme pour k = 2, car chaque coefficient de A% est la somme de n produits de 1 par 1, donc
vaut n. Ainst,

A% = nA.
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Supposons que pour un certain k =1, on ait
Ak = pkta

Alors
ARt = A AR = A (nk_lA) = nk_l(A CA) = nk’_l(nA) =nFA.

Par le principe de récurrence, la formule est vraie pour tout entier k > 1.
2. Soit B € M3(R) la matrice carrée d’ordre 3 définie par

011
B=10 01
0 00
Calculons ses premiéres puissances,
0 01 0 00
B'=1;5,B'=B,B*~B-B=(0 0 0|,B3=B>-B=[0 0 0]|=0s.
000 000

Ainsi, on constate que la suite des puissances de B s’annule a partir de [’exposant 3. On a donc
Vk>3:B" = 0.

3. Puissance d’une matrice diagonale. Soit A = (a;;) € M, (R) une matrice diagonale, c’est-a-dire
Vi j:ay; =0,

et A s’écrit sous la forme

ar Og - Ok
A _ O]K a'22 e O]K
OK OK *rr Ann

Considérons maintenant la puissance A* pour un entier k € N. Comme le produit de deux matrices
diagonales est encore une matrice diagonale et sur la diagonale principale, chaque coefficient est
simplement multiplié par lui-méme da chaque étape de la puissance. Ainsi, le coefficient situé en
position (i,i) devient a%. On obtient donc

a’fl Ok --- Og --- Ok

Ok a§2 T | I
VkeN: AF =

Ok Og --- afj o Og

Ok Og --- Og --- ak

nn

Autrement dit, si A est diagonale, alors A* est aussi diagonale, et ses coefficients diagonauzs sont les
puissances k—iemes des coefficients diagonauzr de A.

On vérifie facilement les propriétés suivantes.

Proposition 3.4.6 (Propriétés fondamentales des puissances matricielles) Soit A € M,,(K)
une matrice carrée d’ordre n, alors
1. Produit de puissances (Addition des exposants),

Vhky, ko € N : ARt ARz = ARrthz
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2. Puissance d’une puissance (Multiplication des exposants),
Why, by € N o (AF)™ = ARk,
3. Puissance d’un multiple scalaire,
Vae K,VkeN: (a- A" = of . 4",
4. Transposée d’une puissance (Commutativité avec la transposition),

Vke N (AF) = (PA)".

Définition 3.4.5 (Matrice nilpotente).
1. Soit A € M,,(K) une matrice carrée d’ordre n. On dit que A est nilpotente s’il existe un entier
k e N* tel que

AF =0,

ou O,, désigne la matrice nulle d’ordre n.
2. Le plus petit entier k satisfaisant cette condition est appelé l'indice de nilpotence de A, et se note
V(A)7

v(A) = min{k e N* : 4¥ = 0,}.

Exemple 3.4.5
1. Soit

o

On a successivement

00 1 00 0
B =10 0 0|,B3=(0 0 0|=04
00 0 00 0

Ainsi, B est nilpotente d’indice v(B) = 3.
2. Toute matrice triangulaire stricte (supérieure ou inférieure) est nilpotente d’indice de nilpotence
inférieure ou égale a sa taille.

Formule du binéme de Newton . La formule du bindme de Newton est 'une des identités
les plus importantes en algebre. Elle décrit la maniere de développer une puissance d’une somme et
s’écrit, pour deux scalaires a et b, sous la forme

(a+b)" = Z C*afb™* m e N.

k=0

Cette relation repose sur la commutativité de la multiplication des nombres réels ou complexes. Dans
le cadre matriciel, la multiplication n’est pas commutative en général, ce qui empéche d’appliquer
directement la formule du binéme. Néanmoins, lorsque deux matrices A et B commutent, ¢’est-a-dire
lorsque AB = BA, elles se comportent de maniére analogue aux scalaires pour le produit. Dans ce
cas particulier, la formule du binéme de Newton reste valable dans M, (K). Elle permet alors de
développer (A + B)™ comme une somme de termes de la forme A¥B™~% chacun pondéré par le
coefficient binomial correspondant.

Cette propriété joue un role essentiel dans de nombreux calculs matriciels, notamment pour les
matrices diagonales ou triangulaires, ainsi que dans I’étude des polynomes de matrices.
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Considérons deux matrices carrées A et B, toutes les deux d’ordre n. Commencons par développer
'expression (A + B)2. On a

(A+B)>=(A+B)-(A+ B)=A*>+ AB+ BA + B*.

Si on suppose que les matrices A et B commutent alors on a

(A+ B)> = A + 2AB + B>

Poursuivons en développant 'expression (A + B)%. On a

(A+B?=(A+B)-(A+B)*=(A+B)-(A>+ AB + BA + B?
— A%+ A°B + ABA + AB?> + BA*> + BAB + B*A + B°.

Si on suppose que les matrices A et B commutent alors on a

(A+ B)? = A* + 3A’B + 3AB? + B®.
Plus généralement, on a le résultat suivant qui se démontre par récurrence sur le méme principe.
Définition 3.4.6 (Formule du binéme de Newton dans M,(K))

Soient A et B deuzr matrice carrées de M,,(K). St les matrices A et B commutent, autrement dit si

AB = BA, alors
¥meN: (A+B)" =) CkA*B"*

k=0
ol |
Ck _ m-
™o (m— k)k!
désigne le coefficient binomial.
Preuve. La démonstration repose sur un raisonnement par récurrence sur m € N. ]

Exemple 3.4.6 Soit m € N, calculer la matrice A™ o1

A=<(1) 1)6/\/12(]1%).

10 01 01
a=(o V) (0 o) -remr-(7 )

B? = 0,.
Yk >=2:B* = 0,.
Comme I et B commutent (IsB = Bly = B), on peut appliquer la formule du binéme

On observe que

1l est clair que

m 1
A" = (L + B)" = Y .ChB* I = Y CkB* = I + mB.
k=0 k=0

car dans la somme le terme B¥ est nul si k = 2. On a donc
m_ (10 01\ (1 m
A _(o 1)+m(0 0)‘(0 1)'
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3.4.4.1 Inverse d’une matrice carrée

L’inverse d’une matrice carrée est une notion importante en algebre linéaire. On peut la comparer
a I'inverse d’un nombre. Par exemple, pour un nombre non nul, il existe un autre nombre qui, multiplié
par le premier, donne un. De la méme maniere, une matrice carrée est dite inversible lorsqu’il existe
une autre matrice qui, multipliée par elle, donne la matrice identité.

L’inverse d’une matrice est tres utile, car il permet de résoudre des systémes d’équations linéaires,
de changer de base et d’étudier les applications mathématiques plus complexes.

Définition 3.4.7 (Inverse d’une matrice carrée)
Soit A € M,,(K) une matrice carrée d’ordre n.
1. On dit que la matrice A est inversible (ou non-singuliére, réguliére) si et seulement s’il existe une
matrice B € M,,(K) telle que
A-B=B-A=1,,

ou I, est la matrice identité d’ordre n.
2. Si A est inversible, alors B est unique et est appelée inverse de A, notée B = A1,
3. L’ensemble des matrices inversibles de M,,(K) est noté GL,(K).

Exemple 3.4.7 1. Soit la matrice

A=<? 3>eM2(R).

Cette matrice est inversible, car il existe une matrice
2 -3
B:(—l 2 )EM2<R>’

AB = BA = I,.

1 2 -3
(37

2. Soit A = (a;j) € My (K) une matrice diagonale, c’est-a-dire que

tel que

L’inverse de A est donc

Vi ay; = Ok,
Alors, A est inversible si et seulement si tous ses éléments diagonaux sont non nuls
Vie{l,2,..,n}:a; + O,

Dans ce cas, l'inverse de A, noté A=1 | est également une matrice diagonale ot les éléments diagonaux
sont les inverses des éléments diagonauzx de A,

afl Og -+ Ogx --- Og
Ok asy --- Og --- Og

-1
A = Og  Og -~ ai—jl e O
Ok Og -+ Og --- a-t

nn
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Remarque 3.4.4 Soit A € M,,(K) une matrice carrée d’ordre n. Alors les trois assertions suivantes
sont équivalentes :

1. A est inversible a gauche ; c’est-a-dire qu’il existe B € M,,(K) telle que BA = I,

2. A est inversible a droite ; ¢’est-a-dire qu’il existe C € M,,(K) telle que AC = I,.

3. A est inversible.

Ainsi, pour une matrice carrée, le fait d’étre inversible a gauche ou da droite implique nécessairement
[’existence d’un inverse unique, qui joue simultanément le role d’inverse a gauche et d’inverse a
droite. En d’autres termes, 'inversibilité unilatérale suffit a assurer linversibilité complete.

Proposition 3.4.7
1. Inverse de l’inverse. Si une matrice A € M, (K) est inversible alors sa matrice inverse est
elle-méme inversible et

(A=A

2. Inverse d’un produit. Si A, B € M, (K) sont deux matrices inversibles, alors la matrice produit
A - B est inversible et son inverse, la matrice (A - B)_1 est donnée par

(A-B) ' =B7t.A47L

3. Transposée d’une matrice inversible. Si une matrice A € M, (K) est inversible alors sa
matrice transposée est elle-méme inversible et 'inverse de la transposée de A est donné par

A = ()

4. Puissances négatives. Pour toute matrice inversible A de M.,,(K) et tout entier m =0, on a
A= (A"

5. Loi des exposants. Pour tout m,k € Z, si A € M, (K) est inversible, on a
AmTR =A™ AR

Autrement dit lapplication n — A™ est un morphisme de groupes (Z,+) — (GL,(K), ).

Preuve. On remarque, si A € M,,(K) admet a la fois un inverse a gauche B (i.e. BA = I,,) et un
inverse a droite C' (i.e. AC' = 1I,,), alors B = C'. En effet

B = B(AC) = (BA)C = IC = C.

Ainsi, lorsqu’une matrice carrée possede un inverse a gauche et un inverse a droite, ces inverses sont
égaux : on parle de I'inverse unique A~!.
1. Par définition de I'inverse, on a

AAT =AT"A =1,

Donc A est a la fois un inverse a gauche et un inverse a droite de A~!. Par unicité de 'inverse,
I'inverse de A1 est A. Autrement dit (A~1)~! = A.
2. Posons

C=B"TAT"

Calculons
(AB)C = A(BB™)A™' = ALA™ — AA™ — I,

et de méme
C(AB) = BY(A'A)B=B"'1,B=B"'B=1,.

101



MATRICES

Ainsi C est a la fois inverse a gauche et inverse a droite de AB. Par unicité de l'inverse,
C=(AB)™".

Donc
(AB) ™' =B tA™h

(on a utilisé I'associativité de la multiplication matricielle et I'identité BB~! = I,, etc.)
3. Pour toutes matrices X, Y de dimensions compatibles,

HXY)="Y'X.
En particulier, si A est inversible avec A™!, on a
(tA)t(Ail) =! (A71A> = I, = [na

et aussi

HATY (A =t (AA™Y =1 T, = 1,,.

Donc {(A™1) est inverse a gauche et a droite de ‘A, d’ou’
()t = (A7),

4. Pour m = 0 la formule est vraie (les deux membres valent 7,,). Pour m > 1, notons d’abord que A

et A~!' commutent, en effet
AA T = ATTA =T,

On montre par récurrence que si X et Y commutent alors (XY)™ = XY™ ; en appliquant cela a
X =AetY = A~! on obtient
]n _ (AA—I)m _ Am(A—l)m

De méme

(A™HmA™ = ],,.

Ainsi (A71)™ est I'inverse de A™, donc

Par définition
d’ott

AT = (ATH™,
5. On définit les puissances entieres de A par

AV =1,
pourn>0:A"=A-A-..-A (n facteurs),
pour n < 0: A" = (A71)™",

On raisonne par analyse de cas.
(a) Cas m,k = 0. C’est la loi usuelle des puissances d’un entier naturel, démontrée par récurrence

Am+k _ AmAk
(b) Cas m, k < 0. Ecrivons m = —p, k = —q avec p,q = 0. Alors
Am+l~c _ A—(p+q) _ (A—l)p+q _ (A_l)p(A_l)q _ AmAk:
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(c) Cas m =0, k < 0. Posons k = —p avec p > 0. On veut montrer que
AP = AMATP,
e Sim = p, posons r =m —p = 0. Alors
ATATP = APTTATP = (ATAP)A™P = A"(APA™P) = A", = A" = A™P.

(On a utilisé que les puissances de A commutent entre elles.)
e Sim < p, posons s =p—m > 0. Alors

ATATP = ATATIMS) = (AMATM AT = [LATS = ATS = ATP,
Dans les deux sous-cas on obtient
AmAk _ Am+k'

(d) Cas m < 0, k = 0. Symétrique du cas précédent.
Ces cas couvrent toutes les possibilités pour m et k. On conclut donc que

AR = Am AR Ym ke 7.

O

Proposition 3.4.8 L’ensemble GL,,(K) des matrices inversibles de M,,(K), muni de la multiplica-
tion matricielle, forme un groupe, appelé groupe linéaire général d’ordre n sur K.

Preuve. Il faut vérifier les quatre axiomes d’un groupe pour l’ensemble G = G L, (K) muni de la
loi - : fermeture, associativité, élément neutre et existence d’inverses.

1. Fermeture. Si A, B € GL,(K) alors A et B sont inversibles. On vérifie que le produit AB est
inversible et que son inverse est B~1A™!, en effet

(AB)- (B7'A™") = A(BB WA = AI,LA™' = AA™' = I,

et de méme

(B'A™)(AB) = I,.

Donc AB € GL,(K). Ainsi GL,(K) est stable par multiplication.
2. Existence d’un élément neutre. La matrice identité I,, appartient a GL,,(K) (c’est son propre
inverse). Pour toute A € M,,(K) on a

I,A=Al, =A.

Donc [, est I’élément neutre de la loi de multiplication.
3. Associativité. La multiplication de matrices est associative sur M,,(K) : pour toutes A, B,C €
MH(K)v

(AB)C = A(BC).

Cette propriété est héritée de la définition du produit matriciel (ou se vérifie par calcul des compo-
santes). Par conséquent 'associativité tient sur G L, (K) aussi.

4. Existence des inverses. Par définition d’éléments de GL,(K), chaque A € GL,(K) possede
un inverse A~! € M,,(K). Il reste & noter que cet inverse appartient lui-méme a GL,(K) (puisqu’il
posséde pour inverse A). L’inverse est unique : si B et C' sont deux inverses de A, alors

B = B(AC) = (BA)C = I,C = C.
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Ainsi les quatre axiomes d’un groupe sont satisfaits, donc (GL,(K),-) est un groupe. ]

Le rang d'une matrice représente le nombre maximal de lignes ou de colonnes linéairement indé-
pendantes, ce qui correspond a la dimension de ’espace vectoriel engendré par ces lignes ou colonnes.
Cette notion joue un role essentiel dans I’étude des systemes d’équations linéaires, car elle permet de
déterminer si un systeme admet une solution, et combien de solutions il peut avoir.

La notion de rang a déja été définie pour une famille finie de vecteurs. Cela nous avait alors
permis de définir le rang d’une application linéaire f : E — F comme la dimension du sous-espace
Im(f) de F, a la condition que E soit de dimension finie.

Nous définissons maintenant le rang d’une matrice rectangulaire.

Définition 3.4.8 Soit A = (a;j) € M, (K) une matrice de taille (m,n) a coefficients dans K. On
appelle rang de A, et on le note rg(A) ou rang(A), le rang de la famille de ses vecteurs colonnes,
ou de maniere équivalente, le rang de la famille de ses vecteurs lignes. Ainsi, on a

rg(A) =rg(Cy,Cy,...,Cy) =rg(Ly, Lo, ..., Ly),
ou Cy,Cy, ..., C, désignent les colonnes de A et Ly, Lo, . .., L,, ses lignes. En d’autres termes, le rang

d’une matrice correspond au nombre mazximal de colonnes ou de lignes linéairement indépendantes.

Exemple 3.4.8
1. Considérons la matrice A € Ms2(R)

2 2
A=14 0
01
Ses colonnes sont
2 2
Ci=1(4],C,=1{0
0 1

Ces deux colonnes correspondent aux vecteurs
c1 = (2,4,0),co = (2,0,1) e R®.

Comme ces deux vecteurs sont linéairement indépendants dans R3, la famille {Cy,Cy} est libre. On
en déduit que le rang de A est
rg(A) = 2.

On a le résultat suivant.

Proposition 3.4.9
1. Soit A = (a;;) € My, 0(K), alors
(a) Le rang de A vérifie
rg(A) < min{m,n}.

(b) Le rang de A est égal au rang de sa transposée,
rg(A) =rg("A).
(c) Le rang de A est nul si et seulement si A est la matrice nulle,
rg(A) =0 <= A = O
2. Soit A = (a;;) € My(K) une matrice carrée d’ordre n, alors A est inversible si et seulement

rg(A) =n.
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Le rang d’une matrice est invariant par multiplication a gauche ou a droite par une matrice
inversible. Autrement dit, multiplier une matrice par une matrice inversible (que ce soit a gauche ou
a droite) ne modifie pas son rang.

Proposition 3.4.10 Soit A = (a;;) € M, »(K) une matrice rectangulaire de type (m,n) d coeffi-
cients dans K. Alors
1. Si B € GL,,,(K) alors

rg(B-A) =rgA.

2. 8i C e GL,(K) alors
rg(A-C) =rgA.

3.8t Be GL,,(K) et C € GL,(K) alors

rg(B-A-C)=rgA.

3.5 Opérations élémentaires sur les lignes et les colonnes
d’une matrice

Dans I’étude des matrices et la résolution des systemes d’équations linéaires, il est souvent néces-
saire de transformer une matrice afin de la simplifier, tout en conservant certaines de ses propriétés
fondamentales comme le rang ou ’ensemble des solutions associées. Pour cela, on utilise ce que 'on
appelle les opérations élémentaires sur les lignes et les colonnes. Ces opérations consistent a modifier
une matrice de maniere simple et réversible. Elles sont de trois types : échanger deux lignes (ou deux
colonnes), multiplier une ligne (ou une colonne) par un nombre non nul, ou encore ajouter a une
ligne (ou a une colonne) un multiple d’une autre. Ces transformations, bien que tres simples, sont a
la base de méthodes puissantes comme la réduction des matrices par la méthode du pivot de Gauss,
et permettent d’étudier efficacement les propriétés des matrices et des systemes linéaires.

Définition 3.5.1 Soient m,n > 2 deux entiers (c’est-a-dire (m,n) € N\{0,1}?), et soit A = (a;;) €
My (K).
1. On appelle opérations élémentaires sur les colonnes de A (abrégé : OEC) les transformations
sutvantes :
(a) Permutation de deux colonnes : Echange entre elles de deux colonnes de A, c’est-d-dire
pour i £ j, on effectue l'opération

CZ' Ad Cj.

(b) Multiplication d’une colonne par un scalaire non nul : Remplacement d’une colonne C;
de A par - C; ou o € K*, c’est-a-dire

Cj<—Oé'Cj.

(¢c) Addition d’une colonne a une autre : Remplacement d’une colonne C; de A par une
combinaison linéaire de colonnes C; et Cy, ot j + k, c’est-a-dire

Oj<—Oé'Cj+BCk,Oé,ﬁ€K*.

2. Opérations élémentaires sur les lignes (abrégé : OFEL). De maniére analogue, on définit
les opérations élémentaires sur les lignes de A, qui suivent les mémes principes que celles définies
pour les colonnes (qui sont les opérations élémentaires sur les colonnes de la transposée de A). Elles
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consistent a :
(a) Echage entre elles de deux lignes

(b) Multiplication d’une ligne par un scalaire non nul X € K* ;

(c) Remplacement d’une ligne L; de A par une combinaison linéaire de lignes L; et Ly ot i + k,
a, f e K*, c’est-a-dire
L2<—04LZ+BL]€

Remarque 3.5.1 Les opérations élémentaires sur les lignes ou les colonnes d’une matrice ne changent
pas son rang. Autrement dit, si B € M,, ,,(K) se déduit de A e M,,,(K) par une suite d’opérations
élémentaires, alors

rg(A) = rg(B).
Exemple 3.5.1 Soit A€ M3(R) la matrice carrée d’ordre 3 définie par
1 4
A=11 8
1

=~ W N
—_

6
On effectue les opérations élémentaires sur les ligne de A suivantes

Ly «—— Ly — Ly (On remplace la ligne 2 par la différence entre la ligne 2 et de la ligne 1)
Ly «— L3 — Ly (On remplace la ligne 3 par la différence entre la ligne 3 et de la ligne 1)

On obtient

=~

A =

o O
N — N
—_
N}

Ensuite, on applique ’opération suivante
Ly «— L3 — 2Ly (On remplace la ligne 3 par la combinaison linéaire Ly — 2Ls)

Ce qui nous permet d’obtenir la matrice

Ay =

o O =
S =N
=~

1l s’agit d’une matrice triangulaire supérieure.

3.6 Matrices d’une famille de vecteurs, et d’une application
linéaire

Dans un espace vectoriel, on peut représenter les vecteurs et les applications linéaires a 1’aide de

matrices. Cela permet de passer d’objets abstraits a des calculs concrets. La matrice d'une famille

de vecteurs est construite en choisissant une base de ’espace. Chaque vecteur de la famille s’écrit
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alors comme combinaison des vecteurs de cette base. Les coefficients obtenus sont placés dans une
colonne de la matrice. Ainsi, la matrice rassemble tous les vecteurs de la famille et permet de savoir,
par exemple, s’ils sont liés ou indépendants.

De la méme facon, une application linéaire peut étre représentée par une matrice. Pour cela, on
choisit une base dans ’espace de départ et une base dans I’espace d’arrivée. On calcule ensuite I'image
de chaque vecteur de la base de départ, et on écrit cette image dans la base d’arrivée. Les coordonnées
trouvées forment les colonnes de la matrice de I'application. Grace a cette représentation, appliquer
I’application linéaire a un vecteur revient simplement a faire un produit matriciel.

3.6.1 Matrice d’une famille de vecteurs relativement a une base

Dans un espace vectoriel, la notion de base joue un role essentiel : elle permet de décrire chaque
vecteur a ’aide de coordonnées. Ces coordonnées indiquent comment un vecteur se construit a partir
des vecteurs de la base. En les disposant les unes sous les autres, on obtient la matrice d’'un vecteur
relativement a cette base, qui n’est autre qu’'un vecteur-colonne.

Lorsqu’on considére plusieurs vecteurs a la fois, on peut regrouper leurs coordonnées dans un seul
tableau. Chaque vecteur fournit alors une colonne, et I’ensemble de ces colonnes forme la matrice
de la famille de vecteurs relativement a la base choisie. Cette matrice permet d’étudier la famille de
maniere compacte et efficace, notamment pour déterminer si les vecteurs sont indépendants ou non.

Ainsi, la matrice d'un vecteur traduit sa position dans une base donnée, tandis que la matrice
d’une famille rassemble en une seule écriture les coordonnées de plusieurs vecteurs. Ces représenta-
tions facilitent ’analyse et les calculs en algebre linéaire.

Définition 3.6.1 (Matrice d’un vecteur relativement d une base)
Soit E un K—espace vectoriel de dimension finie m, et soit B = {e1, e, ...,en} une base de E. Un
vecteur v € E peut toujours s’écrire de maniére unique comme une combinaison linéaire des vecteurs
de la base

UV =2x161 + Ta€x + -+ Tp€m,

ot les scalaires xv,xs, ..., T, € K sont appelés les coordonnées de v dans la base B.
(a) On appelle matrice du vecteur v relativement d la base B, et [’on note AfBat(v), la matrice colonne

formée par ses coordonnées

x1
X2

]\4Bat(v) =1 . |e Mp1(K).
Tm

(b) Lorsque A = ]\/{Sat(v), on dit que A est la représentation matricielle du vecteur v dans la base B.

Exemple 3.6.1 Considérons [’espace vectoriel R® muni de sa base canonique B = {ey, eq,e3}. Soit
le vecteur v = (1,—2,3) € R3. Ses coordonnées dans la base canonique sont naturellement données
par les composantes du vecteur 1, —2 et 3. La matrice de v relativement a la base B est donc

1
Mat(v) =|-2]€ M3J(R).
b 3

Autrement dit, le vecteur x est représenté dans la base canonique par la matrice colonne ci-dessus.
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Définition 3.6.2 (Matrice d’une famille de vecteurs relativement a une base) Soit E un
espace vectoriel de dimension finie m sur un corps K, et soit B = {ejy,eq,...,e,} une base de E.
Considérons une famille de vecteurs {vy, v, ..., v} appartenant a E. Chaque vecteur v; de la famille
peut étre exprimé de maniére unique comme combinaison linéaire des vecteurs de la base

Vjie{l,2,...,n} v = Eaijei,
i=1

ou les scalaires ayj, aszj, . . ., am; sont appelés les coordonnées de v; dans la base B. On appelle matrice
de la famille {vy,vq,...,v,} relativement d la base B, et on la note

]\4Bat(vl,vg, ey Un)s

la matrice de M, ,(K) obtenue en disposant dans chaque colonne les coordonnées d’un vecteur de la
famille. Ainsi, la j — éme colonne correspond exactement auzx coordonnées de v; dans la base B. On
a donc

Ul /l]2 P /Uj o .. /l]n
ay; A2 - Ay o Qip €1
Qg1  QA22 - QA2 - Qaop €2
A= ]\{Bat(vl,vg, iy Up) =
L€ 75 R ¢ 77 R ¢ 777} €;
Qm1 Om2 - Amj - Ompnp €m

Remarque 3.6.1

1. Si la famille se réduit a un seul vecteur (n = 1), on retrouve la définition de la matrice-colonne
d’un vecteur relativement a une base.

2. Cette représentation matricielle permet d’étudier facilement les propriétés de la famille, comme
l'indépendance linéaire, [’engendrement ou la recherche d’un systeme de vecteurs de base.

Exemple 3.6.2 On travaille dans R3 muni de la base canonique B = {e1, es, e3}. Soient les vecteurs

v1 =(—1,3,0),v9 = (0,—1,5),v3 = (=3,2,1),v4 = (1,0, —1).

La matrice de la famille {vy,vq,v3,v4} relativement a la base canonique s’écrit en assemblant les
coordonnées de chaque vecteur en colonne

Az]\éjfgat(vl,vg,vg,m): 3 -1 2 0

Proposition 3.6.1 (Propriétés de la matrice d’une famille de vecteurs). Soit E un K—espace
vectoriel de dimension m, B = {ey,...,e,} une base de E, et {vi,va,...,v,} < E une famille de
vecteurs de E. On note

A= ]\4Bat(v1,v2, ceyUn) € M n(K),

la matrice dont les colonnes sont les coordonnées des vj dans la base B. Alors les propriétés suivantes
sont vérifiées
1. Somme de familles de vecteurs. Si {uy,us,...,u,} < E est une autre famille, alors

]V{gat(vl F Uy Uy F Uy) = J\/{Bat(vl,...,vn) +J\/{3at(u1,...,un).
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Autrement dit, la matrice de la somme se déduit par addition des matrices colonnes.
2. Multiplication par un scalaire. Pour tout A € K,

MBat()\vl, CeAU) = A ]\IBat(vl, cey Up).

Autrement dit, multiplier chaque vecteur par X\ revient a multiplier toute la matrice par X.

Preuve. Soit E un espace vectoriel de dimension m sur un corps K, et B = {ey,...,e,,} une base
de E. Considérons deux familles de vecteurs

{vi,...,0} < E {uy,...,u,} € E,
et un scalaire A € K. On note les matrices associées

A= %at(vl,...,vn),U = ]\4Bat(u1,...,un).

Chaque vecteur s’écrit en coordonnées dans la base B, pour chaque j € {1,...,n}

m m
Vi = Z Qij€i, Uj = Z bijei,
i=1 i=1

ou Qij, bij e K.
1. Somme de familles de vecteurs. On considere la famille

{v1 + U, .., v, + Ut
Pour chaque 7, on a
m m m
Uj + Uj = Z aijei + Z bijei = Z((Iij + bij)ei.
i=1 i=1 i=1

Ainsi, les coordonnées de v; + u; dans la base B sont a;; + b;;.
La matrice associée est donc

ay +bnn - ap, + by
]\{Bat(vl—kul,...,vn—kun): : :

Am1 + bml T Qpn Tt bmn
Mais ceci n’est rien d’autre que la somme des matrices A + U,

%at(vl+u1,...,vn+un):A+U.

Ce qui prouve la propriété pour la somme.
2. Multiplication par un scalaire. Considérons la famille

{)\’Ul, ey )\’Un}

Pour chaque j, on a
m

)\'Uj = A (i a,-jei) = Z()\al-j)ei.
i=1

i=1

Donc les coordonnées de Av; sont Aa;;. La matrice associée est

Aair o Aaiy
%@t()\’ljl’ R )\,Un> = I = \A.
/\aml T Aamn
Ce qui prouve la propriété pour la multiplication par un scalaire. O
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Exemple 3.6.3
1. Somme de familles de vecteurs. Soit E = R? avec la base canonique B = {e1, e, €3}, et deux
familles de vecteurs

v = (1,2,0),v9 = (0,1,3) ,u; = (2,0,1) ,us = (—1,1,1).

Les matrices associées a ces familles sont

W = O

1 2
Mat(vy,v9) = | 2 , Mat(uy,ug) = [0 1
b 0 b 1

On calcule la somme des vecteurs correspondants
V] + U = (37271) , U2 + U = (_17274)

La matrice de la somme est donc

3 -1
Mat(vy + up,v9 +ug) = |2 2
B
1 4
Vérification par addition des matrices

10 2 -1 3 -1
]\4Bat(v1,v2) + AfBat(ul,UQ) =2 1]+(0 1 |=(2 2
0 3 1 1 1 4

Propriété confirmée la matrice de la somme correspond a la somme des matrices.
2. Multiplication par un scalaire. Soit A = 2 € R et la famille de vecteurs

vy = (1,—-1,0),v, = (2,0,1).

Donc la matrice associée a cette famille est

1 2
]\JBat(vl,vg) =(-10
0 1

On multiplie chaque vecteur par A\ = 2,
201 = (2,-2,0),2vy = (4,0,2).

La matrice associée a cette nouvelle famille est

2 4 1 2
]\4Bat(2v1, 20) = -2 0]=2-|1-1 0]=2- ]\4Bat(vl,vg).
0 2 0 1

Propriété confirmée : la multiplication des vecteurs par un scalaire se traduit par la multiplication
de la matrice par le méme scalaire.

Remarque 3.6.2 ]\/][Egat(x) représente les coordonnées du vecteur x dans la base B. Il y a bien sur une

correspondance biunivoque entre les vecteurs de E et les matrices colonnes de taille n (qui contiennent
les composantes de ces vecteurs dans une base fixée). De plus, « effectuer des calculs avec ces vecteursy
correspond a « effectuer des calculs avec ces matrices ». C’est le sens de la proposition suivante.

110



MATRICES

Proposition 3.6.2 Soit E un K-espace vectoriel de dimension n et soit B une base de E. L’appli-
cation

f:E — Mn,l(K)
v (@)= Mat(e),

qui a un vecteur associe la matrice colonne de ses coordonnées dans la base B est un isomorphisme
de K-espaces vectoriels. En particulier, tout K—espace vectoriel de dimension n est isomorphe a

M, 1(K).

Preuve.
Etape 1 : Montrons la linéarité de f. Soient z,y € E et A € K. Ecrivons leurs coordonnées dans
la base B,

n n
T = sz’@i,y = Eyiei;xiayi e K.
i=1 =1

Alors

n

r+y= Z(:L‘Z + y;)e;.
=1

Par définition de ]\/é at,

T+ Ty (1
]\4Bat(x +y) = : =t |= ]\/{Bat(x) + ]\4Bat(y).
Tn + Yn Ty Yn
De méme, pour tout scalaire \ € K
)\Il I
Mat(A-x)=1 + |=X-| : |=X Mat(zx).
B B
ATy, T
Donc f est linéaire.

Etape 2 : Montrons la bijectivité de f.
(a) Injectivité. Si x € ker(f), alors

]\/{Bat(x) =01 — v1=22=---=2, =0k = x=0pg
Donc f est injective.
(b) Surjectivité. On sait que
dim(£) = n = dim(M,, 1(K)).

Une application linéaire entre deux espaces de méme dimension, injective, est automatiquement
surjective. Donc f est bijective, donc un isomorphisme. O

3.6.2 Matrice d’une application linéaire dans des bases finies

Apres avoir vu comment représenter une famille de vecteurs par une matrice, on peut maintenant
élargir cette idée aux applications linéaires. De la méme fagon qu'un vecteur est décrit par ses
coordonnées dans une base, une application linéaire peut étre représentée par une matrice une fois que
I’on a choisi une base dans I'espace de départ et une base dans ’espace d’arrivée. Cette représentation
permet de transformer 1’étude d’applications linéaires abstraites en calculs matriciels concrets et
pratiques.

111



MATRICES

Définition 3.6.3 (Matrice d’une application linéaire relativement ¢ deux bases)

Soient E un K—espace vectoriel de dimension n muni d’une base Bg = {e1, ez, ..., e,}, F un K—espace
vectoriel de dimension m muni d’une base Bp = {wy,ws, ..., wy,} et f € Lxk(E, F) une application
linéaire de E dans F'. Alors

1. On appelle matrice associée a f relativement auzx bases Br et By et on la note éw%t (f) € Myn(K)

)

la matrice de type (m,n) sur K dont la j—éme colonne est formée par les coordonnées de f(e;) l'image
du j—ieme vecteur e; de la base de départ B par rapport a la base d’arrivée Brp. On note alors

fler) flea) --- f(ej) o flen)

a1; Q2 - Ay o Aip wq
Qo1 QA2 - Q25 - Qaop Wa
A= Mat(f) =
Bg,Br
L0 7 R 7 E ¢ 777} w
Qm1 OGm2 - Apmj - O Wi,

Telle que, pour tout j € {1,2,...,n}, (aij,as;,...,am;) les coordonnées de f(e;) dans la base Bp,

c’est-a-dire
m

Vje{l,2,...,n}: f(e) = Zaijwi.

i=1
Autrement dit chaque colonne correspond a l'image d’un vecteur de la base Bg exprimée dans la base
Bpr. On dit que la matrice é\/[%t (f) représente f dans les bases Bg et Bp.
E,DF

2. En particulier, si E = F et Br = Bp, on dit que
A = Mat(f) e M,(K),
Bg

est la matrice de f dans la base Bg.
3. 81 f = Idg est Uapplication identité sur E, alors

Mat(Idg) = I,
Bg

ou I, est la matrice identité d’ordre n.

Remarque 3.6.3 Lorsque l'on écrit éM%t (f) € Mpu(K), Uordre des deuz indices m et n dans
E,DF

Mn(K) est inversé par rapport a l'ordre des deuz bases By et Br dans M%t (f). Le premier indice
EPF

(ici m) correspond d la dimension de l'espace d’arrivée (ici F') et le second (ici n) a la dimension
de Uespace de départ (ici E'). Cette notation est, certes, malheureuse mais il s’agit de la notation
usuelle.

Exemple 3.6.4
1. Considérons E = R? avec la base canonique Bg = {e1,es}, F = R3 avec la base canonique
Br = {wy, ws, w3}, et Uapplication linéaire f : R? — R3 définie par

flz,y) = (v +y,2z,y).

Pour construire la matrice associée a f, on calcule l'image des vecteurs de la base de départ et on
écrit ces images dans la base d’arrivée

fler) = f(1,0) = (1,2,0) = 1wy + 2wy + Ows
fles) = f(0,1) =(1,0,1) = 1wy + Owsy + lws.
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On place ces coordonnées dans les colonnes de la matrice

A= Mat (f) =

BR2 ’BIRS

O N =

1
0 € M&Q(R).
1

Ainsi, la premiére colonne correspond da f(e1), et la deuxiéme colonne correspond da f(es). Cette
matrice représente complétement ’application linéaire f dans les bases choisies et permet de calculer
facilement f(x,y) pour tout vecteur (z,y) € R? via un produit matriciel.

2. Soit E = F = Ry[X], lespace des polynomes réels de degré < 2, muni de la base canonique
B ={1,X,X?}, et soit f:Ry[X] —> Ry[X] définie par

f(P)=P.
On calcule l'image des vecteurs de base

fl) = 0=0-1+0-X+0 X,
f(X) = 1=1-14+0-X+0-X?,
f(X? = 2X=0-1+2-X+0- X~

On place ces coordonnées en colonnes

A = Mat(f) = e Ms(R).

o O O
o O =
o NN O

3.6.2.1 Ecriture matricielle d’une égalité vectorielle

L’intérét de connaitre la matrice associée a une application linéaire f : E — F (relativement
a deux bases Bg et Bf) est de pouvoir réécrire une égalité vectorielle de la forme y = f(x) sous la
forme d’une égalité matricielle. Considérons la matrice A = (a;;) € M, »(K) associée a 'application
linéaire f relativement aux bases Bg et B, c’est-a-dire

A= Mat(f).

Bg,Br

Décomposons le vecteur z € E et son image y € F' par f dans leurs bases respectives Br = (€;)1<j<n
/
et Br = (€)1<i<m,

n m
__ _ /
T = Ywie;, Y= Y€,
j=1 =1
et cherchons a exprimer chacune des coordonnées yi, o, ...,y du vecteur y en fonction des coor-
données x1,xs, ..., x, du vecteur z. Pour cela, commengons par calculer f(x). On a

n

flx)=f <Z l"jej) = Zn]%‘f(ej) = Zn] <%’i%62> ;

j=1 i=1

puisque pour 7 =1,2,...,n,
m
fleg) = aiel.
i=1
Par conséquent,
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0 () - £ (S ) - £ (S0

j=1 i=1 \yj=1

Nous en déduisons ’équivalence suivante

y=fz) <= Dy, =), (Z %‘%‘) €.
=1

i=1 \j=1

Par identification des coordonnées (la décomposition d’un vecteur dans une base étant unique), on
obtient

n
Vi e {1,2,...,777,} LY = ZCLZ']'LUJ',
j=1
c’est-a-dire

Y1 = a1171 + A19T2 + ... + A1 Ty

Yo = 2171 + Q222 + ... + A2y Ty

Ym = @m1T1 + Qp2To + ...+ QT

Ces relations se nomment équations (ou représentation analytique) de f relativement a Bg et Bp.

Ainsi, en notant X la matrice-colonne constituée des coordonnées 1, o, ..., x, du vecteur x dans la
base Bg,

X € My (K),
et en notant Y la matrice-colonne constituée des coordonnées y1, 4o, . . ., ¥y, du vecteur y dans la base
BFa

Ye Mm,l(K)a

le systeme d’équations linéaires précédent s’écrit sous la forme matricielle

Y = AX,
c’est-a-dire
n ai; Qa2 - Qi X
Y2 Q21 Q22 -+ A2 T2
Ym Am1  Am2 Amn Tp

Donc on a le résultat suivant.

Proposition 3.6.3 Soient E et F' deux K—espaces vectoriels de dimensions finies, avec dim(E) = n
et dim(F') = m. Soient Bg une base de E et Br une base de F. Soit f € Lx(FE, F) une application
linéaire, et A = BM%t (f) sa matrice relativement aux bases (Bg, Br).

E,DF

Pour tout x € E, notons

o X € M,,1(K) la matrice-colonne des coordonnées de x dans Bp,

o Y e M,,,1(K) la matrice-colonne des coordonnées de y = f(x) dans Bp.
Alors on a léquivalence fondamentale

flz)=y==Y =AX.
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Autrement dit,
Mat(f()) = Mat (/) Mat(x).

Bg,BFr

En particulier, si E = F et B = Bp, cette formule s’écrit simplement

Mat(f(z)) = Mat(f) - Mat(z).

Exemple 3.6.5 Soit f € Lr(R3?, R?) une application linéaire (un endomorphisme de R?). Sa matrice
associée dans la base canonique B est

2 -1 3
A= ]\4Bat(f) = -1 0 1
1 -3 2
Soient
T = (901,$27$3) € R3vy = (y17y2;y3) eR’.
Posons
x 1
X = ) 7Y = Y2
z3 Y3

2 -1 3 T U1
Y = AX — —1 0 1 . ) = Y2
1 -3 2 T3 Ys

2[L’1 — X9 + 31‘3 U1

< —T1 + X3 = Yo

T1 — 3Ty + 273 Y3

Ce qui équivaut au systéme
21‘1 — 9 + 3%3 =11
—T1+ T3 = Y2
I — 31‘2 + 2£L'3 = Y3

On peut donc écrire | explicitement comme suit

fl R3 —> RZ&
r = (x1,09,23) — f(x) =y = (y1,92,¥3) = (201 — 22 + 33, —21 + 23, 1 — 32 + 273) .

2. Prenons l'exemple de l’application linéaire f : E — F', avec E et ' deux K—espaces de dimensions
respectives 2 et 3, définie par les images des vecteurs de la base de départ

{f@g:2%+3%—eg

flea) = €1 — e + de,

ou Br = {e1,ex} est une base de E et Br = {€},¢h, e} une base de F. Soient x € E ety = f(x).
Décomposons x dans la base de départ Bg ety dans la base d’arrivée Br. On a

T =x1€1 + T2€2, Y = Yi€) + Yaeh + Yses.
Puisque Uapplication f est linéaire, on a

f(z) = f(zier + xoe2) = x1f(e1) + xaf(e2) = x1(2€] + 3ey — €5) + zo(€] — €}, + 4€f)
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= (221 + ma)e] + (Bxy — ma)eh + (—xq + 4ag)es.

L’égalité vectorielle y = f(x) se réécrit alors
y1€] + yaey + yzey = (21 + x2)e] + (Bxy — wa)eh + (—xp + 4ag)es.

En procédant a lidentification des coordonnées, on en déduit les expressions de yy, Y2, ys en fonction
de x1, o

Y1 = 221 + 19
Yo = 3T — T2

Y3 = —1 + 4x2

Ce sont les équations de f relativement aux deur bases Bp et Br. Ce systéme s’écrit aussi sous la
forme matricielle

h 2 1 21

Ya | = 3 -1 T .

Y3 -1 4 ?

3. Soient [ : Ry[ X ] — Ry[X] une application linéaire et

1 -1 1
A= <_1 1 _1> EM273<R>,

est la matrice de f relative aux bases canoniques. Pour P = a+bX +cX? € Ry[X] on pose la colonne
des coordonnées de P dans Bg,[x],

a
X = ble Mg,l(R).

C

On note Y € My ;1(R) la colonne des coordonnées de y = f(P) dans la base canonique de Ri[X]. La
proposition affirme que

f(P)=y < Y = AX.

On obtient

Donc, en écrivant

on obtient

Yy=a—b+cyy=—-a+b—c

Ainsi, par la proposition f(P) =y se traduit par le polynome
fla+bX +cX)=y+yuX=(a—b+c)+(—a+b—c)X =(a—b+c)(1-X).
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3.6.2.2 Interprétation des opérations sur les matrices

Les matrices servent a représenter les applications linéaires quand on choisit des bases dans les
espaces vectoriels. Dans ce cadre, les opérations sur les applications linéaires (somme, produit par
un scalaire, composition, identité, inverse) se traduisent directement par des opérations sur leurs
matrices. Autrement dit, additionner deux applications, les multiplier par un scalaire, les composer
ou encore prendre I'identité ou l'inverse, revient a effectuer les opérations analogues sur leurs matrices.
Cela permet d’étudier les applications linéaires a travers des calculs matriciels plus concrets et plus
faciles a manipuler.

Proposition 3.6.4 Soient E, F,G trois K—espaces vectoriels de dimension finie, munis respective-
ment des bases Bg, Br, Bg, et soient f1, fo € Lx(E, F), fs € Lx(F,G), f1 € Lx(E, E) des applications
linéaires et A € K un scalaire. Alors

1. Somme d’applications linéaires. La matrice de la somme de deux applications linéaires est
la somme de leurs matrices.

%%Z(fl + f2) = é\b{%i(fl) + %%i(fﬂ-

2. Multiplication par un scalaire. La matrice d’une application linéaire multipliée par un scalaire
est le produit de sa matrice par ce scalaire.

Mat ()\ fl) =\ Mat (fl)

BE,BF E:BF

3. Composition d’applications linéaires. La matrice de la composée de deux applications li-
néaires est le produit matriciel de leurs matrices.

Mat (fs o f1) = é\g%g(f?)) ' %%i(fl)-

BE7

4. Application identité. L’application identité est représentée par la matrice identité.

f4 = IdE < M(lt (f4) = n-

Bg,BE

5. Inverse d’une application linéaire. Si d%ﬁm(E) = d%ﬁm(F), alors f1 est bijective si et si

é\/[aBt (f1) est inversible. Dans ce cas on a
E,DF

Mat (f71) — (Mat (f1)>_1.

Br,Bg Bg,Bp

Autrement dit, une application linéaire est bijective (donc inversible) si et seulement si sa matrice est
inversible. De plus, la matrice de l’application réciproque est linverse de la matrice de ['application
initiale.

Preuve.

1. I suffit de revenir a la définition d’une matrice associée a une application linéaire. Si f; € Lx(E, F)
et fo € Lx(FE,F) alors fi + fo € Lx(F, F). Soient By = {ey,eq,...,6e,} une base de F et Bp =
{€},eh, ... e } une base de F.. On note A (resp. B) la matrice de type (m,n) sur K représentant f;
(resp. fo) dans les bases Bg et Bp. Par définition, pour tout j € {1,2,...,n},

m m
ej) = Zaijeg et falej) = Zbije;.
=1 i=1
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Puisque f1 + f2 € Lx(F, F), la matrice représentant f; + f5 relativement aux bases Bg et Br est de
type (m,n). On note C' = (c;5)1<i<m,1<j<n cette matrice. Par définition, pour tout j € {1,2,...,n},

NgE

(fl + fQ)(€j) = cije'-. (31)

[
1

.
Il

Pour déterminer la matrice C, il suffit de calculer (f; + f2)(e;) pour j € {1,2,...,n}. On a

(f1 + f2)(ej) = file;) + fa(ey) Zawez+2bwel,
c’est-a-dire

(f1 + f2)(ej) Z a” + bi; | e (3.2)

=1
_Cz]
De (3.1)) et (3.2)), par identification des coordonnées, il vient que
Cij = Qij + bij,

c’est-a-dire que le coefficient ¢;; est le coefficient de la i — ieme ligne et de la j — iéme colonne de la
matrice (A + B). On a ainsi vérifié que

C = %%Z(fl +fo)=A+ B = é\g%i(fl) + %%i(fz)-

2. Notons A = (a;;) la matrice de f; dans ces bases. Par définition, pour tout j € {1,...,n},

m

/

e;j) = Zaij e;.
i=1

Considérons maintenant I'application Af;. Sa matrice (notée B = (b;;)) est définie pour tout j €

{1,2,...,n},

(Af1)(e)) bij €;.
i=1
Or, pour tout j,
(Af)(ej) = A file;) = A (Z az‘ﬁé) = ) (Aaiy)e;.
i1 i1

Par identification des coordonnées dans la base Bp, on obtient
bij = )\aij, VZ,j
Alinsi,
B = )\A.
Donc,

Mat (\- f1) = A‘é\ﬁ%i(fl)-

Bg,Br

3. Soient E, F, G trois K—espaces vectoriels de dimensions finies, munis respectivement des bases

Bp = {e1,ea,...,e,}, Bp = {€},€,,...,¢.}, Ba = {€],e5,...,€.}.

Soient f1 € Lx(E, F) et f3 € Lx(F,G). Notons

A= Mt (£1) = () € Mun(K), B = Mat (f5) = (ba) € M (K),C = Mgt (fof) = () & My ().
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Par définition, pour tout j € {1,...,n}

m
€j) = Z aije},
i=1
et pour tout i € {1,...,m}
k
= 2 beiey
=1

Calculons (f5 o f1)(e;).

m m k
(fS o fl)(ej) f3(f1 eg (Z CLU ) Z Z]fg Z aij (Z b@ieg> .
= i=1 /=1

En interchangeant les sommes
k m
(fs 0 f1)(e)) Z Z beia; €y
=1 \i=1

D’autre part, par définition de C,
(f3 0 f1)(e5) Z ciey

Par identification des coordonnées dans la base Bg, on obtient
m
cyj = Z beiaij, Ve, 5.
i=1
Alinsi,
C=B-A,
c’est-a-dire

Mat (f3o f1) = é\g%é(f?;) ‘ %%i(fl)-

Bg,Bg

ce qui démontre la formule.
4. Soit fy € Lx(E, E). Notons

A= Mat (fs) = (a;j) € M, (K).

Bg,Bg

(i) Sens direct : Supposons f; = Idg. Alors, pour tout j € {1,...,n},
fa(e;) = Idg(e;) = ;.

Or, par définition de la matrice de f;,

n
ej) = Z ;5 €;.
i=1

Par identification des coordonnées dans la base Bg, on obtient
g sii=jy,
Qi = .. .
Og siz# .

A:Irw

Ainsi,



MATRICES

c’est-a-dire

(ii) Sens inverse : Supposons
Mat (f4) = In-
Bg,Bg

Alors, pour tout j € {1,...,n},
faley) = ) aijei = e,
i=1

puisque
aij = 0ij,
(symbole de Kronecker). Ainsi, f; coincide avec l'identité sur la base Bg. Par linéarité, f, = Idg.
Alors
f4 = IdE — Mat (f4) = In
Bg,Bg

O

Proposition 3.6.5 (Une application linéaire est entiérement déterminée par sa matrice
dans deux bases)

Soient E' un K—espace vectoriel de dimension n muni d’une base Bg = {e1, €, ...,e,}, F un K—espace
vectoriel de dimension m muni d’une base Bp = {wy,ws,...,wy,} et f € Lx(E, F) une application
linéaire de E dans F. Soit A = é\g%i(f) la matrice associée a [ relativement auzr bases Br et Bp.
On définit l'application 7

p: Lx(BE,F) — Mm,n(K)
f — @(f) = Mat (f),

Bg,Br

qui associe a toute application linéaire sa matrice relative aur bases Bg et Bp. Alors ¢ est un
isomorphisme de K—espaces vectoriels.

Remarque 3.6.4 Cet isomorphisme montre que, une fois les bases fixées, l’étude des applications
linéaires et celle des matrices sont équivalentes. En effet :

e d toute application linéaire f correspond une unique matrice Mat(f),

e et réciproquement, a toute matrice correspond une unique application linéaire.

Ainsi, toute propriété de f se traduit en une propriété de sa matrice, et inversement. Autrement dit,
travailler avec les applications linéaires ou avec les matrices revient exactement au méme, des lors
que les bases de départ et d’arrivée sont choisies.

Preuve. On a pour f e Li(E, F), on écrit pour chaque j € {1,...,n}
m
fleg) = ) aiw;,
i=1

et I'on pose
Sp(f) =A= (aij) € Mm,n(K)
Par définition la j-ieme colonne de A est le vecteur colonne des coordonnées de f(e;) dans la base
Bp.
1. Linéarité de ¢. Soient f,g € Lx(E, F) et a, 8 € K. D’apres la propositionm précédente, on a
plaf + Bg) = Mat (af + Bg) = Mat (af) + Mat (Bg) = - Mat (f) +5- Mat (g).

E,BF
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Alinsi,
plaf +8g9) =a-o(f) +B-»(g).

On en conclut que I'application ¢ est linéaire.
2. (a) Injectivité de ¢. Supposons ¢(f) = 0,,, (matrice nulle). Alors pour tout j, la colonne j de

é\/[ aBt (f) est nulle, donc f(e;) = Ox. Montrons que f est 'application nulle. Soit € E arbitraire.
E,DPF

Comme Bpg est une base de F, il existe des scalaires aq, ..., a, € K tels que

r = Z CYj@j.
j=1
Par linéarité de f,
f(z)=f <Z Oéjea) = > a;f(ey).
j=1 j=1

Mais nous avons vu que pour chaque j, f(e;) = 0p. Donc
f(x) = Z OéjOF = OF
j=1

Ainsi f(z) = Op pour tout € £. On en déduit que f est I'application nulle Oz, (g, r). Ainsi

ker(p) = {f € Lk(E, F) : ¢(f) = Omn} = {Oce(m.m)}-
Alors ¢ est injective.

(b). Surjectivité de ¢. Montrons que pour toute matrice A = (a;;) € M;,,(K), il existe une
application linéaire f € Lx(E, F) telle que BM%IS (f) = A. Posons, pour chaque j € {1,...,n},
E\DF

m
v; = Zaijwi e F.
i=1

Par la propriété fondamentale des applications linéaires définies par les images d’une base, il existe
une unique application linéaire f : E — F telle que

flej) = v, V5.
En effet, pour tout
T = 2 )‘jej € E,
j=1

on définit

f(z) = Z Ajv;.

Cette définition est bien posée et assure la linéarité de f. Ainsi, 'application f est bien définie et
unique. De plus, par construction,

m
fleg) =v; = > aiw,
=1

donc la j-ieme colonne de Mat (f) est exactement (ay;, as;, ..., am;). Autrement dit, Mat (f) = A.
BE,BF BE7BF

Comme A était arbitraire, on conclut que 'application ¢ est surjective. Comme ¢ est linéaire, injective
et surjective; donc c¢’est un isomorphisme. O
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3.6.2.3 Applications linéaires canoniquement associées aux matrices

Définition 3.6.4 (Application linéaire canoniquement associée d une matrice) Soit A €
Mn(K). On appelle application linéaire canoniquement associée a A 'application fa définie
par
fA K —s K™
X — fa(X)=AX.

Remarque 3.6.5 En réalité, le produit AX n’est défini que si [’on considére X comme une matrice
colonne de M, 1(K). Pour simplifier les écritures, on identifie donc M, 1(K) a K" et M,,1(K) a
K™. Dans ce cadre, la définition s’écrit plus rigoureusement

fAZ MnJ(K) — Mmyl(K)
X fa(X) = AX.

Ainsi, la matrice A représente exactement l'application linéaire f4 relativement aux bases canoniques
de K" et K™.

On peut définir 'endomorphisme canoniquement associé a une matrice exactement de la méme
facon que pour 'application linéaire associée, mais en se restreignant au cas ou la matrice est carrée
(n=m).

Définition 3.6.5 (Endomorphisme canoniquement associé a une matrice). Soit A € M,,(K)
une matrice carrée d’ordre n. On appelle endomorphisme canoniquement associé a A application
linéaire
fa: K — K™
X — fa(X)=AX.

ou l'on identifie K™ a M,, 1(K). Ainsi, A est précisément la matrice de l’endomorphisme fa dans la
base canonique de K.

Remarque 3.6.6 (Différences entre application linéaire associée et application linéaire canonique-
ment associée d une matrice).

1. L’application linéaire associée a une matrice :

e (est une notion générale.

e FElle dépend du choir de bases dans les espaces de départ et d’arrivée.

e Une méme matrice peut représenter des applications linéaires différentes si les bases changent.

2. L’application linéaire canoniquement associée a une matrice :

e FElle est définie de manicre unique.

e On considere toujours les bases canoniques de K™ et K™.

e A chaque matrice A e M (K), on associe application

fa: K" — K" X +— AX.

Cette association ne dépend d’aucun choiz arbitraire de bases.

Exemple 3.6.6
1. Application linéaire canoniquement associée a une matrice non carrée. Soit

1 20
A=<_1 0 3)EM2,3(R).
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On définit application linéaire canoniquement associée

fa: R —RY X — AX.

alors
T
. (1 20 (r+2y
fA(X)_AX_<—1 0 3) i _<—x+3z)'

Ici, fa est une application linéaire de R3 vers R2.
2. Endomorphisme canoniquement associé a une matrice carrée. Soit

B = (i _31> e My(R).

On définit [’endomorphisme canoniquement associé

fp:R?* — R? X — BX.
()
y )
2 =1\ (= 20—y
w= (1) () = ()

Ici, fg est un endomorphisme de R, et la matrice B est précisément la matrice de fg dans la base
canonique.

Pour

on obtient

Définition 3.6.6 (Noyau et image d’une matrice) Soit A € M,,,(K), et fa Uapplication
linéaire canoniquement associée a A.
1. On appelle noyau de A le sous-espace vectoriel de M, 1(K), noté ker(A), défini par

ker(A) = {X e M, 1(K) : AX = 0,,1}.

Autrement dit, le noyau de A coincide avec le noyau de f4.
2. On appelle image de A le sous-espace vectoriel de M, 1(K), noté Im(A), défini par

Im(A) = {Y € Myp1(K),3X € Mu1(K) 1Y = AX} = {AX : X € M1 (K)}.

Autrement dit, "image de A est exactement l'image de fa. Ainsi, les notations ker(A), Im(A) tra-
duisent le fait qu’une matrice A peut étre vue naturellement comme une application linéaire.

3. On dit que A est injective si et seulement si ker(A) = {0,1}.

4. On dit que A est surjective si et seulement si Im(A) = M, 1(K).

Remarque 3.6.7 Notons f4 € LIK",K™) lapplication linéaire canoniquement associée d A.
1. Pour un vecteur (z1,...,x,) € K", on a
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Ainsi, [ est injective si et seulement si A est injective. De plus en identifiant K" et M,,1(K), on
peut donc écrire
ker(A) = ker(f).

2. De méme, pour un vecteur (yi,...,Yym) € K™, on a

Y1
Y1y, Ym) € Im(f) = : e Im(A).

Ym

Ainsi f est surjective si et seulement si A est surjective. De plus en identifiant K™ et M, 1(K), on
peut donc écrire
Im(A) = Im(f).

Exemple 3.6.7
1. Soit

A- (; Z) e My (R).

L’application linéaire canoniquement associée a A est
fa:R* —R* X — AX.

On détermine le noyau et l'image de A.
(a) Noyau. Par définition,

ker(A) = {X e M1 (R) : AX = 0,,}.

On pose

Alors

Cela donne le systéme

z+2y=0

2z + 4y = 0.
On obtient

T = —2y.
Donc

= {() ven) v ()

Comme le vecteur est non nul, donc
dim(ker(A)) = 1.

donc A n’est pas injective.
(b) Image. Par définition,
Im(A) = {AX : X e M3 (R)}.
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Comme AX est toujours une combinaison linéaire des colonnes de A, car

(e (),
e -ve({()-())

Or la deuxieme colonne est un multiple de la premiére, donc

Im(A) = Vect ({ (;) }) |

Comme le vecteur est non nul, donc

alors

dim(Im(A)) =1 < 2.

donc A n’est pas surjective.
2. Soit

B =

— o =

0
1]e M3,2 (R)
1

L’application linéaire canoniquement associée a B est
fz:R* — R? X — BX.
(a) Noyaw. Par définition,

ker(B) = {X € My1(R) : BX = 03,}.

On pose
X = (I) .
Y
Alors
10 - 0
BX = 03’1 < 0 1 ( ) = 0
1 1)\ 0
x 0
— Y =10
T +y 0
Le systeme

donne la solution unique

Donc
ker(B) = {02’1}.

Ainsi, B est injective.
(b) Image. Par définition,
Im(B) = {BX : X € M3;1(R)}.
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C’est donc ’espace engendré par les colonnes de B,

1 0
Im(B) = Vect 0],1
1 1

Comme ces deux vecteurs sont linéairement indépendants, on a
dim(Im(B)) =2 < 3.

Donc B n’est pas surjective.

3.7 Changement de base, matrices de passage et transfor-
mations associées

La matrice de passage est 1'outil qui permet de passer d'une base a une autre. Elle explique
comment exprimer les vecteurs d’une base en fonction des vecteurs de 'autre base. Grace a elle, on
peut transformer facilement les coordonnées d’un vecteur ou la matrice d'une application linéaire.

Pour un vecteur, le changement de base ne modifie pas le vecteur : il reste le méme dans 1’espace,
mais ses coordonnées changent selon la base utilisée. Pour une application linéaire, c’est le méme
principe : une méme application peut étre représentée par des matrices différentes selon les bases
choisies pour I'espace de départ et pour I'espace d’arrivée ; les matrices de passage permettent alors
de passer correctement d’une représentation a l’autre. Pour un endomorphisme, c’est-a-dire une
application linéaire qui agit sur le méme espace vectoriel, le changement de base est plus simple : une
seule matrice de passage suffit pour relier les deux matrices représentant le méme endomorphisme.

En conclusion, le changement de base ne modifie pas les objets étudiés, mais uniquement leur
écriture. Les matrices de passage sont donc essentielles pour traduire les coordonnées des vecteurs et
les matrices des applications linéaires lorsqu’on change de base.

3.7.1 Changement de bases pour un vecteur

Quand on change de base, le vecteur ne change pas, mais ses coordonnées prennent une nouvelle
forme. Pour passer d'une écriture a l'autre, on utilise la matrice de passage, qui permet de traduire
les coordonnées d’une base vers une autre.

Définition 3.7.1 (Matrice de passage)
Soit E un K—espace vectoriel de dimension n. On considére deuz bases de F,

B = {ey,€9,...,e,} (ancienne base), B’ = {e}, ¢}, ... e} (nouvelle base).

1. On appelle matrice de passage de B wvers B’ (ou matrice de changement de base) et on note
Pass(B, B') la matrice carrée
P = Pass(B, B') € M, (K),

dont les colonnes sont les coordonnées des vecteurs de la nouvelle base B’ exprimés dans l'ancienne
base B. Autrement dit
P = Pass(B,B') = ]\43@15(6’1, €y esh),
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ot ]\JBat () désigne la matrice d’une famille de vecteurs relativement d la base B.

2. Inverse. Si P = Pass(B, B'), alors sa matrice inverse est donnée par

P! = Pass(B',B) = ]\%qt(eh €2,y ey €n).

Autrement dit, les colonnes de P~' sont les coordonnées des vecteurs de l'ancienne base B exprimés
dans la nouvelle base B'.
3. Cas particulier. Le passage d’une base vers elle-méme donne la matrice identité

Pass(B, B) = I,.

Exemple 3.7.1
1. Changement de base dans Ry[X]|. Considérons l'espace vectoriel E = Ry[X], c’est-a-dire
I’ensemble des polynomes réels de degré inférieur ou égal a 2. On se donne l’ancienne base

B={Py=1,P =X,P,=X?%,

et la nouvelle base
B ={Pj=1,P=X—1,P,=(X —1)?.

Pour construire la matrice de passage P = Pass(B, B’), on exprime chaque vecteur de la nouvelle
base B' comme combinaison linéaire des vecteurs de 'ancienne base B. On a donc

Pj=1=1-Py+0-P,+0-P,
Pl=X—-1=(-1)-B+1-P+0-P
Pp=(X—-12=X?-2X+1=1-B+(-2)-P+1-P,.

Ainsi, les colonnes de P sont précisément ces coordonnées, ce qui donne

1 -1 1
P = Pass(B,B') = ]\éjfgat(Pé,Pl',PQ') =0 1 —=2]eM;3R).

0 0 1
2. Changement de base dans R®. Considérons l’espace vectoriel E = R®. On se donne, ’ancienne
base (canonique)

B ={e; = (1,0,0),es = (0,1,0),e3 = (0,0, 1)},

et la nouvelle base
B = {u; = (1,1,0),us = (0,1,1),u3 = (1,0, 1)}.

Pour construire la matrice de passage P = Pass(B, B'), on exprime les vecteurs de la nouvelle base
B’ en fonction de l'ancienne base B.
Comme B est la base canonique, les coordonnées sont simplement les composantes des vecteurs

ulz(l,l,()) '€1+1'€2+0'€3
ug =(0,1,1)=0-e;+1-ea+1-e3
U3=(170,1)21'€1+0'62+1'63.

On construit la matrice de passage P en placant ces coordonnées en colonnes

P = Pass(B,B') = J\/{Bat(ul,ug,ug) =

[ -
—__ o
—_ O
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La question suivante se pose naturellement : quelle application linéaire remarquable est associée
a une matrice de passage? La réponse donnée par la proposition suivante nous sera d’une grande
utilité.

Proposition 3.7.1 Soit F un K-espace vectoriel muni des bases B et C'. La matrice de passage P
de B a C' est la matrice représentant l’application identité

ldg:xe E— x € F,
relativement auz bases C' et B. En d’autres termes

P = Pass(B,C) = Z\é[%t(f = Idg).

Preuve. Notons n = dimg(FE) et écrivons la matrice ]\04 %t(l dg) associée a l'application Idg relati-

vement a la base de départ C' = (uy,us, ..., u,) et a la base d’arrivée B. En appliquant la définition
3.6.3| pour j variant de 1 a n, la j-ieme colonne de la matrice ]\04 %t(l dp) est constituée des coordonnées

du vecteur Idg(u;) dans la base d’arrivée B. Or pour j € {1, ...,n},
]dE(u]) = Uj.

Ainsi la j-ieme colonne de la matrice J\é[ %t(f dg) est constituée des coordonnées du vecteur u; dans

la base B. C’est précisément la matrice P (d’apres la définition [3.7.1)). ]

Remarque 3.7.1 Si P est la matrice de passage de B a C alors P représente l’application identité
avec pour base de départ la nouvelle base C' et pour base d’arrivée l'ancienne base B, et non l’inverse.
Schématiquement,

P = Pass(B,C) = Ag%t(f = Idg).

- -
i

(E,C) — (E, B)

Une matrice de passage est toujours inversible, puisqu’elle représente 'application identité Idg,
qui est nécessairement bijective. Des lors, connaitre la matrice de passage de B a C permet d’en
déduire immédiatement la matrice de passage de C' a B.

Proposition 3.7.2 Soit E un K-espace vectoriel muni des bases B et C. Si P = Pass(B,C) est la
matrice de passage de B a C, alors P™', la matrice inverse de P, est la matrice de passage de C d
B,

P~ = Pass(C,B) = ]\é[%t([dE).

Autrement dit, les colonnes de P~' sont les coordonnées des vecteurs de l'ancienne base B exprimés
dans la nouvelle base B'. Schématiquement,

P! = Pass(C,B) = ]\g[%t(f = Idg).

" J
g

(E, B) — (E,C)

Preuve. Supposons que dim(E) = n, alors P la matrice de passage de B a C' est toujours inversible,
donc

PeGL,(K),
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ou GL,(K) désigne le groupe linéaire, c¢’est-a-dire ’ensemble des matrices carrées inversibles d’ordre
n.
Appelons @ € GL,(K) la matrice de passage de C' a B. En appliquant la proposition la matrice
() représente 'application

Idg : E — E,

relativement aux bases B et C' (remarquer l'ordre des deux bases), c¢’est-a-dire
Q = Mat(Idp).
Soit P € GL,(K) la matrice de passage de B a C. D’apres la proposition [3.7.1]

P = Mat(Idp).

Calculons I'un des deux produits matriciels ) - P et P - Q). Rappelons que la matrice associée a
I’application identité relativement a n’importe quelle base est la matrice unité. On a

QP = Mat(Idg) - Mat(Idg).

Or, par compatibilité entre composition et produit de matrices,
- P = Mat(I 1 = Mat(Idg) = I,.
Q C,gt( dE o dE) Cat( dE) n
On en déduit directement que

P =0,

Ce qui acheve la démonstration. ]

Exemple 3.7.2
1. Reprenons l'exemple de ’espace vectoriel E = Ry[X]| muni de l'ancienne base

B={Py=1,P =X,P,=X?,

et la nouvelle base
B ={P,=1,Pl=X—-1,P,=(X —1)%,

La matrice de passage de B a B’ est
1
P = Pass(B,B') = %at(Pé,P{,Pé) =10
0

Calcul de P~'. On sait que

P! = Pass(B',B) = ]\%qt(Po,Pth)-

Autrement dit, les colonnes de P! sont les coordonnées des vecteurs de l'ancienne base B exprimés
dans la nouvelle base B'.

Pour construire la matrice de passage P~', on exprime chaque vecteur de l’ancienne base B =
{1, X, X?} comme combinaison linéaire des vecteurs de la nouvelle base B' = {1, X —1,(X —1)?}.
Ecrivons la combinaison générale

a-1+b-(X—1)+c-(X—-12*=(a—b+ec)+ (b—2c)X +cX? (a,b,c) e R®.
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Les coordonnées par rapport a la base canonique (1, X, X?) sont donc
(a—b+c,b—2c,c).

Nous résolvons ce systeme pour chaque vecteur de B.
e Pour Py =1 (coordonnées (1,0,0)),

a—b+c=1 a=1
b—2c=0 = <b=0
c=0 c=10

Coordonnées de 1 dans B" sont (1,0,0).
e Pour P, = X (coordonnées (0,1,0)),

a—b+c=0 a=1
b—2c=1 = <bh=1
c=0 c=10

Coordonnées de X dans B'sont (1,1,0).
e Pour Py = X? (coordonnées (0,0,1)),

a—b+c=0 a=1
b—2c=0 = <b=2
c=1 c=

Coordonnées de X* dans B’ sont (1,2,1).
Les colonnes obtenues forment P~1,

P! = Pass(B',B) =

o O =
O =
— N

Remarque. On retrouve bien le résultat obtenu précédemment ; vérification rapide
P.-P 1 =1,

2. Reprenons l'exemple de R® muni de l’ancienne base (canonique) B = {e1, ey, e3} et de la nouvelle
base
B = {u; = (1,1,0),us = (0,1,1),u3 = (1,0, 1)}.

La matrice de passage P = Pass(B, B') s’écrit

1
P = Mat(uy,us,us) = |1
7 0

—_= O
_ o =

Calcul de P~'. On a
P! = Pass(B',B) = %qt(el, €2, e3).

Autrement dit, les colonnes de P~ sont les coordonnées des vecteurs de l’ancienne base B exprimés
dans la nouvelle base B'.
Pour construire la matrice de passage P~, on exprime chaque vecteur de la base canonique B =
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{e1, ea, €3} comme combinaison linéaire des vecteurs de la nouvelle base B' = {uy, us, ug}.
Ecrivons la combinaison générale

auy + bug + cus = (a +c,a +b,b +¢c), (a,b,c) € R®.
Pour chaque vecteur canonique e; on résout
auq + bus + cug = e;,

et le vecteur (a,b,c) obtenu sera la i-iéme colonne de P~ = Pass(B’, B).
e Poure; = (1,0,0), on obtient

a+c=1 a:%
a+b=0 =< b=—3
1
b+c=0 2
e Pour ey = (0,1,0), on obtient
CL+C:O a:%
at+b=1 = bzé
1
b+c=0 2
e Pour ez = (0,0,1), on obtient
G+C:0 a/:_%
a+b=0 =< b=1
b+c=1 %
On obtient donc
1 1 _1
2 2 2
1 11 1
P = PCLSS(B/,B) = —3 5 5
i _1 1
2 2 2

Apres avoir défini la matrice de passage, il est naturel de donner la formule de changement de
base qui relie les coordonnées d’un vecteur dans deux bases différentes.

Proposition 3.7.3 ( Formule de Changement de Base) Soient E un K—espace vectoriel de
dimension finie non nulle muni des bases B et B' et soient Xp = ]\4Bat(x) et Xp = ]\%gt(x) les

matrices-colonnes des coordonnées de x € E dans les bases respectives B et B'. Si P = Pass(B, B’),
est la matrice de passage de B a B’'. Alors

XB:PX/B/ etX//:Pil'XB.

Autrement dit, pour exprimer les coordonnées d’un vecteur dans ['une des deux bases, il suffit de
multiplier les coordonnées exprimées dans ['autre base par la matrice de passage P (ou par son
inverse).
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Preuve. Supposons que E un K—espace de dimension n muni des deux bases B = {ej,€s,...,€,}
et B = {uy,us,...,u,}. Un vecteur z appartenant a F peut se décomposer dans chacune des deux
bases B et B’. On note 1, xs,...,x, les coordonnées du vecteur x dans I'ancienne base B et on
qualifie ces coordonnées d’« anciennes »

T = inei = T1e1] + Toeo + ... + Tpen. (3.3)
i=1
On désigne par x7, 2}, ...,z les nouvelles coordonnées de = dans la nouvelle base B,
/ / / /
T = 2 Tiuy = Tyur + ToUg + -+ Ty Uy (3.4)

On cherche les relations liant anciennes et nouvelles coordonnées du vecteur x. En partant de ((3.4]),

on a
n
= Sy - 32 (o).
j=1

j=1

puisque u; = Y, p;je; pour tout j € {1,...,n} (par définition de P). Ainsi,
i=1

=55 (o) =55 (Smese) =5 (Sm) 33)

=1 \yj=1 i=1 \j=1

3

En comparant (3.3)et (3.5)), on déduit 1’égalité

Z Ti€; = Z (Z pij$;-> €;
i=1

—_————

Z5

En identifiant les coordonnées, on obtient I'expression des anciennes coordonnées du vecteur z en
fonction de ses nouvelles coordonnées

Vie{l,2,...,n}:z; = sz’ﬂ;-,
j=1

Sous forme matricielle, cela s’écrit

X1 P11 P12 DPin T

!

n 2

X2 P21 P22 - P2 x

= ) ,
/
L, Pnl Pn2 " DPnn Xy,
C’est-a-dire
XB = P'X/B/,

ce qui établit la formule de changement de base.

A partir de la formule démontrée
Xp =P Xp,

comme P est une matrice de passage donc inversible (P € GL,(K)), on peut multiplier & gauche par
P~1. On obtient

Pt Xg=P' (P Xp)=(P'P)- Xp =1, -Xp =Xp.

Donc
Xg =P ' Xg.
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Exemple 3.7.3

1. Soit R® muni de la base canonique B = {ey,eq,e3} et de la base B' = {uy,us,usz} avec uy =
(1,0,—1),us = (1,—1,0) et uz = (1,1,1), et considérons le vecteur x = (3,6,9) de R®. Puisque B
est la base canonique de R®, on a immédiatement

T = 3e; + 6ey + 9es.

On note x’ ., xl, et x4 les coordonnées de ce méme vecteur x dans la nouvelle base B’ = {uq, us, us}.
1)%2 3 ) , U3
On a

/ / /
T = T1U1 + ToUg + T3U3.

Calculons 'y, x4 et z%. On a

1 1 1\ [« 3
XB:P'XB/<:> 0 -1 1 .’L'/Q = 6 s
-1 0 1) \a4 9
ou encore, de maniere équivalente,
) 3
XB/IP_I'XB<:> ZL'/Q :P_l' 6
xh 9
telle que
1 1 1 =2
Pt = 3 1 -2 1
1 1

Le vecteur X s’obtient en effectuant le produit matriciel P~' - Xg. On obtient
ry = -=3,25 =0,25 =6,
c’est-a-dire

r = —3uy + 6us.

2. Soit lespace vectoriel E = Ry| X | muni de l’ancienne base
B={R=1P=XP=X"

et la nouvelle base
B ={Pj=1,P=X—1,P,= (X —1)?.

La matrice de passage de B a B’ est

1 -1 1
P = Pass(B,B')= |0 1 =2|eM;3R).
0 0 1
Considérons le polynome R € Ro[X| défini par
R=1PF;+1.P +1.P,.

Dans la base B’, la matrice des coordonnées de R est donc

1
X/B/ - ]_
1
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On applique la formule de changement de base. Cela donne la relation

A 1 -1 1 1 1
XBZP'X//<:> )\2 = 0 1 —2 . 1 = —1 5
A3 0 0 1 1 1

alors
R=1-X+ X2

3.7.2 Changement de bases pour une application linéaire

Une application linéaire est une relation qui associe a chaque vecteur d’un espace vectoriel un autre
vecteur, éventuellement situé dans un espace différent. Cette transformation peut étre représentée
par une matrice, mais cette représentation dépend toujours du choix des bases dans I'espace de départ
et dans l'espace d’arrivée.

Lorsque I’on change de bases, I’application linéaire elle-méme ne se modifie pas : elle reste la méme
relation entre les deux espaces. En revanche, la matrice qui la représente change, car elle traduit
maintenant les coordonnées des vecteurs par rapport aux nouvelles bases. Cette nouvelle matrice est
liée a I'ancienne grace aux matrices de passage, qui permettent de convertir la représentation dune
base a une autre. On dit alors que les deux matrices sont équivalentes, car elles correspondent a une
méme application linéaire exprimée dans des systemes de coordonnées différents.

Effet d’un changement de bases pour une application linéaire. On considére une appli-
cation linéaire f : F — F ou l'espace de départ F est de dimension n et I'espace d’arrivée F' de
dimension m. On munit l'espace £ des bases B; et Bj. On note Xp, et X 531 les matrices-colonnes

de M,,1(K) constituées des coordonnées d'un vecteur x de FE respectivement dans By et Bj. Si
P e GL,(K) désigne la matrice de passage de B; a B} alors on peut écrire

Xp, = PX}y.

On munit 'espace F' des bases By et B) et on note Yp, et Yéé les matrices-colonnes de M,, 1 (K)
constituées des coordonnées du vecteur y = f(x) de F respectivement dans By et B). Si Q € GL,,(K)
désigne la matrice de passage de By a Bj alors on peut écrire

YBQ = QYéé7

ou de maniére équivalente
! —1
YB; =Q Yg,.

On représente par A (respectivement par B) la matrice associée a f relativement aux deux bases B
et B} (resp. By et BY), c’est-a-dire

A= Mat(f) et B= Mat(f).

B1,Bs B! ,B},

D’apres la proposition [3.6.3] 1'égalité vectorielle y = f(x) peut s’écrire relativement aux bases Bj et
B, sous la forme matricielle

Yp, = AXp,, (3.6)

et relativement aux bases B] et Bj sous la forme matricielle
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On cherche une relation liant les deux matrices A et B. Partons de 1'égalité (3.6). Puisque Q) €
GL,,(K), on a l'équivalence suivante

Y32 = AX31 — CgilyB2 = QilAXBl.
En utilisant Q~'Yp, = 5, et Xp, = PXp,, on obtient

5 = (Q'AP) X} (3.8)

En comparant la derniere égalité (3.8) avec I'égalité (3.7, on en déduit, par identification, une
relation donnant la matrice B en fonction de la matrice A,

B=Q 'AP.

On a ainsi le théoréme suivant.

Théoréme 3.7.1 (Matrices équivalentes)

Soient E un K—espace vectoriel de dimension n, By et B} deuzx bases de E et P = Pass(By, B}) la
matrice de passage de By a B'. Soient F' un K—espace vectoriel de dimension m, By et B deux bases
de F' et Q) = Pass(Bs, B}) la matrice de passage de By a B et soit f € Lx(E, F) une application

linéaire. Posons A = g/[%t(f) la matrice associée a [ relativement aux bases By et By. Alors
1,D2

et
A=Mat(f)=Q -B-P*

Bi1,B2

et on dit que les matrices A et B sont équivalentes, c’est-a-dire qu’elle représentent la méme appli-
cation linéaire dans des bases différentes.

Remarque 3.7.2

1. Il est a noter que les deux matrices rectangulaires A et B sont du méme type puisqu’elles repré-
sentent la méme application linéaire f : B — F. En revanche, les deuxr matrices carrées inversibles
P et @ ne sont a priori pas du méme ordre, sauf si dim(E) = dim(F), auquel cas A, B, P et Q) sont
quatre matrices du méme ordre.

2. Les colonnes de la matrice B sont les coordonnées des images par f des vecteurs de la base Bj
exprimés dans la base BY. Autrement dit,

B = Mat(f(B)).

3. L’égalité
B=Q AP

n’est rien d’autre que l’écriture matricielle de [’égalité fonctionnelle suivante
f=1Idpo foldg
que l'on vérifie aisément puisque pour tout x € E, on a
(Idpo foldp)(z) =Idr(f(Idp(x))) = Idr(f(z)) = f(z),
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et que l’on schématise par
E — F
ldg | | Idp

—

f=Idpofoldg

Il suffit alors de compléter ce schéma en munissant l'espace E des deuz bases By et BY, et l'espace F
des deuz bases By et B, puis en écrivant les matrices associées d chacune des applications relative-
ment aux bases des espaces de départ et des espaces d’arrivée (le sens des fleches nous indique dans
chaque cas Uespace de départ et l’espace d’arrivée). On obtient alors le schéma

A= Mat (f)
(Ev Bl) - (F7BQ)
P = Mat(l Mat(I =Q!
Mat(ld) | | Mat(1dr) = Q
/ N /
BB e (BB
3’1,3’2

et on retrouve l’égalité matricielle

Mat(f) = Mat(Idg)- Mat(f) - Mat(Idg)

BB, B»,B, B1,B; B, B,
—— —_— — —
B -1 A P
E Idg E u F Tdr F
Bi B1 B2 Bé
P= Pass(By, B}) A :];m;t &) Q! = Pass(B,, B,)
1,02

B=Mat (f=Idpo foldg) =Q*-A-P
B{.B;

F1GURE 3.1 — Changement de bases pour une application linéaire

Exemple 3.7.4 Soit lapplication linéaire suivante
R SR f(a,y,2) = (z +y,y+2,1,2).
On prend pour bases, ancienne base de R® (canonique),
By ={e; =(1,0,0),e2 = (0,1,0),e3 = (0,0,1)}.
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Nouwvelle base de R?,
Bi = {6/1 = (17 1>0>7€/2 = (LOa 1),6% = (07 L 1)}

Ancienne base de R* (canonique),
By = {u; = (1,0,0,0),us = (0,1,0,0),u3 = (0,0,1,0),us = (0,0,0,1)}.
Nouwvelle base de R*,
By = {u} = (1,1,0,0),uy = (0,1,1,0),u5 = (0,0,1,1),u} = (1,0,0,0)}.
On calcule les images des vecteurs de la base canonique de R3
f(er) = (1,0,1,0), f(e2) = (1,1,0,0), f(es) = (0,1,0,1).

Les colonnes de A = y%t(f) la matrice associée a f relativement aux bases By et By sont ces images
1,02

exprimées dans la base canonique de R*

1 10
A= Mat(f 011
=IO =1 o ¢
0 01
D’autre part, la matrice de passage de By a B} est
110
P = Pass(By,B))= |1 0 1
011
La matrice de passage de By a Bl est
1 001
B ~n |1 100
Q) = Pass(Bs, By) = 0110
0010

Par la proposition de changement de bases, la nouvelle matrice associée a f relativement auz bases
By et B est donnée par

BB,
On calcule d’abord Q71,
o 1 -1 1
1 0 0 1 -1
Q= 0O 0 O 1
1 -1 1 -1
On obtient
L
_ — 71. . — B = ;
B—g{%g(f)—Q AP 0 0 0 1 100 (1)(1)1 01 1
1 -1 1 -1 00 1 2 0 -2

Ici, A et B sont différentes, mais elles représentent la méme application linéaire f dans deuz bases
différentes.
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Vérification (Autre méthode). Les colonnes de B doivent étre les coordonnées dans B des
vecteurs f(e}), f(ehy), f(es). Autrement dit

B = Mat(f(B))).

Calcul des images des vecteurs de B,

f(ell) = f(lv 1’O> = (2717170)7f(6/2) = f(la()v 1) = (1’ 1’171)7f(6§’,> = f(0717 1) = (1727071)'

Exprimons f(e}) dans la base By = {u}, uy, uy, uy}. On résout pour chaque j € {1,2,3},

f(e)) = agj)u’l + aéj)UQ + ag )ug + afl )u4

ceci est équivalent a
N J J o Jj 7 Jj o
fle) = (o + o, af + o, o) + o, o)

Pour f(e}), on a

(1) + aff) =2
(1) (1)
()+O‘§) =l a0 =108 0,0 =2,
2 + 053 = 1
oz:(,,l) 0
Pour f(e), on a
(2) + af) =1
(2) (2 _
e )+a%2) =1 —a? =10 =0,aY =1,a? = 0.
2 + ag = 1
ozéQ) 1
Pour f(e}), on a
s
a7 + oy =2 3 3 3
2 3
P -
Ainsi
01 3
1 0 —1 _
B=Ma(rB) =L ) =@
2
2 0 -2

On a bien vérifié que les colonnes de B sont les coordonnées dans Bl des images f(€}), f(eh), f(eh).
Ainsi A et B représentent la méme application linéaire f, exprimée dans deux couples de bases
différents.

Corollaire 3.7.1 Soient E un K—espace vectoriel de dimension n, By et B} deux bases de E et
P = Pass(By, B}) la matrice de passage de By d BY. Soient F' un K—espace vectoriel de dimension m,
By et By deuz bases de F' et (Q = Pass(Bs, B)) la matrice de passage de By a B et soit f € Lx(E, F)
une application linéaire. Posons A = %%g(f) la matrice associée a f relativement aux bases By et
B,y. Soient

X, = Mat(@) . Xp = Mat(z)

Y
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les matrices-colonnes des coordonnées de x € E dans les bases respectives By et BY.Soient

_ ro
Y, = Mat(y) , Vg = MBgt(y) :
les matrices-colonnes des coordonnées de y = f(x) € F dans les bases respectives By et BYy. Alors on

peut écrire
Xp, = Pngi,YB2 = QYE@é,YBQ = AXp,.

On obtient
r i r_ -1 /
Yp = BXp < Y = (Q AP)XBQ.
Ici, la formule montre clairement comment transformer la matrice d’une application linéaire quand
on change de bases a la fois dans l’espace de départ et dans l’espace d’arrivée.

3.7.3 Chagement de bases pour un endomorphisme

Un endomorphisme est une application linéaire qui transforme un espace vectoriel dans lui-méme.
Comme pour toute application linéaire, on peut le représenter par une matrice, et cette matrice
dépend du choix de la base. Quand on change de base, I’endomorphisme reste le méme, mais sa
matrice change. La nouvelle matrice n’est pas arbitraire : elle est directement liée a 1’ancienne grace
a la matrice de passage qui traduit les coordonnées d’une base vers 'autre. On dit alors que les deux
matrices sont semblables, car elles représentent le méme endomorphisme dans des bases différentes.

Corollaire 3.7.2 (Matrices semblables) Soit E un K—espace vectoriel de dimension n. Consi-
dérons deuz bases By et B} de E, et notons P = Pass(By, B}) la matrice de passage de la base By
vers la base By. Soit f € Lx(E, E) un endomorphisme de E.

1. St A = ]\é{?t(f) est la matrice représentant f dans la base By, alors la matrice B = ]\;{/at(f),

1
représentant f dans la base B, est obtenue par la relation

B=P' AP

Inversement, on a aussi
A=P.B.-pPL

Autrement dit, les matrices A et B représentent le méme endomorphisme dans deux bases différentes.
On dit que ces deux matrices sont semblables.

2. Les colonnes de la matrice B sont constituées des coordonnées, dans la base B}, des images par f
des vecteurs de cette base. Autrement dit

B = Mat(f(BY).

Remarque 3.7.3 On retrouve cette écriture matricielle a partir de l’égalité suivante
fIIdEOfOIdE,

et en munissant les espaces E et F' des deuz bases By et By, puis en écrivant les matrices associées
d chacune des applications. On obtient le schéma suivant :

A=Z\§fllt(f)
(E,Bi) — (£, B1)
B’l,an< dg) | TBl’%llf( dp)
/ N /
(E7B1) B=Mat(f) (EaBl>
By
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On retrouve ’égalité matricielle

]\/Efg/at(f) = Mat(IdE)-]WBat(f)~Mat(IdE)

1 By,B] B! ,B;
—— —_—
B p-1 A P
E Idg . f B Idg F
B B, B, Bj
A =Mat (f)
P = Pass(B,, B}) B

P! = Pass(B}, B;)

B =Mat (f =Idgo foldg) =P~ '-A-P
B;

FIGURE 3.2 — Chagement de bases pour un endomorphisme

Exemple 3.7.5
1. Exemple dans R3. Considérons l’endomorphisme f : R — R3 défini par

ey, 2) = (x+y,y+z2+2).
On prend pour bases, ancienne base de R® (canonique),
By = {61 = (17070)762 = (07 L, 0)763 = (0707 1)}

Nouvelle base de R?,
By = {e} = (1,1,0),¢ey = (1,0,1),e5 = (0,1,1)}.

Dans la base By, on calcule les images des vecteurs de la base canonique

f(el) = (1707 1>7f(62> = (17170)7f(63> = (O7171)'

En écrivant ces vecteurs comme colonnes, on obtient la matrice de f dans la base By,

A= Mat(f) =

_ o
O = =
i )

La matrice de passage P = Pass(By, By) s’obtient en écrivant les vecteurs de la nouvelle base dans
l'ancienne

1 10
P=11 01
011
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D’aprés la formule du changement de base, la matrice de f dans la base By est donnée par

B = MBgt(f) = P 'AP.

On calcule P~*. Ici on trouve explicitement

L1 1 -l
Prt==|1 -1 1
2\21 11
On obtient
(1 1 ST\ /1 10\ /110
B=P'AP==-[1 -1 1 01 1|1 01
2\21 01 1 /N0 1/ \o 11
En effectuant le produit on obtient
101
B=1110
01 1

Les matrices A et B sont différentes, mais elles représentent le méme endomorphisme. Elles sont
donc semblables.
2. Exemple dans Ry[X]. Considérons l’endomorphisme [ : Ro[X]| — Ro[X] défini par la dériva-
tion
f(P)=rP.
Prenons la base canonique
By ={1,X,X?}.

On calcule I'image des vecteurs de la base,

f(1) = 0=0-1+0-X+0-X?
f(X) = 1=1-140-X+0-X?
f(X?) = 2X=0-1+2-X+0-X?

Donc la matrice de f dans la base canonique est

A= Mat(f) =

O O O
OO =
O NN O

Prenons une nouvelle base
By ={1,1+X,1+X + X?}.

La matrice de passage de By d B’ est obtenue en écrivant les vecteurs de By dans la base canonique

P = Pass(By, By) =

O O =

11
11
01
D’apreés la formule du changement de base, la matrice de f dans la base By est donnée par

B = MBgt(f) =P 'AP.

Telle que
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En effectuant le calcul, on trouve

1 -1 0 010 1 11 01
-1 00 2]10 1 1|=100
0 0 0/\0O 01 0 0

B=10 1
0 0 1

SN

Les matrices A et B sont semblables, car elles représentent le méme endomorphisme (la dérivation)
exprimé dans deux bases différentes de Ro[ X].
3. Reprenons l'exemple de l’endomorphisme f qui au vecteur x = (11,12, x3) de R® associe le vecteur

y = (22, + T3 + 23,71 + 209 + 23, 7, + Ty + 273) € R?,
Soient By = {e1, ea,e3} la base canonique de R? et B} = {uy,us, uz} la base de R® définie par
wr = (1,0, —1),us = (1, —1,0),us = (1,1, 1).
En notant P la matrice de passage de By a BY, on vérifie que l'on a

100y /1 1 -2\/211
B = Mat(f)=P 'AP=1{0 1 0 =3 1 -2 1 12 1]l0 —-11
i 00 4 11 1 /\11 2

3.8 Déterminant d’une matrice

Apres avoir défini les matrices et leurs principales propriétés, il est naturel d’introduire la notion
de déterminant. Le déterminant d’une matrice carrée est une valeur scalaire unique associée a cette
matrice, noté det(A) ou |A|. Ce nombre permet surtout de savoir si une matrice est inversible : si
le déterminant est nul, la matrice n’est pas inversible; s’il est non nul, elle ’est. Il est utilisé dans
la résolution de systemes d’équations linéaires, dans le calcul d’aires ou de volumes, et dans 1’étude
des propriétés des matrices. Son calcul est simple pour les petites matrices, mais pour les grandes,
on préfere des méthodes comme la réduction de Gauss. Pour certaines matrices particulieres, comme
les matrices triangulaires ou diagonales, le déterminant se calcule tres facilement en multipliant les
éléments de la diagonale.

Définition 3.8.1 (Déterminant d’une matrice)
1. On appelle déterminant d’une matrice toute application qui associe a chaque matrice carrée A =
(a;;) € My (K) un scalaire de K, noté det(A) ou encore |A|l. On a donc

det: M,(K) — K

11 Q2 - Q1 o Qlp
Q21 Q22 -+ Q25 ~-° d2p
A= (a;) > det(A) =
J
Aip Q2 0 Qi Qyn
Ap1 Qpz *+ Qpj - App

2. Le déterminant d’une matrice carrée A peut s’écrire indifféremment comme une fonction des
colonnes de A

det(A) = det(Ch, Cy, ..., Cy),

ou comme une fonction de ses lignes
det(A) = det(Ll, Lz, ey Ln)7

ou Cy,Cy, ..., C, désignent les colonnes de A, et Ly, Lo, ..., L, ses lignes.
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3.8.1 Calcul de déterminant d’une matrice carrée.

Le déterminant d’une matrice carrée A = (a;;) € M,,(K) se définit et se calcule par récurrence
sur 'ordre n de la matrice.

3.8.1.1 Cas 1 : Déterminant d’une matrice d’ordre 1

Dans ce cas, la matrice A est simplement A = ( aiq ) Alors le déterminant est simplement

det(A) = ‘ a1 ‘ = a1q-

3.8.1.2 Cas 2 : Déterminant d’une matrice d’ordre 2

. ann a2 . .
Dans ce cas, la matrice A est < o , et le déterminant se calcule par la formule
21 22
ail  ai2
det(A) = = 11022 — A21412.
21 Q22

Ces deux premiers cas constituent la base de la définition par récurrence du déterminant des matrices
d’ordre supérieur (n = 3), qui se calcule a I'aide du développement selon une ligne ou une colonne.

3.8.1.3 Cas général : Déterminant d’une matrice d’ordre n > 3, mineurs et cofacteurs

Pour calculer le déterminant d’une matrice carrée d’ordre n > 3, on ne peut plus utiliser les
formules directes des cas n = 1 oun = 2. On emploie une méthode appelée développement par rapport
a une ligne ou une colonne. Afin de mettre en ceuvre cette méthode, il est nécessaire d’introduire deux
notions fondamentales : les mineurs et les cofacteurs. Ces outils permettent de décomposer le calcul
d’un déterminant d’ordre n en plusieurs déterminants d’ordres inférieurs, ce qui rend la méthode
applicable par récurrence.

Définition 3.8.2 Soit A = (a;;) € M,,(K).

1. Mineur. On appelle mineur de A d’indice (i,j), et l’'on note M;;, la sous-matrice carrée d’ordre
n — 1 obtenue en supprimant de A la i—éme ligne et la j—éme colonne.

2. Cofacteur. On appelle cofacteur de A d’indice (i,j), et l'on note A;; le scalaire défini par

Aij = (—1)i+j det(Ml])

Remarque 3.8.1 Le facteur (—1)""7 est toujours égal a (+1) ou a (—1) selon les indices i et j
du cofacteur. Le cofacteur d’indice (i,7) d’une matrice est donc le déterminant signé du mineur de
meéme indice. Les signes qui accompagnent les mineurs sont toujours en alternance. Pour une matrice
carrée d’ordre 3, nous avons les signes suivants

_1)1+1 (_1)1+2 (_1)1+3 +1 —1 +1
(_1>2+1 (_1>2+2 (_1)2+3 _ -1 +1 _1
(_1)3+1 (_1>3+2 (_1)5+5 +1 —1 +1

Cette alternance de signes joue un role essentiel dans le calcul du déterminant par développement
selon une ligne ou une colonne.
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Exemple 3.8.1
1. Soit la matrice

1 0 5
A= 2 =4 7 € Mg(R)
3 2 1

Le mineur Mayz est obtenu en éliminant la ligne 2 et la colonne 3 de la matrice A tandis que le mineur
Moy est obtenu en éliminant la ligne 2 et la colonne 1 de la matrice A,

10 0 5
o (3 )= (07

2. Les cofacteurs correspondants sont,
(a) Pour l'indice (2,3), le cofacteur Aoy est

10
(b)Pour lindice (2,1), le cofacteur Agy est
241 05

Apres avoir introduit les notions de mineurs et de cofacteurs, on peut établir une regle générale
pour le calcul du déterminant d’une matrice de n’'importe quel ordre. Cette regle, appelée développe-
ment de Laplace, exprime le déterminant d’une matrice comme une combinaison linéaire de certains
coefficients de la matrice et de leurs cofacteurs. Elle fournit une méthode systématique de calcul, qui
peut étre appliquée en choisissant n’importe quelle ligne ou n’importe quelle colonne de la matrice.

Théoréme 3.8.1 (Développement d’un déterminant par rapport a une rangée) Soit A =
(a;j) € My (K) une matrice carrée d’ordre n. On peut calculer son déterminant en développant suivant
une ligne ou une colonne.

1. Développement par rapport a la ligne i (fixée).

det(A) = Z(—l)”jaij det(Mm) = Zai]’ : Azg
j=1 j=1

ot My; est le mineur d’indice (i,j) et Ay = (—1)"" det(Mj;) est le cofacteur associé.
2. Développement par rapport a la colonne j (fixée).

det(A) =

-

(—1)i+ja,~j det(M”) = Zai]‘ . A”
i=1

=1

Autrement dit, le déterminant d’une matrice carrée peut étre calculé en choisissant n’importe quelle
ligne ou n’importe quelle colonne, puis en effectuant la somme des produits de chaque coefficient de
cette ligne ou colonne par son cofacteur.

Remarque 3.8.2 (Calcul d’un déterminant et choir d’une rangée ou d’une colonne)

1. On appelle rangée d’une matrice ou d’un déterminant toute ligne ou colonne de cette matrice ou
de ce déterminant.

2. 1l est souvent utile de développer un déterminant par rapport a une rangée lorsque cette rangée
comporte peu de termes non nuls (plusieurs termes nuls).
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3. Etapes pour le développement par ligne ou colonne.

(a) Choisir une rangée. Pour simplifier le calcul, il est conseillé de choisir une ligne ou une
colonne contenant le plus grand nombre de zéros.

(b) Calculer les cofacteurs A;; pour chaque élément de la rangée choisie,

Aij = (—1)i+j det(Ml])

(c) Former la somme des produits des éléments par leurs cofacteurs. Cette somme donne det(A).
Le développement par colonne s’effectue de maniere analogue

det(A) = Z Qg5 Al]
i=1

4. Pour des calculs numériques, des méthodes plus rapides que le développement par rangée ou colonne
existent, surtout pour les matrices de grande taille.

Exemple 3.8.2
1. Soit la matrice
1 2 3
A=\ 0 4 5
1 0 6

€ M3(R)

(a). Développons par rapport a la deuziéme ligne (i =2), on a

3
det(A) = Z( 1)2+]a2 det MQJ ZAQJ 2.
j=1
= (—1)2“@21 det(M21) + (—1)2+2CL22 det(MQQ) + (—1)2+3CL23 det(M23)

1 2

13
:4‘16‘_51 0

‘:43—54—%:22

(b). Développons par rapport a la troisiéme colonne (j = 3), on a

det(A) = 1)"*3a;3 det(M, ZAlg a;s3.

w,
e
i
—
|

= (—1)”3@13 det(M13> ( 1>2+3a13 det(Mgg) + (—1)3+3a33 det(Mgg)

0 4 1 2 1 2
23‘1 0 —5‘1 0’+6'0 4 =3-(—4)—-5-(-2)+6-4=22.
On retrouve bien le méme résultat
det(A) = 22.

2. Calculons le déterminant de la matrice

A= e M3(R).

TN W~
W = DN
DN =~ W

(a) En effectuant son développement de Laplace selon la deuxiéme ligne,

det(A) = Z(— 2+7a2] det MQJ ZAQJ ag;-

=1
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= (—1)2+1CL21 det(Mgl) + (—1)2+2a22 det(Mgg) + (—1)2+3a23 det(Mgg)

2 3 4 3 4 2
3 2 5 2 5 3

=—-24—-9)+ (8—15) —4(12 — 10) = —5.

_ 2(_1)2+1 + 1(_1)2+2

’ + 4(_1)2+3

(b) Reprenons le calcul du déterminant de la matrice A, mais cette fois en effectuant son développe-
ment de Laplace selon la troisieme colonne,

3 3
det(A) = Z(—l)i+3ai3 det(Mzg) = EAZB © ;3.
i=1

i=1
= (—1)1+3G13 det(Mlg) + (—1)2+3a23 det(Mgg) + (—1)3+3G33 det(Mgg)

2 1 4 2 4 2
_ a(_1)\1+3
=305 5 5 3 21|

= 3(6—5) — 4(12 — 10) + 2(4 — 4) = —5.

| + 4(_1)2+3

‘ + 2(_1)3+3

On retrouve le méme résultat
det(A) = —5.

Ainsi, le déterminant d’une matrice est unique : il ne dépend ni de la ligne, ni de la colonne choisie
pour le développement.

3.8.1.4 Regle de Sarrus

Le calcul du déterminant d’une matrice peut devenir long et compliqué lorsque la taille augmente.
Cependant, pour les matrices carrées d’ordre 3, il existe une méthode rapide et intuitive appelée regle
de Sarrus. Elle repose sur un procédé visuel qui évite le développement par mineurs et cofacteurs, et
permet d’obtenir le résultat en quelques étapes simples.

Principe de la regle de Sarrus. La regle consiste a
1. Recopier les deux premieres colonnes de la matrice a droite, pour obtenir 5 colonnes au total.
2. Additionner les produits des diagonales descendantes (de gauche a droite, vers le bas).
3. Additionner les produits des diagonales montantes (de gauche a droite, vers le haut).
4. Le déterminant est la différence entre ces deux sommes

det(A) - S+ - S_.
Etapes d’application de la régle de Sarrus. Soit

ail @12 Q13
A= a91 Q92 Q93 GM3<K)

a3; aszz2 ass

1. Recopier les deux premieres colonnes a droite
a1 Qiz a3 41 Q12

Q21 Ag2 Q23 A21 (22
31 Aaz2 33 AaAzr 32

2. Calculer la somme des produits des diagonales descendantes
Sy = 11022033 + A12023031 + (13021032
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3. Calculer la somme des produits des diagonales montantes
S_ = (31022013 + (32093011 + A33021012.
4. Déterminant

det(A) = 5. — S_ = (a11a22a33 + 412023031 + A13021032) — (A31022013 + 32023011 + A33021G12).

Remarque 3.8.3 La régle de Sarrus est valable uniquement pour les matrices 3x 3. Pour les matrices
d’ordre supérieur, il faut utiliser le développement de Laplace.

Exemple 3.8.3 Soit

2 1 3
A=|0 -1 4 EMg(R).
1 2 5

FEtape 1 : recopier les deux premieres colonnes a droite.
On ajoute a droite de la matrice les deux premieres colonnes pour visualiser plus facilement les

diagonales
2 1 32 1

0 -1 4]0 -1
1 2 5|1 2

Etape 2 : Calcul de la somme des produits des diagonales descendantes (S:).
Sy =2-(-1)-5+1-4-1+3-0-2=-10+4+0= —6.
Etape 3 : Calcul de la somme des produits des diagonales montantes (S_).
S.=3-(-1)-1+2-4-2+1-0-5=-3+16+0=13.
Etape 4 : Calcul du déterminant.
det(A) =5, —S_=-6—-13=-19.

On peut vérifier ce résultat en utilisant le développement de Laplace (par exemple le long de la
premiere colonne), ce qui confirme que le calcul par la régle de Sarrus est correct.

3.8.2 Multilinéarité et autres propriétés fondamentales du déterminant

Dans cette section, nous présentons les propriétés essentielles de 'application déterminant. Ces
propriétés, dites fondamentales, jouent un role central dans I’étude des matrices carrées et des sys-
temes linéaires. Elles permettent notamment de comprendre la nature du déterminant en tant
qu’application multilinéaire et alternée, et justifier les regles usuelles de calcul du déterminant.

Proposition 3.8.1 Soit A = (a;;) € M, (K). On note Cy,Cs, ..., C, les colonnes de A et Ly, Lo, . .., Ly,
ses lignes. Alors

1. Linéarité par rapport a une colonne.

Pour tout j € {1,...,n}, Uapplication déterminant est linéaire en la j—iéme colonne, c’est-a-dire
pour tout A € K et pour toutes colonnes C}, Cj € K",

det(Cy,...,AC), ..., Cp) = Xdet(Ch, ..., Cj, ..., Cy),
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et
det(Cl,...,C’]’-+C;’,...,Cn) :det(Cl,...,C;,...,Cn)+det(C’1,...,C]’-’,...,Cn).

2. Linéarité par rapport a une ligne.
De fagon analogue, pour touti € {1,...,n}, le déterminant est linéaire en la i—iéme ligne, c’est-d-dire
pour tout \ € K et pour toutes lzgnes L’ LY e K",

det(Ly,..., AL\, ... Ly) = Adet(Ly, ..., L},..., Ly),

et
det(Ll,...,LH—L;’,...,Ln) =det(Ll,...,L;,...,Ln)+det(L1,...,L;’,...,Ln).

Le déterminant est donc multilinéaire par rapport a ses colonnes, et de méme par rapport a ses lignes.

Preuve. Soit A = (a;j) € M,,(K) et fixons une colonne j. On note C,Cs, ..., C, les colonnes de
A. Par le développement de Laplace suivant la colonne j, on a

n

det(A) = Z CLiinj,

=1

ot chaque A;; = (—1)"*7 det(M,;) est un cofacteur associé a I'entrée a;;. On observe que ces cofacteurs
ne dépendent pas des éléments de la colonne j, mais uniquement des autres colonnes.

1. Linéarité par rapport a une colonne.

(a). Homogénéité (multiplication par un scalaire). Si la colonne j est remplacée par AC'
(A € K), alors chaque coefficient devient

Q5 = >\a’ij'

Ainsi,

det(Cy,...,\C),...,C Z Aalj) Ay = AZ%AU = Adet(Cy,...,CY,...,Cy).

=1

(b). Additivité (somme de colonnes). Si la colonne j est la somme

! 1
Cj + C’j,
alors
ij = Qg + Q.
On obtient
n
det(Cy,...,C)+CY,...,Cp) = > (a}; + dl] Z al; Ay + 2 af Ay
i=1
D’ou

det(Ch, ..., Ch+ Cl,. Cy) = det(Ch, ... Ol Cy) +det(C,. ., Ol C).

Ces deux propriétés montrent que le déterminant est une application linéaire en chaque colonne.
Comme le choix de la colonne j est arbitraire, la linéarité vaut pour toutes les colonnes.

1. Linéarité par rapport a une ligne.

Le raisonnement est entierement analogue si I'on fixe une ligne, ce qui établit la linéarité du déter-
minant par rapport a une ligne. O
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Exemple 3.8.4
1. Linéarité par rapport a une colonne. Considérons la matrice

1 21
A=10 3 4]e Mg(]R)
1 10
La 2éme colonne se décompose en

2 2 0

Co=13]= (0] + |3
1 1 0

—_—— =

cy cy

Posons les matrices obtenues en remplagant la colonne Cy par CY puis par CY,

1 21 1 01
A = (Cla 05703) =10 0 4 7A” = (Cl,Og,Cg,) =(0 3 4
1 10 1020

Par la propriété de multilinéarité du déterminant en chaque colonne, on a
det(A) = det(C’l, CQ, 03) = det(C’l, Cé + Cg, 03) = det(Cl, Cé, 03) + det(Cl, Cg, 03),
c’est-a-dire
det(A) = det(A") + det(A").

Nous vérifions maintenant numériquement cette égalité en calculant chacun des déterminants.
(a) Calcul de det(A). On développe par la premiére ligne

1 21
det(A) =10 3 4| =1-|Mp|—2-|Mp|+1-|Mys|=1-(-4)—-2-(-4)+1-(-3)=-4+8-3=1.

110

(b) Calcul de det(A’). On développe par la premiére ligne

121
det(A) =10 0 4 |[=1-|[Mpy|—2 |Mp|+1-|Mys|=1-(-4)—2-(—4)+1-0=—-4+8+0=4.
110

(¢) Calcul de det(A"). On développe par la premiére ligne

0 1
4 =1-|My| =0 [Mp|+1-|Mygs|=1-0-0+1-(-3) = -3.

1
det(A”) = |0
1 0

3
0
On vérifie la relation donnée par la multilinéarité

det(A") + det(A") =4+ (—=3) =1 = det(A).

Ce qui confirme la multilinéarité du déterminant en la 2éme colonne.
2. Linéarité par rapport a une ligne.
Considérons la matrice
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Sa deuxieme ligne est
Ly=(3 1 4) =30 0)+(0 1 4).

- / -

" v
/ "
L2 L2

On définit alors les matrices obtenues en remplacant Ly par chacune de ces parties

1
A'=13
0

N O N

1 1
0],4"= 10
5 0

N — DN

1
4
5
Par la propriété de multilinéarité du déterminant en chaque ligne, on a

det(A) = det(Ly, Ly, L3) = det(Ly, Ly + L3, L) = det(A") + det(A").
Nous vérifions maintenant numériquement cette égalité en calculant chacun des déterminants.

(a) Calcul de det(A). Développement (par la 1ére ligne)

121
det(A) =13 1 4/=1-(1-5-4-2)—2-(3-5—-4-0)+1-(3-2—1-0) = —27.
025

1 2 1
0 2 5
(¢) Calcul de det(A”). Développement (par la 1ére ligne)

1
det(A”) = |0
0

[NSR \V]

1
4=1-(1-5-4-2)—2-(0-5-4-0)+1-(0-2—1-0) = —3
5

On obtient
det(A") + det(A”) = (—24) + (—3) = —27 = det(A).

Cela confirme la linéarité du déterminant par rapport a une ligne (ici la deuziéme ligne).

Le déterminant est une application qui associe a chaque matrice carrée un nombre du corps de base.
Pour bien l'utiliser, il est important de connaitre ses propriétés fondamentales. Celles-ci décrivent
comment le déterminant se comporte lorsqu’on effectue des opérations élémentaires sur les colonnes
ou les lignes. Elles précisent aussi les cas ou le déterminant est nul, par exemple lorsqu’une colonne
est nulle, que deux colonnes sont égales ou qu'une colonne est combinaison linéaire des autres. Enfin,
toutes ces propriétés sont valables aussi bien pour les lignes que pour les colonnes, comme le montre
la proposition suivante.

Proposition 3.8.2 (Propriétés fondamentales du déterminant) Soit A = (a;;) € M, (K).
On note Cy,Cy, ...,C,, (resp. Ly, Lo, ..., Ly,) les colonnes (resp. lignes) de A. Alors
1. Effet des opérations élémentaires.
(a) Permutation de deux colonnes. Si on permute deux colonnes de A on multiplie det(A) par
<_1)7

det(cl,...,CZ',...,C]',...,C”) = —det(Cl,...,Cj,...,Ci,...,C’n).
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Cette propriété exprime le caractére alterné du déterminant.
(b) Multiplication d’une colonne par un scalaire. Si l'on multiplie une colonne C; par un
scalaire \ € K, le déterminant est multiplié par A,

det(C’l,...,)\C’j ,Cn) =)\det(Cl,...,C’j,...,C’n).

Cela traduit la linéarité du déterminant par rapport a chaque colonne.
(c) Ajout d’une combinaison linéaire des autres colonnes @ une colonne. Sil’on remplace
une colonne Cj par une combinaison linéaire des autres colonnes

Cj— Cj+ Y MCr,

kg
alors le déterminant reste inchangé

det(Ch,....Ci+ > MCh,...,Co) = det(Ch, ..., Cy, ... Ch).

k#j

2. Cas particuliers entrainant un déterminant nul.
(a) Colonne nulle. Si une des colonnes de A est le vecteur nul, alors

det(A) = OK.

C’est une conséquence directe de la linéarité : multiplier une colonne par Ox annule le déterminant.
(b) Deux colonnes égales. Si deux colonnes sont identiques, alors

det(A) = OK.

3. Colonne combinaison linéaire des autres. Si une colonne est une combinaison linéaire des
autres, alors les colonnes sont linéairement dépendantes, et

det(A) = OK.

Cette propriété exprime le fait que le déterminant est nul lorsque les colonnes (ou lignes) de la matrice
ne forment pas une famille libre.

4. Symétrie lignes/colonnes. Toutes les propriétés ci-dessus, énoncées pour les colonnes, restent
valables pour les lignes.

Nous allons appliquer les propriétés fondamentales du déterminant pour calculer le déterminant de
Vandermonde dans I’exemple suivant.

Exemple 3.8.5 Soitn € N*. Soit (x1,...,x,) € K". On appelle déterminant de Vandermonde,

et on note V(x1,...,x,) Uélément de K défini par
2 n—1
Ik 1 27 --- o X
lxk xy 22 -+ =0 .
2 2 -1
_ _ j
V(zy,...,2n) = .| = det ((xz )léwén)
2 n—1
Ik ©p z; - x)
On a
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En effet. Par récurrence sur n.
e Sin =1, alors la matrice est (1x) donc V(x1) = 1k, et la formule (produit vide) est vraie.
e Sin =2, alors

V(Il, (L’Q) =

ce qui correspond bien au produit

1<j<i<2
e Sin =3,

1K T LC%

2

V(xl,x2,$3) = 1K To Tol.

2

Ik w3 =3

On effectue les opérations suivantes
03 <« 03 — 13102, 02 <« 02 — $1Cl.

On obtient
1k Ok Ox

2
V(xy, wo,w3) = |lg 22— 1 3 — 2129
11K T3 — I l’% — I1X3

En développant le déterminant par la premiére ligne, on obtient

Ty — Ty T3 — T1To

Ty — 11 xE—Ti03 (@2 — @1) (23 — 1) (23 — 72),

V('rh T2, x3> =

ce qui correspond bien au produit

H (@ — x5) = (22 — 21) (x5 — 21)(23 — 2),

1<j<i<3

Supposons la formule vraie pour n —1 (n = 3). Considérons la matrice de Vandermonde A = (a;;)
—1 . s . ’71 7 .
avec a;; = x] . Pour j = 2,...,n, on effectue les opérations élémentaires sur les colonnes

Cy «— Cy — $1017C3 A C'3 - I1C27 .- -,Cn «— Cp — 2101

Autrement dit
Cj «— Cj — xle_l.

Ces opérations élémentaires sur les colonnes ne changent pas la valeur du déterminant. La matrice
résultante a donc la forme

1k Ok Ok cee Ok
Ik (2o —21)xe (T2 — 1) -+ (29 — 2252
g (zn— 2120 (T —x1)2% -+ (T —x1)T 2

En développant le déterminant par rapport a la premiere ligne, on obtient

V(zy,...,x,) = H(xl —x) - V(xgy ..., Tp).

=2
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Par Uhypothése de récurrence,

V(zg,...,x,) = H (z; — ;).

D’ou
V(g ..., zn) = (ﬁ(wl—xl)) ( 1_[ (l’i—l’j)> = H (i — ;).

Cela conclut la récurrence et la preuve.

Le déterminant d’une matrice carrée n’est pas seulement caractérisé par ses propriétés de multili-
néarité et d’alternance; il possede également un ensemble de propriétés algébriques fondamentales
qui en font un outil central en algebre linéaire. Celles-ci décrivent son comportement vis-a-vis de la
multiplication par un scalaire, du produit de matrices, de la transposition et de I'inversibilité. Elles
constituent a la fois des moyens pratiques pour simplifier les calculs et des outils théoriques essentiels
pour comprendre la structure des matrices et leurs applications.

Proposition 3.8.3 (Propriétés algébriques du déterminant) Soient A = (a;;), B = (b;j) €
M, (K) et A e K, alors

1. Multiplication par un scalaire. Si [’'on multiplie tous les coefficients de la matrice A par un
scalaire X\, le déterminant est multiplié par \",

det(A- A) = \" - det(A).

2. Compatibilité avec le produit matriciel. Le déterminant d’un produit de matrices est égal
au produit de leurs déterminants

det(A - B) = det(A) - det(B).

Cela montre que le déterminant «respecte » la multiplication de matrices.
3. Invariance par transposition. Le déterminant d’une matrice reste inchangé lorsqu’on la trans-
pose

det(*A) = det(A).

4. Critére d’inversibilité. La matrice A est inversible si et seulement si

Autrement dit, un déterminant nul indique que la matrice est singuliére (non inversible).
5. Déterminant de l’inverse. Si A est inversible, le déterminant de son inverse est l'inverse de
son déterminant

det(A™Y) = (det(A4))".

6. Déterminant d’une matrice triangulaire. Si A est une matrice triangulaire (supérieure ou
inférieure). Alors

det(A) = Haii =a11 a9 ...  App-
i=1
Autrement dit, le déterminant d’une matrice triangulaire est simplement le produit de ses éléments
diagonauz.
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Corollaire 3.8.1 (Conséquences algébriques du déterminant)
1. Déterminant des puissances entiéres positives. A partir de la propriété de compatibilité
du déterminant avec le produit matriciel, on établit par récurrence que

YA e M, (K),Vk e N* : det(A*) = (det(A))".
2. Déterminant des puissances entiéres relatives. Si A est inversible (A € GL,(K)), on a
Vk e Z : det(AF) = (det(A))*.

3. Déterminant des matrices nilpotentes. Si A € M, (K) est nilpotente, il existe k € N* tel que
AF = 0,. Par conséquent

det(A¥) = (det(A))F = O,

et donc

det(A) = O]K.

Autrement dit, toute matrice nilpotente est non inversible.
4. Déterminant des matrices antisymétriques d’ordre impair. Si A € M, (K) est antisy-
métrique et si n est impair, alors

det(A) = det(*A) = det(—A) = (—1)"det(A) = —det(A),
d’ot

det(A) = OK.

Preuve.
1. On procede par récurrence sur k. Pour £ = 1 on a bien

det(A') = det A = (det A)*.
Supposons qu’il existe k > 1 tel que
det(A*) = (det A)*.
Alors, en utilisant la propriété multiplicative du déterminant
det(XY) = det X det Y,
on obtient
det(A*) = det(AFA) = det(A*) det(A) = (det A)F det(A) = (det A)**1,

Par le principe de récurrence, ’égalité est vraie pour tout k € N*.
2. Si Ae GL,(K), alors A est inversible et A™! existe et

det(A™) = (det(A))~".

Des lors, pour tout k € Z,
e Si k > 0, on utilise le point (1).
e Si k <0, on écrit
k=—-—m,m >0,

alors
det(Ak) =det(A™™) = det((A_l)m) = (det(A_l))m = ((det(A))fl)m = (det(A))™™" = (det(A))k.
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Dans tous les cas on a pour tout entier k € 7Z,
det(A*) = (det(A))".
3. Soit A € M,,(K) nilpotente. Par définition, il existe un entier k > 0 tel que
AF = 0,.

En prenant les déterminants des deux c6tés et en utilisant la multiplicativité du déterminant et le
fait que
det(On) = OK,

on obtient
det(A") = det(0,,) = Ox.

D’apres le point (1) (cas des puissances positives),
det(A") = (det A)*.

Ainsi

(det A)k = OK.

Comme K est un corps (donc sans diviseurs de zéro), I'’équation z¥ = Og n’a pour solution que
z = Og. On en déduit
det (A) = OK.

4. Si A € M,,(K) est antisymétrique, on a
tA = —A.
Or le déterminant d’une transposée est égal a celui de la matrice initiale,
det(*A) = det(A).

D’autre part
det(*A) = det(—A) = (=1)"det(A).

Si n est impair, alors (—1)" = —1. Donc
det(A) = det(*A) = (—1)"det(A) = — det(A).

Ainsi

det(A) = —det(A) = det(A) = Ok.

Exemple 3.8.6
1. Déterminant des puissances entiéres positives en dimension 3. Soit

120
A=[0 3 1]e M3R).
00 4

Or A est triangulaire supérieure, donc det(A) est le produit des éléments diagonauz
det(A) =1-3-4=12.
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Calculons maintenant A% et A3 et leurs déterminants pour vérifier det(A¥) = (det A)*.
On a

2
7

1
A=A A=]0
0 6

o ©
—_

Comme A? est encore triangulaire, son déterminant est le produit des diagonales

det(A?) = 144.

Or
(det A)? = 12?2 = 144.
Donc
det(A?) = (det A)?.
On a
1 26 16
AP =A% A=10 27 37
0 0 64
Donc
det(A®) = 1728,
et
(det A)* =123 = 1728.
Ainsi

det(A?) = (det A)®.

Pour une matrice triangulaire (ici supérieure), A* est aussi triangulaire et ses éléments diagonauz
sont les puissances des éléments diagonaux de A. Par conséquent

det(Ak) = H(a“)k = (H aii) = (det A)ka

ce qui illustre et confirme la propriété pour ce cas concret en dimension 3.
2. Déterminant des puissances entiéres relatives en dimension 3. Choisissons la matrice
inversible

A=

=~ O -

2 0
1 3 EMg(R)
0 1

(a) On calcule det(A) par développement selon la premiére ligne

1 3 0 3 01
det(A) = ay; det (0 1)—a12det (4 1)—|—a13det (4 O) =25+ 0.

Ainsi A e GL3(R).
(b) On calcule la matrice inverse de A, obtient donc
1 -2 6
Alt=—112 1 =3
-4 8 1
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On n’a pas besoin de développer le déterminant de A=" a partir de cette forme, la propriété générale
donne directement la valeur.
(¢) Vérification de la propriété pour quelques valeurs de k.
e Pour k=1,
det(A") = det(A) = 25 = (25)*.

e Pour k =2, par la propriété (1) (puissances positives),
det(A?) = (det A)* = 25 = 625.

e Pour k = —1, puisque A € GL3(R),

1
det(A™ ") = (det A)" ' =257 = —.
25
Ceci est cohérent avec A™' calculé ci-dessus (dont le déterminant vaut bien 1/25 par la propriété
générale).
e Pour k = -2,

det(A~2) = det ((A™1)2) = (det(A™1))? = <1> _ L g

Ainsi, pour ces valeurs vérifiées explicitement,
det(A*) = (det A)*, pour k =1,2, -1, -2,

et la formule vaut en général pour tout k € Z comme l’énoncé l'affirme.
3. Matrice nilpotente et déterminant nul en dimension 3. Considérons la matrice

010
A=[0 0 1]eMsR).
00 0

(a) Vérifions la nilpotence de A. On a

01 0\ /010 001
A =0 0 1]]l0 0 1|=1]0 0 0
00 0/\0 00O 000
FEnsuite
001\ /0 10 000
A=A A=10 0 0|0 0 1|=|0 0 0f=0;4
00 0/\0 00O 000

Donc A est nilpotente d’indice k = 3 (i.e. A3 =03 et A? % 03).
(b) Calcul du déterminant. Comme A est triangulaire supérieure avec des zéros sur la diagonale,
donc

det(4) =0-0-0 = 0.

(c¢) Vérification via la propriété des puissances. Par la propriété déja établie,
det(A?) = (det A)®.

Or A3 = 05 donc
det(A?) = det(03) = 0 = (det A)®> =0,
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donc det (A) = 0 dans le corps R.
4. Déterminant des matrices antisymétriques d’ordre impair. Considérons la matrice an-
tisymétrique suivante dans Ms(R)

0 2 -3
A=1|-2 0 4
3 -4 0

(a) Vérification que A est antisymétrique. Par définition, une matrice est antisymétrique si

tA = —A.
Ici,
0 -2 3 0 -2 3
A=2 0 —-4)=-A4=|2 0 -4
-3 4 0 -3 4 0

(b) Déterminant d’une matrice antisymétrique d’ordre impair. On sait que pour n impair,
det(A) = det(*A) = det(—A) = (—1)"det(A).
Oricin = 3 (impair), donc
det(A) = (—1)*det(A) = —det(A).

Cela implique
det(A) = —det(A) = 2det(4) =0
= det(A4) = 0.

(¢) Vérification directe. Si on calcule directement le déterminant de A,

0 2 -3
det(A)=|-2 0 4|=0.
3 -4 0

Le calcul donne bien 0, ce qui confirme la propriété. Par conséquent, Toute matrice antisymétrique
d’ordre impair (ici en dimension 3) est non inversible car son déterminant est nul.

Le déterminant est un outil puissant pour analyser les familles de vecteurs dans un espace vecto-
riel. Il permet non seulement de déterminer si une famille de vecteurs est libre, mais aussi, lorsque
le nombre de vecteurs est égal a la dimension de l'espace, de vérifier si elle constitue une base.
La proposition suivante formalise cette relation essentielle entre le déterminant et l'indépendance
linéaire.

Corollaire 3.8.2 (Définition )

Critére de l’indépendance linéaire via le déterminant. Soient E un K—espace vectoriel de
dimension finie n, muni d'une base B = {e1,...,e,}. Soit F = {v1,v9,...,0v,} une famille de n
vecteurs de E. On désigne par AiBat(vl, Vo, ..., Uy) la matrice de la famille de vecteurs dans la base B

et on définit le déterminant de la famille de vecteurs {vy, vy, ..., v,} par
dgt(vl,vg, ooy Up) = det <]\JBat(v1, Vg, ...,'Un)) )

Alors F = {vy,vg,...,0,} est une famille libre si, et seulement si, detg(F) #+ Ox. Dans ce cas, la
famille {vy,vs, ... ,v,} forme une base de E.
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Remarque 3.8.4 Cette condition n’est valable que lorsque le nombre de vecteurs est égal a la di-
mension de ’espace. Si la famille contient moins de n vecteurs, on ne peut pas conclure par le
déterminant.

Exemple 3.8.7
1. Famille libre. Soit E = R® muni de la base canonique B. Prenons la famille F, = {vy,vq,v3} ot

(% (1,2,3),’02 = (07174)7/03 = (27_17 1)

La matrice des vecteurs (colonnes = coordonnées dans B) est

1 0 2
A= AfBat(vl,w,Ug) =12 1 -1
3 4 1

Calculons le déterminant (par la régle de Sarrus ou par Laplace)
det(A) = dgt(vhv% e ,Un) = a11(022a33—a23a32)—a12(a21a33—a23a31)+a13(a21a32—a22a31) =15 # 0,

la famille Fy est linéairement indépendante et puisqu’elle contient 3 vecteurs dans un espace de
dimension 3, donc Fi est une base de E.
2. Famille liée. Prenons maintenant la famille Fo = {uq, us, us} ot

w = (1,2,3),us = (2,4,6),u3 = (0,1,1).

Matrice des colonnes est

[S2 IS V]
— = O

1
A = ]\4Bat(u1,u2,u3) =12
3

Calculons det(A") par la méme formule. On obtient
det(A") =0,

la famille Fy est liée (ce qui correspond da 'observation us = 2uy ).

3.8.3 Calcul de l'inverse d’une matrice a ’aide de la comatrice

Le calcul de I'inverse d’une matrice carrée est tres important en algebre linéaire, notamment pour
résoudre des systemes d’équations linéaires ou pour étudier des applications linéaires. Cependant,
toutes les matrices ne sont pas inversibles : une matrice A est inversible seulement si son déterminant
est non nul. L’une des méthodes classiques pour calculer I'inverse d’une matrice consiste a utiliser la
comatrice (ou matrice des cofacteurs). Cette méthode établit un lien direct entre le déterminant, les
cofacteurs et la formule de A~!.

Définition 3.8.3 (Comatrice)
Soit A = (a;;) € M,(K). On appelle comatrice de A ou matrice des cofacteurs, la matrice carrée
d’ordre n, notée com(A) dont les coefficients sont les cofacteurs de A. On a donc

A11 AIQ e Alj e Aln

AQI A22 e AQ] e A2n
com(A) = (A) = Ail AQ A” Azn ;

Anl AnQ e Anj e Ann



MATRICES

ou A;j est le cofacteur d’indice (i,j) dans A.

Exemple 3.8.8 Soit

On calcule les cofacteurs
31 01 0
- 10 1 2
Agy = (—1)3 det (0 4) = =8, Ag = (~1)"det <o 4) =4 Bay = (1)t <0 0) -

2 0 10 1 2
Agl = (-1)4 det (3 1) = 2, Agg = (—1)5 det <O 1) = —17 A33 = (—1)6 det (O 3> = 3.

Donc
12 0 0
com(A)=1-8 4 0
2 -1 3

La comatrice d’une matrice carrée n’est pas seulement un outil pour calculer son inverse ; elle satisfait
aussi une relation remarquable qui relie directement la matrice, sa comatrice et son déterminant.
Cette identité, appelée formule fondamentale de la comatrice. Elle permet notamment de justifier la
formule explicite de I'inverse d’une matrice inversible

Proposition 3.8.4 (Formule fondamentale de la comatrice) Soit A e M, (K). Alors,

At (com(A)) =" (com(A)) - A = det(A) - I,. (3.9)

Exemple 3.8.9 Considérons la matrice

1 20
A=10 3 1
0 0 4
On a déja calculé sa comatrice
12 0 0
com(A)=1-8 4 0
2 -1 3

Le déterminant de A est
det(A) =1-3-4 =12,

Vérifions maintenant l’identité

At (com(A)) =" (com(A)) - A = det(A) - Is.

On calcule
1 2 0\ /12 -8 2 12 0 0
At(com(A))=10 3 1|10 4 —-1]=[0 12 0 |=12L.
00 4/\0 0 3 0 0 12
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De méme
12 -8 2 120 12 0 0
fleom(A)-A=10 4 —1](0 3 1|=[0 12 0 |=12L.
0 0 3/\0 0 4 0 0 12

On retrouve bien que
A (com(A)) =' (com(A)) - A = det(A) - L.

Apres avoir défini la comatrice d’une matrice carrée A, on peut utiliser cette notion pour établir une
formule générale de I'inverse. En effet, grace a I'identité fondamentale ([3.9)), il est possible d’exprimer
I'inverse d’'une matrice inversible directement a I'aide de sa comatrice.

Corollaire 3.8.3 (Formule de l’inverse via la comatrice)
Soit A = (a;;) € M, (K). Si la matrice A est inversible (det(A) # Ox), alors son inverse A~' est
donné par la formule

1
~ det(A)

t(com(A)) = (det(A))™" -t (com(A)).
ou * (com(A)) désigne la transposée de la comatrice de A.

Preuve. Rappelons l'identité fondamentale
At (com(A)) = det(A) - I,

Comme det(A) £ Og dans K, I'élément det(A) est inversible dans le corps K. On peut donc multiplier

et obtenir

I’égalité précédente par le scalaire
galité pr par i det(4)

A. (detl(A) ' (com(A))) 1.

De méme, en partant de 1’égalité symétrique

"(com(A)) - A =det(A) - I,

- RN 1 .
et en multipliant cette fois-ci a gauche par det(4)’ on obtient
e
1 t
— A)) ) A=1,.
(det(A) (com( ))) "
Ainsi la matrice .
1
T (com).

est a la fois un inverse a gauche et un inverse a droite de A. Dans les anneaux de matrices sur un
corps, un inverse a gauche et un inverse a droite coincident et donnent I'unique inverse de la matrice.
Donc
1 t
det(A)

At (com(A)).
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Exemple 3.8.10 Soit la matrice

1
A= 0 EM3(R)
5

D =N
O = W

On calcule d’abord son déterminant en développant selon la premiére ligne

1 4 0 4 0 1
=1 4] o]0 40 1|
Ainsi, det(A) =14 0, donc A est inversible.
On détermine ensuite les cofacteurs
Aij = (—1)i+j det(Ml])
On obtient
A11 = _247 Al? = 207 A13 = _57
AQI = ]-87 AQQ = _15a A23 = 47
Az =5, Azy = —4, Agz = 1.
La comatrice est alors
—24 20 =5
com(A)=1 18 —15 4
5 -4 1
D’apres la formule de 'inverse via la comatrice, on a
B —24 18 5
ATl = A)=1|(20 -15 —4
g Comn = 2 -1 —
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CONCLUSION DU CHAPITRE

Conclusion du chapitre

Dans ce chapitre, nous avons découvert les bases de la théorie des matrices, un outil essentiel de
lalgebre linéaire. Nous avons appris a reconnaitre les différents types de matrices (nulles, diagonales,
triangulaires, symétriques, etc.) et a effectuer les opérations fondamentales : addition, multiplication
par un scalaire, transposition et produit matriciel.

Nous avons vu que ces opérations donnent aux matrices une structure algébrique utile et quelles
sont étroitement liées a la résolution des systemes déquations linéaires. Nous avons aussi étudié le
role des matrices dans la représentation des applications linéaires et dans le changement de base.

Enfin, 1étude du déterminant nous a permis de comprendre ses propriétés, son lien avec linversi-
bilité dune matrice et son utilisation pour calculer linverse a laide de la comatrice.

Ce chapitre constitue ainsi une base solide pour la suite du cours, ou les matrices serviront a
approfondir 1étude des systemes linéaires, des transformations linéaires et des valeurs propres.
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Chapitre 4
Systemes d’équations linéaires

L’étude des systemes d’équations linéaires constitue une étape essentielle de ’algebre linéaire. Elle
permet de modéliser et de résoudre simultanément plusieurs équations faisant intervenir plusieurs
inconnues. Cette problématique se retrouve dans de nombreux domaines : mathématiques, physique,
informatique, économie, ou encore sciences de I'ingénieur.

Dans ce chapitre, nous commencerons par définir ce qu’est une équation linéaire, avant d’étendre
cette notion a celle de systeéme linéaire, c¢’est-a-dire un ensemble d’équations a résoudre simultané-
ment. Nous analyserons les différentes manieres de représenter un systeme linéaire. La forme matri-
cielle offre un cadre algébrique efficace, permettant de manipuler les équations a 1’aide de matrices
et d’opérations élémentaires. Une seconde approche consiste a considérer le systeme comme une
application linéaire entre deux espaces vectoriels, ce qui nous permettra d’introduire des concepts
fondamentaux comme le noyau, l'image, ainsi que les notions d’injectivité et de surjectivité. En-
fin, nous explorerons également une interprétation vectorielle, dans laquelle les équations sont vues
comme des combinaisons linéaires de vecteurs.

Nous distinguerons ensuite plusieurs types de systémes, en fonction du nombre et de la nature
de leurs solutions. Les systemes homogenes, par exemple, admettent toujours la solution triviale.
Parmi les systemes dits compatibles, certains sont déterminés (ils possedent une solution unique),
d’autres indéterminés (ils admettent une infinité de solutions). A I'inverse, les systémes incompatibles
ne possedent aucune solution.

Pour résoudre ces systemes, nous étudierons différentes méthodes. La méthode de substitution,
bien que simple, est adaptée aux petits systemes. La regle de Cramer, fondée sur les déterminants,
s’applique uniquement aux systémes carrés. La méthode du pivot de Gauss, quant a elle, s’avere parti-
culierement puissante pour traiter des systemes plus complexes, grace a une élimination systématique
des variables.

Ce chapitre introduira également des outils théoriques fondamentaux, comme la matrice augmen-
tée, qui fournit une représentation structurée du systéme, ou encore le théoreme de Rouché-Fontené,
qui permet de déterminer avec précision 'existence et le nombre de solutions d’un systeme.

L’objectif principal de ce chapitre est d’apprendre a analyser et résoudre un systéme d’équations
linéaires, en déterminant s’il admet une solution, plusieurs ou aucune, tout en maitrisant les diffé-
rentes méthodes de résolution et les concepts fondamentaux de 'algebre linéaire qui y sont associés.

Dans ce chapitre, (K, +, ) désigne un corps commutatif, et en général, K =R ou K = C.
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SYSTEMES D’EQUATIONS LINEAIRES

4.1 Equations linéaires

Avant d’aborder I'étude des systemes d’équations linéaires, il est essentiel de commencer par
les équations linéaires elles-mémes. En effet, comprendre la structure et les propriétés fondamen-
tales d’'une équation linéaire — telles que la forme générale, les solutions possibles et les conditions
d’existence et d’unicité — constitue une étape préalable indispensable. Cette étude fournit les bases
nécessaires pour analyser ensuite des ensembles d’équations linéaires combinées au sein d’un systéme,
et pour mieux saisir les méthodes de résolution qui en découlent.

Une équation linéaire est une équation dans laquelle les variables apparaissent uniquement a
la puissance 1, sans étre multipliées entre elles ni élevées a une puissance supérieure. Elle peut
contenir une ou plusieurs variables. Les équations linéaires sont tres importantes en algebre, car elles
constituent la base de nombreuses méthodes de calcul et trouvent des applications en mathématiques,
en physique et en informatique.

4.1.1 Définitions et exemples

Dans cette section, nous présentons les notions de base des équations linéaires, en donnant leur
définition formelle et en illustrant chaque notion par des exemples concrets pour faciliter la compré-
hension.

Définition 4.1.1 (Equation linéaire)
1. Equation linéaire. Une équation linéaire 4 n variables (ou inconnues) 1, ..., T, est une relation
de la forme

a1xy + ... + apx, = b,

ou ay, ..., a, sont les coefficients et b est le terme constant, tous appartenant a K.

2. Solution. Une solution de cette équation est tout n—uplet (xy, ..., x,) € K" qui satisfait I’égalité,
c’est-a-dire qui rend la somme des termes égale a b.

3. Equation linéaire homogéne. Une équation linéaire homogéne est une équation linéaire dont
le terme constant est nul. Elle s’écrit

axy + ... + a,z, = Ok.

Remarque 4.1.1 Une équation linéaire est une équation du premier degré par rapport a ses va-
riables, c’est-a-dire que chaque variable apparait uniquement avec un exposant 1 (et non au carré, au
cube, etc.) et n'est pas multipliée par une autre variable (pas de produit croisé comme xy ou x1xs).

Exemple 4.1.1 (Exemples d’Equations Linéaires)
1. Exemple en trois variables réelles. Considérons l’équation suivante a trois variables réelles
L1, L2, T3,

2.1'1 — 3332 + 5!133 =7.
1l s’agit d’une équation linéaire, car les inconnues apparaissent uniquement au premier degré, sans
puissances supérieures ni produits entre variables. Les coefficients sont a1 = 2,a9 = —3,a3 = 5, et le
terme constant est b =7, tous appartenant a R.

Pour trouver les solutions, nous devons exprimer deuzr variables en fonction de la troisiéme. Par
exemple, nous pouvons résoudre pour xi en fonction de x4 et x3,

1
I = 5(7 + 3ZE2 — 5ZE3)

165
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Ainsi, la solution générale est donnée par tous les triplets (x1, 2, x3) € R® de la forme

1
(w1, T2, 73) = (2(7 + 379 — 51’3)79{527%3) ;

ou x9 et x3 sont des parametres libres.
2. Exemple en deux variables complexes. Considérons maintenant une équation en deux va-
riables complexes x1, x4 € C,

(2+d)xy — (3 —2i)xe = 5 + 4i.

Cette équation est également linéaire : chaque variable apparait au premier degré, et les coefficients
ainsi que le terme constant appartiennent a C. Les coefficients sont a; = (2 +1),a3 = —(3 — 2i), et
le terme constant est b =5 + 41.

Résolvons cette équation en exprimant x1 en fonction de o

(544 + (3 —2i)xq).

T = -
! 241

Pour simplifier cette expression, on multiplie numérateur et dénominateur par le conjugué de (2 +1),
qui est (2 —1i). On obtient alors apreés calcul

(AT (8,
I = 5 52 ) 5 52 .

La solution générale est donc donnée par tous les couples (x1,xs) € C* de la forme

(x1,29) = (<§ — ;) To + (154 + §Z> ,x2> )

ol xo est un paramétre complexe libre.
3. Exemple d’équation homogéne en quatre variables. Considérons [’équation suivante

3[L’1 + 4%2 + 5.%’4 = (.

C’est une équation linéaire homogéne a quatre inconnues xi,To, T3 et Ty.

On remarque que la variable x3 n’apparait pas dans [’équation. Cela veut dire que son coefficient
est nul. Ainsi, bien que x3 ne figure pas dans l’expression, elle fait partie intégrante des inconnues
du probleme. Cette remarque montre qu’il est essentiel de préciser ’espace vectoriel dans lequel on
cherche les solutions. Ici, les solutions sont des vecteurs de R*, car il y a quatre variables, méme si
toutes n’apparaissent pas explicitement dans [’équation.

4.1.2 Interprétation des équations linéaires comme applications linéaires

Une équation linéaire peut étre interprétée comme l’expression d’une application linéaire (ou
forme linéaire) entre deux espaces vectoriels. Cette approche permet de relier les équations a des
notions clés telles que le noyau, I'image, le rang, I'injectivité et la surjectivité.

Définition 4.1.2 Soit une équation linéaire
ax1 + ... + a,z, = b.
1. On lui associe 'application linéaire suivante

f: K» — K
(x1, T, ;) —  f(T1,T2, .0y Ty) = A1T1 + ... + ApTy.
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Cette application f est linéaire. Elle est appelée une forme linéaire sur K", ¢’est-a-dire une application
linéaire de K" dans K.

2. Interprétation de l’équation.

(a). Ecriture fonctionnelle. L’équation initiale peut étre reformulée sous forme fonctionnelle

flxy, 29, ..., x,) = b.

Autrement dit, le vecteur x = (1,2, ...,x,) € K" est une solution de I’équation si et seulement si
son image par f est égale a b. L’ensemble des solutions est donc l’ensemble des antécédents de b par

/
fweK": f(x) = b} = {7 (b)) < K",

(b). Cas particulier : équation homogéne.
Lorsque le second membre est nul (b = Ox ), [’équation devient

a1y + ... + apx, = 0 <= f(x) = Ok.

On dit alors que ’équation est homogéne. Dans ce cas, ’ensemble des solutions correspond au noyau
de Uapplication linéaire f, noté ker(f). C’est un sous-espace vectoriel de K".

Exemple 4.1.2 (Interprétation comme application linéaire)
1. Cas non homogéne. Considérons dans R [’équation suivante a trois inconnues

25(]1 — Ty + 31‘3 = .
On lui associe Uapplication (forme) linéaire suivante
f: R3 — R
(z1, 79, 23) > f(21,20,73) = 201 — 13 + 33.

L’équation s’écrit alors sous forme fonctionnelle

f(xlax%x?)) = 5.

Ainsi, l’ensemble des solutions est exactement [’ensemble des antécédents de 5 par f,
S =f1({5}) = {(z1, 22, 23) € R® : f(21,20,23) = 5}.
2. Cas homogéne. Considérons maintenant l’équation associée, homogene
201 — 29 + 323 = 0.
On utilise la méme application linéaire f. L’ensemble des solutions est alors le noyau de f,

Lo — 31’3

ker(f) = {(z1,22,33) € R® : f(x1, 39, 23) = 0} = {( 5

,1'2,.1'3) 1 X9,X3 € R} .

Il s’agit d’un sous-espace vectoriel de dimension 2 de R3.

4.2 Systemes d’équations linéaires

Apres avoir étudié les équations linéaires, nous abordons maintenant les systémes d’équations
linéaires. Un systeme est un ensemble d’équations linéaires que 1’on cherche a résoudre simultanément.
L’étude des systémes permet de déterminer si un ensemble d’équations possede une solution unique,
plusieurs solutions ou aucune solution. Elle permet également de distinguer les systémes homogenes,
lorsque le second membre est nul, des systemes non homogenes. Enfin, cette étude ouvre la voie aux
méthodes de résolution, notamment celles utilisant les matrices et le concept de rang, et permet de
passer de 'analyse d’une seule équation a celle d’un ensemble d’équations interconnectées.
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4.2.1 Définitions et notations

Définition 4.2.1 (Systémes d’équations linéaires) Soit m et n deux entiers naturels non nuls.
1. On appelle systéme d’équations linéaires de m équations d n inconnues xi,...,x, G coefficients
dans K toute liste (ou famille) de n équations linéaires de la forme

a11x1 + a2y + -0+ ATy, = bl
911 + Q929 + -+ + A9pT, = bg
(S) : . + . + + ) = b
a1 Aj2X2 e AinLy = O
L @11 + Qoo + -+ + QppTy = by

Ou

(a) Les scalaires (a;;)1<i<m de K sont appelés les coefficients du systéme (S).

1<j<n
(b) Les scalaires (b;),;<,, de K constituent le second membre du systéme (.5).
(c) Les symboles x1, ..., x, sont les inconnues du systéme.

Notation 4.2.1

1. Notation des inconnues. Lorsque le nombre d’inconnues est réduit (par exemple 2 ou 3), il
est courant d’utiliser les lettres x,y, z au lieu de x1,xo,x3, afin d’alléger l’écriture et de faciliter la
lecture.

2. Convention d’indexation. Les coefficients a;; respectent une convention universelle en algebre
linéaire, également adoptée par les logiciels de calcul (Scilab, MATLAB, NumPy, etc.). Cette unifor-
mité garantit une compréhension et une utilisation cohérentes.

3. Signification des indices dans a;;. Le coefficient a;; désigne le coefficient de l'inconnue x;
dans la i—éme équation L; du systéme. Autrement dit :

e Le premier indice i correspond d la ligne ( numéro de [’équation).

o Le second indice j correspond a la colonne (numéro de l'inconnue x;).

Cette notation est fondamentale pour passer a la représentation matricielle des systemes.

Exemple 4.2.1
1. Considérons le systéme linéaire suivant

T1+2x9— x3= 4
(S) : 31’1— I2+2IL’3=—1
2I1+ To+ T3= 3.

On en extrait les éléments suivants,
(a) Inconnues sont x1,xs, 3.
(b) Coefficients du systéme sont

ayn = l,a12 = 2,a13 = —1,a91 = 3,a00 = —1,a93 = 2,a31 = 2,a32 = 1,a33 = 1.

(c) Second membre est
(by,bo,b3) = (4,—1,3).

2. Considérons le systéme linéaire suivant

(5) - { T14+2x9—13= 4

To+x3=1.
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Remarques importantes,
(a) Icim =2 et n =3 (doncm <n).
(b) Dans la deuxiéeme équation, la composante en x1 est 0 (on n'a pas x1 dans cette équation).
(¢) Inconnues sont xy, s, x3.
(d) Coefficients,

ayn = 1,a10 = 2,a13 = —1,a21 = 0,a0 = 1,a03 = 1.

(e) Second membre est

(b1,b2) = (4,1).

Un cas particulier essentiel des systémes linéaires est celui des systéemes homogenes, c¢’est-a-dire ceux
dont tous les seconds membres sont nuls.

Définition 4.2.2 (Systémes d’équations linéaires homogénes)
Un systeme d’équations linéaires homogene est un systeme dans lequel toutes les équations ont un
second membre nul. On le note en général (Sg), et il s’écrit sous la forme

ar1 + appxs + - + a1, = Ok
a91T1 + 99T + -+ Aonly, = OK

S : : :
(Sn) anTy + ATy + -+ apr, = 0k
L Qm1T1 + QmaTa + - + appTy = Ok.

Exemple 4.2.2 Considérons le systéme linéaire homogéne suivant

Ty + 2209 — 23 = 0
(Sg) : < 21 + 4wy — 223 = 0
3r1 + 629 — 33 = 0.

On en extrait les éléments suivants
(a) Inconnues sont x1,xs,T3.
(b) Coefficients du systéme sont

an = 1l,a12 = 2,a13 = —1,a01 = 2,a00 = 4,093 = —2,a3; = 3,a32 = 6,a33 = —3.

(c) Second membre est nul

(b1, be,b3) = (0,0,0).

Définition 4.2.3 (Solution d’un systéme)

1. On appelle solution d’'un systéme d’équations linéaires (S) tout n—uplet (x1,...,x,) € K" qui
vérifie simultanément toutes les équations du systéeme. Autrement dit, si [’on remplace chaque incon-
nue x; par sa valeur dans le n—uplet, toutes les égalités du systéme doivent étre satisfaites.

2. Un systéme linéaire (S) est dit

(a) Compatible s’il existe au moins un n—uplet (xy,...,x,) € K" qui en est une solution. Parmi
les systémes compatibles, on distingue

e Les systemes compatibles déterminés, qui admettent une solution unique.

o Les systemes compatibles indéterminés, qui admettent une infinité de solutions.

(b) Incompatible si aucun n—uplet de K" ne satisfait simultanément ’ensemble des équations.

169



SYSTEMES D’EQUATIONS LINEAIRES

Remarque 4.2.1
1. Un systeme linéaire homogene est toujours compatible, car il admet au moins la solution triviale
(ou nulle)

(Il, ,C(]n) = (OK,OK, ,OK) .

2. Un systéme homogéne peut admettre d’autres solutions que la triviale (appelées solutions non
triviales), en particulier lorsque le nombre d’inconnues est strictement supérieur au rang du systéme.
Dans ce cas, il existe une infinité de solutions.

3. Géométriquement, les équations d’un systeme homogene représentent des droites, des plans ou des
hyperplans passant tous par lorigine. Ainsi, le vecteur nul appartient toujours da leur intersection.
Dans le cas de deux équations a deux inconnues, cela correspond a deux droites passant par l’origine
du plan.

Exemple 4.2.3
1. Systéme compatible déterminé (solution unique). Considérons le systéme linéaire suivant

THy+z=2
(S1) : % 2z—y+2=3
3r  +z=4.

Ici, les trois équations sont indépendantes et ne se contredisent pas. Leur intersection correspond a
un seul point de lespace R3. Le systéme admet une solution unique : il est compatible déterminé.
2. Systéme compatible indéterminé (infinité de solutions). Considérons le systéme linéaire
sutvant

T+ y+ z=2
(S2) 1 % 22+4+2y+22=4
3r+3y+32=0.

On remarque que la deuxieme équation est le double de la premiére, et la troisieme est son triple.
Les trois équations expriment donc la méme relation. Le systéme admet une infinité de solutions : il
est compatible indéterminé.

3. Systéme incompatible (aucune solution). Considérons le systéme linéaire suivant

r+ytz=1
(S3) : % zHy+z=2
r—y+2=0.

Les deux premiéres équations sont contradictoires : elles décrivent deux plans paralléles distincts (qui
n'ont aucun point commun). Quelle que soit la troisiéme équation, il n'existe aucun triplet (x,y, z)
qui satisfasse en méme temps les deux premiéres. Le systeme n’a aucune solution : il est incompatible.

Lorsqu’on résout un systeme d’équations linéaires, il est souvent utile de transformer les équations
pour simplifier leur écriture, tout en conservant l’ensemble des solutions. Par exemple, on peut
échanger deux équations, multiplier une équation par un scalaire non nul, ou ajouter a une équation
un multiple d’une autre. Ces transformations produisent un nouveau systéme qui, bien qu’écrit
différemment, possede exactement les mémes solutions que le systéme initial. On dit alors que les
deux systemes sont équivalents.

Définition 4.2.4 (Systémes équivalents)

Deuz systémes d’équations linéaires (S1) et (S2) sont dits équivalents s’ils possédent exactement le
méme ensemble de solutions. Autrement dit, un n—uplet (xq,...,x,) € K" est solution de (Sy) si et
seulement s’il est aussi solution de (Ss).
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Cette notion est particulierement utile, car elle permet de transformer un systeme complexe en un
systeme équivalent plus simple a résoudre, sans modifier ses solutions.

Exemple 4.2.4
1. Considérons les deux systémes suivants a deux inconnues x, et To

(S1) :{ ThhE=2 g :{ —21+Ty= 2

2x1—x9=1 T =3.

Les deux systémes (S1) et (Sa) sont équivalents, car ils ont exactement les mémes solutions. En effet :
On remarque que le systéme (S2) est obtenu a partir de (S1) en ajoutant les deuz équations de (Sh)

(—xq + x2) + (221 — 29) =3 = 17 = 3.
En remplacant dans la premiére équation —x1 + x9 = 2, on obtient
Tog = D.
Ainsi, les deux systémes ont la méme solution unique
1 = 3,29 = 5.

1ls sont donc équivalents.
2. Considérons les deux systemes

1+ $2+$3=3 T1+ T2+ 3= 3
(Sl) : 2x1— r9+1x3=0 ,(Sg) : T1+229 = 4
T1+229 =4 T1— Tot+2x3=—1.

Les systémes (S1) et (S2) sont équivalents. En effet, en procédant par substitution d partir de (Sy),

on trouve la solution unique :
1 7 3
X1 =—,Tg = —,T3 = —.
1 27 2 47 3 4
De plus, ce méme triplet (%, %, %) satisfait également toutes les équations de (S3). Ainsi, (S1) et (Sz)
possedent exactement le méme ensemble de solutions et sont donc équivalents.

4.2.2 Représentations et interprétations d’un systeme linéaire

Un systeme linéaire peut étre vu de plusieurs fagons. Chaque représentation donne un point de
vue différent mais complémentaire. Les trois interprétations principales sont les suivantes :

1. Interprétation matricielle : Le systeme est représenté sous forme d’une égalité entre une matrice
de coefficients, un vecteur d’inconnues et un vecteur de résultats. Cette forme est particulierement
adaptée aux méthodes de résolution systématiques, comme 1’élimination de Gauss ou l'inversion
matricielle.

2. Interprétation en termes d’applications linéaires : le systéme est vu comme 1'image d’un vecteur
par une application linéaire. Cette perspective permet 1’étude du systeme a travers les notions de
noyau, d’image, d’injectivité et de surjectivité de 'application.

3. Interprétation en termes de combinaisons linéaires. Chaque équation est interprétée comme une
contrainte sur une combinaison linéaire de vecteurs. Résoudre le systeme revient alors a déterminer
si un vecteur donné peut étre exprimé comme une combinaison linéaire d’'un ensemble de vecteurs
(les colonnes de la matrice des coefficients).
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Définition 4.2.5 (Interprétation matricielle)
Soit (S) un systéme linéaire de m équations d n inconnues suivant

a11T1+ A9+ -+ A1pTp= b1
A91X1+ A99To+" -+ AopTp= bg

a;1T1+ QppTat -+ aipxp= b;

\ A1 T1+AmaTo+- - '+amnxn:bm

(a) Ecriture matricielle. Ce systéme peut étre représenté sous forme matricielle

AX = B,
ou
A= (aij)11<i§m € M, (K) est la matrice des coefficients du systéme, appelée matrice associée au
<jsn
systeme (.S).
L1
L2 . .
X = ) est la matrice colonne des inconnues.
:L‘n
b
by ‘
B = ) est la matrice colonne des constants (ou second membre).
b
Ainsi, le systéme (S) s’écrit simplement
ay; a2 0 A o Qip ial by
Qg1 Q22 - QA2 - Qaop T2 by
(S): AX — B : : S : : Col :
L7 075 R ¢ 77 A ¢ 7709 Z; b;
Qm1 Am2 - Amj -~ Omnp T, bm

(b) Systéme homogéne. Si le second membre est nul, c’est-a-dire B = 0,1, alors le systéme est
dit homogene et s’écrit

(SH) AX = Om,l-

(c) Résolution. Résoudre le systéme (S), c’est trouver toutes les matrices colonnes X (c’est-da-dire
tous les n—uplets (1, ...,x,)) qui satisfont [’équation matricielle

AX = B.

Exemple 4.2.5 Considérons le systeme suivant a trois équations et trois inconnues

2x1+3r9— 3= b
(9) : 41— x90+2x3= 6
—3ZL‘1+2$2+ 5(732—4.

(i) Ce systéme peut s’écrire sous forme matricielle

2 3 -1 T 5
(S): AX =B 4 =1 2 |- | z |= 6
3 2 1 2 4
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Aprés calcul (par substitution), on trouve

(21,29, 23) = 08 1
1,42,43) = 3’15 15/

(ii) Le systéme homogéne (Sg) associé a (S) est obtenu en remplacant le second membre par le
vecteur nul
2:L'1+3!L’2— 3= 0
(SH) : 41— xo+2x3= 10
—3x1+2x5+ x3=0.
ou, en forme matricielle

2 3 -1 T 0
(Su) : AX =01y <= 4 -1 2 || 2 |=10
-3 2 1 T3 0

Apres avoir présenté la représentation matricielle d’un systeme linéaire, on peut utiliser cette
représentation pour identifier des formes particulieres de systemes, appelées systemes triangulaires.
Ces systemes sont utiles car ils permettent de résoudre rapidement les équations par substitution et
servent de base a des méthodes plus générales, comme I’élimination de Gauss.

Définition 4.2.6 (Systémes triangulaires)

Soit (S) un systéme d’équations linéaires carré, c’est-a-dire un systéme de n équations d n inconnues
L1, ..., Ty 4 coefficients dans K . On note A = (a;;) la matrice des coefficients de ce systéme. Alors
1. Systéme triangulaire inférieur. On dit que le systeme (S) est triangulaire inférieur si ses
coefficients vérifient la condition suivante

V(i,5) € {1,2,..,n} x {1,2,..,n} : i < j —> a;; = Og.

Autrement dit, tous les coefficients au-dessus de la diagonale principale de la matrice A sont nuls :
la matrice A est dite triangulaire inférieure. Le systéme s’écrit alors sous la forme

( __
111 = b
A21T1 + QA22%2 = by
a31Ty + a32T2 + a33T3 = b3
(S): < : . . :
anTy + aprs + -+ azr; =0b;
L @11 + Qoo + -+ appx, = by

La résolution d’un tel systéme se fait facilement par substitution directe, en commencant par la
premiére équation (celle de x1), puis en substituant successivement les inconnues déja déterminées
dans les équations suivantes.

2. Systéme triangulaire supérieur. On dit que le systéme (S) est triangulaire supérieur si ses
coefficients satisfont

V(i,j)e{1,2,...,n} x{1,2,...,n} i > j = a;; = Ok.

Cela signifie que la matrice A = (a;;) est triangulaire supérieure, c’est-a-dire que tous les coefficients
iJ )
en dessous de la diagonale principale sont nuls. Le systeme s’écrit alors sous la forme

a;1r1 + appxs + -+ A1nTn = b
ATy + -+ + A2, Tn = by

S) ;< '
( ) Qi L5 + -4+ QinTy = bz
L AnnTn = by,.
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Dans ce cas, la résolution du systéme se fait également par substitution directe, mais en partant de
la derniére équation (celle de x,), puis en remontant vers la premiére.

Exemple 4.2.6
1. Considérons le systéme suivant da trois inconnues xi, To, T3

2ZE1 =4
(Sl) . —ZE1+35L‘2 =1
4xr1—2x9+5x3=9.

Ce systéeme est un systeme triangulaire inférieur, car tous les coefficients situés au-dessus de la
diagonale principale sont nuls. Sa matrice des coefficients est

2 0 0
A= -1 3 0
4 =2 5

2. Considérons maintenant le systéme suivant d trois inconnues xi, To, T3
3r1— To+2x3= 5
(SQ)Z 422'2— 3= 1
6%’3212

Ce systéme est triangulaire supérieur, car tous les coefficients situés en dessous de la diagonale
principale sont nuls. Sa matrice des coefficients est

Lorsqu’on étudie un systeme linéaire complet AX = B, il est souvent utile de relier ses solutions a
celles du systeme homogene associé AX = 0. En effet; une fois qu’on connait une solution parti-
culiere du systéme complet, on peut obtenir toutes les autres solutions en ajoutant a cette solution
particuliere toutes les solutions du systéeme homogene. Cette idée permet de décrire compléetement
I’ensemble des solutions d’un systeme linéaire non homogene.

Proposition 4.2.1 Soient A € M, ,(K) une matrice de coefficients, Xo € M, 1(K) un vecteur
colonne et B € M, 1(K) le vecteur des termes constants. Supposons que

AX, = B.
Alors on dit que X, est une solution particuliere du systéme complet
(S): AX = B.
Dans ce cas, pour toute X € M,,1(K), on a X est solution de (S) si et seulement si
X =Xo+ Xy,
ou Xy est une solution du systéme homogéne associé

AX = 0.
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Remarque 4.2.2 L’ensemble des solutions du systéeme AX = B est obtenu en ajoutant a une so-
lution particuliere X, toutes les solutions de [’équation homogéne AX = 0. Ainsi, toute solution
générale d’un systéme linéaire complet (non homogéne) est la somme d’une solution particuliére du
systeme complet et d’une solution générale du systeme homogéne associé.

Preuve.
1. (=) Montrons I'implication directe. Supposons que X € M, 1(K) soit une solution du systeme
complet, c¢’est-a-dire

AX = B.

Par hypothese, on a aussi
AXy = B.

En soustrayant les deux égalités, on obtient
AX — AXy) = A(X — Xo) = 01

Posons
Xg=X—X.

Alors,
AXH = Om,la

donc Xy est une solution du systeme homogene. Par conséquent
X = Xy + Xo.

Ceci montre que X peut bien s’écrire comme la somme de X et d’une solution Xy du systéme
homogene.
2. («<=) Montrons l'implication réciproque. Supposons que

X =Xy + X
Ou
AXO = B,AXH = Om,l-
Alors
AX = A(X() +XH) =AXy+ AXy = BJrOm,l = B.
Ainsi, X est bien une solution de AX = B. OJ

Exemple 4.2.7
1. Considérons le systéme suivant

T1+2x9— 3= 4
(S) : 31’1— I2+2J53=—1
2I1+ To+ T3= 3.

On peut écrire ce systéme sous forme matricielle AX = B, ou

1 2 -1 1 4
A=(3 -1 2 |, XxX=|2].B=]-1
2 1 1 T3 3
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Une solution particuliére du systéme est

On considére le systéme homogéne associé AXy = 0371 o

X1
XH = o |.
x3

La seule solution de ce systeme est la solution nulle

L’ensemble des solutions du systeme complet est donc

WlIhNWw| 3O

=)

Xy =

o O

0
7
X =Xo+ Xy = ;
3

2. Considérons le systéme linéaire

T1+ To+ 3= 3
(S): 1 2x1+2w94+2x3= 6
T1— To+ x3=1.

La forme matricielle du systéme est AX = B, avec
1 1 1 3

A=12 2 2|, X=|=|.B=156

1 -1 1 1

Une solution particuliére du systéme est

Les solutions du systéme homogene associé AX = 031 sont toutes les combinaisons de la forme

XHZt 1 ,tER.
0

Ainsi, l’ensemble des solutions du systéme complet est

1 1
X=X+ Xy=2 1]+t 1| ter
1 0

On voit que le systeme admet une infinité de solutions, donc il est compatible indéterminé.
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Apres avoir présenté 'interprétation d’un systéme linéaire sous forme matricielle, on peut I’aborder
sous une autre perspective : 'interprétation en termes de combinaisons linéaires. Dans cette approche,
le second membre du systeme est considéré comme une combinaison linéaire des colonnes de la matrice
des coefficients. Cela permet de relier directement la résolution du systeme a la notion d’espace
engendré par les colonnes et de mieux comprendre 'existence et 1'unicité des solutions.

Définition 4.2.7 (Interprétation d’un systéme linéaire en termes de combinaisons li-
néaires)
Soit (S) un systéme linéaire de m équations d n inconnues suivant

ai1x1 + aiexs + -+ AT, = b1
211 + Q92X + -+ + QopXy, = bg
(S> : . + . + ...+ . = ).
a;171 A;2X2 AinTy = U4
L Q11 + Qoo + -0 + QnTn = by,

(a). Décomposition par colonnes. Pour tout j de {1,2,...,n}, notons

Q15
a9
C; = ,
Q5
amj
le j—éme vecteur colonne de A. Soit
b1
ba
B = i
b |’
bm
le vecteur colonne des seconds membres. Alors 'égalité matricielle AX = B s’écrit comme une
combinaison linéaire des colonnes
a11 a2 Qay; Q1n by
21 22 a2 A2n, by
| | tw| (e T |t =L
Q41 a2 Qi Qi b;
Am1 Am2 amj Amn, bm

c’est-a-dire

21Cy + 22Cy + ... +2,;C; + ... + 2,0, = B.
Autrement dit, le vecteur B est une combinaison linéaire des colonnes de la matrice A, avec les x;
comme coefficients scalaires.

(b). Résolution du systéme (S). Résoudre (S) revient a trouver tous les n—uplets (z1,..., %)
qui expriment B comme combinaison linéaire des colonnes C4,...,C,.
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(¢) Condition d’existence de solutions. Le systéme (S) admet au moins une solution si et
seulement si B appartient a l’espace engendré par les colonnes de A

B e Vect(Cy,...,C).
(d) Systéme homogéne associé. Le systéme homogéne associé (Sy) est
517101 + 1’202 + -+ fL’nCn = Om,ly

c’est-a-dire AX = 0,,1. Résoudre (Sy) consiste a trouver tous les n—uplets (xq,...,x,) € K" qui
satisfont cette relation.

(e) Existence de solutions non triviales du systéme homogéne. Le systéme homogéne (Sg)
posséde des solutions non triviales (autres que le vecteur nul) si et seulement si les colonnes Cy, ..., C,,
sont linéairement dépendantes. Autrement dit

Iz, ..., 2n) € KN\{O0k} : 2101 + -+ + 2,Cp = 0y 1.

Exemple 4.2.8 Considérons le systéme suivant

2ZL‘1+3£L‘2— Tr3= 5
(S): dr1— wo+2x3= 6
—3$1+2$2+ £L‘3=—4.

(i) Ecriture par colonnes. Les colonnes de la matrice des coefficients sont

2 3 —1
C, = 4 , Oy = -1 1,05 = 2
-3 2 1
et le second membre est
5
B = 6
—4

Le systeme s’écrit donc comme combinaison linéaire des colonnes
1101 + 25C5 + 23C3 = B,

c’est-a-dire

2 3 -1 5
T 4 + Zo —1 + I3 2 = 6
-3 2 1 —4

Le systeme revient a chercher des scalaires xy,x9,x3 tels que la combinaison linéaire des vecteurs
C1, Cy, C3 donne le vecteur second membre B.
(7i) Dans le cas du systéme homogéne (Sg), il s’agit de résoudre

210y + 2205 + 2305 = 031,

C’est-a-dire, on cherche toutes les combinaisons linéaires nulles des vecteurs C1,Cy, C3.

Une fois que nous avons étudié 'interprétation d’un systéme linéaire a travers les combinaisons
linéaires, nous allons maintenant explorer une nouvelle approche : I'interprétation en termes d’appli-
cations linéaires. Cette perspective permet de relier un systeme linéaire a des notions fondamentales
telles que l'image, le noyau, l'injectivité et la surjectivité. Elle offre ainsi une meilleure compréhen-
sion du fonctionnement du systeme et des conditions qui déterminent s’il admet une solution unique,
plusieurs solutions ou aucune solution.
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Définition 4.2.8 (Interprétation d’un systéme linéaire en termes d’applications linéaires)

Considérons le systéme linéaire (S) de m équations d n inconnues

ai1x1 + a1y + -0+ AT, = bl
911 + Q999 + -+ + A9pT, = bg
(S) : . + . + + ) = b,
a1 Aj2X2 e AinLy = O
L @11 + Qoo + -+ + QppTy = by

Soit A = (a;j) € M, »(K) la matrice des coefficients, x = (z1,...,x,) € K" etb = (b1,...,b,) € K™
(a) Lien avec une application linéaire. On associe au systéeme l'application linéaire

f: K — K™
r — f(z) = Ax.

Dans ce cadre, le systéme linéaire (S) correspondant s’écrit alors sous la forme vectorielle
f(z) =0.
(b) Résolution du systéme. Résoudre (S) revient d chercher [’ensemble des solutions
{zeK": f(z) =b} = f71({b}),

c’est-da-dire les antécédents de b par f.
(¢) Condition d’existence de solutions. Le systéeme admet au moins une solution si et seulement
st

be Im(f).

Autrement dit, le vecteur second membre b doit appartenir a limage de f, qui est exactement le
sous-espace vectoriel engendré par les colonnes de A.
(d) Systéme homogéne associé. Le systéme homogéne associé (Syg) est donné par

f(l') = O]Km — Ar = O(m,l)-
(e) Noyau de l’application. Résoudre le systéme (Sy), c¢’est donc déterminer le noyau de f,
ker(f) = {x e K" : f(x) = Ogm}.

(f) Solutions non triviales du systéme homogéne. Le systéme homogéne (Sy) admet des
solutions non triviales (autres que la solution nulle) si et seulement si

ker(f) # {Ogxn} <= dim(ker f) > 0,

c’est-a-dire si les colonnes de A sont linéairement dépendantes.

Exemple 4.2.9 Considérons le systéme linéaire (S) suivant a trois équations et trois inconnues
2$1+31’2— 3= 5
(S) : 41‘1— $2+2$3= 6
—3ZE1+2£L‘2+ [I)3=—4.
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Soit
2 3 -1
A=|[4 -1 2 |,2eR*b=(56,—4).
-3 2 1

(a) Lien avec une application linéaire. On associe au systéme [application linéaire

f: R — R3
v o ()= A

c’est-a-dire
f(x1, 29, 23) = (221 + 3w9 — 73,471 — T9 + 223, =371 + 279 + T3).

Le systéme (S) peut alors s’écrire sous la forme vectorielle

f(x) =0b.

(b) Résolution du systéme. Résoudre (S) revient a chercher 'ensemble des solutions

{zeR*: f() = b} = f71({b}),

c’est-a-dire les antécédents de b par l'application linéaire f. On obtient

{xeR?’:f(x):b}:{(z,i,I;)}.

(¢) Condition d’existence de solutions. Le systéeme admet au moins une solution si et seulement
st

be Im(f).

Autrement dit, le vecteur b = (5,6, —4) doit appartenir au sous-espace de R engendré par les colonnes
de A. Ici be Im(f) puisque
Im(f) =R®.

(d) Systéme homogéne associé. Le systéme homogéne associé est donné par
f(x) = Ops == Az = 0(31).
(e) Noyau de Uapplication. Résoudre le systéme homogeéne, c’est déterminer le noyau de f
ker(f) = {x e R®: f(x) = Ogs}.

On obtient
ker(f) = {(07 0, O)}

4.2.3 Systemes linéaires : classification et conditions d’existence des so-
lutions

Les systemes d’équations linéaires occupent une place centrale en algebre linéaire et apparaissent
dans de nombreux domaines scientifiques. Lorsqu’on en étudie un, deux questions fondamentales se
posent : le systéeme possede-t-il des solutions ? et combien en existe-t-il 7.

Répondre a ces questions conduit a classer les systemes linéaires selon le nombre de solutions qu’ils
admettent : un systéme peut étre déterminé (une seule solution), incompatible (aucune solution) ou
indéterminé (une infinité de solutions). Cette distinction constitue la base de 'analyse des systemes
et oriente le choix des méthodes de résolution (par exemple la substitution ou le pivot de Gauss).
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4.2.3.1 Classification des systemes linéaires

Le comportement d'un systeme dépend des relations entre ses équations, qui peuvent étre co-
hérentes ou contradictoires, indépendantes ou dépendantes. Ces différentes situations conduisent a
une classification générale des systemes. Ainsi, tout systeme d’équations linéaires admet nécessaire-
ment ['un et un seul des trois types suivants de solutions : il peut avoir une solution unique, aucune
solution, ou bien une infinité de solutions.

Corollaire 4.2.1 Tout systeme d’équations linéaires admet nécessairement ['un et un seul des trois
types suivants de solutions

(a) Une solution unique : Le systeme est alors dit déterminé; les équations sont cohérentes et
linéairement indépendantes, ce qui permet de trouver une unique combinaison de valeurs pour les
variables inconnues.

(b) Aucune solution : Le systéme est dit incompatible ou incohérent, c’est-a-dire que certaines
équations se contredisent et qu’il est impossible de satisfaire toutes les équations simultanément.

(c) Une infinité de solutions : Le systéme est dit compatible indéterminé; les équations sont
cohérentes mais linéairement dépendantes, de sorte qu’il existe une infinité de combinaisons de valeurs
qui satisfont toutes les équations.

Exemple 4.2.10
1. Systéme déterminé (solution unique). Considérons le systéme suivant d trois équations et
trois inconnues

T+ y+z=3
(S1): % z— y+z2=1
r+2y—z=4.

Soustrayons la deuziéeme équation de la premiére, on obtient
y =1
Remplagons y = 1 dans la premiére (ou la deuziéme) équation
T+ z =2

(Vérification avec la deuxiéme x — 14 z =1= x + z = 2, cohérent.)
Remplacons y = 1 dans la troisieme équation

r+2 1—z=4=x—2=2.

r+z=2
Tr—z=2.

20 =4 = 1 = 2.

On obtient le systeme linéaire en x et z

En additionnant les deux équations

Puis
2=2—x=2-2=0.

Ainsi la solution unique du systéme est
(r,y,2) = (2,1,0).
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Le systéme (S1) admet une unique solution (toutes les équations sont cohérentes et indépendantes).
2. Systéme incompatible (aucune solution). Considérons le systéme

T+y+z=1
(S2): X x+y+z=2
r—y+2=0.

Observons les deux premiéres équations
r+yt+z=letx+y+z=2.

Ces équations imposent des conditions contradictoires : une méme somme x +1y+ z ne peut pas valoir
a la fois 1 et 2. Cette contradiction montre que le systéme est incompatible, il n’existe aucun triplet
(x,y, 2) € R3 satisfaisant simultanément les trois équations. Ainsi le systéme n’a aucune solution. Le
systéme (S3) est incompatible (contradictions entre équations).

3. Systéme compatible indéterminé (une infinité de solutions). Considérons le systéme

T+ y+ z=3
(S3) : % 224+2y+22=6
r— y+ z=1.

La deuxiéeme équation est simplement le double de la premiére, elle n’apporte aucune condition sup-
plémentaire. On réduit donc le systeme a

T+y+z=3
r—y+z=1.

C’est un systeme de 2 équations a 3 inconnues, donc il reste une liberté dans le choix des solutions.
En posant z =t € R (paramétre libre). On résout le systéme, on obtient les solutions sont données
par

(x,y,2) = (2—t,1,t),t e R.

Il existe donc une infinité de solutions. Le systéme (S3) admet une infinité de solutions.

4.2.3.2 Conditions d’existence et de nombre de solutions d’un systeme linéaire

Apres avoir classé les systemes linéaires, il est naturel de se demander s’il existe un critere général
permettant de déterminer I'existence et le nombre de solutions d’un tel systeme. Ce critere est donné
par le théoreme de Rouché-Fontené, un résultat fondamental de 1’algebre linéaire qui relie le rang
d’un systeme aux différentes situations possibles pour ses solutions.

Le théoreme de Rouché—Fontené énonce une condition nécessaire et suffisante pour qu'un systeme
d’équations linéaires admette au moins une solution et indique également s’il en existe une seule ou
une infinité. Avant d’énoncer ce théoréme, il est indispensable d’introduire la notion de rang d’'un
systeme linéaire, un outil essentiel pour analyser et déterminer le nombre de solutions d’un systéme.

Définition 4.2.9 (Rang d’un systéme linéaire)

Soit (S) un systéme de m équations linéaires 4 n inconnues, de matrice des coefficients A € My, »(K)
et be K™ est le vecteur des seconds membres.

1. On appelle rang du systéeme (S) le rang de sa matrice des coefficients A,

rg(S) = rg(A).
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Ce rang peut étre caractérisé de plusieurs maniéres équivalentes,

(a) rg(S) est la dimension du sous-espace vectoriel Vect(C,...,C,) < K™, ou Cy,...,C, désignent
les colonnes de A.

(b) Equivalemment, rg(S) est le nombre mazimal de colonnes linéairement indépendantes de A.

(c) Enfin, si l’on associe a A l'application linéaire canoniquement définie par

f: K — K™
v — [f(z)= Az,

alors le rang du systéme est également le rang de cette application

rg(S) = rg(f) = dim(Imf).

Exemple 4.2.11 Considérons le systéme
T1+ To+ 3= 1
(S) . 2$1+3$2+ Tr3= 2
3$1+4$2+2I3=3.

La matrice des coefficients est

A= S M373<R).

W N =
=~ W
N =

(a) Colonnes et dépendance linéaire. Les colonnes sont

1 1 1
Ci=|(2],C=1(3],C3=1]1
3 4 2
On constate la relation linéaire
C3 =20, — (Y,

donc les colonnes sont linéairement dépendantes. Par conséquent
Vect(Cy,Cy, C3) = Vect(Ch, Cy).
Par conséquent le rang des colonnes (le rang de la matrice A) vaut
rg(S) = rg(A) = 2.

(b) Le nombre maximal de colonnes linéairement indépendantes est le rang, donc 2.
(¢) L’application associée est

f R — R® f(x1,29,23) = (1 + T + 73,271 + 315 + 23, 371 + 429 + 273).
Son image est le sous-espace engendré par les colonnes
Im(f) = Vect(Cy,Cy).

Donc
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Corollaire 4.2.2 (Propriétés du rang d’un systéme linéaire)
Soit (S) un systéme de m équations linéaires a n inconnues, de matrice des coefficients A € M, »(K)
et de second membre b € K™. On définit le rang du systéme par

rg(S) = rg(A).
1. Bornes du rang. Le rang d’un systéme vérifie toujours
0 <rg(S) =rg(A) < min(m,n).

2. Invariance par opérations élémentaires. Le rang d’un systeme est invariant par opérations
élémentaires effectuées sur les lignes, c¢’est-a-dire sur les équations du systéme. FEn d’autres termes,
rg(S) ne change pas lorsqu’on applique auzx lignes de A,

(a) la permutation de deuz lignes, la multiplication d’une ligne par un scalaire non nul,

(b) Uaddition a une ligne d’un multiple d’une autre ligne.

Exemple 4.2.12
1. Bornes du rang. Considérons le systeme

(S) ) T1+2x9+3x3=1
) 23314-41’2-1—6333:2.

123
A:<2 4 6)'

On remarque que la deuziéme équation est un multiple de la premiére (Lo = 2L, ). Ainsi,

La matrice des coefficients est

rg(S) =rg(A) =1,

et
0<1<min(2,3) =2.

2. Invariance par opérations élémentaires. Considérons le systéme

$1+2$2+ Tr3= 1
(S) : % 2m+4wa+2x3=2
3$1+6IQ+3$3=3.

La matrice des coefficients est

A=

W N =
(@) IS V)

1
2
3
Toutes les équations sont proportionnelles (Ly = 2Ly, Ly = 3Ly ), donc

rg(S) = 1.

Si Uon applique une opération élémentaire (par exemple. Ly «— Lo —2Ly ), on obtient une ligne nulle
mais le rang reste 1. Cela montre invariance du rang par opérations élémentaires.
3. Rang maximal. Considérons le systéme

(S) . [E1+2l‘2+ 3= 0
' 2x1+ T9+3x3=1.
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La matrice des coefficients est

1 21
A= <2 1 3) '
Les deuz lignes ne sont pas proportionnelles, donc elles sont linéairement indépendantes. Ainsi,
rg(S) = 2 = min(2, 3).

ce qui est le rang maximal possible.

Une fois la notion de rang d’un systeme linéaire définie et ses propriétés étudiées, nous pouvons
maintenant énoncer le critere général qui détermine 'existence et le nombre de solutions d'un systeme
d’équations linéaires. Ce critere est donné par le théoreme de Rouché-Fontené, également appelé
théoreme de Kronecker-Capelli.

Théoréme 4.2.1 (Théoréme de Fontené-Rouché) Considérons un systéme (S) de m équations
linéaires a n inconnues, a coefficients dans K et de rang r. Trois cas sont possibles.

e Sir=m =n alors le systéme (S) est de Cramer. Il admet une unique solution.

e Sir =m <mn alors le systéme (S) admet une infinité de solutions, quel que soit le vecteur des
seconds membres.

e Sir < m alors le systéme (S) admet au moins une solution si, et seulement si, le systéme est
compatible. Dans ce cas :

e Sir =m, il admet une solution unique,

e Sir <m, il admet une infinité de solutions.

Exemple 4.2.13
1) Cas de solution unique. Considérons le systéme suivant de trois équations linéaires a trois
mconnues
X1+ Xo+Tz= 6
(S) . T1— Xo+Tz= 2
T1+2r9—1r3=3.

Ce systeme peut s’écrire sous forme matricielle

1 1 1 1 6
AX=B<= | 1 -1 1 Ty |=1| 2
1 2 -1 T3 3

On calcule le déterminant de la matrice des coefficients

11 1
det(4)=|1 -1 1 |=4+0.
1 2 -1

Comme det(A) £ 0, on a

r=3=m=mn.

Ainsi, le systéme (S) est un systéme de Cramer et admet une solution unique

3 .95
—(2,2,2).
(331,$2,l’3) (27 72)

2. Systéme compatible, rang < m ( infinité de solutions). Considérons le systéme suivant
de deux équations linéaires a trois inconnues

( ) 1+ To+ 1’3:4
| 2x1+2w9+2x3=8.
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Ce systéeme peut étre mis sous forme matricielle

T
11 1 4

xs

On remarque que la deuxiéme ligne est le double de la premiére (Lo = 2L, ), les deux lignes sont
linéairement dépendantes, donc le rang de la matrice des coefficients est donc

r=1l<m=2<n=23.

Le rang du systeme est strictement inférieur au nombre d’inconnues, donc le systéme est compatible
et admet une infinité de solutions. Une solution générale peut s’écrire en exprimant une variable en
fonction des autres

T 24—5(]2—ZE3
ZE27I3€R.

3. Systéme avec rang = m < n (compatible avec solutions infinies). Considérons le systéme
suivant de deuz équations linéaires a trois inconnues

) T1+To+T3= 3
<S) ' { 21‘1—.1’2+1'3=1.

Sous forme matricielle

L1
1 1 1 3
AX—B(:><2_11> T —<1).

T3
Les deux lignes ne sont pas proportionnelles, donc elles sont linéairement indépendantes et le rang
de la matrice des coefficients est donc

rg(A)=r=2=m=2<n=3.

Le rang est égal au nombre d’équations mais inférieur au nombre d’inconnues, le systéme est com-

patible et admet une infinité de solutions, quelle que soit la valeur du second membre (3,1). Une
solution générale peut s’écrire

T = 47523
Ty = 5—3933
I3 € R.

4.2.4 Matrice augmentée d’un systeme linéaire

Pour résoudre un systeme d’équations linéaires, il est souvent pratique de rassembler tous les
coefficients des inconnues et les termes constants dans une seule matrice, appelée matrice augmentée
ou matrice complete. Cette représentation présente plusieurs avantages. Elle permet d’appliquer
efficacement des méthodes de résolution telles que la méthode de Gauss ou la méthode de Gauss-
Jordan. Elle facilite également l’exécution des opérations élémentaires sur les lignes. Enfin, elle aide a
déterminer si le systeme est compatible, ¢’est-a-dire s’il admet au moins une solution, ou incompatible,
c’est-a-dire s’il n’admet aucune solution.
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Définition 4.2.10 Soit (S) un systéme d’équations linéaires de m équations a n inconnues xy, ..., T,
a coefficients dans K |

( a11r1 + Q1222 + -+ + ATy, = b1
911 + Q929 + -+ + AonTy, = bQ
(S) : . + . + o+ . =b;
a;171 A;2T2 AinTy = 04

L Q11 + Qoo + -+ + QnTy = by,

1. On appelle matrice augmentée (ou matrice compléte) du systéeme (S) la matrice notée (A | B),
obtenue en ajoutant la colonne des seconds membres B a droite de la matrice des coefficients A, o
(a) A = (a;;) € Mpn(K) est la matrice des coefficients du systéme.

(b) B = (b;) € M, 1(K) est le vecteur colonne des termes constants (ou second membre).

2. La matrice augmentée s’écrit alors sous la forme

a1; Q2 - Ay o Aip by

Q21 Q22 -+ Az -+ A2y by
(A]B) =

(073 N 27 R ¢ 77 B ¢ 77} b;

Qm1 Gm2 - Amj - Omnp bm

Remarque 4.2.3 (Remarques sur la matrice augmentée)

1. Nature de la matrice augmentée. La matrice augmentée n’est pas une matrice au sens clas-
sique (appartenant d un espace vectoriel de matrices). Il s’agit d’une notation combinée qui regroupe,
dans un méme tableau, la matrice des coefficients et la colonne des seconds membres. Cette présen-
tation facilite l’écriture et les manipulations algébriques lors de la résolution d’un systéme linéaire.
2. Lien avec les opérations élémentaires.

Les opérations élémentaires sur les lignes d’un systeme linéaire s appliquent directement a la matrice
augmentée. Ainsi, si un systéme (S) est transformé en un systéme équivalent (S’) par une suite
d’opérations élémentaires, alors la matrice augmentée de (S’) s’obtient en appliquant exactement les
mémes opérations d la matrice augmentée de (S).

3. Role fondamental de la matrice augmentée. La matrice augmentée constitue un outil cen-
tral dans [’étude des systemes linéaires. Elle permet notamment

e de résoudre le systeme par des méthodes algébriques systématiques (telles que I’élimination de Gauss
ou de Gauss-Jordan),

o d’étudier la compatibilité du systéme (c’est-da-dire, déterminer s’il admet au moins une solution),
e d’analyser la nature de l’ensemble des solutions (solution unique, infinité de solutions, ou aucune
solution).

Exemple 4.2.14 Considérons le systéme linéaire suivant

1‘14—21’24- 3= 6
(S) : 2{L‘1+ I2+31’3= 14
*3$1+4ZL‘2*2[E3=*2.

La matrice augmentée associée au systéme (S) est

1 2 1|6
A|B)=( 2 1 3 |14
—3 4 -2 | =2
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Etape 1 : Elimination des coefficients de 1 dans les lignes Ly et L.
On veut annuler les coefficients de x1 des lignes 2 et 3. On effectue

L2 D L2 - 2L1, L3 D — L3 + 3L1

On obtient alors la matrice augmentée suivante

1 2 1]6
0 -3 1] 2
0 10 1 |16

Etape 2 : Elimination du coefficient de x5 dans la troisiéme ligne Ls.
On cherche maintenant a annuler le coefficient 10 de x5 dans la troisieme ligne. Pour cela, on effectue
I’opération
10
L3 D — L3 + ?LQ

On obtient alors la matrice augmentée

1 2 1|6
0 -3 1 |2

13 | 68
0 0 3|7

Etape 3. Retour en arriére (substitution). De la troisiéme ligne

3773 TS
De la deuxieme ligne
-39 + T3 = 2,
donc
14
To = 13

De la premiere ligne
Ty + 229 + x3 = 6,

donc
18
I = 13
Solution finale
ormany) - (1514 58
x1,T2,T3) = 13713713 .
2. Considérons le systéme
T1+2x9— 3= 1

(9) : 2r 1 +4xe—2x3= 2
—x1—2x9+ x3=—1.

La matrice augmentée associée est
1 2 —-11]1

2 4 =2\ 2
-1 -2 1 -1

On cherche a annuler les coefficients de la premiere colonne en lignes 2 et 3 par des opérations sur
les lignes. On effectue
Lg D — Lg — 2L1,L3 « L3 + Ll-
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La matrice augmentée devient donc

1 2 -1 |1
00 0 |0
00 1 |0

Apres élimination, il ne reste qu’une équation indépendante
T, + 229 —x3 = 1.

Les deuz autres lignes sont nulles, ce qui montre que le rang de la matrice des coefficients est r = 1,
le systeme est donc compatible. La solution générale s’obtient facilement

.1'1:1—2.’132+1E3.

4.3 Reésolution des systemes linéaires

Résoudre un systeme d’équations linéaires consiste a trouver toutes les valeurs des inconnues qui
satisfont toutes les équations du systeme. Plusieurs méthodes existent. La méthode de substitution
consiste a isoler une variable dans une équation, puis a la remplacer dans les autres, en répétant
le processus jusqu’a trouver toutes les inconnues. Cette méthode est simple mais devient difficile
pour les systemes de grande taille. La méthode de Cramer s’applique aux systémes carrés dont la
matrice des coefficients est inversible, et permet de calculer chaque inconnue directement a ’aide des
déterminants. Elle est rapide pour les petits systéemes mais cofiteuse pour les grands. La méthode du
pivot de Gauss transforme le systéeme en une forme échelonnée en utilisant des opérations sur les
lignes, puis permet de déterminer les inconnues par substitution inverse. Cette méthode est efficace,
systématique et particulierement adaptée aux grands systemes.

4.3.1 Méthode de substitution, principe, algorithme et exemples

La méthode de substitution consiste a choisir 'une des équations du systeme pour exprimer une
variable en fonction des autres, puis a remplacer cette expression dans les équations restantes. En
répétant ce procédé, on réduit progressivement le nombre d’inconnues jusqu’a obtenir une équation a
une seule variable, dont la résolution permet ensuite de déterminer successivement toutes les autres
inconnues.

Principe de la méthode de substitution. Soit (S) un systéeme d’équations linéaires. La
méthode de substitution se déroule comme suit :
e [soler une inconnue dans 'une des équations du systeme.
e Remplacer cette inconnue par son expression dans toutes les autres équations.
e Répéter le processus jusqu’a obtenir une équation ne comportant qu’'une seule inconnue.
e Résoudre cette équation, puis remonter les substitutions pour calculer successivement les autres
inconnues.

Algorithme 4.3.1 (cas général)

Entrée : un systeme de m équations a n inconnues.

Sortie : l’ensemble des solutions (unique, infinies ou aucune).
Etapes de l’algorithme.

Etape 1 : Choiz et isolement d’une variable
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e Choisir une équation dans laquelle une inconnue peut étre facilement isolée.
e [soler cette inconnue dans cette équation, par exemple x; sous la forme

X, = fi(fl:l; vy Li—15, it 1y - - - 7xn)7

ot f; est une combinaison linéaire des autres variables.

Etape 2 : Substitution

e Remplacer x; par son expression dans toutes les autres équations du systéme.

e Cette opération élimine x; et conduit a un nouwveau systéeme (S') de (m — 1) équations a (n — 1)
INCONNUES.

Etape 3 : Réduction du systéme

o Répéter les étapes 1 et 2 sur le systéme réduit (S").

e Poursuivre le processus jusqu’a obtenir une équation a une seule inconnue.

e Résoudre cette derniére équation pour déterminer la valeur de l’inconnue correspondante.
Etape 4 : Remontée des valeurs

e Une fois la derniére inconnue calculée, remonter progressivement les substitutions.

e Substituer la valeur trouvée dans l’équation précédente pour calculer une nouvelle variable.

e Répéter ce processus jusqu’a ce que toutes les variables x1,xo, ..., x, soient déterminées.
Etape 5 : Analyse des solutions (Conclusion)

o Si le systeme conduit a une contradiction, il n’a pas de solution.

e Si toutes les inconnues sont déterminées, il admet une solution unique.

e Si certaines inconnues dépendent de paramétres libres, le systéme a une infinité de solutions.

Exemple 4.3.1
1. Systéme carré (Résolution par substitution). Résolvons le systéme suivant par substitution

T+ y+z2=06
(Sh) : 2y—z=3
T— y+z=2.

Etape 1 : Isolement. Isolons x a partir de la premiére équation
r=6—y— =z
Etape 2 : Substitution. Remplacons x dans la troisiéme équation
6—y—2)—y+2z=2.

En simplifiant, on obtient
y = 2.

Etape 3 : Substitution pour z. Remplacons y = 2 dans la deuziéme équation
22)—z=3=2=1.
Etape 4 : Remontée pour x. Remplacons y = 2 et z = 1 dans Uezpression de x
r=6—-2—-1=3.
Conclusion. La solution unique du systéeme (S1) est
(r,y,2) = (3,2,1).
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2. Systéme non carré (Résolution par substitution). Considérons maintenant le systéme
sutvant a deur équations et trois inconnues

' r+y+z=4
() : { 20—y+z=1.

Etape 1 : Isolement. Isolons x d partir de la premiére équation
r=4—y—z (4.1)
Etape 2 : Substitution. Remplacons © dans la deuziéme équation
y+z2="T. (4.2)

FEtape 3 : Paramétrisation. On exprime une variable en fonction de l'autre. Par exemple, isolons

z dans équation (4.2))
z="T7-3y.

Etape 4 : Calcul de . Remplagons les expressions de y et z dans l’'équation (4.1]),
x =2y —3.

Conclusion. Le systéme admet une infinité de solutions, dépendant du paramétre libre y € R,

T =2y—3
z="T7—3y
yeR.

Corollaire 4.3.1 (Remarques sur Uapplicabilité de la méthode de substitution)

La méthode de substitution peut étre appliquée a tout systeme linéaire, qu’il soit carré ou non carré,
a condition que le systéme soit compatible, c’est-a-dire qu’il admette au moins une solution.

(a) Pour un systéme carré : La méthode fonctionne efficacement et, si le systéme est déterminé
(c’est-a-dire si les équations sont linéairement indépendantes), elle conduit généralement a une solu-
tion unique.

(b) Pour un systéme non carré. Deux cas peuvent se présenter :

(i) Systéme sous-déterminé (plus d’inconnues que d’équations) : La substitution reste applicable. Cer-
taines variables sont alors exprimées en fonction d’autres, ce qui conduit a une solution paramétrique,
c’est-a-dire une infinité de solutions dépendant d’un ou plusieurs parametres libres.

(ii) Systéme surdéterminé (plus d’équations que d’inconnues) : La méthode permet souvent de détec-
ter une éventuelle contradiction entre les équations. Si certaines équations sont redondantes (elles
ne fournissent pas de nouvelles informations), le systéme peut tout de méme admettre une solution
unique ou parameétrique. En revanche, si une contradiction apparait, cela signifie que le systeme est
incompatible (aucune solution).

Exemple 4.3.2

1. Pour un systéme carré. Par exemple, le systéme (Sy) présenté précédemment (plus haut.)

2. Systéme non carré sous-déterminé. Par exemple, le systéme (Sy) présenté précédemment
(plus haut.)

3. Pour un systéme non carré surdéterminé. Considérons le systeme suivant

T+y= 2
(S3) : x—y=0
2z+y=>5.
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Ce systéme est non carré (3 équations, 2 inconnues) et surdéterminé.
e Résolvons les deux premieres équations. En les additionnant

r =1
Remplacons dans la deuzieme équation

y =1
e Vérification dans la troisieme équation,

3=05.

Contradiction, la troisiéme équation n’est pas satisfaite. Le systéme est donc incompatible et n’admet
aucune solution.

Conclusion 4.3.1 La méthode de substitution est facile a utiliser et convient bien aux petits systéemes
d’équations. Cependant, lorsque le systéme comporte un grand nombre d’équations ou d’inconnues,
son application devient fastidieuse et exige de nombreux calculs, ce qui la rend peu pratique. Dans
ces situations, il est préférable d’utiliser des méthodes plus systématiques et efficaces, telles que la
méthode du pivot de Gauss, particulierement adaptée aux systemes de grande taille.

4.3.2 Méthode de Cramer

La méthode de Cramer est une technique classique pour résoudre les systeémes linéaires carrés,
lorsque la matrice des coefficients est inversible (c’est-a-dire que son déterminant est non nul). Elle
permet de calculer chaque inconnue du systeme sous forme de quotient de deux déterminants. Cette
méthode porte le nom du mathématicien suisse Gabriel Cramer, qui I’a introduite au 18° siecle.

Définition 4.3.1 On appelle systéeme de Cramer tout systéme linéaire carré AX = B avec A €
M, (K) est la matrice des coefficients, X € M, 1(K) le vecteur des inconnues, et B € M, 1(K) le
vecteur des termes constants tel que le déterminant de sa matrice des coefficients soit non nul

det(A) :+= OK.

Dans ce cas, le systeme est dit compatible déterminé : il admet une unique solution dans K", que
l’'on peut calculer explicitement a l'aide de la méthode de Cramer.

Principe de la méthode (Exemple explicatif, cas 2 x 2)
Considérons le systeme linéaire
) anzitapre= b
(S):
2171 +A22T2=by,

ou

A= (““ “12> e My(K), X = <§1) e My (K),B = <Zb’;> € My, (K).

21 A22 2
On suppose det(A) #+ Ok.

Calcul de z;. Pour éliminer x5, on multiplie la premiere équation par ass et la seconde par aqo

(S) (2201121 +A22Q12T2= Q22b1
1202121 +012022T2=012bs.

En soustrayant la deuxieme équation de la premiere, on obtient
(CL22(111 - &12(121)961 = Qb1 — ayzby.
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Ainsi
CLQle — a121)2 . det(Al)

110929 — Q12021 N det(A) ’

b1 ai
Al = )
by as
est la matrice obtenue en remplacant la premiere colonne de A par le vecteur B. On vérifie que

det(Al) = blagg — bQCLlQ.

T =

ou

Calcul de z,. Pour éliminer x;, on multiplie la premiere équation par as; et la seconde par aq;
(CL11CL22 - a12a21)$2 = a11by — as by.

On en déduit
a11b2 - CLlel . det(Az)

110929 — Q12021 N det(A) ’

apy b
A2 = )
az  bo
est la matrice obtenue en remplacant la deuxieme colonne de A par le vecteur B. On a bien

det(Ag) = CLHbQ — aglbl.

Ty =

ou

Cet exemple illustre le principe fondamental de la régle de Cramer chaque inconnue s’obtient en
remplacant, dans la matrice des coefficients, la colonne correspondant a cette inconnue par le vecteur
des termes constants, puis en calculant le rapport entre le déterminant ainsi obtenu et celui de la
matrice initiale. Avant d’énoncer la regle de Cramer dans le cas général, rappelons que lorsqu’un
systeme linéaire carré AX = B a une matrice des coefficients A inversible (c’est-a-dire lorsque
det(A) % Ok), il admet toujours une unique solution. La régle de Cramer fournit alors une formule
explicite pour chacune des inconnues en fonction des déterminants de certaines matrices construites
a partir de A et du vecteur B. Dans ce contexte, on peut énoncer le résultat suivant.

Théoréme 4.3.1 (Régle de Cramer) Soit AX = B un systéme linéaire carré d’ordre n, ot

T bl
T2 by
Ae My(K),X =] . |eMp1(K),B=| . |e M,1(K).
Tn bn
On suppose que
det(A) :+= Ok.
Alors le systéme admet une unique solution X € K", donnée pour tout j € {1,2,...,n} par
Tj = ———,
det(A)

ou, pour chaque j, la matrice A; est obtenue en remplacant la j—iéme colonne de A par le vecteur

B

Y

ain ... Q-1 b oaup ... an,

Ay ... Qgi—1 by agip1 ... ag,
Aj = . . .

Ap1 -+ Qpi—1 bn Api+1 -+ QApp
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De maniere équivalente, si 'on note Cy,Cs, ..., C, les colonnes de A, on peut écrire

det(Cl, CQ, ey Cj_l, B,Cj+1, ey Cn)

Vief{l,2,...,n}a; = det (A)

Ainsi, le numérateur correspond au déterminant de la matrice obtenue en remplacant la colonne C;
par le vecteur B.

Algorithme 4.3.2 (Algorithme de la Méthode de Cramer)
Objectif : Résoudre un systéme linéaire de n équations a n inconnues de la forme

AX = B.
Entrées :
o Ae M, (K) : matrice des coefficients,
o Be M, 1(K) : vecteur des constantes.
Précondition :
e A est carrée et inversible, ¢’est-a-dire

Sortie :

o Le vecteur X € M,,1(K), solution unique du systéme AX = B.

Etapes de l’algorithme :

1. Vérification de la compatibilité du systéme :

o Calculer det(A).

o Sidet(A) = Ok, le systéme n’a pas de solution unique - arrét de l'algorithme-. Sinon, poursuivre.
2. Initialisation du vecteur solution :

o Définir vecteur colonne des inconnues

3. Calcul des composantes de la solution (régle de Cramer) :
Pour chaque j € {1,2,...,n} :
o Construire la matrice A; en remplacant la j—iéme colonne de A par le vecteur B.
e Calculer det(A;).
o Déduire

det(A])

(L’j = .
det(A)

4. Assemblage de la solution :
Apres avoir calculé toutes les composantes x;, on obtient

X1
T2
X =

Tn
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Exemple 4.3.3 Considérons le systeme suivant de trois équations a trois inconnues

T1+ To+ 3= 6
(S) . Tr1— £C2+3.%'3:14
$1+2.T2+ 3= 8.

Etape 1 : Mise sous forme matricielle. On introduit

1 1 1 1 6
A=11 -1 3|, X=|x|,B=|14
1 2 1 T3 8
Le systéme devient alors
AX = B.

Etape 2 : Vérification de la condition de Cramer. Le déterminant de la matrice des coeffi-
cients est

1 1 1
det(A) =1{1 -1 3| =-24%0.
1 2 1
Ainsi, A est inversible, et le systéme est bien un systéme de Cramer : il admet donc une solution

UNLQUE.

FEtape 3 : Calcul des déterminants auxiliaires. Pour appliquer la régle de Cramer, on remplace
successivement chaque colonne de A par le vecteur B.

(a) Premiére colonne remplacée

6 1 1
Al = 14 -1 3 ,det(Al) = 4.
8 2 1
(b) Deuxiéeme colonne remplacée
1 6 1
A2 = 1 14 3 ,det(Ag) =—4
1 8 1
(¢) Troisiéme colonne remplacée
1 1 6
Ag = 1 -1 14 ,det(Ag) = —12.
1 2 8

Etape 4 : Calcul des inconnues. La regle de Cramer donne
. det(Al) i . —2,:E2 _ det(Ag) . —4 det(As) _ —12 — 6.

T get(4) T —2 det(A) ~ —2 U7 det(4) T 2

La solution unique est donc

-2
X=12
6
Etape 5 :Vérification. Substituons (—2,2,6) dans les équations originales

T+ Ty +23=—24+2+6=6
$1—l’2+3$3:—2—2+18=14
1+ 209 +x3=—2+4+6=28.

Les trois éqgalités sont satisfaites ; la solution est bien correcte.
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Conclusion 4.3.2 La méthode de Cramer est une méthode simple mais puissante pour résoudre les
systéemes carrés de la forme AX = B, lorsque la matrice des coefficients A est inversible. Elle met
bien en évidence le lien entre le déterminant et ['unicité de la solution. Cependant, lorsque le systéme
contient un grand nombre d’équations, le calcul des déterminants devient long et compliqué. C’est
pourquoi on utilise généralement d’autres méthodes, comme la méthode de Gauss, pour les systemes
plus grands.

Le résultat suivant établit une équivalence fondamentale entre quatre propriétés liées a une matrice
carrée : son inversibilité, la nature de ses systémes associés, et son rang.

Proposition 4.3.1 Soit A une matrice carrée de M,,(K). Les assertions suivantes sont équivalentes
(a) A est inversible.

(b) Pour tout second membre B € M, 1(K), le systéme linéaire (S) : AX = B est un systéme de
Cramer.

(c) Le systéme homogene AX = O, (k) n'admet que la solution triviale X = 0, (x)-

(d) La matrice A est de rang mazimal, ¢’est-a-dire rg(A) = n.

Preuve. Nous allons démontrer I’'équivalence en suivant le cycle logique suivant
(a) = (b) = (¢) = (d) = (a).
(i) (a) = (b). Si A est inversible, alors pour tout B € M,, ;(K), on peut écrire
AX =B=— X = A 'B.

Il existe donc une unique solution pour tout second membre B, ce qui signifie que le systeme AX = B
est un systeme de Cramer.
(ii) (b)) = (c). Si pour tout B le systeme AX = B admet une solution unique, alors en particulier
pour B = Opy, ,(x), ON &

AX = 0Mn,1(K) = X = OMn,l(K)'

Donc le systéeme homogene n’admet que la solution triviale.

(iii) (c) == (d). Si le systeme homogene AX = 0,4, , (k) n’admet que la solution triviale X = 04, , x),
cela signifie que les colonnes de A sont linéairement indépendantes. Or, pour une matrice carrée, cela
équivaut a dire que son rang est maximal c¢’est-a-dire

rg(A) = n.

(iiii) (d) = (a). Si rg(A) = n, alors les colonnes de A forment une base de K", ce qui implique que
le déterminant de A est non nul. Ainsi, A est inversible. Ce qui prouve que les quatre propriétés sont
équivalentes. ]

4.3.3 Méthode du pivot de GGauss

Apres avoir présenté la méthode de Cramer, nous introduisons la méthode du pivot de Gauss, ou
méthode d’élimination de Gauss, qui est particulierement adaptée aux systemes linéaires de grande
taille. Contrairement a la méthode de Cramer, qui devient lourde pour les grands systémes, cette
méthode transforme le systeme initial en un systéme équivalent sous forme échelonnée, ce qui simplifie
grandement la résolution. Pour cela, on effectue des opérations élémentaires sur les lignes afin de créer
des zéros sous les pivots, c’est-a-dire sous les coeflicients principaux de la matrice. Une fois la forme
échelonnée obtenue, les inconnues se déterminent facilement par substitution inverse, en commencant
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par la derniere équation non triviale. Cette méthode est fiable, car ces transformations ne changent
pas l’ensemble des solutions du systeme.

La validité de la méthode du pivot de Gauss repose sur un résultat fondamental : les transforma-
tions appliquées au systéme ne changent pas son ensemble de solutions.

Proposition 4.3.2 (Invariance des solutions par opérations élémentaires)

Les opérations élémentaires sur les lignes d’un systeme linéaire ne modifient pas son ensemble de
solutions. Autrement dit, deux systémes obtenus 'un a partir de l'autre par une suite d’opérations
élémentaires sur les lignes sont équivalents, c’est-a-dire qu’ils possedent exactement les mémes solu-
tions.

Avant de présenter en détail l'algorithme de Gauss, il est essentiel de comprendre la notion de
systeme linéaire échelonné. Cette notion permet de représenter le systeme sous une forme simplifiée,
ou les équations sont organisées de maniere a isoler progressivement les inconnues. Comprendre cette
structure est fondamental, car I'algorithme de Gauss repose sur la transformation du systeme initial
en une forme échelonnée, ce qui rend la résolution des inconnues plus directe et systématique.

Définition 4.3.2 (Systéme linéaire échelonné)
Un systeme linéaire est dit échelonné lorsque, dans sa représentation sous forme d’équations ou de
matrice augmentée, chaque ligne comporte un nombre de zéros initiaux strictement supérieur a celui
de la ligne précédente. Autrement dit, le premier coefficient non nul (appelé pivot) de chaque ligne
apparait plus a droite que celui de la ligne précédente.

Remarque 4.3.1

1. Importance de la forme échelonnée. La forme échelonnée d’un systeme linéaire joue un role
essentiel dans sa résolution. Une fois le systéme transformé sous cette forme, on peut appliquer la
méthode de substitution arriere : on commence par résoudre la derniére équation non nulle, qui ne
fait intervenir qu’une seule inconnue, puis on remonte progressivement en utilisant les équations
précédentes pour déterminer les autres inconnues.

2. Interprétation matricielle. Lorsqu’un systéme linéaire est écrit sous forme matricielle, chaque
ligne de la matrice correspond a une équation du systeme. En forme échelonnée, la matrice présente
une structure en « marche d’escalier » : le nombre de zéros initiaux augmente de ligne en ligne. Plus
précisément, la premiere ligne non nulle commence par un certain nombre de zéros, la suivante en
contient davantage, et ainsi de suite, traduisant le décalage progressif des pivots vers la droite.

Définition 4.3.3 (Définition formelle)
Soient m,n € N*. Un systéme d’équations linéaires a m équations et n inconnues Ti,...,Ty,, G
coefficients dans un corps K, est dit échelonné s’il est nul ou s’il est de la forme

(a1 T+ AT o+ QT =b
aj,Tj, + 0+ Gpdy = by
{ Apj, Tj, + -+ QpTy = by
Ok = br+1
L O]K = bm7
avecr € N* tel quer <m, 1 <j; <jo <---<j, <n, et pourtout ke {l,...,r}, onaay,; + Ok (le
pivot de la ligne k). Les indices ji, ja, - . ., jr désignent la position des premiers coefficients non nuls

dans chaque ligne. Leur croissance stricte traduit le décalage progressif des pivots vers la droite, ce
qui caractérise la structure échelonnée du systéme.
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Remarque 4.3.2 (Vérification de la validité mathématique)

1. Nombre d’équations et d’inconnues :

o Le systeme est posé avec m équations et n inconnues, ce qui correspond au cadre standard d’un
systeme linéaire.

2. Structure des équations non nulles (de 1ére a la r—iéme) :

e Chaque équation non nulle commence par un terme non nul ay j, ;. , €ventuellement suivi de termes
en Tj, 41, Tn.

e Les indices des pivots jy, . . ., Jr sont strictement croissants, ce qui garantit que chaque pivot apparait
plus a droite que le précédent. C’est la condition essentielle caractérisant la forme échelonnée.

3. Conditions sur les coefficients :

e Pour tout k€ {1,...,r}, le pivot de la k—iéme ligne est non nul, autrement dit

akj, F Ok,

ce qui assure [’existence d’un pivot dans chaque ligne non nulle.
4. Lignes nulles : Les équations r + 1 da m sont nulles a gauche (tous les coefficients d gauche
sont nuls). Dans la forme échelonnée, ces lignes s’écrivent b; = Ox pour i > 7.

Exemple 4.3.4
1. Considérons le systeme suivant a trois équations et quatre inconnues xy, xs, T3,y sSur R :

T1 4+ 229 — 23 + x4 =5
(Sl)I T2 +3$3—$4=2
ZL’4:]..

Analyse d’un systéme échelonné.

(a) Dimensions du systéme.

e Nombre d’équations, m = 3.

e Nombre d’inconnues, n = 4.

e Nombre de lignes non nulles, r = 3.

(b) Vérification des pivots.

e Ligne 1 : pivot x;, = x1, position j; = 1, coefficient a;; = 1 + 0.
e Ligne 2 : pivot xj, = xa, position jo = 2, coefficient aze = 1 + 0.
e Ligne 3 : pivot xj, = x4, position js = 4, coefficient azs = 1 + 0.
(c) Croissance des indices de pivot

31:1<j2=2<j3:4

Toutes les conditions de la définition formelle sont satisfaites. Ce systéme est donc échelonné, le
nombre de zéros initiauxr augmentant strictement d’une ligne a l'autre, 0,1, 2.
2. Considérons le systeme suivant a coefficients dans R suivant

To — T3 + X5 =0
(S2) : Ty + 224 = 3
Ts = 7.

(a) Dimensions du systéme.

Nombre d’équations, m = 3.

Nombre d’inconnues, n = 5.

Nombre de lignes non nulles, r = 3.

(b) Vérification des pivots.

Ligne 1 : pivot en x5, 71 = 2, a1 = 1 + 0.
Ligne 2 : pivot en x3, jo = 3, asg = 1 F 0.
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Ligne 3 : pivot en x5, js =5, ags = 1 £ 0.
(c) Croissance des indices de pivot.

N1 =2<jy=3<j3=>5.

Toutes les conditions de la définition formelle sont satisfaites. Le systéeme est donc échelonné, le
nombre de zéros initiauxr augmentant strictement d’une ligne a l’autre.

3. Systéme linéaire non échelonné. Considérons le systeme suivant a trois équations et quatre incon-
nues a coefficients dans R

Ty + 2209 + 13 — x4 =3
(Sg): 2ZE1+ ) —ZL‘3+41'4=
T3 + 14 = 2.

—_

(a) Vérification des pivots.

Ligne 1 : le premier coefficient non nul est celui de xy, donc pivot en xq, j; = 1.

Ligne 2 : le premier coefficient non nul est également celui de xy, donc pivot en x1, jo = 1.
Ligne 3 : les coefficients de x1 et xo sont nuls, le pivot est donc en x3, j3 = 3.

(b) Analyse de la croissance des indices de pivot.

Ji=1752=173=3.

La condition de stricte croissance des indices de pivot (j1 < ja < j3) n’est pas satisfaite car j; = jo = 1
(le nombre de zéros initiaux n’augmente pas strictement de la ligne 1 a la ligne 2). Alors ce systéme
n’est pas échelonné.

2. Considérons le systeme a 3 équations et 3 inconnues suivant

r+2y+32=4
(S4) : y+ z=2
z=1.

e La premiere équation commence par le terme x, dont le coefficient est non nul. Il y a donc 0 zéros
mitiau.

e La deuziéeme équation ne contient pas de x, mais commence par y, dont le coefficient est non nul.
Il y a donc 1 zéro initial (devant y).

e La troisieme équation ne contient ni x ni y, elle commence par z, dont le coefficient est non nul.
Il y a donc 2 zéros initiauz (devant z).

On constate que le nombre de zéros initiaux augmente strictement d’une ligne a lautre : 0,1,2. Ainst,
le systeme est échelonné, conformément a la définition.

4.3.3.1 Principe de la méthode du pivot de Gauss

La méthode du pivot de Gauss transforme un systéme linéaire en un systéme équivalent sous
forme échelonnée, ce qui rend sa résolution plus facile grace a la substitution arriere. Pour cela, on
utilise des opérations sur les lignes qui ne changent pas les solutions : permuter deux lignes, multiplier
une ligne par un nombre non nul, ou ajouter a une ligne un multiple d’'une autre. Ces opérations
permettent de créer des zéros sous les pivots, les premiers coefficients non nuls de chaque ligne,
formant ainsi une matrice triangulaire supérieure. Ensuite, on résout le systéme en commencant par
la derniere équation et en remontant progressivement pour trouver toutes les inconnues.
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4.3.3.1.1 Mise en ceuvre de la méthode du pivot de Gauss (forme équationnelle) Soit

(S) un systeme de m équations linéaires a n inconnues xy,. .., Z,, a coefficients dans K,
( a11T1 + @122 + - + ATy, = b1
911 + A9To + -+ - + a,X, = by

;1T + ATy + -+ apT, = b

U @11 + Aoy + -0 + Qpn®n = by

Etape 1 : Choix du premier pivot. On commence par examiner le coefficient a;; situé en haut
a gauche. Trois cas peuvent se présenter :
Cas 1 : aj; + Og. On choisit a;; comme pivot. On élimine les coefficients situés sous le pivot dans la
premiére colonne (c’est-a-dire asg, asi, ..., 1) en effectuant, pour chaque i € {2,...,m}, Popération
élémentaire
-1
Li <« Lz — an aﬂLl.

Variante sans fractions (utile pour les calculs entiers ou symboliques)
Li «— anl; —aj L.

Ces opérations transforment tous les coefficients situés sous le pivot en zéros, donnant le systeme

( a111 + Q122 + A13T3 + e+ ATy, = b1
Aoy + AH3T3 + e ab, xy, = bl
as,xs + S 4ah, Ty, = bl
(S1) : 4 :
Aoy + ... + aj,x, =1
L ar oo + ... +a x, =b,

Cas 2 : Si ay; = Ok, alors dans ce cas, on recherche une ligne L; (avec i > 1) telle que a;; £ Ok, puis
on effectue une permutation de lignes L; <> L;. On revient alors au cas 1 avec un pivot non nul.
Cas 3 : Si tous les coefficients de la premiere colonne sont nuls, i.e.

Vie{l,...,m}:a; = Ok.

Dans ce cas, la premiere colonne est entierement nulle,

( Ogx1 + aipx9 + -+ + aipx, = bl
OKiL'l + Qo2 + - + QopX, = b2

S) - : : :
( ) ) OKiCl + Qe + -+ Ay, = bl
\ Ole + AmaXo + -+ ATy = bm

On ignore alors I'inconnue x; et on poursuit la méthode sur le systeme réduit formé des colonnes
restantes.

Etape 2 : Répétition du processus

On applique la méme méthode & la sous-matrice restante du systéme réduit (S7) en ignorant
la premiere ligne et la premiére inconnue z;. On choisit un nouveau pivot aj,, et on annule les
coefficients situés sous ce pivot, dans la colonne correspondante.
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e Si le nouveau pivot est nul, on effectue une permutation de lignes pour obtenir un pivot non
nul (comme dans le Cas 2).

e Si tous les coefficients de la colonne sont nuls, on ignore la variable correspondante (comme
dans le Cas 3).

On répete ce processus jusqu’a ce que la matrice associée au systeme devienne échelonnée supé-
rieure, c’est-a-dire qu’elle contient des zéros sous les pivots.

4.3.3.1.2 Meéthode du pivot de Gauss avec la matrice augmentée Soit un systeme linéaire
(S) de m équations a n inconnues x1, s, ..., T, , a coefficients dans un corps K. On associe a ce systeme
sa matrice augmentée

a1 A2 - Q1 v Qip by
Q21 Q22 -+ A2 -+ Q2p by
Al|B) =
( | ) L (75 R 77 I ¢ 77 b;
Am1 Am2 " Amj " Gmn bm

Etape 1 : Choix et utilisation du premier pivot. On commence par le premier coefficient a1,
appelé pivot.

Cas 1 : Siaq; + Ok, alors on utilise a;; comme pivot pour annuler tous les coefficients situés en
dessous dans la premiere colonne

i1

Vz’e{Q,...,m}:Li<—Li— Ll.

11

Une version équivalente sans fractions
Vi e {2, ,m} . Lz «— CLHLi — aﬂLl.

On obtient alors une nouvelle matrice (A' | B') ot tous les coefficients en dessous du pivot sont nuls

ayjp ai2 -+ Ay - Qip by

! / / /

Ok agy - ay; - ay, | b

1 1

A= o
K i2 ij in i

/ / / /
Ox Ao " CLmj Oy bm

Cas 2 : ajl = OK
e Si un des a;; + Og pour ¢ > 1, on permutera la ligne L; avec L pour obtenir un pivot non nul.

e Sinon, toute la premiere colonne est nulle : on ignore la colonne et la variable x1, et on passe a
la suite.
Etape 2 : Itération du processus

On répete la méme méthode sur la sous-matrice obtenue en supprimant la premiere ligne et la
premiere colonne.

e On choisit le pivot suivant (exemple. ays), puis on élimine les coefficients en dessous.
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e Si ce pivot est nul, on permutera avec une ligne en dessous ayant un coefficient non nul dans la
méme colonne.

e On répete ce processus jusqu’a obtenir une matrice échelonnée supérieure, c¢’est-a-dire avec des
zéros sous tous les pivots.

e Une fois le systeme échelonné, on résout par substitution inverse (de bas en haut), en trouvant
les inconnues une par une.

Suite a l'explication du principe de la méthode de Gauss, on donne maintenant l’algorithme de
Gauss, qui décrit étape par étape la procédure systématique pour transformer un systéme linéaire
en systeme échelonné supérieur et le résoudre.

Algorithme 4.3.3 (Algorithme du pivot de Gauss)
Objectif : Transformer un systéme linéaire en un systéme échelonné (ou triangulaire supérieur)
équivalent, en utilisant des opérations élémentaires sur les équations.
Etape 0 : Préparation
On considére un systéme linéaire de m équations a n inconnues.
Etape 1 : Choiz du pivot dans une colonne
On commence par la colonne k (initialement k = 1) :
1. Chercher le premier coefficient non nul ay, dans la colonne k, a partir de la ligne k.
2. Trois cas possibles :
Cas 1 : ay, + Ok, ce coefficient est un pivot valide, on le garde.
Cas 2 : ay, = Og mais il existe un a;, + Ox en dessous; alors échanger les lignes Ly, et L; et revenir
au cas 1.
Cas 3 : Tous les a;, = Og pour t = k ; alors aucun pivot possible dans cette colonne. La variable xy,
devient libre et on passe a la colonne suivante.
Etape 2 : Elimination sous le pivot
Une fois le pivot ayy choisi, pour chaque ligne i > k, on remplace ’équation L; par :

Lie— L — Y%,

Qg

Cela permet de créer un zéro en position a;., juste sous le pivot.

Etape 3 : Répéter le processus

1. Répéter les étapes 1 et 2 pour les lignes et colonnes restantes.

2. Ignorer les lignes déja traitées (au-dessus du pivot courant) et les colonnes des pivots déja choisis.
3. Continuer tant qu’il reste des lignes a traiter et des colonnes ot choisir un pivot.

Fin de l’algorithme

A la fin, le systéme est transformé en systéme échelonné supérieur, avec chaque pivot d droite de
celui de la ligne précédente. On peut alors résoudre le systéeme par substitution inverse (remontée).

Exemple 4.3.5 Soit le systéme suivant a résoudre
— X9 + 223 + 1324 =5
(S) . T — 2$2 + 3I3 + 17I4 =4
—x1 + 319 — 33 — 2004 = —1.

1) Le premier pivot doit apparaitre dans la premiére colonne. Or, le coefficient de x1 dans la premiére
équation est nul. On échange donc la premiere ligne avec la deuxiéme

Ll g L2a

202



SYSTEMES D’EQUATIONS LINEAIRES

on obtient
r1 — 2209 + 323 + 1704 = 4

(S) = — Xy + 2x3 + 1324 =5
—x1 + 3x9 — 323 — 2024 = —1.
Le pivot est maintenant a1 = 1. Ce pivot sert de base pour éliminer tous les autres termes sur la

meéme colonne.
Pour annuler le coefficient de x1 dans la 3-éme ligne, on effectue l'opération élémentaire

L3 <—L3+L1.

Ce qui donne
r1 — 2209 + 323 + 1724 = 4
(S)(:) — T2 +2ZE3+13[E4=5
i) - 31‘4 = 3.

On multiplie la deuziéme ligne par —1 pour obtenir un pivot égal a 1 (Ly «— — Lo, normalisation du
pivot en position (2,2)). On obtient

T — 209 + 3x3 + 1724 = 4
(S) < Ty — 21’3 — 131’4 = -5
T — 31’4 = 3.

On élimine x4 dans la 3-éme ligne en effectuant l’opération élémentaire
L3 D — Lg - L2.

Ce qui donne
T1— 2209 + 323+ 1704 =4
(S) — T — 2273 — 131’4 =-5
21’3 + 101’4 = &.

On divise la derniére ligne par 2 pour obtenir un pivot égal a 1 (Lg «— %Lg,normalisation du pivot
en position (3,3)). Ce qui donne

T1 — 229 + 323 + 1704 = 4
(S) < Ty — 21’3 — 13.%'4 -5
r3 + dry =4

Le systéme est maintenant sous forme échelonnée, ce qui le rend tres simple a résoudre. En choisissant
x4 comme variable libre, on peut exprimer x1,x9, x3 en fonction de xy. On commence par la derniére
équation et on remonte par substitution. Alors

T3+ dbry =4 = 13 =4 — dxy.
En remplacant x3 dans la deuziéme équation on obtient
To = 3+ 3x4.
En remplacant x4 et x3 dans la premiere équation, on obtient
T = —2+ 4xy.
Ce qui permet d’obtenir toutes les solutions du systéme

S ={(—2+4xy4,3 + 3x4,4 — by, 14) : x4 € R}.
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2) Ecriture sous forme de matrice augmentée. On réécrit le systéme initial (S) sous la forme
de la matrice augmentée
0o -1 2 13 5
(A] B) = 1 -2 3 17 4
-1 3 -3 =20 | -1
On applique maintenant les étapes de la méthode de Gauss sur la matrice augmentée.
Etape 1 : Etant donné que le premier pivot doit étre non nul (ay1), on échange

L1 A LQ.

On obtient
1 -2 3 17 4

AV By = 0 -1 2 13 | 5
-1 3 -3 —20 | —1

E’tape 2 : Pour annuler le coefficient de x1 dans la 3éme ligne
L3 D — L3 + Ll.

On obtient
1 -2 3 17 |4

(AP BDYy=[ 0 -1 2 13 |5
0 1 0 —31|3

Etape 3 : Normalisation du pivot (2,2). Multiplier la deuxiéme ligne par —1 pour obtenir un pivot
égal a 1
LQ D —LQ.
On obtient
1 -2 3 17 4
AP By =0 1 -2 -13|-5
o 1 0 =3 3

E’tape 4 : Elimination sous le pivot (2,2). Pour annuler le coefficient de x5 dans la 3éme ligne
L3 D — L3 - L2.

On obtient
1 -2 3 17 4

(AD By =0 1 -2 —13 | -5
0 0 2 10 |38

E’tape 5 : Normalisation du pivot (3,3). Diviser la troisiéme ligne par 2 pour obtenir un pivot égal
a 1 )
L3 D — 5[/3

On obtient
1 -2 3 17 4

A® By =0 1 -2 —13| -5
00 1 5 | 4

Le systeme équivalent sous forme échelonnée est

r1—2x9+3x3+17x4= 4
(S) = To—2w5—1314=—5
T3+ 51‘42 4.

On choisit x4 comme variable libre, la solution générale donc du systéme est

= {(-2 + 4(134,3 + 31’4,4 — 5$4,$4) L Xy € R}
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SYSTEMES D’EQUATIONS LINEAIRES

Conclusion 4.3.3 La méthode du pivot de Gauss est une technique fondamentale pour résoudre les
systémes d’équations linéaires. Elle transforme un systéme initial en un systéeme échelonné, plus fa-
cile a résoudre grace a la substitution arriere.

(a) Avantages :

e Simple a comprendre et a appliquer.

e Convient a tous les types de systemes.

e Réalisable manuellement ou par ordinateur.

e Sert de base a d’autres méthodes, comme Gauss-Jordan ou le calcul de l’inverse de matrices.

e FEfficace dans la majorité des situations.

(b) Limites :

e FEn calcul numérique, les arrondis successifs peuvent introduire des erreurs.

e FEn calcul exact, l'apparition de fractions complexes peut rendre les calculs lourds.

e Pour les systemes tres grands ou trés creux, d’autres méthodes spécialisées peuvent étre plus adap-
tées.

Malgré ces limites, le pivot de Gauss reste une méthode fiable, polyvalente et incontournable, consti-
tuant un fondement solide pour ’étude des systémes linéaires en mathématiques et en informatique.
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CONCLUSION DU CHAPITRE

Conclusion du chapitre

Ce chapitre a présenté les notions essentielles : définition d’un systéme linéaire, ses différentes
représentations (matricielle, vectorielle et en termes d’applications linéaires), ainsi que des concepts
clés tels que le rang, le noyau et I'image. Nous avons montré qu’'un systeme peut avoir une solution
unique, aucune solution ou une infinité de solutions, selon le rang de sa matrice des coefficients.
Plusieurs méthodes de résolution ont été étudiées : la substitution, simple et adaptée aux petits
systemes; la regle de Cramer, efficace pour les systemes carrés de rang maximal ; et la méthode du
pivot de Gauss, plus générale et adaptée aux systemes complexes. En résumé, ce chapitre fournit
les bases théoriques et pratiques nécessaires pour comprendre et résoudre efficacement les systémes
linéaires, ouvrant la voie a des notions plus avancées d’algebre linéaire et a de nombreuses applications
scientifiques et techniques.
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Conclusion générale

Ce document propose un parcours structuré a travers les concepts essentiels de I'algebre linéaire,
spécialement congu pour les étudiants de premiere année en mathématiques et informatique. Il com-
mence par 1’étude des espaces vectoriels, en présentant les notions fondamentales de lois de compo-
sition, sous-espaces, familles libres, génératrices et bases, ainsi que la dimension finie, qui permet de
travailler avec des représentations concretes.

La deuxiéme partie est consacrée aux applications linéaires, qui relient naturellement les espaces
vectoriels. Sont abordées leur définition, leurs propriétés fondamentales et leurs cas particuliers, tels
que les endomorphismes, isomorphismes et projecteurs. Les outils centraux — noyau, image, rang et
théoreme du rang — permettent d’analyser ces applications de maniere rigoureuse.

Enfin, les matrices et les systemes d’équations linéaires illustrent les applications pratiques de I'al-
gebre linéaire. Les matrices offrent un moyen efficace de représenter et de manipuler les applications
linéaires, tandis que les systemes d’équations permettent de résoudre des problemes concrets.

Ce manuscrit met en évidence 'unité et la cohérence de ’algebre linéaire : chaque notion, des
espaces vectoriels aux applications et a leur représentation matricielle, s’articule avec les autres pour
former un ensemble logique et solide. Il constitue une base indispensable pour aborder des études plus
avancées en mathématiques, informatique, physique, optimisation ou apprentissage automatique.
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