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Abstract

Across most parts of the world, the number of vehicles is rapidly increasing, while
road infrastructures remain relatively unchanged. This imbalance has led to growing
tra�c congestion in many urban areas. Urban tra�c control systems can play a vital
role in reducing congestion and optimizing tra�c �ow. Their e�ectiveness, however,
depends on continuous access to accurate tra�c �ow information, which is typically
collected through sensors distributed across the road network.

Since the installation and maintenance of such sensors can be costly, a more
economical alternative is to deploy a limited number of sensors and rely on arti�cial
intelligence techniques to predict tra�c intensity at various locations throughout
the city.

In this study, we propose a deep learning�based architecture that is both complex
and e�cient for short-term urban tra�c forecasting. The proposed approach incor-
porates clustering algorithms, time series clustering, motif discovery, and the matrix
pro�le, which together enhance the understanding of the internal structure of tra�c
�ow and improve the solution search process for this supervised regression problem.
Integrating these techniques enables the system to identify recurrent patterns, struc-
tural similarities, and meaningful subsequence relationships within tra�c �ow data,
thereby strengthening the prediction model and improving forecasting accuracy.

Our experimental results show that tra�c �ow can be accurately predicted by
analyzing its variation over the previous hour. Notably, the �ndings indicate that
the system can produce reliable forecasts without requiring contextual information
such as the current time, day of the week, or type of day (holiday, working day,
etc...).

Keywords : Urban tra�c forecasting, Deep learning, Tra�c �ow prediction,
time series clustering, Motif discovery, Matrix pro�le, Tra�c congestion, Sensor
data, Short- term prediction, Pattern recognition, Clustering algorithms, Tra�c
�ow variation.



Résumé

Dans la plupart des régions du monde, le nombre de véhicules augmente rapi-
dement, tandis que les infrastructures routières restent relativement inchangées. Ce
déséquilibre a entraîné une congestion croissante dans de nombreuses zones urbaines.
Les systèmes de contrôle du tra�c urbain peuvent jouer un rôle essentiel dans la ré-
duction de la congestion et l'optimisation de la circulation. Leur e�cacité dépend
toutefois de l'accès continu à des informations précises sur le �ux de tra�c, générale-
ment collectées via des capteurs répartis sur le réseau routier.

Étant donné que l'installation et la maintenance de ces capteurs peuvent être
coûteuses, une alternative plus économique consiste à déployer un nombre limité de
capteurs et à utiliser des techniques d'intelligence arti�cielle pour prédire l'intensité
du tra�c à di�érents endroits de la ville.

Dans cette étude, nous proposons une architecture basée sur l'apprentissage pro-
fond, à la fois complexe et e�cace pour la prévision du tra�c urbain à court terme.
L'approche proposée intègre des algorithmes de clustering, le clustering de séries
temporelles, la découverte de motifs (motif discovery) et le matrix pro�le, qui en-
semble améliorent la compréhension de la structure interne du �ux de tra�c et
optimisent le processus de recherche de solutions pour ce problème de régression
supervisée. L'intégration de ces techniques permet au système d'identi�er les motifs
récurrents, les similarités structurelles et les relations signi�catives entre les sous-
séquences des données de tra�c, renforçant ainsi le modèle de prédiction et amélio-
rant sa précision.

Les résultats expérimentaux montrent que le �ux de tra�c peut être prédit avec
précision en analysant ses variations au cours de l'heure précédente. De plus, les
résultats indiquent que le système peut produire des prévisions �ables sans nécessiter
d'informations contextuelles telles que l'heure actuelle, le jour de la semaine ou le
type de journée (jour férié, jour ouvrable, etc...).

Mots-clés : Prévision du tra�c urbain, Apprentissage profond, Prédiction du
�ux de tra�c, Clustering de séries temporelles, Découverte de motifs, Matrix pro�le,
Congestion du tra�c, Données de capteurs, Prévision à court terme, Reconnaissance
de motifs, Algorithmes de clustering, Variation du �ux de tra�c.



 ملخص

 
في معظم أنحاء العالم، يزداد عدد المركبات بوتيرة سريعة، في حين تبقى البنُى التحتية الطرقية شبه 
ثابتة دون توسّع يوُاكب هذا الارتفاع. وقد أدّى هذا الخلل إلى تفاقم الازدحام المروري في العديد من 

دورًا مهمًا في الحد من الازدحام  المناطق الحضرية. يمكن لأنظمة التحكم المروري الحضرية أن تلعب
وتحسين انسيابية حركة المرور، غير أن فعاليتها تعتمد بشكل أساسي على توفر معلومات دقيقة 

 .ومستمرة حول تدفّق المرور، والتي يتم جمعها عادةً عبر مجسّات موزعة عبر شبكة الطرق

الحل الاقتصادي الأنسب هو نشر عدد محدود وبما أنّ تركيب هذه المجسّات وصيانتها يعُدّ مكلفًا، يعُدّ 
منها والاعتماد على تقنيات الذكاء الاصطناعي للتنبؤ بشدّة الحركة المرورية في مواقع مختلفة داخل 

 .المدينة

في هذه الدراسة، نقترح بنية تعتمد على التعلّم العميق، تتميز بالبساطة والفعالية في التنبؤ المروري 

تجميع السلاسل دن. تعتمد المنهجية المقترحة على خوارزميات التجميع، وقصير المدى داخل الم
 Matrix) مصفوفة المؤشرات، و(motif discovery) اكتشاف الأنماط المتكررةو، الزمنية

Profile)،  والتي تعمل معاً على تعزيز فهم البنية الداخلية لتدفّق المرور وتحسين عملية البحث عن
من مشكلات الانحدار المُشرف. ويتيح دمج هذه التقنيات للنظام تحديد الأنماط الحلول في هذا النوع 

المتكررة، والتشابهات البنيوية، والعلاقات المهمة بين المقاطع الفرعية داخل بيانات تدفق المرور، 
 .مما يقُوّي نموذج التنبؤ ويحسّن دقته

خلال الساعة قة من خلال تحليل تغيّرها تظُهر نتائج التجارب أنّ حركة المرور يمكن التنبؤ بها بد
كما تشُير النتائج إلى قدرة النظام على إنتاج تنبؤات موثوقة دون الحاجة إلى معلومات سياقية  .السابقة

 .مثل الوقت الحالي، أو يوم الأسبوع، أو نوع اليوم )عطلة، يوم عمل، إلخ(

العميق، التنبؤ بتدفق المرور، تجميع السلاسل التنبؤ بالمرور الحضري، التعلم  :الكلمات المفتاحية
، الازدحام المروري، (Matrix Profile) الزمنية، اكتشاف الأنماط المتكررة، مصفوفة المؤشرات

 .بيانات المجسّات، التنبؤ قصير المدى، التعرف على الأنماط، خوارزميات التجميع، تغيرّ تدفق المرور
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General Introduction

Modern urban mobility systems are under growing pressure from population
growth, increased vehicle usage, and the demand for sustainability in transport
operations. Accurate road tra�c forecasting plays a critical role in intelligent trans-
portation systems (ITS), enabling proactive tra�c control, e�cient routing, conges-
tion mitigation, and improved traveler information services.

Road tra�c forecasting using collected data from road sensors refers to the task
of predicting future tra�c conditions such as vehicle �ow, speed, or density based
on historical observations and possibly contextual or external factors. It is a time
series regression problem where forecasting horizons vary depending on the dura-
tion needed to obtain the response (latency) and the planned use of this forecast.
In shorter forecasting horizons, the task is often characterized by the need for high
temporal resolution and precise modeling of local dynamics, including sudden �uc-
tuations due to tra�c signals, incidents, or short-term demand surges (e.g., after
large events). In contrast, forecasting tra�c over longer horizons requires modeling
more abstract, slowly evolving components of the data, such as seasonality (e.g.,
weekly or monthly cycles), long-range dependencies, and behavioral trends. Despite
their di�erences, forecasting in both regimes bene�ts from a deeper understanding
of underlying temporal structures. Time series subsequence analysis allows studying
dynamic behaviors such as congestion formation, rush-hour peaks, or cyclic disrup-
tions. A commonly used technique for processing time series subsequences is motif
discovery, which automatically identi�es repeated subsequences using the Matrix
Pro�le technique or other methods.

Time series subsequence clustering, when performed without precautions, can
yield misleading or trivial results. However, recent methodological advances, espe-
cially the use of the Matrix Pro�le technique, have enabled more robust and inter-
pretable clustering. This motivates the integration of data-driven learning models
to enhance both robustness and interpretability of time series subsequences. In
particular, representations of local behaviors, such as subsequence clustering based
on motifs discovered within a deep forecasting pipeline, provide a structured and
explainable path toward more reliable ITS.

In this context, this work explores the integration of Matrix Pro�le- driven tem-
poral pattern discovery with deep learning models to improve forecasting accuracy
and interpretability in road tra�c systems. By incorporating motif-level informa-
tion in meaningful clustering operations when processing historical tra�c time series,
we aim to guide neural models toward learning more meaningful temporal patterns,
enhance their capacity to adapt and generalize across regimes, and facilitate adapta-
tion across both short- and long-term forecasting scenarios. This thesis is structured
into three main parts.

1



General Introduction 2

Part 1 "Elementary Time Series and Deep Learning Forecasting Concepts" :
introduces fundamental concepts of time series and deep learning forecasting, pro-
viding the theoretical foundations required to understand tra�c prediction models.

Part 2 "Motif-Based Time Series Clustering for Deep Learning" : focuses on
motif-based time series clustering for deep learning, explaining how the Matrix Pro-
�le technique is used to identify and cluster recurring patterns to enhance model
interpretability.

Part 3 "Tra�Cost Web Application" : presents the implementation of the pro-
posed methodology through the Tra�Cost website, along with the evaluation of
forecasting results in real-world scenarios.
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Elementary Time Series and Deep

Learning Forecasting Concepts

In the following an introduction of elementary concepts related to Time Series
data and their processing by clustering, motif discovery, and forecasting with deep
learning architectures especially in road tra�c context.

1.1 Time series elementary concepts

1.1.1 Time Series and Time Series Subsequences

A time series (or raw data) is de�ned as an ordered sequence of real-valued obser-
vations recorded at regular time intervals,

T = [t1, t2, . . . , tn] (1.1)

where n denotes the length of the time series and each ti corresponds to an
observation at discrete time step i. The time series is univariate if ti ∈ R and it is
a multivariate if ti ∈ Rd with d variables observed at each time step i. In tra�c
applications, T represents collected data speci�c to roads as vehicle counts, speed, or
density measurements and could represent additional information like temperature,
humidity, pollution measurements, all recorded at same regular intervals (e.g., every
5 minutes). In our work, we study univariate time series.

A time series subsequence is a contiguous subset of the time series de�ned as:

T(i,m) = {ti, t(i+1), . . . , t(i+m−1)} (1.2)

where 1 ≤ i ≤ n−m+ 1 and m is the �xed subsequence length. The collection
of all subsequences of length m in T is denoted:

S
(m)
T = {T(i,m) | 1 ≤ i ≤ n−m+ 1} (1.3)

1.1.2 Time Series Distance Measures

In time series data mining, including tasks such as clustering and motif discovery,
quantifying the similarity or dissimilarity between time series is a fundamental step
[1]. A distance function D : RnRn → R+ maps a pair of time series or subsequences
to a non-negative real number, where a smaller value implies greater similarity.

3
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Several distance functions exist which use depends on the application. In the
following the mathematical expressions of Euclidean, Z-normalized Euclidean and
Dynamic Time Warping distances. Considering T (1) = [t

(1)
1 , t

(1)
2 , . . . , t

(1)
n ] and T (2) =

[t
(2)
1 , t

(2)
2 , . . . , t

(2)
n ] two univariate time series of equal length n.

1.1.2.1 Euclidean Distance

The Euclidean distance is the most commonly used metric for comparing two time
series of equal length. It is de�ned as:

DEUC(T
(1), T (2)) =

√√√√ n∑
i=1

(t
(1)
i − t

(2)
i )2 (1.4)

While computationally e�cient, Euclidean distance is sensitive to misalignments
and does not perform well under temporal distortions or shifting [2].

1.1.2.2 Z-normalized Euclidean Distance

To compare time series that may di�er in amplitude or o�set but are structurally
similar, z-normalization is typically applied. It ensures invariance to scaling and
shifting, which is crucial in tasks like motif discovery. The z-normalization of a time
series T (k) is given by :

T̃ (k) =
T (k) − µT (k)

σT (k)

, k ∈ {1, 2} (1.5)

where µT (k) and σT (k) are the mean and standard deviation of T (k), respectively.
The z-normalized Euclidean distance is then computed as:

DZEUC(T̃
(1), T̃ (2)) =

√√√√ n∑
i=1

(t̃
(1)
i − t̃

(2)
i )2 (1.6)

For subsequence series analysis (e.g., with Matrix Pro�le), distances are often
computed between z-normalized subsequences T(i,m) and T(j,m) :

D(T(i,m), T(j,m)) =

√√√√m−1∑
k=0

(t̃(i+k) − t̃(j+k))2 (1.7)

This formulation is invariant to mean and variance, enabling the detection of
motifs that di�er in absolute scale but are of similar shape [3].

1.1.2.3 Dynamic Time Warping (DTW)

Dynamic Time Warping is a non-linear distance measure that allows temporal mis-
alignments between sequences by computing an optimal alignment path. It is de�ned
via dynamic programming as:

DTW (i, j) = ∥t(1)i − t
(2)
j ∥+min


DTW (i− 1, j)

DTW (i, j − 1)

DTW (i− 1, j − 1)

(1.8)
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with boundary conditions DTW (0, 0) = 0 and DTW (i, 0) = DTW (0, j) = ∞.
The �nal distance is DTW (n, n). DTW is e�ective for handling local warping and
misalignment but is computationally more expensive (typically O(n2)) [4] , [5].

1.2 Time Series Clustering and Subsequence Clus-

tering

Time series clustering aims to partition a set of time series Ψ = {T (1), T (2), . . . , T (N)}
into k clusters C = {C1, C2, . . . , Ck} such

Ck ⊂ Ψ, Ci ∩ Cj = ∅ for i ̸= j (1.9)

Time series subsequence clustering, in contrast to time series clustering, operates
on a single time series T by extracting overlapping subsequences T(i,m) and clustering
them based on their mutual similarity. Each subsequence T(i,m) ∈ Rm can be treated
as a point in an m-dimensional space.

1.2.1 k-means for time series

The literature presents several clustering methods for time series clustering and
subsequences clustering, each with its advantages and drawbacks such as : k-means ,
density-based methods, Hidden Markov Model (HMM)-based clustering,Hierarchical
clustering, Spectral Clustering [6].

Let a set of subsequences S(m)
T = {T(i,m) = [ti, t(i+1), . . . , t(i+m−1)] | 1 ≤ i ≤

n − m + 1} with a given window length m. The goal of k-means clustering is
to partition these subsequences into k clusters {C1, C2, . . . , CK} by minimizing the
within-cluster variance. Formally, k-means minimizes the objective function:

J =
k∑

j=1

 ∑
T(i,m)∈Cj

∥T(i,m) − µj∥2
 (1.10)

where µj is the centroid of cluster Cj; de�ned as:

µj =
1

|Cj|
∑

T(i,m)∈Cj

T(i,m) (1.11)

The algorithm of k-means proceeds iteratively on the following steps:

1. Initialize k centroids randomly or based on previous knowledge.

2. Assign each subsequence T(i,m) to the nearest centroid according to a distance
measure (e.g., Euclidean distance or z-normalized Euclidean distance).

3. Update centroids µj based on current assignments.

4. Repeat steps (2) and (3) until convergence measured by assignments stabilize
or objective J decreases below a tolerance.



Chapter 1 6

Also, in time series clustering, z-normalization of subsequences is often applied
prior to distance computation [1]:

T̃(i,m) =
T(i,m) − µT(i,m)

σT(i,m)

(1.12)

1.2.2 Silhouette Coe�cient

The clustering e�ectiveness is measured by the intra-cluster similarity which should
be maximized and a minimized inter-cluster similarity. Several indexes are used to
assess the e�ectiveness of a time series clustering, such as Silhouette Coe�cient,
Davies�Bouldin Index, Dunn Index, and WCSS (Within-Cluster Sum of Squares)
[7]. Internal clustering validation metrics focus on the compactness and separation of
clusters. In particular, the Silhouette Coe�cient evaluates the degree of con�dence
in the assignment of each point to its cluster.

For a subsequence T(i,m) assigned to cluster Cp:

� Let a(i) denote average distance from T(i,m) to all other subsequences in Cp:

a(i) =
1

|Cp| − 1

∑
T(i,m)∈Cp

D(T(i,m), T(j,m)) (1.13)

Where D(., .) is a distance function (e.g., Euclidean or DTW).

� Let b(i) denote the minimum average distance from T(i,m) to all subsequences
in other clusters Cq, q ̸= p:

b(i) = min
q ̸=p

 1

|Cq|
∑

T(j,m)∈Cq

D(T(i,m), T(j,m))

 (1.14)

� The silhouette score of T(i,m) is de�ned as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
-1 ≤ s(i) ≤ 1 (1.15)

The overall silhouette score is the mean over all data points:

S =
1

N

N∑
i=1

s(i) (1.16)

Near to 1 values mean well-clustered and near to 0 values mean overlapping
clusters. It provides a per-sample and global measure of clustering quality. Its main
drawback is that it is computationally expensive for large datasets.
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1.3 Motif Discovery in Time Series

A motif is de�ned as a pair or set of pairs of similar subsequences in a time series.
Motif discovery aims to identify k most similar pairs of subsequences:

motifk = arg min
k

|i−j|>w

D(T(i,m), T(j,m)) (1.17)

Where D(., .) is a distance measure (typically Euclidean distance), and w is an
exclusion zone to avoid trivial matches (overlapping similar subsequences).

1.3.1 Matrix Pro�le

The Matrix Pro�le method is often used to guide meaningful subsequence compar-
isons e�ciently. It is based on MASS (Mueen's Algorithm for Similarity Search)
and provides a scalable solution for motif and discord discovery.

The resulting matrix pro�le MP ∈ Rn−m+1 is a vector that stores the distance
to the nearest non-trivial matching subsequence for each T(i,m), formally de�ned as:

MP
(m)
T [i] = min

1≤j≤n−m+1
|i−j|≥m

dist(T(i,m), T(j,m)) (1.18)

where dist is the z-Euclidean distance between T(i,m) and its nearest non-trivially

overlapping neighbor in S(m)
T . The default exclusion zone is w = m/2.

Additionally, the matrix pro�le index vector PI stores the location (index) of
the nearest neighbor to each subsequence:

PI
(m)
T [i] = arg min

1≤j≤n−m+1
|i−j|≥m

dist(T(i,m), T(j,m)) (1.19)

Motifs M correspond to the lowest values in MP while discords correspond to
the highest values:

M = {T(j,m) ∈ S(m)
T | dist(T(j,m), T(i∗,m)) ≤ ϵ} (1.20)

Matrix Pro�le algorithms such as STOMP [8], SCRIMP++ [9], and SCAMP [10]
reduce the computational problem of motif discovery, lowering complexity from the
naive O(n2) pairwise distance computation to amortized near-linear time. These
algorithms enable exact, scalable motif discovery on long time series that were pre-
viously intractable [11].

In the road tra�c context, motifs often correspond to recurring congestion pat-
terns or temporal tra�c behaviors such as morning rush hours.

1.4 Fundamentals of Deep Learning Architectures

E�ective tra�c forecasting models must handle challenges such as non-stationarity,
missing values, and anomalies. Deep learning methods have shown particular e�ec-
tiveness in learning such complex, non-linear patterns from time series data. Sev-
eral architectures can be used in a deep learning model including: Recurrent Neural
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Networks (RNNs), Long Short-Term Memory networks (LSTMs), Temporal Convo-
lutional Networks (TCNs), and more recently Transformer-based models, commonly
used for forecasting tasks.

1.4.1 Arti�cial Neural Networks (ANN)

Arti�cial Neural Networks (ANNs) are computational models inspired by the struc-
ture and functioning of biological neural systems. Formally, an ANN is a directed
graph composed of layers of units (neurons), where each unit performs a weighted
summation followed by an activation function.

Let X = [x1, x2, . . . , xn]
T be the input vector and W = [w1, w2, . . . , wn]

T the
weight vector for a given neuron. The output of a single arti�cial neuron can be
expressed as:

z =
n∑

i=1

wixi + b = W TX + b, (1.21)

y = ϕ(z), (1.22)

where b is the bias term and ϕ(·) is a nonlinear activation function such as
sigmoid, tanh, or ReLU [12].

The general structure of ANNs is organized into three main types of layers:

� Input Layer: Each neuron corresponds to an input feature. For example,
with three features, the input layer contains three neurons.

� Hidden Layers: A multilayer perceptron (MLP) consists of one or more
hidden layers, each containing several neurons that transform and re�ne the
information received from the input layer.

� Output Layer: This layer produces the �nal prediction. If multiple outputs
are required, the number of neurons corresponds to the number of predicted
values.

ANNs include perceptrons, MLPs, and recurrent neural networks (RNNs), which
are described in the following sections, as well as other architectures such as convo-
lutional neural networks (CNNs).

1.4.2 Single-Layer Neural Network (Perceptron)

The perceptron is the simplest ANN, consisting of one input layer directly con-
nected to one output neuron (or output layer) with no hidden layers. It can only
learn linearly separable patterns and performs binary classi�cation based on a linear
threshold function. The decision rule is given by:

y =

{
1, if W TX ≥ t,

0, otherwise,
(1.23)

where t is the decision threshold. Although limited to linearly separable prob-
lems, the perceptron forms the foundation for deeper architectures [12].
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Figure 1.1: Single layer perceptron [13]

1.4.3 Multi-Layer Perceptron (MLP)

A Multi-Layer Perceptron (MLP) is a feedforward neural network with one or more
hidden layers between the input and output. Each hidden layer applies an a�ne
transformation followed by a nonlinear activation. Let X ∈ Rn be the input and
y ∈ Rm the output. For a network with L layers, the transformations are recursively
de�ned as:

h(0) = X (1.24)

h(l) = φ
(
W (l)h(l−1) + b(l)

)
for l = 1..L (1.25)

ŷ = h(L) (1.26)

Each layer is fully connected, meaning every neuron in layer l−1 is connected to
every neuron in layer l. MLPs are universal function approximators and are widely
used in regression and classi�cation tasks.

Figure 1.2: Multi-Layer Perceptron [13]
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1.5 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are neural architectures designed for modeling
sequential data, such as time series, speech, and text. Unlike feedforward networks,
RNNs maintain an internal state that captures dependencies over time. Let Xt ∈ Rd

denote the input at time t and ht ∈ Rh the hidden state. The standard RNN updates
are given by:

ht = φ(Wxhxt +Whhht + bh) (1.27)

ŷt = ψ(Whyht + by) (1.28)

Where φ(·) is typically a tanh or ReLU activation, and ψ(·) is the output activa-
tion (e.g., softmax for classi�cation). The hidden state acts as a memory, enabling
temporal pattern learning.

However, standard RNNs su�er from the vanishing gradient problem, limiting
their ability to model long-term dependencies. To address this, gated variants such
as LSTM and GRU have been developed.

1.5.1 Long Short-Term Memory (LSTM)

LSTM architecture introduces a memory cell with gated mechanisms to control in-
formation �ow. The gates allow selective reading, writing, and forgetting of informa-
tion, enabling LSTMs to capture long-term patterns across thousands of timesteps.
The LSTM updates consist of:

ft = σ (Wf [ht−1, xt] + bf ) (Forget gate) (1.29)

it = σ (Wi[ht−1, xt] + bi) (Input gate) (1.30)

C̃t = tanh (WC [ht−1, xt] + bC) (Cell candidate) (1.31)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (Cell state update) (1.32)

ot = σ (Wo[ht−1, xt] + bo) (Output gate) (1.33)

ht = ot ⊙ tanh(Ct) (Hidden state) (1.34)
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Figure 1.3: LSTM neuron architecture [13]

1.5.2 Gated Recurrent Unit (GRU)

GRUs are a simpli�ed variant of LSTM that merge the forget and input gates into
a single update gate, and use a reset gate to control the contribution of the previous
state:

zt = σ (Wz[ht−1, xt] + bz) (Update gate) (1.35)

rt = σ (Wr[ht−1, xt] + br) (Reset gate) (1.36)

h̃t = tanh (Wh[ rt ⊙ ht−1, xt] + bh) (1.37)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (1.38)

GRUs reduce computational complexity while preserving long-term memory ca-
pacity and are commonly used in sequence modeling tasks with limited training
data.
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Figure 1.4: Architecture of Gated Recurrent Unit [13]

1.6 Formalisation of road Tra�c Forecasting with

time series data

Let T ∈ Rnd be a time series with n timesteps and d = 1 for a single studied variable,
and let xt ∈ R denote the observation at time t. The goal of tra�c forecasting is to
estimate a sequence of future values

over a prediction horizon H.
Formally, the forecasting function f maps a historical subsequence (window) of

length m to a future sequence:

X̂T+1:T+H = f(XT−m+1, XT−m+2, . . . , XT ), (1.39)

where f can be implemented using statistical models (ARIMA, Kalman Filters)
or data-driven models (LSTM, TCN, Transformer-based architectures).

The objective of these models is to reduce error metrics (loss functions) such as
Mean Squared Error, Root Mean Squared Error (RMSE), or Mean Absolute Error
(MAE):

l(θ) =
1

N

N∑
i=1

∥fθ(X(i))− y(i)∥2 (1.40)

MAE =
1

H

H∑
h=1

|x̂T+h − xT+h| (1.41)

RMSE =

√
1

H

H∑
h=1

(x̂T+h − xT+h)
2 (1.42)

These metrics are commonly used to evaluate forecasting performance across
di�erent horizons and tra�c conditions.
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A general deep learning model can be formulated as a function fθ : Rnd → Rh

parameterized by weights θ, mapping a time-series input T = [t1, t2, . . . , tn] to a
prediction:

ŷt+1:t+h = fθ([t1, t2, . . . , tt]) (1.43)

where h is the forecasting horizon.
In short-term forecasting, h is small and typically ranges from a few minutes up

to one hour ahead (e.g., 5�15 minutes). Models such as ARIMA, SVR, LSTM, and
TCNs are commonly used.

Long-term forecasting covers horizons from several hours to multiple days. The
forecasting function becomes:

X̂t+1:t+H = fθ(x1:t, E1:t) (1.44)

since long-term prediction is more sensitive to error accumulation E and requires
more robust generalization.
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Motif-Based Time Series Clustering

for Deep Learning

2.1 Introduction

In this work we aim to improve DL models generalisation for time series forecasting
task based on subsequence clustering. The goal of time series subsequence clustering
is to group similar subsequences extracted from a longer time series into meaningful
clusters.

However, achieving meaningful clustering of time-series subsequences faces sev-
eral challenges. First, as highlighted by [14] , subsequences extracted using a sliding
window tend to be highly overlapping and therefore extremely similar, which leads
to trivial matches and prevents the discovery of truly meaningful patterns. In addi-
tion, meaningful clustering requires an appropriate normalization strategy to ensure
scale invariance. Yet, as noted by [15], improper normalization may distort the
underlying patterns and mislead the clustering process. Finally, specifying a prede-
�ned number of clusters (k) may not re�ect the true structure of the data, and the
resulting clusters must remain interpretable within the speci�c application domain.

Our approach addresses these issues by assuring an appropriate subsequence
processing. It normalizes subsequences to zero mean and unit variance with z-
normalization. Also, it employs the silhouette validation metric to select an optimal
number of clusters (k) with semantically meaningful patterns. Matrix pro�le method
is integrated into the k-means algorithm employed for clustering to �t with time
series clustering characteristics. More details are provided in the following sections.

2.2 Related work

The authors of [16] proposes a forecasting framework that enhances an attention-
based LSTM by adding features derived from the Matrix Pro�le (MP), computed
on each COVID-19 indicator to capture weekly patterns. The MP reveals similar
subsequences (motifs) and anomalies (discords), and these structural signals are
transformed into features and concatenated with the model inputs. This helps the
attention mechanism focus on historically similar patterns and detect deviations.
Two variants (LSTM-MatAtt and LSTM-RelAtt) are evaluated, both outperforming
classical baselines and LSTMs without MP.

14
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The pipeline of their approach is composed of three steps:

1. MP-based subsequence clustering.

2. Cluster-speci�c LSTM models with attention.

3. Validation on U.S. COVID-19 data. Results show superior accuracy and prac-
tical use for resource planning and emerging-variant detection.

In contrast, study [17] clusters full time-series subsequences to build special-
ized datasets trained with LSTMs optimized using the ARDE algorithm. Although
results are acceptable, the methodology su�ers from a major theoretical �aw: sub-
sequences are clustered with k- means despite overlapping segments, making the
clustering unreliable. However, the ARDE Adaptive Random Di�erential Evolution
based hyperparameter optimization remains valid and e�ective.

2.3 Overview of the tra�c �ow forecasting based on

motif discovery approach

Figure 2.1 shows the two main components of our proposed approach which are
explained in the following:

Figure 2.1: The two main components of the proposed approach

2.3.1 Motif discovery-based clustering

Based on the complete time series, the objective of this �rst stage is to group struc-
turally similar subsequences. The Matrix Pro�le is employed as the primary tool
for extracting motifs, i.e., low-distance subsequences. A �ltering process is then
applied, where only the most representative motifs are retained, while high-distance
subsequences are discarded as they typically correspond to anomalous behaviors
(discords). The retained motifs are aggregated into groups according to the pres-
ence of a shared common subsequence, producing small initial clusters that serve as
proto-clusters for the subsequent clustering phase. This is justi�ed by the fact that
all subsequences within each group exhibit similarity through transitivity. Once

date
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these initial groups are established, their representative centroids are computed,
forming the basis for the �nal clustering step, which is performed using the k-means
algorithm.

2.3.2 Deep ensemble learning

(k)-LSTM-based models are �tted to the obtained (k) clusters. A splitting prepro-
cessing step is performed to split each cluster's subsequences into training, valida-
tion, and test sets. The LSTM hyperparameters are initially extracted from the
results. Each LSTM model is then trained on its corresponding cluster indepen-
dently of the others. depending on the chosen ensemble learning strategy.

During inference, a new subsequence is �rst assigned to the nearest cluster by
measuring its distance to the cluster centroid. Once the belonging cluster is deter-
mined, the subsequence is forwarded to the speci�c LSTM model trained for that
cluster to produce the forecast. The �nal behavior (whether models are combined
or used separately) depends on the ensemble design chosen in advance.

This approach goes on the following steps using speci�c methods as shown in
�gure 2.2:

1. After dataset preprocessing step, windowing the time series into overlapping
subsequences is an elementary step of our approach.

2. Matrix Pro�le (MP) and Matrix Pro�le Index (PI) computation using z-
normalized Euclidean distance.

3. Motif discovery via best-neighbor pairs and index-similarity grouping to form
motif sets.

4. Centroid extraction from each motif set to made initial cluster prototypes.

5. Subsequence clustering, initialized by motif centroids and using extracted sub-
sequences into (k) clusters using DTW.

6. Local deep models trained one per cluster.

7. At inference, ensembling to produce the �nal forecast.



Chapter 2 17

Figure 2.2: Steps of the proposed forecasting approach

2.4 Details of the proposed approach

2.4.1 Datasets and preprocessing

Three datasets of univariate tra�c �ow collected from di�erent locations, namely
1280- S, M50-N, and M1-N, were employed in this study. The �rst dataset cor-
responds to a road segment in San Francisco, USA, while the other two represent
tra�c �ow from motorways in Dublin, Ireland. The San Francisco dataset was ob-
tained from the Caltrans Performance Measurement System (PeMS), whereas the
Irish datasets were sourced from the Transport Infrastructure Ireland (TII) database.
The corresponding access links to these repositories are provided below:

� TII: https://trafficdata.tii.ie

� PeMS: http://pems.dot.ca.gov

The data collection period extends from March 28, 2018 to March 31, 2019.
Each dataset consists of three attributes: Date, Time, and Count, where the Count

https://trafficdata.tii.ie
http://pems.dot.ca.gov
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denotes the average number of vehicles recorded by road sensors at regular 15-
minute intervals. For consistency in the subsequent analysis, the time intervals were
resampled into 15-minute windows, resulting in an equal number of samples across
identical time spans. Further details about these datasets are provided in Table 2.1.

Dataset Segment Location Detector
No.

Detector
Type

Direction Source
(Database)

1280-S Highway
1280

San
Fran-
cisco,
USA

#S-1280 Inductive
Loop

South-
bound

PeMS
(Cal-
trans)

M50-N M50 Dublin,
Ireland

#M50-07 Automatic
Tra�c
Counter

North-
bound

TII (Ire-
land)

M1-N M1 Dublin,
Ireland

#M1-12 Automatic
Tra�c
Counter

North-
bound

TII (Ire-
land)

Table 2.1: Datasets Description

Before using this raw data, required veri�cations and preprocessing steps are
performed:

1. Resampling and alignment: Done implicitly, because the dataset already has
a �xed time step [Δ = 15 minutes].

2. No missing values were detected in the inspected dataset, and therefore no
imputation was required.

3. No outlier handling since data is collected from normal �ow without anomalies
like accidents.

The output of these steps is a cleaned time series ready to be used for further
rigorous processing.

2.4.2 Subsequence extraction

The subsequence length m is �xed to 96, which corresponds to one full day of tra�c
measurements sampled at a 15-minute interval (∆ = 15). A stride of 1 is used
to ensure that all possible subsequences are captured without any loss of temporal
information during the deep learning model training phase.

Selecting an appropriate window length is crucial. Larger values of m generate
high-dimensional subsequences where distance measures lose discriminative
power, a known e�ect referred to as distance concentration in high-dimensional
spaces (Beyer et al., 1999). As a result, motif discovery becomes less frequent, the
number of available samples decreases, and the computational cost increases.

Conversely, smaller values of m produce a larger number of subsequences and
increase the sensitivity to short-term �uctuations. However, they also amplify re-
dundancy, trivial matches, and instability in clustering, often capturing noise rather
than meaningful temporal motifs�as highlighted by [10] .
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The overlapping subsequences extracted from a time series

S
(m)
T = {T(i,m) = [ti, . . . , ti+m−1] | i = 1, . . . , n−m+ 1, stride = 1} (2.1)

where n is the total number of time points.
Thus, the total number of overlapping subsequences is computed as:

Number of subsequences =
(n−m)

stride
+ 1 (2.2)

For the dataset used in this study, n = 35,425. With a stride of 1, the total
number of generated subsequences is:

Number of subsequences = (35,425− 96)/1 + 1 = 35,330 (2.3)

The choice of a stride equal to 1 ensures that all possible subsequences are
included, enabling a comprehensive and lossless exploration of temporal patterns.

2.4.2.1 Normalization

Normalization is applied to ensure that all features operate on a comparable scale
and to prevent biases caused by heterogeneous value ranges. In this work, Min-Max
scaling was used to linearly transform the tra�c Count values into the [0, 1] range.
This technique preserves the relative structure of the data while standardizing its
amplitude, making it more suitable for subsequent deep learning and clustering
tasks. The Min-Max normalization is de�ned as:

x′ =
x−min x

max x−min x
(2.4)

Where x represents the original value and x′ the normalized value. This scaling
enhances numerical stability, accelerates training, and prevents features with large
magnitudes from dominating the learning process.

Alternatively, standardization (Z-score normalization), de�ned as

x′ =
x− µ
σ

(2.5)

Rescales the data using the global mean µ and standard deviation σ. Unlike
Min-Max scaling, Z-score normalization produces values centered around zero with
unit variance. Its main advantage is robustness to outliers and suitability for models
that assume Gaussian distributions. However, Min-Max scaling is often preferred
for LSTM-based models and distance-based clustering because it preserves the orig-
inal data boundaries and prevents distorting temporal patterns. Considering these
advantages and the characteristics of tra�c �ow data, Min-Max scaling was selected
for this study.

2.4.3 Matrix Pro�le and Motif Index

To compute the Matrix Pro�le (MP) and the Pro�le Index (PI) using the z-normalized
Euclidean distance, we employ the STOMP/SCRIMP++ algorithms as implemented
in the stumpy library. These algorithms run in O(n log n) time in practice due to
FFT-based convolution, although the theoretical worst-case remains O(n2) for a
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time series of length n [18] . An exclusion zone of w = m/2 is applied to eliminate
trivial overlaps between neighboring subsequences.

The Matrix Pro�le and its index are de�ned as:

MP [i] = min
j: |i−j|≥

∥∥∥T̃(i,m) − T̃(j,m)

∥∥∥
2
, (2.6)

PI[i] = arg min
j: |i−j|≥

∥∥∥T̃(i,m) − T̃(j,m)

∥∥∥
2
, (2.7)

where T̃i,m denotes the ith z-normalized subsequence of length m.
For our dataset (n = 35,425, m = 96), the total number of extracted subse-

quences is:
n−m+ 1 = 35,330. (2.8)

The resulting Matrix Pro�le values are then sorted in ascending order to identify
the closest pairs of subsequences, i.e., the motifs. Table 2.2 reports the top-5 motifs
with the smallest pro�le distances.

Datetime Pro�le distance Pro�le index
2018-06-20 19:00:00 0.408901 6796
2018-06-06 19:00:00 0.408901 8140
2018-06-20 18:45:00 0.417791 6795
2018-06-06 18:45:00 0.417791 8139
2018-06-06 18:30:00 0.422036 8138

Table 2.2: motifs extracted from the Matrix Pro�le.

These results show that each subsequence in the Datetime column is highly
similar to the subsequence referenced by its corresponding Pro�le index, with Matrix
Pro�le distances below 0.5. The similarity is therefore established between the two
matched subsequences (each having its own timestamp), and not necessarily between
identical times of the day. This con�rms the presence of recurrent motifs in the
tra�c �ow data and validates the Matrix Pro�le as an e�ective tool for discovering
repeated temporal patterns.

Figure 2.3: Matrix Pro�le

2.4.4 Motif discovery and index-similarity grouping

The motif discovery phase is carried out through several processing staps.
First, only motif pairs whose Matrix Pro�le distance is below a similarity thresh-

old τ are retained. In this work, τ is de�ned as the mean Matrix Pro�le value:
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τ =
1

|MP |

|MP |∑
i=1

MP [i] (2.9)

where:

� |MP | is the length of the Matrix Pro�le,

� MP [i] is the pro�le distance at index i.

A motif pair (i, j) is therefore kept if:

MP [i] < τ ∧ |i− j| ≥ m

2
(2.10)

m: is the subsequence length.
In our implementation, the notion of pairs is expanded into groups based on

transitive similarity.If subsequence i is similar to subsequence j, and j is also similar
to k, then i and k are considered part of the same motif group.

Third, trivial matches caused by fully overlapping subsequences are removed.These
occur when both subsequences of a motif pair overlap signi�cantly with another mo-
tif pair, producing redundant matches. Such pairs are discarded.

Additionally, not all subsequences below the threshold are considered. To ensure
only the strongest motif candidates, we restrict the selection to distances belonging
to the �rst quartile of the Matrix Pro�le distribution.

Finally, motif groups are constructed using an undirected graph representation.
Each subsequence index is treated as a node, and an edge is added between nodes
belonging to the same motif pair.

The connected components of this graph correspond directly to the �nal motif
groups.

Figure 2.4: Detected Motifs in the Tra�c Time Series

Figure 2.4 illustrates the motifs identi�ed within the normalized tra�c time
series. The gray curve represents the complete time series, while each colored vertical
segment corresponds to a subsequence belonging to a motif pair detected through
the Matrix Pro�le. For every motif, two subsequences with highly similar temporal
shapes are highlighted (�part 1� and �part 2�).
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Although these subsequences occur on di�erent dates, they exhibit nearly iden-
tical tra�c-�ow behavior, re�ecting repeated daily patterns in the dataset. This
visual representation con�rms the presence of recurrent motifs and supports the use
of Matrix-Pro�le-based motif discovery in the proposed methodology.

Algorithm 1: Motif discovery from matrix pro�le
Input: Matrix pro�le �le mp_df , time series time_series, subsequence

length m, max distance max_distance
Output: List of motifs and used pairs, saved CSV �le

1 IMPORT libraries: pandas, numpy, networkx, matplotlib,
sklearn.preprocessing.MinMaxScaler;

2 SET parameters: m← 96, max_distance← mean_distance ;
3 Function find_all_motifs(mp_df , time_series, m, max_distance):
4 motifs← [];
5 used_pairs← {};
6 used_indices← {};
7 for each row (idx, row) in mp_df do
8 i← idx;
9 j ← row[′profile_index′];
10 distance← row[′profile_distance′];
11 if distance > max_distance then
12 continue;
13 end
14 overlap_found← FALSE;
15 for each (k, r) do
16 if (k ≥ i and k < i+m/2) and (r ≥ j and r < j +m/2) then
17 overlap_found← TRUE;
18 break;
19 end
20 if (r ≥ i and r < i+m/2) and (k ≥ j and k < j +m/2) then
21 overlap_found← TRUE;
22 break;
23 end

24 end
25 if overlap_found = FALSE then
26 ADD (i, j, distance) to motifs;
27 ADD (i, j) and (j, i) to used_pairs;
28 ADD index ranges [i, i+m/2) and [j, j +m/2) to used_indices;
29 end

30 end
31 return motifs, used_pairs;

2.5 Subsequence clustering

A basic step before any clustering algorithm is to decide the number of clusters.
Classic methods perform with a prior knowledge of data behaviour and a brute-
force search with experimental study [19].

In our work, , the determination of k also follows theses steps :
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1. a measure of the best sets extracted from the previous step. This evaluation
uses the Silhouette score to sort the previously obtained groups according to
their internal cohesion and external separation.

2. since we work on m time steps corresponding to a day duration, we suppose
three main types of tra�c : weekends, working days, abnormal tra�c (speci�c
events, accidents, roads maintenac, . . . )

3. - however, experiments to assess this (k) value are conducted also with di�erent
other values under constraints of limited available computational capacities.

K-means is the algorithm used for subsequence clustering. However, calculating
centroids for each iteration is not based on the means of overlapping subsequences,
which is proven inconsistent. Instead, centroids {µc} are initialized with extracted
medoid motifs from the previous step.

min
{C1,...,Ck},{µ1,...,µk}

k∑
j=1

∑
T̃i,m∈Cj

D(T̃i,m, µj)
2 (2.11)

With D = DTW Also, the number of iterations is limited and a coherence test
before accepting a new calculated centroids are added to the default behaviour of
k-means.
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Figure 2.5: Pseudo-code K-means Clustering
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Algorithm 2: K-Means pseudocode for clustering subsequences
Input: Clusters dictionary containing subsequences
Output: K-Means model and results saved to disk

1 # Step 1: Prepare K-Means data;
2 # Initialize an empty list: all_subsequences = [];
3 for each cluster_name, cluster_data in clusters.items() do
4 if 'subsequences' in cluster_data then
5 subseqs = cluster_data['subsequences'];
6 # Append to global dataset:

all_subsequences.append(subseqs);
7 end

8 end
9 # Concatenate all subsequences: X =

np.vstack(all_subsequences);
10 # Step 2: Apply K-Means;
11 # Import: from sklearn.cluster import KMeans;
12 # Set number of clusters: K = 5;
13 # Train model: kmeans = KMeans(n_clusters=K, random_state=42);
14 kmeans.fit(X);
15 # Obtain labels and centroids:;
16 labels = kmeans.labels_;
17 centroids = kmeans.cluster_centers_;
18 # Step 3: Organize results;
19 # Create DataFrame:;
20 kmeans_results = pd.DataFrame({'Cluster_Label': labels});
21 # Add source info:;
22 kmeans_results['Source_Cluster'] = source_cluster_list;
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Figure 2.6: Resulting clusters of subsequences and their centroids

2.6 Local deep models

For each cluster Cj, form supervised pairs by sliding input windows of length m and
forecast horizon [H] across members of Cj

Input: xt = [ t1(t−L+), . . . , tt ]
Target: Yt = [ t1(t−L+), . . . , t(t+H) ]

Model family: LSTM with parameters [hidden size], [layers], [dropout].
Loss: MSE/MAE/ . . .
Optimizer: [Adam β1 = . . . , β2 = . . . , lr = . . .]
Batch: [B];
Epochs: [E].
Split: [train/val/test over time] to avoid leakage.
Regularization: early stopping / weight decay.
Rationale: Each expert/model focuses on a homogeneous shape regime, simplifying
the mapping from local history to future behaviour.
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2.7 True vs Prediction Values for Each Cluster

Figure 2.7: True vs Prediction Values for Each Cluster

Figure 2.8: True Vs Predicted Values (First 200 Samples)

2.8 Prediction accuracy

To evaluate the predictio accuracy of our models within each cluster, the follow-
ing four metrics are used MAE, RMSE, MSE, MAPE. MAE measures the average
amount of error between the true and predicted values, while MSE computes the
mean of the squared errors and is more sensitive to large mistakes. RMSE is the
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square root of MSE and provides the error in the original scale of the data, whereas
MAPE gives the percentage error relative to the true values. In the implementation,
the true and predicted values for each cluster are processed separately, and these
metrics are calculated and stored in the metrics results dictionary. The results for
each cluster are then displayed, and a summary DataFrame is generated to compare
performance across all clusters, helping to identify which cluster achieves the best
accuracy and which one shows weaker performance.

Cluster MAE MSE RMSE MAPE
Cluster0 0.019626 0.000685 0.026171 3.015792
Cluster1 0.017482 0.000669 0.025871 5.063007
Cluster2 0.011592 0.000249 0.015776 19.902829

Table 2.3: Prediction metrics for each cluster

2.9 Ensembling

The ensembling component combines the outputs of several independently trained
models to produce a single prediction that is typically more stable and accurate
than any individual model. In our implementation, three pre-trained models (loaded
models[0..2]) are used to forecast the next value using the same input window com-
posed of the last 95 data points. Each model generates its own prediction, and
these outputs are then averaged through a simple arithmetic mean to obtain the
�nal ensemble result.

The rationale behind this approach is that di�erent models usually make di�erent
types of errors due to variations in their training process or internal parameter
updates. By averaging their predictions, some of these individual errors can cancel
out, leading to improved robustness and higher overall accuracy. This approach,
however, assumes that all models contribute equally and that their outputs are
expressed on the same scale. For this reason, it is crucial that all models rely on the
same data pre-processing, particularly the same normalization (scaler), during both
training and prediction.

It is important to note that the predictions are not random (�parachuted�), but
are fully derived from the historical data in the last 95 points. Each cluster model
sees these points di�erently depending on the patterns it has learned, which explains
the di�erences among individual predictions.

The following are prediction results from the three clusters:

Cluster Prediction normalized
Cluster 0 0.441353
Cluster 1 0.105143
Cluster 2 0.080818
Ensemble (average) 0.209105

Table 2.4: Normalized cluster prediction results

After inverse transformation to the original scale of the data, the ensemble pre-
diction corresponds to approximately 360.97, representing the expected value of the
next time step.
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This version now:

� Explains the 95-point input window.

� Clari�es that predictions are data-driven, not random.

� Connects the cluster models and ensemble logic.

� Presents results clearly.

Figure 2.9: Rolling forecast evaluation



Chapter 2 30

Figure 2.10: Compoment impact
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Figure 2.11: Clustering Evaluation work�ow
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Tra�Cast Web Application

3.1 Brief presentation of Tra�Cast website

The Tra�Cost website is an online platform that provides users with services and
tools for tra�c prediction and analysis, helping them make smarter decisions. The
website includes:

� User-friendly interface for easy navigation.

� Tra�c prediction module based on live and past data.

� Date and time integration, allowing users to view or choose predictions for a
speci�c moment.

� User account options, such as registration, login, viewing prediction history,
and pro�le management.

Its main goal is to aid trip planning with accurate information and so save time and
fuel consumption.

3.2 Website design

At this stage, we utilize UML diagrams to represent and describe our system.

3.2.1 Use case diagram

A Use Case Diagram is a UML diagram that provides a broad overview of a system's
functional requirements.

3.2.1.1 Identi�cation of Actors

Identi�cation of actors refers to the process of determining all the external entities
that interact with a system. These actors can be human users, external systems, or
devices that exchange information or perform actions with the system.

We de�ne two main actors in Tra�Cost website :

� Users (Guest) : View tra�c information and forecasts without the need to
create an account.

32
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� Registered : Access detailed tra�c information and forecasts, receive person-
alized alerts, and use additional features available only to registered accounts.

3.2.1.2 Identi�cation of the use cases

This process consists of de�ning speci�c use cases as shown on �gure bellow, with
each one depicting a distinct action performed by one or more actors.

� View landing page : this use case describes how a user accesses the system's
homepage, which provides general information, navigation options, and entry
points to main features without requiring login.

� Register Account : the �Register Account� use case describes the process
in which a new user creates an account in the system by providing required
information such as name, email, username, and password.

� Login : the �Log In� use case describes the process in which an existing user
accesses the system by entering valid credentials, such as a username and
password.

� Predict Tra�c : the �Predict Tra�c� use case describes when a user requests
tra�c forecasts from the system. Using live and historical data, the system
predicts road conditions, congestion levels, and estimated travel times to help
the user plan trips more e�ciently.

� View prediction history : the �View Prediction History� use case describes
the process in which a user accesses and reviews previously saved tra�c pre-
dictions.

� View pro�le : the �View Pro�le� use case describes the process in which a
user accesses their personal pro�le within the system.

� Toggle dark mode : allows the user to switch the interface between light
and dark themes.
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3.2.1.3 Presentation of the use cases

Figure 3.1: Use case diagram of Tra�Cost website

3.2.2 Use case speci�cation

The use case speci�cation for the Tra�cost system describes each function of the
system in detail, de�ning the actors, goals, conditions, and scenarios for every use
case.

3.2.2.1 Register Account

� Text description of the case Register Account

Use Case Register Account
Actors Guest , registered .
Goal Allow new users to create an account in the system.
Pre-condition The user has access to the registration page.
Post-condition A new user account is successfully created and saved in the

system.
Nominal Scenario 1. The user accesses the system and selects the "Register"

option.
2. The system displays the registration form.
3. The user �lls in required information (e.g., name, email,
password).
4. The user submits the form.
5. The system validates the input data.
6. If the data is valid, the system creates the new account.
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Alternative Sce-
nario

The system displays an error message and prompts the user
to correct the input (returns to step 2).

Table 3.1: Text description � Register Account �

� Sequence diagram of the case Register Account

Figure 3.2: Sequence diagram � Register Account �

3.2.2.2 Login

� Text description of the case login

Use Case Login
Actors Guest user.
Goal To allow authenticated users to access the system by entering

valid login credentials.
Pre-condition The user must already have a registered account in the system.
Post-condition The user successfully logs into the system and is redirected to

the home page or dashboard.
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Nominal Scenario 1. The user opens the system and selects the "Login" option.
2. The system displays the login form.
3. The user enters their login credentials (email and pass-
word).
4. The system veri�es the entered information.
5. If the credentials are correct, the system grants access.
6. The user is redirected to the home page or appropriate
dashboard based on their role.

Alternative Sce-
nario

if the email or password is incorrect, the system displays
an error message (e.g."Invalid email or password") (returned
step2).

Table 3.2: Text description � Login �

� Sequence diagram of the use case : Login

Figure 3.3: Sequence diagram � Login �

3.2.2.3 Predict Tra�c

� Text description of the case Predict Tra�c

Use Case Predict Tra�c
Actors Registered User.
Goal To allow actors to view or retrieve tra�c predictions based on

real-time or historical data.
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Pre-condition The user is authenticated (if required) and has access to the
prediction interface.

Post-condition The system displays or returns tra�c prediction results for a
speci�ed area and time

Nominal Scenario 1. The user logs in and accesses the dashboard.
2. The user selects tra�c prediction and enters parameters
(location, date, time).
3. The system applies the prediction model
4. The system displays the results
5. The prediction is automatically saved (allow user to view
the history.

Alternative Sce-
nario

The user submits incomplet data , the system displays a mes-
sage requesting all required �elds to be �lled.

Table 3.3: Text description �Predict Tra�c�

� Sequence diagram of the use case Predict Tra�c

Figure 3.4: Sequence diagram � Predict Tra�c �

3.2.2.4 View prediction history

� Text description of the case View prediction history
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Use Case View prediction history
Actors Registered User.
Goal Allow users to access and review their past tra�c pre-

diction results.
Pre-condition The user is logged into the system.

The system has stored previous prediction requests
made by the user.

Post-condition The user can see a list of past predictions with relevant
details (e.g., date, time, location, predicted tra�c con-
ditions).

Nominal Scenario 1. The user navigates to the "Prediction History" sec-
tion.
2. The system retrieves the stored prediction records
related to the user.
3. The user selects a speci�c record to view more details
if needed.
4. The system displays details.

Alternative Scenario If no past predictions exist, the system displays a mes-
sage such as �No prediction history available.�

Table 3.4: Text description � View prediction history �

� Sequence diagram of the case View prediction history

Figure 3.5: Sequence diagram � View prediction history �
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3.3 Global Class diagram

Figure 3.6: Global class diagram

3.4 Relational Model

� User (id, �rstName, lastName, birthday, gender, email, password)

� Prediction (id, timestamp, predictionDate, predictionTime, location, num-
berOfCars)
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3.5 The interfaces of the application

3.5.1 Landing

Figure 3.7: landing Interface

3.5.2 Login

Figure 3.8: Login interface
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3.5.3 Register

Figure 3.9: Register interface
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3.5.4 Tra�c Prediction

Figure 3.10: tra�c prediction intreface
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3.5.5 Prediction History

Figure 3.11: Prediction history interface

3.6 Frameworks

In the following a brief presentation of the frameworks, environments and languages
used to implement our system.

3.6.1 Python Programming Language

Python is a high-level, interpreted, and dynamically typed programming language
known for its simplicity, readability, and versatility. It supports multiple program-
ming paradigms, including object-oriented, procedural, and functional program-
ming. Python is widely used in web development, data science, arti�cial intelligence,
automation, and more, thanks to its extensive libraries and strong community sup-
port.
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Figure 3.12: Python logo

3.6.2 TensorFlow

TensorFlow is an open-source machine learning framework developed by Google
Brain for building and deploying deep learning and arti�cial intelligence (AI) models.
It provides a �exible ecosystem of tools, libraries, and community resources for
tasks such as neural network training, computer vision, natural language processing
(NLP), and reinforcement learning. TensorFlow supports CPU, GPU, and TPU
acceleration, making it scalable for both research and production environments.

Figure 3.13: Tensor�ow logo

3.6.3 Keras

Keras is an open-source, high-level deep learning API written in Python that runs
on top of TensorFlow. It is designed to provide an easy-to-use, modular, and user-
friendly interface for building and training neural networks. Keras supports deep
learning tasks such as computer vision, natural language processing (NLP), and
reinforcement learning, making it popular for rapid prototyping and research.

Figure 3.14: Keras logo

3.6.4 Google Colaboratory (Colab)

Google Colaboratory (Colab) is a cloud-based Jupyter Notebook environment pro-
vided by Google that allows users to write, execute, and share Python code in a
web browser. It provides free access to GPUs and TPUs, making it ideal for ma-
chine learning, deep learning, and data science projects. Colab requires no setup,
supports Google Drive integration, and allows collaboration among multiple users
in real time.
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Figure 3.15: Colab logo

3.6.5 Flask framework

Flask is a micro web framework for Python, used for building web applications. It is
classi�ed as a "microframework" because it provides a core set of functionalities for
web development, such as routing, templating, and request handling, but it does not
include features like database abstraction layers, form validation, or object-relational
mappers (ORMs) by default. This minimalistic design allows developers to choose
the speci�c tools and libraries they need for their projects, o�ering greater �exibility
and control.

Figure 3.16: Flask logo

3.6.6 sQLite database

SQLite is a C-language library that provides a lightweight, self-contained, high-
reliability, full-featured, SQL database engine. Unlike traditional client-server database
systems (like MySQL or PostgreSQL), SQLite is an embedded database, meaning it
doesn't require a separate server process. Instead, the SQLite library is linked di-
rectly into the application, and the database itself is stored in a single, cross-platform
�le on disk.

Figure 3.17: SQLite logo

3.6.7 Visual Studio code

Visual Studio Code (VS Code) is a lightweight yet highly capable source code editor
developed by Microsoft. Supporting a broad range of programming languages, it
is particularly well-regarded for Python-based machine learning projects due to its
adaptability and comprehensive extension ecosystem. In this study, VS Code was
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employed as the primary development environment, providing advanced features
such as intelligent code completion, real-time debugging, Git integration, and ex-
tensions like Python and Jupyter, which facilitated the seamless development and
evaluation of the deep learning model. Its intuitive interface, combined with power-
ful tools, played a crucial role in enhancing coding e�ciency and supporting e�ective
model experimentation.

Figure 3.18: Visual Studio Code logo



General Conclusion

In this work, we focused on road tra�c forecasting, a key component of intelligent
transportation systems and urban mobility management. We proposed a hybrid
methodology combining Matrix Pro�le analysis to detect recurring local patterns
(motifs) in univariate time series with subsequence clustering, followed by a deep
learning framework based on LSTM networks.

Each identi�ed cluster was associated with a specialized LSTM model trained to
capture its unique temporal behavior. During inference, new tra�c data windows
were routed to one or more of these models, and their outputs were aggregated to
produce the �nal forecast. The experimental results con�rmed the e�ectiveness of
this approach, demonstrating its ability to discover structural temporal patterns and
improve predictive accuracy. Future work may focus on extending the methodology
to multivariate tra�c data for more comprehensive forecasting, exploring advanced
architectures such as Transformers or Graph Neural Networks to better capture
complex temporal and spatial relationships, integrating real-time tra�c data with
adaptive learning for dynamic updates, considering external factors such as weather
and special events to enhance prediction reliability, and applying the approach to
anomaly detection to support tra�c management and safety measures.
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