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Abstract

Across most parts of the world, the number of vehicles is rapidly increasing, while
road infrastructures remain relatively unchanged. This imbalance has led to growing
traffic congestion in many urban areas. Urban traffic control systems can play a vital
role in reducing congestion and optimizing traffic flow. Their effectiveness, however,
depends on continuous access to accurate traffic flow information, which is typically
collected through sensors distributed across the road network.

Since the installation and maintenance of such sensors can be costly, a more
economical alternative is to deploy a limited number of sensors and rely on artificial
intelligence techniques to predict traffic intensity at various locations throughout
the city.

In this study, we propose a deep learning—based architecture that is both complex
and efficient for short-term urban traffic forecasting. The proposed approach incor-
porates clustering algorithms, time series clustering, motif discovery, and the matrix
profile, which together enhance the understanding of the internal structure of traffic
flow and improve the solution search process for this supervised regression problem.
Integrating these techniques enables the system to identify recurrent patterns, struc-
tural similarities, and meaningful subsequence relationships within traffic flow data,
thereby strengthening the prediction model and improving forecasting accuracy.

Our experimental results show that traffic flow can be accurately predicted by
analyzing its variation over the previous hour. Notably, the findings indicate that
the system can produce reliable forecasts without requiring contextual information
such as the current time, day of the week, or type of day (holiday, working day,
ete...).

Keywords : Urban traffic forecasting, Deep learning, Traffic flow prediction,
time series clustering, Motif discovery, Matrix profile, Traffic congestion, Sensor
data, Short- term prediction, Pattern recognition, Clustering algorithms, Traffic
flow variation.



Résumé

Dans la plupart des régions du monde, le nombre de véhicules augmente rapi-
dement, tandis que les infrastructures routiéres restent relativement inchangées. Ce
déséquilibre a entrainé une congestion croissante dans de nombreuses zones urbaines.
Les systémes de controle du trafic urbain peuvent jouer un role essentiel dans la ré-
duction de la congestion et 'optimisation de la circulation. Leur efficacité dépend
toutefois de 'accés continu & des informations précises sur le flux de trafic, générale-
ment collectées via des capteurs répartis sur le réseau routier.

Etant donné que l'installation et la maintenance de ces capteurs peuvent étre
coliteuses, une alternative plus économique consiste a déployer un nombre limité de
capteurs et a utiliser des techniques d’intelligence artificielle pour prédire I'intensité
du trafic a différents endroits de la ville.

Dans cette étude, nous proposons une architecture basée sur ’apprentissage pro-
fond, a la fois complexe et efficace pour la prévision du trafic urbain a court terme.
L’approche proposée integre des algorithmes de clustering, le clustering de séries
temporelles, la découverte de motifs (motif discovery) et le matrix profile, qui en-
semble améliorent la compréhension de la structure interne du flux de trafic et
optimisent le processus de recherche de solutions pour ce probléme de régression
supervisée. L’intégration de ces techniques permet au systéme d’identifier les motifs
récurrents, les similarités structurelles et les relations significatives entre les sous-
séquences des données de trafic, renforcant ainsi le modéle de prédiction et amélio-
rant sa précision.

Les résultats expérimentaux montrent que le flux de trafic peut étre prédit avec
précision en analysant ses variations au cours de I'heure précédente. De plus, les
résultats indiquent que le systéme peut produire des prévisions fiables sans nécessiter
d’informations contextuelles telles que I’heure actuelle, le jour de la semaine ou le
type de journée (jour férié, jour ouvrable, etc...).

Mots-clés : Prévision du trafic urbain, Apprentissage profond, Prédiction du
flux de trafic, Clustering de séries temporelles, Découverte de motifs, Matrix profile,
Congestion du trafic, Données de capteurs, Prévision a court terme, Reconnaissance
de motifs, Algorithmes de clustering, Variation du flux de trafic.
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(General Introduction

Modern urban mobility systems are under growing pressure from population
growth, increased vehicle usage, and the demand for sustainability in transport
operations. Accurate road traffic forecasting plays a critical role in intelligent trans-
portation systems (I'TS), enabling proactive traffic control, efficient routing, conges-
tion mitigation, and improved traveler information services.

Road traffic forecasting using collected data from road sensors refers to the task
of predicting future traffic conditions such as vehicle flow, speed, or density based
on historical observations and possibly contextual or external factors. It is a time
series regression problem where forecasting horizons vary depending on the dura-
tion needed to obtain the response (latency) and the planned use of this forecast.
In shorter forecasting horizons, the task is often characterized by the need for high
temporal resolution and precise modeling of local dynamics, including sudden fluc-
tuations due to traffic signals, incidents, or short-term demand surges (e.g., after
large events). In contrast, forecasting traffic over longer horizons requires modeling
more abstract, slowly evolving components of the data, such as seasonality (e.g.,
weekly or monthly cycles), long-range dependencies, and behavioral trends. Despite
their differences, forecasting in both regimes benefits from a deeper understanding
of underlying temporal structures. Time series subsequence analysis allows studying
dynamic behaviors such as congestion formation, rush-hour peaks, or cyclic disrup-
tions. A commonly used technique for processing time series subsequences is motif
discovery, which automatically identifies repeated subsequences using the Matrix
Profile technique or other methods.

Time series subsequence clustering, when performed without precautions, can
yield misleading or trivial results. However, recent methodological advances, espe-
cially the use of the Matrix Profile technique, have enabled more robust and inter-
pretable clustering. This motivates the integration of data-driven learning models
to enhance both robustness and interpretability of time series subsequences. In
particular, representations of local behaviors, such as subsequence clustering based
on motifs discovered within a deep forecasting pipeline, provide a structured and
explainable path toward more reliable ITS.

In this context, this work explores the integration of Matrix Profile- driven tem-
poral pattern discovery with deep learning models to improve forecasting accuracy
and interpretability in road traffic systems. By incorporating motif-level informa-
tion in meaningful clustering operations when processing historical traffic time series,
we aim to guide neural models toward learning more meaningful temporal patterns,
enhance their capacity to adapt and generalize across regimes, and facilitate adapta-
tion across both short- and long-term forecasting scenarios. This thesis is structured
into three main parts.
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Part 1 "Elementary Time Series and Deep Learning Forecasting Concepts”:
introduces fundamental concepts of time series and deep learning forecasting, pro-
viding the theoretical foundations required to understand traffic prediction models.

Part 2 "Motif-Based Time Series Clustering for Deep Learning”: focuses on
motif-based time series clustering for deep learning, explaining how the Matrix Pro-
file technique is used to identify and cluster recurring patterns to enhance model
interpretability.

Part 3 "TraffiCost Web Application”: presents the implementation of the pro-
posed methodology through the TraffiCost website, along with the evaluation of
forecasting results in real-world scenarios.




Chapter 1

Elementary Time Series and Deep
Learning Forecasting Concepts

In the following an introduction of elementary concepts related to Time Series
data and their processing by clustering, motif discovery, and forecasting with deep
learning architectures especially in road traffic context.

1.1 Time series elementary concepts

1.1.1 Time Series and Time Series Subsequences

A time series (or raw data) is defined as an ordered sequence of real-valued obser-
vations recorded at regular time intervals,

T: [tl,tg,...,tn] (11)

where n denotes the length of the time series and each t; corresponds to an
observation at discrete time step i. The time series is univariate if ¢; € R and it is
a multivariate if ¢; € R? with d variables observed at each time step i. In traffic
applications, T represents collected data specific to roads as vehicle counts, speed, or
density measurements and could represent additional information like temperature,
humidity, pollution measurements, all recorded at same regular intervals (e.g., every
5 minutes). In our work, we study univariate time series.

A time series subsequence is a contiguous subset of the time series defined as:

T(z,m) = {tza t(’i+1)a cee 7t(i+mfl)} (12)

where 1 <7 <n —m+ 1 and m is the fixed subsequence length. The collection
of all subsequences of length m in T is denoted:

ST = Ty | 1 S i <n—m+1) (1.3)

1.1.2 Time Series Distance Measures

In time series data mining, including tasks such as clustering and motif discovery,
quantifying the similarity or dissimilarity between time series is a fundamental step
[1]. A distance function D : R"R"™ — R maps a pair of time series or subsequences
to a non-negative real number, where a smaller value implies greater similarity.
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Several distance functions exist which use depends on the application. In the
following the mathematical expressions of Euclidean, Z-normalized Euclidean and

Dynamic Time Warping distances. Considering 7T = [t(l), tél), o ,t;l)] and 7 =
[t?), t§2), . ,tff)} two univariate time series of equal length n.

1.1.2.1 FEuclidean Distance

The Euclidean distance is the most commonly used metric for comparing two time
series of equal length. It is defined as:

Dyue(TW, 1) = |3 Y — )2 (1.4)
i=1
While computationally efficient, Fuclidean distance is sensitive to misalignments
and does not perform well under temporal distortions or shifting [2].

1.1.2.2 Z-normalized Euclidean Distance

To compare time series that may differ in amplitude or offset but are structurally
similar, z-normalization is typically applied. It ensures invariance to scaling and
shifting, which is crucial in tasks like motif discovery. The z-normalization of a time
series T is given by :

. Tk _ L (i)

T® = , ke{l1,2} (1.5)

Or(k)
where fipu) and o, are the mean and standard deviation of ™), respectively.
The z-normalized Euclidean distance is then computed as:

n

Dygve(TO,T®) = | Y (@Y )2 (1.6)

i=1

For subsequence series analysis (e.g., with Matrix Profile), distances are often
computed between z-normalized subsequences T{;,,) and T{; ) :

-1

D(Timy> Tijm)) = (Eirry = Tim))? (1.7)
0

3

i

This formulation is invariant to mean and variance, enabling the detection of
motifs that differ in absolute scale but are of similar shape [3].

1.1.2.3 Dynamic Time Warping (DTW)

Dynamic Time Warping is a non-linear distance measure that allows temporal mis-
alignments between sequences by computing an optimal alignment path. It is defined
via dynamic programming as:

DTW (i — 1, )

DTW (i,5) = [[t” — ¢%]| + min { DTW (i, j — 1) (1.8)
DTW(i—1,5—1)
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with boundary conditions DTW (0,0) = 0 and DTW (7,0) = DTW(0,j) = oc.
The final distance is DTW (n,n). DTW is effective for handling local warping and
misalignment but is computationally more expensive (typically O(n?)) [4] , |5]-

1.2 Time Series Clustering and Subsequence Clus-
tering

Time series clustering aims to partition a set of time series ¥ = {71 72 701
into k clusters C' = {C1, Cs, ..., Cy} such

Time series subsequence clustering, in contrast to time series clustering, operates
on a single time series T by extracting overlapping subsequences 1{; ,,,) and clustering
them based on their mutual similarity. Each subsequence T{;,,) € R™ can be treated
as a point in an m-dimensional space.

1.2.1 k-means for time series

The literature presents several clustering methods for time series clustering and
subsequences clustering, each with its advantages and drawbacks such as : k-means ,
density-based methods, Hidden Markov Model (HMM )-based clustering,Hierarchical
clustering, Spectral Clustering [6].

Let a set of subsequences S(Tm) = {Tum) = [tistasr)s - tarm-n) | 1 <0 <
n —m + 1} with a given window length m. The goal of k-means clustering is
to partition these subsequences into k clusters {C1,Cy, ..., Ck} by minimizing the
within-cluster variance. Formally, k-means minimizes the objective function:

T=3 X W — il (1.10

J=1 \T(s,m)€C;

where p; is the centroid of cluster C;; defined as:

1
= e > Tim (1.11)

J T(i_’m>ECj
The algorithm of k-means proceeds iteratively on the following steps:
1. Initialize k centroids randomly or based on previous knowledge.

2. Assign each subsequence 1{; ,,) to the nearest centroid according to a distance
measure (e.g., Euclidean distance or z-normalized Euclidean distance).

3. Update centroids p; based on current assignments.

4. Repeat steps (2) and (3) until convergence measured by assignments stabilize
or objective J decreases below a tolerance.
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Also, in time series clustering, z-normalization of subsequences is often applied
prior to distance computation [1]:
=~ T(i m) — HT(; )

i) = ———————— 1.12
(i;m) — (1.12)

1.2.2 Silhouette Coeflicient

The clustering effectiveness is measured by the intra-cluster similarity which should
be maximized and a minimized inter-cluster similarity. Several indexes are used to
assess the effectiveness of a time series clustering, such as Silhouette Coefficient,
Davies—Bouldin Index, Dunn Index, and WCSS (Within-Cluster Sum of Squares)
[7]. Internal clustering validation metrics focus on the compactness and separation of
clusters. In particular, the Silhouette Coefficient evaluates the degree of confidence
in the assignment of each point to its cluster.
For a subsequence T{; ,,) assigned to cluster C:

e Let a(7) denote average distance from 7{; ) to all other subsequences in Cj:
, 1
a(z) = —|C | — 1 Z D(T(i,m)aT(j,m)) (1.13)
p

T(i,m) GCP

Where D(.,.) is a distance function (e.g., Euclidean or DTW).

e Let b(z) denote the minimum average distance from 7}, ,,) to all subsequences
in other clusters Cy, ¢ # p:

b(i) = min | — D(Timy, T(jm)) (1.14)
i |Cq| T(j;)ecq (3,;m)s £ (j,m)

e The silhouette score of T{; ) is defined as:

b el
S(Z)_max{a()b()} 1<s(i) <1 (1.15)

The overall silhouette score is the mean over all data points:

1 N
= N; (1.16)

Near to 1 values mean well-clustered and near to 0 values mean overlapping
clusters. It provides a per-sample and global measure of clustering quality. Tts main
drawback is that it is computationally expensive for large datasets.
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1.3 Motif Discovery in Time Series

A motif is defined as a pair or set of pairs of similar subsequences in a time series.
Motif discovery aims to identify k most similar pairs of subsequences:

motif, = arg mkin D(Timys T(jm)) (1.17)
li—j>w
Where D(.,.) is a distance measure (typically Euclidean distance), and w is an
exclusion zone to avoid trivial matches (overlapping similar subsequences).

1.3.1 Matrix Profile

The Matrix Profile method is often used to guide meaningful subsequence compar-
isons efficiently. It is based on MASS (Mueen’s Algorithm for Similarity Search)
and provides a scalable solution for motif and discord discovery.

The resulting matrix profile M P € R"™™! is a vector that stores the distance
to the nearest non-trivial matching subsequence for each T; ,,,), formally defined as:

MP}W) [Z] = 1<j£r7111_nm+1 diSt(T(i7m), T(jjm)) (1.18)
fi—jlzm

where dist is the z-Euclidean distance between T{; ,,,) and its nearest non-trivially
overlapping neighbor in S;m). The default exclusion zone is w = m/2.

Additionally, the matrix profile index vector PI stores the location (index) of
the nearest neighbor to each subsequence:

Pfém) [i] = arg 1<j£ITILiEIm+1 dist (T(i,m), T(j,m)) (1.19)
fi=jl=m

Motifs M correspond to the lowest values in M P while discords correspond to
the highest values:

M = {T(m) € S5 | dist(Tjmy, Tiiemy) < €} (1.20)

Matrix Profile algorithms such as STOMP [8], SCRIMP++ [9], and SCAMP [10]
reduce the computational problem of motif discovery, lowering complexity from the
naive O(n?) pairwise distance computation to amortized near-linear time. These
algorithms enable exact, scalable motif discovery on long time series that were pre-
viously intractable [11].

In the road traffic context, motifs often correspond to recurring congestion pat-
terns or temporal traffic behaviors such as morning rush hours.

1.4 Fundamentals of Deep Learning Architectures

Effective traffic forecasting models must handle challenges such as non-stationarity,
missing values, and anomalies. Deep learning methods have shown particular effec-
tiveness in learning such complex, non-linear patterns from time series data. Sev-
eral architectures can be used in a deep learning model including: Recurrent Neural
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Networks (RNNs), Long Short-Term Memory networks (LSTMs), Temporal Convo-
lutional Networks (TCNs), and more recently Transformer-based models, commonly
used for forecasting tasks.

1.4.1 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANNs) are computational models inspired by the struc-
ture and functioning of biological neural systems. Formally, an ANN is a directed
graph composed of layers of units (neurons), where each unit performs a weighted
summation followed by an activation function.

Let X = [11,29,...,2,]7 be the input vector and W = [wy,wy, ..., w,]|T the
weight vector for a given neuron. The output of a single artificial neuron can be
expressed as:

z = Zwixi +b=WTX +1b, (1.21)

y=o(2), (1.22)

where b is the bias term and ¢(-) is a nonlinear activation function such as
sigmoid, tanh, or ReLlLU [12].
The general structure of ANNs is organized into three main types of layers:

e Input Layer: Each neuron corresponds to an input feature. For example,
with three features, the input layer contains three neurons.

e Hidden Layers: A multilayer perceptron (MLP) consists of one or more
hidden layers, each containing several neurons that transform and refine the
information received from the input layer.

e Output Layer: This layer produces the final prediction. If multiple outputs
are required, the number of neurons corresponds to the number of predicted
values.

ANNSs include perceptrons, MLPs, and recurrent neural networks (RNNs), which
are described in the following sections, as well as other architectures such as convo-
lutional neural networks (CNNs).

1.4.2 Single-Layer Neural Network (Perceptron)

The perceptron is the simplest ANN, consisting of one input layer directly con-
nected to one output neuron (or output layer) with no hidden layers. It can only
learn linearly separable patterns and performs binary classification based on a linear
threshold function. The decision rule is given by:

(1.23)

)1, i WTX >t
V= 0, otherwise,

where ¢ is the decision threshold. Although limited to linearly separable prob-
lems, the perceptron forms the foundation for deeper architectures [12].
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Output Layver

Figure 1.1: Single layer perceptron |\

1.4.3 Multi-Layer Perceptron (MLP)

A Multi-Layer Perceptron (MLP) is a feedforward neural network with one or more
hidden layers between the input and output. Each hidden layer applies an affine
transformation followed by a nonlinear activation. Let X € R" be the input and
y € R™ the output. For a network with L layers, the transformations are recursively
defined as:

RO — x (1.24)
hO = o (W(z)h(H) 4 b(l)) forl = 1..L (1.25)
j=h®) (1.26)

Each layer is fully connected, meaning every neuron in layer [ — 1 is connected to
every neuron in layer [. MLPs are universal function approximators and are widely
used in regression and classification tasks.

Figure 1.2: Multi-Layer Perceptron |\
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1.5 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are neural architectures designed for modeling
sequential data, such as time series, speech, and text. Unlike feedforward networks,
RNNs maintain an internal state that captures dependencies over time. Let X, € R?
denote the input at time ¢ and h; € R" the hidden state. The standard RNN updates
are given by:

ht = @(thxt -+ Whhht + bh) (127)

Gr = Y (Wiyhe + by) (1.28)

Where ¢(-) is typically a tanh or ReLU activation, and ¢ (-) is the output activa-
tion (e.g., softmax for classification). The hidden state acts as a memory, enabling
temporal pattern learning.

However, standard RNNs suffer from the vanishing gradient problem, limiting
their ability to model long-term dependencies. To address this, gated variants such
as LSTM and GRU have been developed.

1.5.1 Long Short-Term Memory (LSTM)

LSTM architecture introduces a memory cell with gated mechanisms to control in-
formation flow. The gates allow selective reading, writing, and forgetting of informa-
tion, enabling LSTMs to capture long-term patterns across thousands of timesteps.
The LSTM updates consist of:

fi =0 (Wylhi—1, 2] +b5) (Forget gate) (1.29)

iv =0 (Wilhi—1, ) + b;)  (Input gate) (1.30)

C, = tanh (We[hy_y, z] + be)  (Cell candidate) (1.31)
Co=f0C_1+i0C, (Cell state update) (1.32)
or =0 (Wylhi_1,2] +b,) (Output gate) (1.33)

hi = 0¢ ® tanh(Cy) (Hidden state) (1.34)
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Figure 1.3: LSTM neuron architecture [13|

1.5.2 Gated Recurrent Unit (GRU)

GRUs are a simplified variant of LSTM that merge the forget and input gates into
a single update gate, and use a reset gate to control the contribution of the previous
state:

2z =0 (W,lhi—1, 2 +b.) (Update gate) (1.35)
re =0 (Wylhi—1, 2] + b)) (Reset gate) (1.36)
hy = tanh (W, [r, © he_1, x] + by) (1.37)
he=(1—2)@hy+ 20 h (1.38)

GRUs reduce computational complexity while preserving long-term memory ca-
pacity and are commonly used in sequence modeling tasks with limited training
data.
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Ly

Figure 1.4: Architecture of Gated Recurrent Unit [13|

1.6 Formalisation of road Traffic Forecasting with
time series data

Let T € R™ be a time series with n timesteps and d = 1 for a single studied variable,
and let x; € R denote the observation at time ¢. The goal of traffic forecasting is to
estimate a sequence of future values

over a prediction horizon H.

Formally, the forecasting function f maps a historical subsequence (window) of
length m to a future sequence:

Xryvren = F(Xromit, Xroma2, -+ X1), (1.39)

where f can be implemented using statistical models (ARIMA, Kalman Filters)
or data~-driven models (LSTM, TCN, Transformer-based architectures).

The objective of these models is to reduce error metrics (loss functions) such as
Mean Squared Error, Root Mean Squared Error (RMSE), or Mean Absolute Error
(MAE):

N
1 , )
1(0) = ¥ > Il fo(X ) — @2 (1.40)
i=1
1 H
MAE = — hz_; B — Trn] (1.41)

H
/1 R
RMSE = q hE_l(xT-&-h — i) (1.42)

These metrics are commonly used to evaluate forecasting performance across
different horizons and traffic conditions.
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A general deep learning model can be formulated as a function f, : R" — R"
parameterized by weights 0, mapping a time-series input 7' = [ty,1s,...,t,] to a
prediction:

?Jt—&-l:t-ﬁ-h = f@([tla tQa s 7tt]> (]‘43)

where h is the forecasting horizon.

In short-term forecasting, h is small and typically ranges from a few minutes up
to one hour ahead (e.g., 5-15 minutes). Models such as ARIMA, SVR, LSTM, and
TCNs are commonly used.

Long-term forecasting covers horizons from several hours to multiple days. The
forecasting function becomes:

Xt+1:t+H = fe(ilflzt, El:t) (1-44)

since long-term prediction is more sensitive to error accumulation E and requires
more robust generalization.
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Motif-Based Time Series Clustering
for Deep Learning

2.1 Introduction

In this work we aim to improve DL models generalisation for time series forecasting
task based on subsequence clustering. The goal of time series subsequence clustering
is to group similar subsequences extracted from a longer time series into meaningful
clusters.

However, achieving meaningful clustering of time-series subsequences faces sev-
eral challenges. First, as highlighted by |14] , subsequences extracted using a sliding
window tend to be highly overlapping and therefore extremely similar, which leads
to trivial matches and prevents the discovery of truly meaningful patterns. In addi-
tion, meaningful clustering requires an appropriate normalization strategy to ensure
scale invariance. Yet, as noted by [15], improper normalization may distort the
underlying patterns and mislead the clustering process. Finally, specifying a prede-
fined number of clusters (k) may not reflect the true structure of the data, and the
resulting clusters must remain interpretable within the specific application domain.

Our approach addresses these issues by assuring an appropriate subsequence
processing. It normalizes subsequences to zero mean and unit variance with z-
normalization. Also, it employs the silhouette validation metric to select an optimal
number of clusters (k) with semantically meaningful patterns. Matrix profile method
is integrated into the k-means algorithm employed for clustering to fit with time
series clustering characteristics. More details are provided in the following sections.

2.2 Related work

The authors of [16] proposes a forecasting framework that enhances an attention-
based LSTM by adding features derived from the Matrix Profile (MP), computed
on each COVID-19 indicator to capture weekly patterns. The MP reveals similar
subsequences (motifs) and anomalies (discords), and these structural signals are
transformed into features and concatenated with the model inputs. This helps the
attention mechanism focus on historically similar patterns and detect deviations.
Two variants (LSTM-MatAtt and LSTM-RelAtt) are evaluated, both outperforming
classical baselines and LSTMs without MP.

14
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The pipeline of their approach is composed of three steps:
1. MP-based subsequence clustering.
2. Cluster-specific LSTM models with attention.

3. Validation on U.S. COVID-19 data. Results show superior accuracy and prac-
tical use for resource planning and emerging-variant detection.

In contrast, study [17] clusters full time-series subsequences to build special-
ized datasets trained with LSTMs optimized using the ARDE algorithm. Although
results are acceptable, the methodology suffers from a major theoretical flaw: sub-
sequences are clustered with k- means despite overlapping segments, making the
clustering unreliable. However, the ARDE Adaptive Random Differential Evolution
based hyperparameter optimization remains valid and effective.

2.3 Overview of the traffic flow forecasting based on
motif discovery approach

Figure shows the two main components of our proposed approach which are
explained in the following:

C1
DI modele
=
o =
date time = Z \‘
01-01-2019 | 00 :00 -00 o 51 el Cz2 o =
8 == . » — DL modele 174
& 2z Clustering L 2 Ensembl 8
3] ] o
f ] . Ck1 e g
2 2 algorithm 1—p | o =
=] = DL modele 1% learning @
- [72]
. = k-1 M 5]
Tn?le 8 —L’ Cxk approach g
series DL modele He
| K
Time series subsequence clustering K Deep ensemble learning
obtaine approach

Figure 2.1: The two main components of the proposed approach

2.3.1 Motif discovery-based clustering

Based on the complete time series, the objective of this first stage is to group struc-
turally similar subsequences. The Matrix Profile is employed as the primary tool
for extracting motifs, i.e., low-distance subsequences. A filtering process is then
applied, where only the most representative motifs are retained, while high-distance
subsequences are discarded as they typically correspond to anomalous behaviors
(discords). The retained motifs are aggregated into groups according to the pres-
ence of a shared common subsequence, producing small initial clusters that serve as
proto-clusters for the subsequent clustering phase. This is justified by the fact that
all subsequences within each group exhibit similarity through transitivity. Once
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these initial groups are established, their representative centroids are computed,
forming the basis for the final clustering step, which is performed using the k-means
algorithm.

2.3.2 Deep ensemble learning

(k)-LSTM-based models are fitted to the obtained (k) clusters. A splitting prepro-
cessing step is performed to split each cluster’s subsequences into training, valida-
tion, and test sets. The LSTM hyperparameters are initially extracted from the
results. Each LSTM model is then trained on its corresponding cluster indepen-
dently of the others. depending on the chosen ensemble learning strategy.

During inference, a new subsequence is first assigned to the nearest cluster by
measuring its distance to the cluster centroid. Once the belonging cluster is deter-
mined, the subsequence is forwarded to the specific LSTM model trained for that
cluster to produce the forecast. The final behavior (whether models are combined
or used separately) depends on the ensemble design chosen in advance.

This approach goes on the following steps using specific methods as shown in

figure 2.2}

1. After dataset preprocessing step, windowing the time series into overlapping
subsequences is an elementary step of our approach.

2. Matrix Profile (MP) and Matrix Profile Index (PI) computation using z-
normalized Euclidean distance.

3. Motif discovery via best-neighbor pairs and index-similarity grouping to form
motif sets.

4. Centroid extraction from each motif set to made initial cluster prototypes.

5. Subsequence clustering, initialized by motif centroids and using extracted sub-
sequences into (k) clusters using DTW.

6. Local deep models trained one per cluster.

7. At inference, ensembling to produce the final forecast.
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[ dataset preprocessing +windowing ]
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Matrix Profile computation
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Motif discovery & grouping
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Figure 2.2: Steps of the proposed forecasting approach

2.4 Details of the proposed approach

2.4.1 Datasets and preprocessing

Three datasets of univariate traffic flow collected from different locations, namely
1280- S, M50-N, and M1-N, were employed in this study. The first dataset cor-
responds to a road segment in San Francisco, USA, while the other two represent
traffic flow from motorways in Dublin, Ireland. The San Francisco dataset was ob-
tained from the Caltrans Performance Measurement System (PeMS), whereas the
Irish datasets were sourced from the Transport Infrastructure Ireland (TII) database.
The corresponding access links to these repositories are provided below:

e TII: https://trafficdata.tii.ie
e PeMS: http://pems.dot.ca.gov

The data collection period extends from March 28, 2018 to March 31, 2019.
Each dataset consists of three attributes: Date, Time, and Count, where the Count
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denotes the average number of vehicles recorded by road sensors at regular 15-
minute intervals. For consistency in the subsequent analysis, the time intervals were
resampled into 15-minute windows, resulting in an equal number of samples across
identical time spans. Further details about these datasets are provided in Table

Dataset | Segment | Location | Detector | Detector | Direction| Source
No. Type (Database)
1280-S | Highway | San #S-1280 | Inductive| South- PeMS
1280 Fran- Loop bound (Cal-
cisco, trans)
USA
M50-N | M50 Dublin, #M50-07 | AutomaticNorth- TII (Ire-
Ireland Traffic | bound | land)
Counter
M1-N | M1 Dublin, #M1-12 | AutomaticNorth- TII (Ire-
Ireland Traffic | bound | land)
Counter

Table 2.1: Datasets Description

Before using this raw data, required verifications and preprocessing steps are
performed:

1. Resampling and alignment: Done implicitly, because the dataset already has
a fixed time step [A = 15 minutes|.

2. No missing values were detected in the inspected dataset, and therefore no
imputation was required.

3. No outlier handling since data is collected from normal flow without anomalies
like accidents.

The output of these steps is a cleaned time series ready to be used for further
rigorous processing.

2.4.2 Subsequence extraction

The subsequence length m is fixed to 96, which corresponds to one full day of traffic
measurements sampled at a 15-minute interval (A = 15). A stride of 1 is used
to ensure that all possible subsequences are captured without any loss of temporal
information during the deep learning model training phase.

Selecting an appropriate window length is crucial. Larger values of m generate
high-dimensional subsequences where distance measures lose discriminative
power, a known effect referred to as distance concentration in high-dimensional
spaces (Beyer et al., 1999). As a result, motif discovery becomes less frequent, the
number of available samples decreases, and the computational cost increases.

Conversely, smaller values of m produce a larger number of subsequences and
increase the sensitivity to short-term fluctuations. However, they also amplify re-
dundancy, trivial matches, and instability in clustering, often capturing noise rather
than meaningful temporal motifs—as highlighted by [10] .
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The overlapping subsequences extracted from a time series
SE = ATty = [tir - tigma] | i=1,...,n —m +1, stride = 1} (2.1)

where n is the total number of time points.
Thus, the total number of overlapping subsequences is computed as:

Number of subsequences = M +1 (2.2)
stride
For the dataset used in this study, n = 35,425. With a stride of 1, the total
number of generated subsequences is:

Number of subsequences = (35,425 — 96)/1 + 1 = 35,330 (2.3)

The choice of a stride equal to 1 ensures that all possible subsequences are
included, enabling a comprehensive and lossless exploration of temporal patterns.

2.4.2.1 Normalization

Normalization is applied to ensure that all features operate on a comparable scale
and to prevent biases caused by heterogeneous value ranges. In this work, Min-Max
scaling was used to linearly transform the traffic Count values into the [0, 1] range.
This technique preserves the relative structure of the data while standardizing its
amplitude, making it more suitable for subsequent deep learning and clustering
tasks. The Min-Max normalization is defined as:

T —minx

= , (2.4)
maxr — minz

Where x represents the original value and 2’ the normalized value. This scaling
enhances numerical stability, accelerates training, and prevents features with large
magnitudes from dominating the learning process.

Alternatively, standardization (Z-score normalization), defined as

/ r— M
= — (2.5)

Rescales the data using the global mean p and standard deviation o. Unlike
Min-Max scaling, Z-score normalization produces values centered around zero with
unit variance. Its main advantage is robustness to outliers and suitability for models
that assume Gaussian distributions. However, Min-Max scaling is often preferred
for LSTM-based models and distance-based clustering because it preserves the orig-
inal data boundaries and prevents distorting temporal patterns. Considering these
advantages and the characteristics of traffic flow data, Min-Max scaling was selected
for this study.

2.4.3 Matrix Profile and Motif Index

To compute the Matrix Profile (MP) and the Profile Index (PI) using the z-normalized
Euclidean distance, we employ the STOMP /SCRIMP++ algorithms as implemented
in the stumpy library. These algorithms run in O(nlogn) time in practice due to
FFT-based convolution, although the theoretical worst-case remains O(n?) for a
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time series of length n |18] . An exclusion zone of w = m/2 is applied to eliminate
trivial overlaps between neighboring subsequences.
The Matrix Profile and its index are defined as:

MP[i] = min ||Tm) — Tl (2.6)
J:li—jl= 2
P][Z] = arg min T(i,m) — T(j7m)‘ s (27)
Jili=jlz 2

where sz denotes the i"* z-normalized subsequence of length m.
For our dataset (n = 35,425, m = 96), the total number of extracted subse-

quences is:
n—m—+ 1= 35,330. (2.8)

The resulting Matrix Profile values are then sorted in ascending order to identify
the closest pairs of subsequences, i.e., the motifs. Table reports the top-5 motifs
with the smallest profile distances.

Datetime Profile distance Profile index
2018-06-20 19:00:00 0.408901 6796
2018-06-06 19:00:00 0.408901 8140
2018-06-20 18:45:00 0.417791 6795
2018-06-06 18:45:00 0.417791 8139
2018-06-06 18:30:00 0.422036 8138

Table 2.2: motifs extracted from the Matrix Profile.

These results show that each subsequence in the Datetime column is highly
similar to the subsequence referenced by its corresponding Profile index, with Matrix
Profile distances below 0.5. The similarity is therefore established between the two
matched subsequences (each having its own timestamp), and not necessarily between
identical times of the day. This confirms the presence of recurrent motifs in the
traffic flow data and validates the Matrix Profile as an effective tool for discovering
repeated temporal patterns.

Matrix Profile
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Figure 2.3: Matrix Profile

2.4.4 Motif discovery and index-similarity grouping

The motif discovery phase is carried out through several processing staps.
First, only motif pairs whose Matrix Profile distance is below a similarity thresh-
old 7 are retained. In this work, 7 is defined as the mean Matrix Profile value:
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|MP|
T:m%ﬂZ;MPM (2.9)

where:

e |MP]| is the length of the Matrix Profile,

e M PJi] is the profile distance at index i.

A motif pair (7, 5) is therefore kept if:

MPl <7 A fi=jl=%

(2.10)

m: is the subsequence length.

In our implementation, the notion of pairs is expanded into groups based on
transitive similarity.If subsequence i is similar to subsequence j, and j is also similar
to k, then i and k are considered part of the same motif group.

Third, trivial matches caused by fully overlapping subsequences are removed.These
occur when both subsequences of a motif pair overlap significantly with another mo-
tif pair, producing redundant matches. Such pairs are discarded.

Additionally, not all subsequences below the threshold are considered. To ensure
only the strongest motif candidates, we restrict the selection to distances belonging
to the first quartile of the Matrix Profile distribution.

Finally, motif groups are constructed using an undirected graph representation.
Each subsequence index is treated as a node, and an edge is added between nodes
belonging to the same motif pair.

The connected components of this graph correspond directly to the final motif
groups.

Quelgues motifs identifiés (3 paires)

1750 .
Time Series
—— Motif 0 - part 1
Motif 0 -
1500 otif 0 - part 2
—— Motif 1 - part 1
—— Motif 1 - part 2
1250 —— Motif 2 - part 1
—— Motif 2 - part 2
Motif 3 - part 1
1000 —— Motif 3 - part 2
Motif 4 - part 1
Motif 4 - part 2
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T
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Figure 2.4: Detected Motifs in the Traffic Time Series

Figure illustrates the motifs identified within the normalized traffic time
series. The gray curve represents the complete time series, while each colored vertical
segment corresponds to a subsequence belonging to a motif pair detected through
the Matrix Profile. For every motif, two subsequences with highly similar temporal
shapes are highlighted (“part 1” and “part 27).




Chapter 2 22

Although these subsequences occur on different dates, they exhibit nearly iden-
tical traffic-flow behavior, reflecting repeated daily patterns in the dataset. This
visual representation confirms the presence of recurrent motifs and supports the use
of Matrix-Profile-based motif discovery in the proposed methodology.

Algorithm 1: Motif discovery from matrix profile
Input: Matrix profile file mp_df, time series time__series, subsequence
length m, max distance max__distance
Output: List of motifs and used pairs, saved CSV file
1 IMPORT libraries: pandas, numpy, networkx, matplotlib,
sklearn.preprocessing. MinMaxScaler;
2 SET parameters: m < 96, max_distance < mean__distance ;
3 Function find_all_motifs(mp_ df, time_series, m, max_distance):

4 | motifs <+ [|;
5 used__pairs < {};
6 used_indices « {};
7 for each row (idx,row) in mp df do
8 14— idx;
9 j < row['profile index'|
10 distance < row|'profile distance'l;
11 if distance > max_distance then
12 ‘ continue;
13 end
14 overlap _found < FALSFE;
15 for each (k,r) do
16 if (k>iandk <i+m/2) and (r>j andr <j+m/2) then
17 overlap found <— T RUF,
18 break;
19 end
20 if (r>iandr <i+m/2) and (k> j and k < j+m/2) then
21 overlap found < T RUFE;
22 break;
23 end
24 end
25 if overlap found = FALSFE then
26 ADD (i, j, distance) to motifs;
27 ADD (7,7) and (j,7) to used pairs;
28 ADD index ranges [i,i +m/2) and [j, j +m/2) to used_indices;
29 end
30 end
31 return motifs, used pairs;

2.5 Subsequence clustering

A basic step before any clustering algorithm is to decide the number of clusters.
Classic methods perform with a prior knowledge of data behaviour and a brute-
force search with experimental study [19).

In our work, , the determination of k also follows theses steps :
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1. a measure of the best sets extracted from the previous step. This evaluation
uses the Silhouette score to sort the previously obtained groups according to
their internal cohesion and external separation.

2. since we work on m time steps corresponding to a day duration, we suppose
three main types of traffic : weekends, working days, abnormal traffic (specific
events, accidents, roads maintenac, ...)

3. - however, experiments to assess this (k) value are conducted also with different
other values under constraints of limited available computational capacities.

K-means is the algorithm used for subsequence clustering. However, calculating
centroids for each iteration is not based on the means of overlapping subsequences,
which is proven inconsistent. Instead, centroids {p.} are initialized with extracted
medoid motifs from the previous step.

k
min D(Ty i, 117)? 2.11
{cl,...,ck},{m,...,uk}z Z (Tiims 13) (2.11)
Jj=1 T’L,'mecj
With D = DTW Also, the number of iterations is limited and a coherence test
before accepting a new calculated centroids are added to the default behaviour of

k-means.
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Input:
- Normalized time series X _norm
- medoid motifs p 1, p2, ..., pk from motif discovery
- Distance metric D {z-Euclidean or DTW)
- motif_length (length of each subsequence)
- max_iterations
- coherence_threshold (cptional)

Outpurt:
- Cluster assignments C_1, C 2, ..., C_k
- Final centroids p 1, p 2, ..., p k

steps:

1. Imitialize centroids:
- Set pj = extracted medoid motif for cluster j (j = 1,...,k)

2. Extract all overlapping subsequences:
For 1 = @ to len{¥_norm) - motif_length:
T i=3xnorm[i: i+ motif_length]
store T i

3. Repeat until convergence or max_iterations reached:

g. Asslgnment step:
For each subsequence T i:
- compute distance D(T_i, p_j) to all centroids
- Assign T i to nearest centroid -+ cluster C j

b. Update step:
For each cluster C_j:
- Compute new centroid p j_new {optiomal ccherence test)
- If distance{p j new, p j) < coherence_threshold:
- Accept g _j_new as new centroid
- Else:

- Keep previcus p_j

4. Output cluster assignments and final centroids

Figure 2.5: Pseudo-code K-means Clustering
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Algorithm 2: K-Means pseudocode for clustering subsequences

Input: Clusters dictionary containing subsequences
Output: K-Means model and results saved to disk
# Step 1: Prepare K-Means data;
# Initialize an empty list: all_subsequences = [];
for each cluster_name, cluster_data in clusters.items() do
if ’subsequences’ in cluster_data then
subseqs = cluster_datal[’subsequences’];
# Append to global dataset:
all_subsequences.append(subseqs);
end

[= T, S -

N

8 end

9 # Concatenate all subsequences: X =
np.vstack(all_subsequences);

10 # Step 2: Apply K-Means;

11 # Import: from sklearn.cluster import KMeans;

12 # Set number of clusters: K = 5;

13 # Train model: kmeans = KMeans(n_clusters=K, random_state=42);

14 kmeans.fit (X);

15 # Obtain labels and centroids:;

16 labels = kmeans.labels_;

17 centroids = kmeans.cluster_centers_;

18 # Step 3: Organize results;

19 # Create DataFrame:;

20 kmeans_results = pd.DataFrame({’Cluster_Label’: labels});

21 # Add source info:;

22 kmeans_results[’Source_Cluster’] = source_cluster_list;
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Figure 2.6: Resulting clusters of subsequences and their centroids

2.6 Local deep models

For each cluster C;, form supervised pairs by sliding input windows of length m and
forecast horizon [H]| across members of C;
Input: = [tlg_r4y, ...t ]
Target: Y;g = [tl(t,LJr), N 7t(t+H)]
Model family: LSTM with parameters [hidden size], [layers|, [dropout].
Loss: MSE/MAE/ . ..
Optimizer: [Adam f; =...,6, = ..., lr=..]
Batch: [B];
Epochs: [E].
Split: [train/val/test over time| to avoid leakage.
Regularization: early stopping / weight decay.
Rationale: Each expert/model focuses on a homogeneous shape regime, simplifying
the mapping from local history to future behaviour.
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2.7 'True vs Prediction Values for Each Cluster
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Figure 2.7: True vs Prediction Values for Each Cluster

Time Series: True vs Predicted Values (First 200 samples)
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Figure 2.8: True Vs Predicted Values (First 200 Samples)

2.8 Prediction accuracy

To evaluate the predictio accuracy of our models within each cluster, the follow-
ing four metrics are used MAE, RMSE, MSE, MAPE. MAE measures the average
amount of error between the true and predicted values, while MSE computes the
RMSE is the

mean of the squared errors and is more sensitive to large mistakes.
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square root of MSE and provides the error in the original scale of the data, whereas
MAPE gives the percentage error relative to the true values. In the implementation,
the true and predicted values for each cluster are processed separately, and these
metrics are calculated and stored in the metrics results dictionary. The results for
each cluster are then displayed, and a summary DataFrame is generated to compare
performance across all clusters, helping to identify which cluster achieves the best
accuracy and which one shows weaker performance.

Cluster MAE MSE RMSE MAPE

Cluster0 | 0.019626 | 0.000685 | 0.026171 | 3.015792
Clusterl | 0.017482 | 0.000669 | 0.025871 | 5.063007
Cluster2 | 0.011592 | 0.000249 | 0.015776 | 19.902829

Table 2.3: Prediction metrics for each cluster

2.9 Ensembling

The ensembling component combines the outputs of several independently trained
models to produce a single prediction that is typically more stable and accurate
than any individual model. In our implementation, three pre-trained models (loaded
models[0..2]) are used to forecast the next value using the same input window com-
posed of the last 95 data points. Each model generates its own prediction, and
these outputs are then averaged through a simple arithmetic mean to obtain the
final ensemble result.

The rationale behind this approach is that different models usually make different
types of errors due to variations in their training process or internal parameter
updates. By averaging their predictions, some of these individual errors can cancel
out, leading to improved robustness and higher overall accuracy. This approach,
however, assumes that all models contribute equally and that their outputs are
expressed on the same scale. For this reason, it is crucial that all models rely on the
same data pre-processing, particularly the same normalization (scaler), during both
training and prediction.

It is important to note that the predictions are not random (“parachuted”), but
are fully derived from the historical data in the last 95 points. Each cluster model
sees these points differently depending on the patterns it has learned, which explains
the differences among individual predictions.

The following are prediction results from the three clusters:

Cluster Prediction normalized
Cluster 0 0.441353
Cluster 1 0.105143
Cluster 2 0.080818
Ensemble (average) 0.209105

Table 2.4: Normalized cluster prediction results

After inverse transformation to the original scale of the data, the ensemble pre-
diction corresponds to approximately 360.97, representing the expected value of the
next time step.
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This version now:

Explains the 95-point input window.

Clarifies that predictions are data-driven, not random:.

Connects the cluster models and ensemble logic.

Presents results clearly.

Rolling test horigon

Train (t0-t5) Train(t1-t6) Train (12-t7) Train(t3-t8)
h 4
Test on t6 Test on t7 Test on t8 Test on t9
v i ¥ i
MAE RMSE MAPE

Figure 2.9: Rolling forecast evaluation
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Full Modele
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Fouting forecasting
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Figure 2.10: Compoment impact
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Time series data

|

Feature extraction eg : matrix
profil

|

Clustering algorithem

eg : K-maens DTW

Evaluate cluster quality :

* Sihouette score

o Davies bouldin Index (DBI)

¢ (Calinski-Harabasz Index
(CHI)

Figure 2.11: Clustering Evaluation workflow
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TraffiCast Web Application

3.1 Brief presentation of TraffiCast website

The TraffiCost website is an online platform that provides users with services and
tools for traffic prediction and analysis, helping them make smarter decisions. The
website includes:

e User-friendly interface for easy navigation.
e Traffic prediction module based on live and past data.

e Date and time integration, allowing users to view or choose predictions for a
specific moment.

e User account options, such as registration, login, viewing prediction history,
and profile management.

Its main goal is to aid trip planning with accurate information and so save time and
fuel consumption.

3.2 Website design

At this stage, we utilize UML diagrams to represent and describe our system.

3.2.1 Use case diagram

A Use Case Diagram is a UML diagram that provides a broad overview of a system’s
functional requirements.

3.2.1.1 Identification of Actors

Identification of actors refers to the process of determining all the external entities
that interact with a system. These actors can be human users, external systems, or
devices that exchange information or perform actions with the system.

We define two main actors in TraffiCost website :

e Users (Guest) : View traffic information and forecasts without the need to
create an account.

32
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e Registered : Access detailed traffic information and forecasts, receive person-
alized alerts, and use additional features available only to registered accounts.

3.2.1.2 Identification of the use cases

This process consists of defining specific use cases as shown on figure bellow, with
each one depicting a distinct action performed by one or more actors.

¢ View landing page : this use case describes how a user accesses the system’s
homepage, which provides general information, navigation options, and entry
points to main features without requiring login.

e Register Account : the “Register Account” use case describes the process
in which a new user creates an account in the system by providing required
information such as name, email, username, and password.

e Login : the “Log In” use case describes the process in which an existing user
accesses the system by entering valid credentials, such as a username and
password.

e Predict Traffic : the “Predict Traffic” use case describes when a user requests
traffic forecasts from the system. Using live and historical data, the system
predicts road conditions, congestion levels, and estimated travel times to help
the user plan trips more efficiently.

e View prediction history : the “View Prediction History” use case describes
the process in which a user accesses and reviews previously saved traffic pre-
dictions.

e View profile : the “View Profile” use case describes the process in which a
user accesses their personal profile within the system.

e Toggle dark mode : allows the user to switch the interface between light
and dark themes.
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3.2.1.3 Presentation of the use cases

TraffiCast System

A

Guest

view lading page

Register Account

A

Registered

Toggle Dark Mode

e D)
S~ S

Predict Traffic

view Prediction history

view Profile

Figure 3.1: Use case diagram of TraffiCost website

3.2.2 Use case specification

The use case specification for the Trafficost system describes each function of the
system in detail, defining the actors, goals, conditions, and scenarios for every use

case.

3.2.2.1 Register Account

e Text description of the case Register Account

Use Case Register Account
Actors Guest , registered .
Goal Allow new users to create an account in the system.

Pre-condition

The user has access to the registration page.

Post-condition

A new user account is successfully created and saved in the
system.

Nominal Scenario

1. The user accesses the system and selects the "Register"
option.

2. The system displays the registration form.

3. The user fills in required information (e.g., name, email,
password).

4. The user submits the form.

5. The system validates the input data.

6. If the data is valid, the system creates the new account.
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Alternative Sce- | The system displays an error message and prompts the user
nario to correct the input (returns to step 2).

Table 3.1: Text description « Register Account »

e Sequence diagram of the case Register Account

sd:
regisires
System
i
]
Acorregistred |
i
|
ref
creale account i
i
]
]
i
]
1: reguest access to the applicalion __l
hatt]
i
!
i
2: show the login page !
e mmmmeememneeeno.. 2 SHOW thE | oginpage . ]
]
]
Ffills out the field __|_|
i 4:verifier

i

i

i
i i
i i
i
alt |
|
! i
' correct information !
1 ]
! 5: display the home page !
e EEEE L L EEEEEEEEEEEEE :
| |
i i
i i
i i

- - - - - - - - - - - - - - - - - - = = = - — — -

! incorrect information !
] ]
] 6: ]
P efrormessage .. a
: |
] )
i i
i i
1 i

Figure 3.2: Sequence diagram « Register Account »

3.2.2.2 Login

e Text description of the case login

Use Case Login

Actors Guest user.

Goal To allow authenticated users to access the system by entering
valid login credentials.

Pre-condition The user must already have a registered account in the system.

Post-condition The user successfully logs into the system and is redirected to
the home page or dashboard.
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Nominal Scenario

1. The user opens the system and selects the "Login" option.
2. The system displays the login form.

3. The user enters their login credentials (email and pass-
word).

4. The system verifies the entered information.

5. If the credentials are correct, the system grants access.

6. The user is redirected to the home page or appropriate
dashboard based on their role.

Alternative Sce-
nario

if the email or password is incorrect, the system displays
an error message (e.g."Invalid email or password") (returned
step2).

Table 3.2: Text description « Login »

e Sequence diagram of the use case : Login

sd: login

actor: registerd

pc

1:0pen system

P
_______________________________________________________________ 2
]

E{ ___________

- _‘r_ -

2.display the login form

|

|

J:entre credentiale N
'HEE 4: verifier

v

'

:

\  incorrect information
i

_________________________________________________________________________

ity i

—_— e = e o o o o o e = = e e = — —— — —p — —

G-ermor message

Figure 3.3: Sequence diagram « Login »

3.2.2.3 Predict Traffic

e Text description of the case Predict Traffic

Use Case Predict Traffic

Actors Registered User.

Goal To allow actors to view or retrieve traffic predictions based on
real-time or historical data.
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Pre-condition

The user is authenticated (if required) and has access to the
prediction interface.

Post-condition

The system displays or returns traffic prediction results for a
specified area and time

Nominal Scenario

1. The user logs in and accesses the dashboard.

2. The user selects traffic prediction and enters parameters
(location, date, time).

3. The system applies the prediction model

4. The system displays the results

5. The prediction is automatically saved (allow user to view
the history.

Alternative
nario

Sce-

The user submits incomplet data , the system displays a mes-
sage requesting all required fields to be filled.

Table 3.3: Text description «Predict Traffic»

e Sequence diagram of the use case Predict Traffic

sd:
rediclioy
system

:
actor: registerd 1
]
Ref ) 1
login !
]
]
i
1: access the dashboard o
i
e ...  Zdashbordpage . :
II ]
]

’ N

3: enter parameters for traffic prediclion(eg: location , time..........) "H‘EI 4verifier
i
|
alt

: complet information
<o

- —_— = - - - - - - - - — — — — —_— — — e —_— =

incomplet information

<o

S:displays the resulta

____________________ Gmessagerequesting !

Figure 3.4: Sequence diagram « Predict Traffic »

3.2.2.4 View prediction history

e Text description of the case View prediction history
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Use Case View prediction history
Actors Registered User.
Goal Allow users to access and review their past traffic pre-

diction results.

Pre-condition

The user is logged into the system.
The system has stored previous prediction requests
made by the user.

Post-condition

The user can see a list of past predictions with relevant
details (e.g., date, time, location, predicted traffic con-
ditions).

Nominal Scenario

1. The user navigates to the "Prediction History" sec-
tion.

2. 'The system retrieves the stored prediction records
related to the user.

3. The user selects a specific record to view more details
if needed.

4. The system displays details.

Alternative Scenario

If no past predictions exist, the system displays a mes-
sage such as “No prediction history available.”

Table 3.4:

Text description « View prediction history »

e Sequence diagram of the case View prediction history

sd: histowJ

actor: register

system

Ref

i login

i 1: navigate -i
; >
| |
H i
] - o B ]
PSR 1. ... L. S i
E 3 select record __i
fé___________________________5155’!%@93_'1_%@?% ____________________________
| !
H i
H i
: ]

Figure 3.5: Sequence diagram « View prediction history »
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3.3 Global Class diagram

User

-id: integer
-firstName: String
-lastMame: String
-birthday: Date
-gender: String
-email: String
-password: String

makes

Prediction

+register() - Boolean

+login {email: String , password: String):
Boolean

+ogout() : Void

+getProfile() . User

-id : integer

-timestamp : DateTime
-predictionDate : Date
-predictionTime : Time:
-location : String
-numberOfCars : integer

+createPrediction(date - Date, time :

Time , location : string ): prediction
+getHistory(User_id: integer):
List=prediction=

Figure 3.6: Global class diagram

3.4 Relational Model

e User (id, firstName, lastName, birthday, gender, email, password)

e Prediction (id, timestamp, predictionDate, predictionTime, location, num-

berOfCars)
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3.5 The interfaces of the application

3.5.1 Landing

TraffiCast +)login &+Register €

Smarter Traffic
Starts with
TraffiCast

Predict traffic. Avoid delays. Travel smarter.

Plan ahead with precise, real-time traffic insights.

About Us

TraffiCast is your trusted partner in traffic forecasting. We provide accurate predictions
and smart routing to enhance your travel experience.

© 2025 TraffiCast. All rights reserved.

Privacy Policy ~ Terms  ContactUs

Figure 3.7: landing Interface
3.5.2 Login

TraffiCast A Home S+Register €
Login
Email:

Password:

Don't have an account? Register here

© 2025 TraffiCast. All rights reserved.

Privacy Policy Terms Contact Us

Figure 3.8: Login interface
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3.5.3 Register

TraffiCast

Register

First Name:
Last Name:

Birthday:

mm/dd/yyyy =]

Gender:
Select gender
Email:

Password:

Confirm Password:

Already have an account? Login here

© 2025 TraffiCast. All rights reserved.

Privacy Policy ~ Terms  ContactUs

Figure 3.9: Register interface

A Home

+) Login

C
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3.5.4 Traffic Prediction

TraffiCast
- - - - ~
Traffic Prediction 7
Current Date and Time: August 19, 2025 ot 085524
P
Date
a
Tirme:
D450 BM ()
Gl LeCation:
1280.5 -
Prediction Result
Predicted number of cors; 37
. aw .
Prediction History
Prediction Timastamp Date Time Lecation Humber of Cars
August 18, 2025 at 05:54:51 PM 2025-08-20 1653 MIN a7
August 18, 2025 at 055447 PM 2025-08-20 1653 MED N T
August 18, 2025 at 055318 PM 2025-08-20 1653 1280 5 12

Figure 3.10: traffic prediction intreface
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3.5.5 Prediction History

TraffiCast "D History & Profile [#logout

Traffic Prediction

Current Date and Time: August 8, 2025 at 05:57.39
PM

Date:

©9/08/2025

Time:

16:57 ©

Location A

Select Location:

Location A ~

& Predict

Prediction Result

Predicted number of cars: 101

Prediction History

Prediction Timestamp Date Time Location Number of Cars

August 8, 2025 at 05:57:24 PM 2025-08-09 16:57 Location A 101

© 2025 TraffiCast. All rights reserved.
Privacy Policy Terms Contact Us

Figure 3.11: Prediction history interface

3.6 Frameworks

In the following a brief presentation of the frameworks, environments and languages
used to implement our system.

3.6.1 Python Programming Language

Python is a high-level, interpreted, and dynamically typed programming language
known for its simplicity, readability, and versatility. It supports multiple program-
ming paradigms, including object-oriented, procedural, and functional program-
ming. Python is widely used in web development, data science, artificial intelligence,
automation, and more, thanks to its extensive libraries and strong community sup-
port.
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Figure 3.12: Python logo

3.6.2 TensorFlow

TensorFlow is an open-source machine learning framework developed by Google
Brain for building and deploying deep learning and artificial intelligence (AT) models.
It provides a flexible ecosystem of tools, libraries, and community resources for
tasks such as neural network training, computer vision, natural language processing
(NLP), and reinforcement learning. TensorFlow supports CPU, GPU, and TPU
acceleration, making it scalable for both research and production environments.

TensorFlow

Figure 3.13: Tensorflow logo

3.6.3 Keras

Keras is an open-source, high-level deep learning API written in Python that runs
on top of TensorFlow. It is designed to provide an easy-to-use, modular, and user-
friendly interface for building and training neural networks. Keras supports deep
learning tasks such as computer vision, natural language processing (NLP), and
reinforcement learning, making it popular for rapid prototyping and research.

Keras

Figure 3.14: Keras logo

3.6.4 Google Colaboratory (Colab)

Google Colaboratory (Colab) is a cloud-based Jupyter Notebook environment pro-
vided by Google that allows users to write, execute, and share Python code in a
web browser. It provides free access to GPUs and TPUs, making it ideal for ma-
chine learning, deep learning, and data science projects. Colab requires no setup,
supports Google Drive integration, and allows collaboration among multiple users
in real time.
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(J

Figure 3.15: Colab logo

3.6.5 Flask framework

Flask is a micro web framework for Python, used for building web applications. It is
classified as a "microframework" because it provides a core set of functionalities for
web development, such as routing, templating, and request handling, but it does not
include features like database abstraction layers, form validation, or object-relational
mappers (ORMs) by default. This minimalistic design allows developers to choose
the specific tools and libraries they need for their projects, offering greater flexibility
and control.

Figure 3.16: Flask logo

3.6.6 sQLite database

SQLite is a C-language library that provides a lightweight, self-contained, high-
reliability, full-featured, SQL database engine. Unlike traditional client-server database
systems (like MySQL or PostgreSQL), SQLite is an embedded database, meaning it
doesn’t require a separate server process. Instead, the SQLite library is linked di-
rectly into the application, and the database itself is stored in a single, cross-platform

file on disk.
?SQLH:@

Figure 3.17: SQLite logo

3.6.7 Visual Studio code

Visual Studio Code (VS Code) is a lightweight yet highly capable source code editor
developed by Microsoft. Supporting a broad range of programming languages, it
is particularly well-regarded for Python-based machine learning projects due to its
adaptability and comprehensive extension ecosystem. In this study, VS Code was
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employed as the primary development environment, providing advanced features
such as intelligent code completion, real-time debugging, Git integration, and ex-
tensions like Python and Jupyter, which facilitated the seamless development and
evaluation of the deep learning model. Its intuitive interface, combined with power-
ful tools, played a crucial role in enhancing coding efficiency and supporting effective
model experimentation.

Figure 3.18: Visual Studio Code logo




(zeneral Conclusion

In this work, we focused on road traffic forecasting, a key component of intelligent
transportation systems and urban mobility management. We proposed a hybrid
methodology combining Matrix Profile analysis to detect recurring local patterns
(motifs) in univariate time series with subsequence clustering, followed by a deep
learning framework based on LSTM networks.

Each identified cluster was associated with a specialized LSTM model trained to
capture its unique temporal behavior. During inference, new traffic data windows
were routed to one or more of these models, and their outputs were aggregated to
produce the final forecast. The experimental results confirmed the effectiveness of
this approach, demonstrating its ability to discover structural temporal patterns and
improve predictive accuracy. Future work may focus on extending the methodology
to multivariate traffic data for more comprehensive forecasting, exploring advanced
architectures such as Transformers or Graph Neural Networks to better capture
complex temporal and spatial relationships, integrating real-time traffic data with
adaptive learning for dynamic updates, considering external factors such as weather
and special events to enhance prediction reliability, and applying the approach to
anomaly detection to support traffic management and safety measures.
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