
 

 

Algeria of Republic Democratic People's  

 

Ministry of Higher Education and Scientific Research 

University Center 

 

 

 

 
 

Abdelhafid Boussouf – Mila 

 

 

Institute: Mathematics and Computer Science 

Order N°: ……………. 

Registration number: ……………. 
 www.centre-univ-mila.dz 

 

 

 

 

Thesis 
Submitted for the degree of 

Doctorate LMD 

  

 

 

Spectral study of some problems in quantum 

mechanics 
 

 

Presented by: Amal Ladjeroud 

  

Board of Examiners 

 
 

Abdelouahab 

Mohammed Salah 
Prof 

University Center Abdelhafid 

Boussouf - Mila 
Chairman 

Boudjedaa Badredine Prof 
University Center Abdelhafid 

Boussouf - Mila 
Supervisor 

Bououden Rabah MCA 
University Center Abdelhafid 

Boussouf - Mila 
Examiner 

Boudjedaa Tahar Prof University of Jijel Examiner 

Haouat Salah Prof University of Jijel Examiner 

Bousafsaf Issam MCA University of Oum El Bouaghi Examiner 

                                                                University year: 2024/2025 

 الجمهوريـة الجزائـريـة الديمقراطيـة الشعبيـة

 

 وزارة التعليــم العالـي والبحـث العلمـي
 

 
 المركــز الجامعي

 عبد الحفيظ بوالصوف ميلـة

 

 
Department: Mathematics 

Field: Mathematics 

Specialty: Mathematics and applications 



 

 

Dedication 

 

 

To my parents 

To my sisters 

To my uncle Kamel Zemmouri 

To the memory of my grandfather Messaoud Ladjeroud 

 

I dedicate this work 



Acknowledgements 
 

I extend my deepest gratitude to my supervisor, Pr. Badredine Boudjedaa, 

for his unwavering support and insightful critiques throughout my research 

journey. His deep commitment to academic excellence and meticulous 

attention to detail have significantly shaped this dissertation, his guidance 

and advice carried me through all stages of my Ph.D journey. I am equally 

thankful to the members of my thesis committee : Pr. Mohammed Salah 

Abdelouahab, Dr. Rabeh  Bououden, Pr. Tahar Boudjedaa, Pr. Saleh Haouat 

and Dr. Issam Bousafsaf. 

This thesis is a reflection of the unwavering support and boundless love I 

received from my family during this challenging academic pursuit. I owe 

an immense debt of gratitude to my parents, my sisters : Meriem, Wissame 

and Alae, and my uncle Kamel Zemmouri for their support. 

 

 

Amal 



 

 

 

 

 

Abstract 

 
In this thesis, we resolved Schrӧdinger equation spectral problem, for few central potentials, a 
single potential is the sum of the generalized Cornell potential plus an exponential potential, 
in the framework of quasi-exactly solvable problems. The exponential potentials that were 
treated are : Morse potential, the generalized Pӧschl-Teller potential, Yukawa class potential, 
Schiӧberg potential and Manning-Rosen potential. After inserting the central potential in the 
radial equation, the effective potential became a combination of terms that made the 
resolution of the radial equation not trivial to find, for this purpose, an approximation scheme 
was used to transform the radial equation into the normal form of biconfluent Heun’s 
equation, where the solutions are known, hence the approximate bound states of Schrӧdinger 
equation and their energy eigenvalues are obtained in explicit form. At the end, for given 
values of the parameters, some of the approximate bound states and their energy levels were 
given. 

 

Keywords: 
Schrӧdinger equation, the generalized Cornell potential, quasi-exactly solvable problems, : 
Morse potential, the generalized Pӧschl-Teller potential, Yukawa class potential, Schiӧberg 
potential, Manning-Rosen potential, biconfluent Heun’s equation, approximate bound states. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Résumé : 

 
Dans cette thèse, nous avons résolu le problème spectral de l'équation de Schrӧdinger, pour 
quelques potentiels centraux, un seul potentiel est la somme du potentiel de Cornell généralisé 
plus un potentiel exponentiel, dans le cadre de problèmes quasi-exactement solubles. Les 
potentiels exponentiels qui ont été traités sont : le potentiel de Morse, le potentiel de Pӧschl-
Teller généralisé, le potentiel  de Yukawa, le potentiel de Schiӧberg et le potentiel de 
Manning-Rosen. Pour ce potentiel et par un schéma d'approximation bien précis on a pu 
transformer l'équation radiale en  l'équation de Heun biconfluente, où on a déterminé  les états 
liés approximatifs de l'équation de Schrӧdinger et leurs niveaux d'énergie correspondante  
sous une forme explicite. À la fin, pour des valeurs données des paramètres, certains des états 
liés approximatifs et leurs niveaux d'énergie associée ont été donnés. 

 

Mots clés : 
Équation de Schrӧdinger, potentiel de Cornell généralisé, problèmes quasi-exactement 
solubles, potentiel de Morse, potentiel de Pӧschl-Teller généralisé, potentiel de classe de 
Yukawa, potentiel de Schiӧberg, potentiel de Manning-Rosen, équation de Heun biconfluente, 
états liés approximatifs. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 ملخص

 
,  لبعض  الكمونات  المركزية,  )Schrӧdingerشرودنجر ( ادلةفي  هذه  الأطروحة,  قمنا  بحل  المشكلة  الطيفية  لمع

لإضافة  إلى  كمون  أسي,  في إطار  المشاكل  اب   )Cornellكورنل (مجموع  الكمون  المعمم  ل  هوالكمون  الواحد  
تالر -بوشل,  الكمون  المعمم  ل  )Morseمورس ( الشبه  قابلة  الحل.  الكمونات  الأسية  التي  تمت  معالجتها هي:  كمون

)Pӧschl-Teller(, مون  فئةك ) يوكاواYukawa(, كمون) شيوبرغSchiӧberg(مانينغكمون  و -) روزنManning-
Rosen( يصبح   دمج  لحدود  التي  تجعل  حل    ,  الكمون  الفعلي.  بعد  إدخال  الكمون  المركزي في المعادلة القطرية

إلى  الصيغة  المعادلة  القطرية  ليس  بديهيا,  لهذا  الغرض  مخطط  تقريب  سوف  يستعمل  لتحويل  المعادلة  القطرية 
أين الحلول  تكون  معروفة,  و منه  الحالات  المقيدة  ,    )Heun Biconfluente  هون بيكونفلوونت (  لمعادلة العادية 
و  القيم   الذاتية للطاقة  الخاصة  بها  يتحصل  عليها   بصورة    صريحة.   في     )Schrӧdingerشرودنجر (لمعادلة 

الات   المقيدة   التقريبية   و   مستويات   الطاقة   الخاصة   بها   المعطات,,   بعض الح  لبعض  قيم  المتغيرات    ,النهاية
   تعطى.                                                         

 

 الكلمات المفتاحية
مورس   كمون الحل,  قابلة   شبه  المعمم,  مشاكل    )Cornellكورنل (  كمون,,   )Schrӧdingerشرودنجر (   معادلة

)Morse(  ,   بوشلل المعمم  الكمون-) تالرPӧschl-Teller(, فئة   كمون ) يوكاواYukawa(,  شيوبرغ   كمون
)Schiӧberg( , مانينغ  كمون -) روزنManning-Rosen( ,  معادلة ) هون بيكونفلوونت  Heun Biconfluente(   , 

 حالات  مقيدة تقريبية.         
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CHAPTER 1

INTRODUCTION

The foundation of classical mechanics was created at the beginning of

the seventeenth century, by Newton who published in 1687 his work

”Philosophiae Naturalis Principia Mathematica”, since three centuries

ago, he gave rise to the foundation of Newtonian mechanics, which is

the branch of physics that predicts and describes perfectly the motion of

macroscopic object. Beside to the theory of electromagnetism founded by

Maxwell, enabled physicists to develop a comprehensive understanding

of a wide range of observed phenomena in nature, they are a determinis-

tic theories, but, how about the microscopic world? When the physicists

tried to extend the principles of these theories to puzzle out the world

at the atomic and subatomic scale, they found that the classical laws

aren’t applicable and they break down at this levels, they were unable

to answer questions that classical theories could not explain like the

black body radiation problem, stability of atoms or Young’s double-slit

experiment, then they released that infinitely objects are governed by

other types of laws. Consequently, quantum mechanics came to us as

11
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a result of the failure of newtonian mechanics and Maxwell theory to

describe the microscopic world behaviour, hence, the eventful transition

from classical to non-classical laws of physics and then, the creation of

the new branch of physics, under the name of quantum mechanics. In

the universe one distinguishes two kinds of object: radiation and matter,

matter is made of localized particles where the state of particle is defined

perfectly at any instant by its position and velocity, that are derived from

Newton’s laws, in the other side radiation that has been treated as a

wave in which it can not be localized, since it is impossible to split ra-

diation into small particles obeys Maxwell’s laws of electromagnetism.

Quantum mechanics foundation made a truly revolutionary theory of

physics, by its rejection of the absolute ideas of classical understanding

of physical events and concepts. The first who gave the act of birth of

Quantum Mechanics was Planck in 1900 work [1], by its assumption of

quantization of energy, he argued that the exchange of energy between

electromagnetic waves and matter occurs only in discrete form, in this

way he was able to find an answer to the black body radiation problem.

Where in fact, classically the energy is treated as a continuous entity and

this make the classical picture of energy is not able to account for predict

the black body spectral properties. Planck discovered a new universal

constant which bears his name, thus, he created the first building block

of a new theory. Followed by Planck, by the time when it was univer-

sally accepted that light was treated as a wave among physicists, which

is experimentally proved by the existence of diffraction and interference

pattern in double slit experiment, Einstein by his hypothesis of quantum

nature of light in 1905, he was inspired by the black-body problem solu-

tion of Planck, that led him to resolve the paradox of the photoelectric

12
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effect, leading to particle-wave duality of light, he proposed that light

of fixed energy is composed of small units, a single unit called photon

and its energy is given by the following expression E = h f where f

represents the frequency of light and h is Planck’s constant. In parallel

with this discoveries, the structure of atoms were studied, where in the

year 1913, the physicist Niels Bohr was able to explicate the hydrogen

atom stability besides to the discreteness in the energy levels spectrum,

just by partially rejecting the classical concepts, he proposed a model of

atoms where there is the electrons evolving around the nucleus, on orbits

with well-defined discrete energy levels and they can only absorb well-

defined energies. Since light exhibit both wave and particle behaviour,

in 1924, de Broglie in his doctoral dissertation took the critical step, he

extended the wave-particle duality behaviour to all microscopic objects,

since there was no manifestation of wave nature of matter until it was

experimentally proven by the two scientists Davisson and Germer in the

year 1927, where they by chance proved the interference and diffraction

of electron. Another proof of the wavelike properties of the electron

was in the same year by Thomson, after the subatomic particle the so-

called neutron were discovered by Chadwick in 1932, the experiment of

Young’s double slit were carried out using this subatomic particle. The

real birth of quantum mechanics was by Heisenberg publishing his work

in 1925, who put for the first time a mathematical background for the

new theory based on non-commutative multiplication rule as matrices,

this work on matrix mechanics, that appeared in the early days of twen-

tieth century, was indeed advanced in significant way by physicists such

as Born and Jordan. Later, both Born and Wiener explored the concept of

physical variables as linear operators, leading to the modern mathemat-

13
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ical framework where physical quantities are represented as matrices.

This revolutionary development allowed for a more rigorous and ab-

stract understanding of quantum mechanics, paving the way for future

advancements in the field, including the formulation of Heisenberg’s

matrix mechanics and the eventual unification with wave mechanics.

In 1927, Heisenberg derived his uncertainty principle that imposes lim-

its on the concurrent measurability of both momentum and position of

particles, this principle arises from the inherent wave-particle duality

of quantum entities, indicating that the more precisely one property is

measured, the less precisely the other can be determined, if one try to

know exactly the position which is a corpuscular aspect of the particle, all

information about its momentum is lost where the momentum is a wave

characteristic. In 1926, Schrödinger proposed wave mechanics, instead

of matrices, he dealt with partial differential equations, he proposed

his famous equation. Matrix mechanics was difficult to understand by

the physicists so wave mechanics was more accessible and intuitive,

Schrödinger in 1926 showed that they are equivalent. The standard tool

in wave mechanics is the wave equation the so-called Schrödinger equa-

tion, it is valid for any non-relativistic system, where the solution is called

a wave function that is still without a physical meaning and in 1927 Bohr

suggested the probabilistic interpretation of the wave function known

as Copenhagen interpretation of quantum mechanics, he stated that its

square modulus is a probability density of the system under considera-

tion, hence the notion of determinism in the atomic world is abandoned

by quantum mechanics. It is postulated in the context of non-relativistic

quantum mechanics, that every information about the physical system

for a given instant is derived starting from the knowledge of the solu-

14
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tion of Schrödinger equation, namely the wave function. Then Dirac

suggested a simple formulation of quantum mechanics named Dirac Al-

gebra, he dealt with the general concepts by introducing the operators,

ket and bras vectors. In parallel with the construction of the new theory,

a very important discovery were made that contribute to more over-

all formulation later, where Ulhenbeck and Goudsmit proposed in 1925

the existence of an intrinsic magnet moment of the electron that they

called spin, that was discovered by Stern and Gerlach in 1922 where

they proved experimentally the quantifiction of the magnetic moment

of atoms. The proposed quantum mechanics theory by Schrödinger and

Heisenberg is valid only when dealing with non-relativistic phenomena.

For particles with mass and by combining between special relativity and

quantum mechanics, the origins of the first relativistic wave equation

known as Klein-Gordon equation was obtained, the early versions of

the equation were due to several physicists, it was proposed simultane-

ously by many physicists among them Klein, Schrödinger, Kudar and

Fock in 1926, it is the relativistic extension of Schrödinger equation in

which it describes a free electrically-charged spin-0 particle. In 1928

Dirac published his equation that was named after him, he extended

quantum mechanics to relativistic phenomena for particles with spin

where his equation deals with spin 1/2 particles, in 1930 Dirac predicted

the existence of antiparticles while he tried to overcome the difficulties

of Klein-Gordon equation negative probability densities [2, 3, 4, 5, 6, 7].

Quantum mechanics theory is the basic theory that is still leading to

modern development in technologies that are based on principles of

quantum phenomenon, it has a lot of important applications in which

it offers significant advantages and create new capabilities in comput-
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ing, communication , cryptography, measurement, etc. One of quantum

mechanics applications the characterization of matter in laboratory and

chemical analysis is based on the principle of absorption of photons from

the photoelectric effect, the phenomenon of diffraction allows to access

to the crystallographic structure of matter besides to visualize matter at

the smallest details using electron microscopes that use electrons instead

of light and the scanning tunneling microscopes are other type of micro-

scopes that was invented by Gerd Binnig and Heinrich Rohrer in 1981

that uses the tunneling effect to image surfaces of materials, the magnet

resonance imaging (MRI) that is used to diagnose diseases works thanks

to the property of spin to generate images of human bodies, laser which

is a beam of focused monochromatic light widely used in medicine for

eye surgery or the treatment of local lesions, lasers are used also for

optical disk storage (DVDs), for industry there is laser cutting which

has been used since 1980, it is a manufacturing process that uses laser

to make cuts in materials like metals with high precision. One of the

most transformative features of quantum principles is its application in

quantum computing which employs superposition and entanglement to

process information in ways unlike classical computers, such that instead

of using bits that represents either 0 or 1, quantum computing uses qubit

that use them simultaneously as a superposition, this feature allows the

quantum computer to make many operations at once, this will improve

data analysis and accelerate the performance. Quantum sensing is an

advanced sensor technology that highly improves the accuracy of mea-

surement, it measure changes at the atomic level with higher degree of

precision, and the Global Positioning System (GPS) is one of Quantum

sensing realizations, it uses very accurate atomic clocks for geolocation.
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In this thesis, we resolved some problems that are in relation with

non-relativistic quantum mechanics in the framework of quasi-exactly

solvable problems, particularly we resolved Schröinger equation for few

central potentials and a single potential is in the form of the general-

ized Cornell plus some exponential potentials, where the quasi-exactly

solvability of Schrödinger equation came from approximating the radial

equation to the biconfluent Heun’s equation using an appropriate ap-

proximation scheme such that the normalized solutions of this equation

are possible after imposing some specific conditions on the equation,

the thing that gives only a finite portion of the discrete spectrum with

the associated eigenfunctions in analytic form. The thesis is composed

of three chapters, the first chapters is for introducing some mathemat-

ical tools that are basic to understand quantum mechanics such as the

notion of linear operators and the different kinds of spectrum of these

operators, where they have a fundamental role in quantum mechanics

since they provide a mathematical framework for describing the observ-

ables of physical and the evolution of quantum systems, for example

many physical quantities like energy, position, momentum and spin

have been represented by linear operators. at the other side, the notion

of discrete spectrum is also important in the quantum theory because

it plays a crucial role in explaining and understanding the behavior of

quantum systems, especially in terms of measurement outcomes of the

observables, then we give a brief introduction about Heun’s biconfluent

equation with the associated canonical form and its polynomial solutions

that leads to the approximate normalized eigensolutions of Schrödinger

equation. The second chapter is dedicated to the basic notions that

17



formulated the theory of quantum mechanics such as the fundamental

principles that form the foundation of the entire framework of quantum

mechanics, known as the postulates of quantum mechanics, these postu-

lates are essential because they define the mathematical background and

the conceptual structure that governs the behavior of physical systems at

microscopic scales, where classical physics does not apply. Besides to the

fundamental equation of quantum mechanics "Schrödinger equation", it

is crucial to understand the world at the microscopic scale, because it

governs how the solution the so-called wavefunction evolves over time

allowing us to predict the system future states from its initial conditions.

In the third chapter, we give approximate bound states of Schrödinger

equation for few central potentials, where one potential if formed as

the generalized Cornell potential plus an exponential potential, starting

by transforming the radial equation to the biconfluent Heun’s equation,

then using the results from chapter one about the solutions of biconfluent

Heun’s equation to construct the analytic approximate eigensolutions of

Schrödinger equation and for given values of the parameters, we com-

pute some approximate bound states of Schrödinger equation.

18



CHAPTER 2

PRELIMINARY NOTIONS

For this chapter, we are going to expose the preliminary notions that

are useful in this thesis, we present the mathematical background of

quantum mechanics

For the next sections, the considered vector spaces are defined on a field

K such thatK = R orK = C.

2.1 Hilbert space

2.1.1 Sesquilinear forms

Definition 1. [8] Let consider X to be a vector space over a fieldK. the following

mapping q : X × X → K is called a sesquilinear form on the vector space X if

for ∀x, y, z ∈ X and ∀α, β ∈ K

i) q(αx + βy, z) = αq(x, z) + βq(y, z),

ii) q(x, αy + βz) = αq(x, y) + βq(x, z).

A sesquilinear form is said to be Hermitian if for every element x and y from X

19



we have

q(x, y) = q(y, x).

A sesquilinear form is a non-negative on X if for every element x ∈ X where x

we have

q(x, x) ≥ 0.

Definition 2. [8] The following mapping

(. , .) : X × X→ K

is a scalar product if and only if for every element x, y, z ∈ X and for every scaalr

α ∈ K we have the following

i) (x + y, z) = (x, z) + (y, z),

ii) (αx, y) = α(x, y),

iii) (x, y) = (y, x),

iv) (x, x) ≥ 0,

v) (x, x) > 0 if x , 0.

Definition 3. A pre-Hilbert space by definition is a vector space with scalar

product where a norm which is defined as follows

||x|| =
√

(x, x).

Theorem 1. (Cauchy-Schwartz) [9] For every elements x and y that are

belonging to the pre-Hilbert space X we have

|(x, y)| ≤ ||x|| ||y||.

Definition 4. A Hilbert space by definition is a pre-Hilbert space which is

complete according to the norm induced by that scalar product.

20



Example 1. Every pre-Hilbert space of finite dimensions is a Hilbert space in

particular Cn with the following scalar product

(x, y) =
n∑

k=1

xkyk,

is a finite dimensional Hilbert space for the norm

||x|| =

√√
n∑

k=1

x2
k.

Example 2. L2([a, b]) the space of square integrable functions defined on the

interval [a, b] with the scalar product

( f , g) =
∫ b

a
f (x)g(x)dx,

is a Hilbert space for the norm

|| f || =

√∫ b

a
| f (x)|2dx.

Proposition 1. Let be Xa pre-Hilbert space, ∀x, y ∈ X we have the following

identities

i) The parallelogram law

||x + y||2 + ||x − y||2 = 2||x||2 + 2||y||2,

ii) Polarisation identity

Complex case:

4(x, y) = ||x + y||2 − ||x − y||2 + i||x + iy||2 − i||x − iy||2,

Real case:

4(x, y) = ||x + y||2 − ||x − y||2,

iii) The triangular inequality

||x + y|| < ||x|| + ||y||.

21



2.2 Orthogonality

Definition 5. Two vectors x and y from a pre-Hilbert space X are said to be

orthogonal if the scalar product of these vactors vanishes, which means that

(x, y) = 0.

Definition 6. Let consider Q to be a subspace of pre-Hilbert space X, then its

orthogonal is defined as

Q⊥ = {y ∈ X ; x ⊥ y ,∀x ∈ Q},

it is the set of vectors where each vector is orthogonal all vectors of Q.

Q⊥is called the orthogonal complement of Q.

Proposition 2. Q⊥ is a closed subspace of X.

Corollary 1. [9]Let be Q a closed linear subspace of a Hilbert space H, then

Q = (Q⊥)⊥,

and we have

X = Q ⊕Q⊥.

Theorem 2. [9] Let be H a Hilbert space and Q is a closed linear subspace. Let

consider a vector x ∈ H, then we have

i) there exists a unique q ∈ Q such that

||x − q|| = minz∈Q ||x − z||,

ii) the vector q is the only vector from Q such that

x − q ∈ Q⊥.
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Theorem 3. (Orthogonal decomposition)[9] Let Q be a closed linear space

of a Hilbert space H, then each vector x ∈ H is uniquely representable as

x = q + p,

where q ∈ Q is called the orthogonal projection of x upon Q and p ∈ Q⊥.

Proposition 3.

Let X be a pre-Hilbert space, then we have

i) {0}⊥ = X and X⊥ = {0}.

ii) A ⊂ B ⇒ B⊥ ⊂ A⊥

Definition 7. (Orthogonal projection) Let be Q a closed subspace of a Hilbert

space H, the mapping

PQ : X→ Q

x 7→ PQx = q

is called orthogonal projection of x on Q.

The mapping PQ has the following properties

i) PQ is linear,

ii) P2
Q = PQ,

iii) ||PQx|| ≤ ||x|| for every vector x of H,

iv) ||PQ|| = 1.

Definition 8. Let E be a linear space andK is a field. The mapping

f : E→ K

x 7→ f (x),
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that verifies

f (αx + βy) = α f (x) + β f (y),

for every elements x and y from E while α and β from K is called a linear

functional.

Definition 9. A linear functional f defined on a normed space E is bounded if

it exists a constant c strictly positive that

| f (x)| ≤ c||x||,

for every x ∈ E.

Theorem 4. (Riesz representation theorem)[9] Let be f a bounded linear

functional defined on a Hilbert space H, then it exist some vector a ∈ H such

that

f (x) = (x, a)

for every element x ∈ H in addition

|| f || = ||a||.

2.3 Hilbertian base

Definition 10. Let H be a Hilbert space. A set (ei)n
0 is said to be an orthonormal

system if

(ei, e j) = δi, j.

Theorem 5. [9] Let H be a Hilbert space. By considering the orthonormal

system (ek)k∈N, the following expressions are obtained

1) for any vector x ∈ H
∞∑

k=1

|(x, ek)|2 , ||x||2,
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2) for any vector x ∈ H, the following serie converges

∞∑
k=1

(x, ek)ek,

3) for any vector x ∈ H we have the following equality

∞∑
k=1

|(x, ek)|2 = ||x||2,

for

x =
∞∑

k=1

(x, ek)ek.

Definition 11. Let H is considered as a Hilbert space, then an orthonormal

system (ek)k∈N is called a hilbertian basis if for every element of H we have

x =
∞∑

k=1

(x, ek)ek.

Example 3. By considering the Hilbert space l2 of sequences that are square

summable for the scalar product

(x, y) =
∑
k≥1

xkyk,

then the following family that is given by

ei = (0, 0, . . . , 0, 1, 0, . . .), i ≥ 1,

where the vector number i presents a sequences of zeros except for the position i

is an orthonormal basis for this space.

Theorem 6. (Gram-Schmidt Orthonormalization process)

Gram-Schmidt Orthonormalization process is an algorithm that transfer a set of

vectors of a Hilbert space which they are linear independent into an orthonormal

vectors.

Let consider {zk, 1 , k , n} a set of linear independent vectors, then an
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orthogonal set (wk)n
k=1 starting from the set of vectors where they are linearly

independent is constructed as follows

w1 = z1,

w2 = z2 −
(z2,w1)
(w1,w1)w1,

w3 = z3 −
(z3,v1)

(w1,w1)w1 −
(z3,w2)
(w2,w2)w2,

...

...

wn = zn −
∑n−1

k=1
(zn,wk)
(wk,wk)wk,

by normalizing this vectors the orthonormal set is obtained.

2.4 Linear operator

Definition 12. Let consider the set X and the setY to be linear spaces .

The mappingA : D(A) → Y where the domainD(A) is a subspace of X is

called a linear operator if

A(x1 + x2) = A(x1) +A(x2),

A(αx1) = αA(x1),

whenever x1, x2 ∈ D(A) and α is a scalar.

Definition 13. Let X and Y be linear spaces, α is a complex number and

A : D(A) → Y is a linear operator. We define the operator αA as follows

αA : D(A) → Y,

such that for every element x ∈ D(A) we have

(αA)x = α(Ax).
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.

Definition 14. Let X1, X2 andY be linear spaces .

Two linear operatorsA1 andA2 are defined as

A1 : D(A1) → Y,

and

A1 : D(A2) → Y.

For the two operatorsA1 andA1, the sumA1 +A1 is defined by

A1 +A2 : D(A1 +A2) → Y,

where

D(A1 +A2) = D(A1) ∩D(A2),

and

(A1 +A2)x = A1x +A2x,

while the product of the two operatorsA1 andA1 is defined by

A1A2 : D(A1A2) → Y,

where

D(A1A2) = {x ∈ A2 and A2x ∈ D(A1)},

and

(A1A2)x = A1(A2x).

Definition 15. A linear operatorA2 where

A2 : D(A2) → Y,

is called an extension of a linear operatorA1 which is defined by

A1 : D(A1) → Y,
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if

D(A1) ⊂ D(A2),

and

A1x = A2x, ∀x ∈ D(A1).

Definition 16. The set R(A) is called the range of the operator A, it is given

by

R(A) = {Ax , x ∈ D(A)}.

Definition 17. Ker(A) is the nul space of the operatorA, it is given by

Ker(A) = {x ∈ D(A) ,Ax = 0}.

Lemma 1. Ker(A) is a subspace of X and R(A) is a subspace ofY.

Definition 18. Let X andY be linear spaces .

The linear operatorA : X → Y is surjective if

R(A) = Y,

and it is injective if

Ax = Ay ⇒ x = y.

Definition 19. Let considerA : X → Y to be a linear operator where the set

X and the set Y are normed spaces. Then the operatorA is said to be bounded

if and only if it exists a positive constant c such that

||Ax|| ≤ c||x||, ∀x ∈ X.

Proposition 4. Let be A : X → Y a linear operator where X and Y are

normed spaces. Then the following statements are equivalent:

• A is continuous at 0.
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• A is continuous on X.

• It exists a positive number c > 0 such that ||Ax|| ≤ c||x|| , ∀x ∈ X.

• It exists a positive number c > 0 such that ||Ax|| ≤ c||x|| , ∀x ∈ X where

||x|| ≤ 1.

We denote by L(X) the space of bounded linear operators from X in X.

Definition 20. Let X andY be a Banach spaces. The linear operator

A : X → Y,

is said to be invertible if it exist a linear operator B : Y → X such that

AB = IX,

BA = IY,

then, in this case we put

B = A−1.

Definition 21. (Continuously invertible operator) We say that a linear

operatorA is continuously invertible if

i)A−1 exists.

ii)A−1 is bounded.

2.5 Adjoint operator

Definition 22. [10] Let consider a linear operatorA : D(A) ⊂ X → Y with

dense domainD(A), (The density of the domainD(A) is a necessary condition

for the uniqueness of the adjoint).

The adjoint of the operatorA is the linear operator

A
∗ : D(A∗) ⊂ Y′ → X′,
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defined as

⟨ f ,Ax⟩ = ⟨A∗ f , x⟩ , ∀x ∈ D(A) , ∀ f ∈ D(A∗),

where

D(A∗) = { f ∈ Y′ , ∃c > 0 |⟨ f ,Ax⟩| ≤ c||x||, ∀x ∈ D(A)},

whileX′ andY′ present respectively the dual space ofX andY while ⟨ , ⟩ is the

product of duality.

2.5.1 The adjoint operator on Hilbert space

Definition 23. Let be H1 and H2 two Hilbert spaces and a linear operator A

densely defined from H1 into H2.

The operator B is called the adjoint ofA if we have

(Ax, y) = (x,By),

and we put B = A∗, ifA∗ = A thenA is called self-adjoint operator.

Properties: Let beA,B ∈ L(H) and λ is a scalar, then we have

i) (λA)∗ = λA,

ii) (A +B)∗ = A∗ +B∗,

iii) (AB)∗ = B∗A∗.

Definition 24. A linear operator defined from a Hilbert space into itself is

hermitian if

A = A∗.

Definition 25. Let beA and B two linear operator from L(H) such thatH is

a Hilbert space. The commutator of two operators is defined by

[A,B] = AB−BA.
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If we have [A,B] = 0 we say that the two operators commute.

Properties

Let beA,B and C linear operator fromL(H) whereH is a Hilbert space,

then we have the following properties

i) [A,B] = −[B,A].

ii) [A,B + C] = [A,B] + [A,C].

iii) [A,BC] = [A,B]C +B[A,C].

iv) If the operatorsA and B are hermitians, then we have

[A,B]∗ = −[B,A].

v) [A, [B,C]] = [B, [C,A]] + [C, [A,B]].

2.6 Spectrum of an operator

Let A be a linear operator defined from a Banach space to itself with

domainD(A) and λ is a complex number.

Definition 26. The scalar λ is called a regular point of a linear operator A if

the operator defined by A − λI is continuously invertible. which means that

(A− λI)−1 exists and it is bounded.

The set of every regular point of the operatorA is called the resolvent set and it

is given by

ρ(A) = {λ ∈ C, A− λI is continuously invertible},

and the following operator (A− λI)−1 is called the resolvent ofA.

The complement of the resolvent set ρ(A) in C is called the spectrum of the
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operatorA, it is the set of point whereA−λI fails to be continuously invertible

and it is denoted by σ(A).

The resolvant set is an open set, then σ(A) is a closed set.

Definition 27. The spectrum of an operator is represented in the union of 3

sets:

i) The point spectrum it is the set

σp(A) = {λ ∈ C such that Ker(A− λI) , {0}},

if λ belongs to the point spectrum it exist an element x , 0 such that

Ax = λx,

then the element x is called an eigenvector associated to the eigenvalue λ, which

means that the operatorA− λI is not injective.

ii) continuous spectrum it is the set:

σc(A) = {λ ∈ C such that A−λI is injective and R(A−λI) is dense but

(A− λI)−1is not bounded}.

iii) residual spectrum it is the set:

σr(A) = {λ ∈ C such that A−λI is injective and R(A−λI) is not dense}

then the spectrum of an operator is the following union

σ(A) = σp(A) ∪ σc(A) ∪ σr(A),

and we have

C = ρ(A) ∪ σp(A) ∪ σc(A) ∪ σr(A).
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Theorem 7. [11] Let beA a bounded linear hermitian operator, then its spec-

trum σ(A) is on the real axis, in particular we have

i) All of its eigenvalues are real.

ii) Two eigenvectors that are associated to two different eigenvalues are orthog-

onal.

2.6.1 Spectral decomposition of an auto-adjoint operator

Definition 28. [10] Let A be a self-adjoint operator on a Hilbrt space H, then,

there exists a projection-valued measure E(λ) on the spectrum σ(A) ⊂ R,

such that

A =
∫
σ(A)

λdE(λ). (2.1)

2.7 Heun’s differential equations

After Heun’s equation appeared in 1889 which is a second order linear

ordinary differential equation that possesses 4 singular points, it has been

involved in many fields of applied sciences and it has a lot of applications

in many domains like quantum physics, special relativity, chemistry and

optics.

Heun’s differential equation in his general form is given by [12]

d2y
dx2 +

(γ
x
+

δ
x − 1

+
ϵ

x − a

)dy
dx
+

αβx − q
x(x − 1)(x − a)

y = 0, (2.2)

such that y is the function and x is the variable while α, β, γ, δ, ϵ, q and a

are arbitrary parameters related by this relation

γ + ϵ + δ = α + β + 1, (2.3)
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with the parameter a is different from 1 and 0.

The equation has 3 regular singular point at the finite complex plane at

x = 0, 1, a and one regular singular point at infinity. The exponents of

these singularities are respectively {0, 1− γ}, {0, 1− δ}, {0, 1− ϵ}, {α, β} and

the sum of these exponents has to take the value 2.

2.7.1 Normal form of Heun’s differential equation and its

confluent cases

Heun’s differential equation has 4 confluent cases confluent: there is

the confluent, biconfluent, double confluent and triconfluent Heun’s

equation and their normal form are given by

i) Heun’s equation

d2y
dx2 +

(A
x
+

B
x − 1

+
C

x − a
+

D
x2 +

E
(x − 1)2 +

F
(x − a)2

)
y = 0. (2.4)

ii) Confluent Heun’s equation

d2y
dx2 +

(
A +

B
x
+

C
x − 1

+
D
x2 +

E
(x − 1)2

)
y = 0. (2.5)

iii) Biconfluent Heun’s equation

d2y
dx2 +

(
Ax2 + Bx + C +

D
x
+

E
x2

)
y = 0. (2.6)

iv) Double confluent Heun’s equation

d2y
dx2 +

(
A +

B
x
+

C
x2 +

D
x3 +

E
x4

)
y = 0. (2.7)

v) Triconfluent Heun’s equation

d2y
dx2 +

(
Ax4 + Bx3 + Cx2 +Dx + E

)
y = 0. (2.8)

34



in each case of the above cases, the parameters that appear in the equa-

tions are not all independent, where some relations emerge between then

in addition for the equation 2.4 we have the condition

A + B + C = 0. (2.9)

2.8 Biconfluent Heun’s equation

The canonical form of the biconfluent Heun’s equation is given by

xy” +
(
1 + α − βx − 2x2

)
y′ +
(
(γ − α − 2)x −

1
2

(δ + (1 + α)β)
)
y = 0, (2.10)

it is an ordinary linear differential equation with two irregular singular

points, the first irregular singular point is 0 and the second one is∞with

rank 2 such that α, β, γ and δ are arbitrary parameters.

Using the following transformation [13]

y(x) = x−
1+α

2 e
βx+x2

2 z(x), (2.11)

the canonical form becomes in the normal form as

d2z
dx2 +

(
Ax2 + Bx + C +

D
x
+

E
x2

)
z = 0. (2.12)

where the parameters that appear in the equation (2.12) are given by

A = −1, B = −β, C = γ −
β2

4
, D = −

δ
2
, E =

1 − α2

4
. (2.13)
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2.9 Serie solution to the canonical form of bi-

confluent Heun’s equation

To construct a power serie solutions to the canonical form of biconfluent

Heun’s equation let consider the following expansion

z(x) =
∑
n≥0

cnxn+ρ. (2.14)

After deriving and substituting in equation ( 2.10) we get the following

conditions

ρ(ρ + α) = 0,

(ρ + 1)(ρ + 1 + α)c1 −

(
βρ +

1
2

(
δ + β(1 + α)

))
c0 = 0, (2.15)

(ρ + 2 + n)(ρ + 2 + α + n)cn+2 −

(
β(ρ + 1 + n) +

1
2

(
δ + β(1 + α)

))
cn+1

+
(
γ − 2 − α − 2(ρ + n)

)
cn = 0.

When α is not a negative integer, we denote the solution by N(α, β, γ, δ, x)

obtained for the value ρ = 0 and c0 = 1, we write

N(α, β, γ, δ, x) =
∑
n≥0

An

(1 + α)n

xn

n!
, (2.16)

such that the coefficients of the entire function (An)n≥0 can be calculated

using the following recurrence relation

A0, A1 =
1
2

(
δ + β(1 + α)

)
A0,

An+2 =
(
(n + 1)β +

1
2

(
δ + β(1 + α)

))
An+1 (2.17)

−(n + 1)(n + 1 + α)(γ − 2 − α − 2n)An, n ≥ 0

where

(1 + α)n =
Γ(1 + α + n)
Γ(1 + α)

.
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If α is a negative integer α = −m for m ≥ 1 it is possible to put the function

N as

N(−m, β, γ, δ, x) = xmN(m, β, γ, δ, x), (2.18)

and it is still a solution to the canonical form of biconfluent Heun’s

equation.

Proposition 5. The following identities are obtained [12]

i) when α is not a negative integer

N(α, β, γ, δ, x) = eβx+x2
N(α,−iβ,−γ, iδ,−ix), (2.19)

N(α, β, γ, δ, x) = N(α,−β, γ,−δ,−x). (2.20)

ii) when α is a negative integer (α = −m, m ≥ 1)

N(−m, β, γ, δ, x) = imeβx+x2
N(−m,−iβ,−γ, iδ,−ix), (2.21)

N(−m, β, γ, δ, x) = (−1)mN(−m,−β, γ,−δ,−x). (2.22)

2.9.1 Polynomial solutions of the biconfluent Heun’s equa-

tion

By returning to the recurrence relation (2.17), the function N becomes a

polynomial of degree n if and only if the following conditions are verified

at the same time

γ − α − 2 = 2n, (2.23)

An+1 = 0,

the condition An+1 = 0 means that An+1 is a polynomial of degree n+ 1 in

ω = −1
2

(
δ+β(1+α)

)
, and it exists at most n+1 value of δ that are denoted

by

δk, 0 ≤ k ≤ n,
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in addition, if 1 + α > 0 and β ∈ R then An+1 have at most n + 1 real root.

For more details see the following references [8, 9, 10, 11, 12, 13].
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CHAPTER 3

SCHRÖDINGER EQUATION
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3.1 Introduction

Newtonian mechanics is founded upon some principles and postulates

that determine perfectly the position and the velocity of any physical sys-

tem, it is based on principle of perfect determinism where every property

of a physical system can be perfectly determined and measured at any

instant using Newton’s laws of motion that give rise to the concept of

trajectory. the duality nature of light namely wavelike and corpuscu-

lar aspect is one of the most important characteristic that is connected

directly to the birth of quantum theory, that led to the principle of su-

perposition, the idea that a quantum system can exist in more than one

state simultaneously until it is measured, where de Broglie generalized

the principle of duality to all microscopic object. the main properties of

the wavelike behaviour are obtained by analogy with optics, by tracking

the analogy between matter waves and classical wave, one can ask if it is

considerable to establish a unified theory and found a wave equation that

describe corpuscular wave nature of matter once and for all microscopic

particles, and to replace the classical theory by a wave theory where the

wave would play the role played by the electromagnetic field in the the-

ory of radiation, to answer that and inspired by the works of de Broglie,

Schrödinger established his equation from a very simple correspondence

rule that allowed to obtain that fundamental equation starting from the

Hamiltonian of the corresponding classical system. Quantum mechan-

ics similarly to the classical theories stands upon some postulates that

provide the framework for understanding and predicting the behavior

of quantum world, these postulates are typically organized into a serie

of statements that describe the physical and mathematical structure of
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quantum mechanics.

3.2 Postulates of quantum mechanics

In classical mechanics, the state of objects is known for an instant t by

the knowledge of some functions of some dynamical variables which

they are fundamental, this variables are the position and the momentum

and any other measured quantity is defined by calculations in function

of these dynamical variables, in addition the prediction of the values of

the variables is possible using Hamilton’s equations at any later time

t′. However, concerning the quantum mechanical counterpart one must

answer these questions

• how the state of the system at the microscopic scale can be fundamental

mathematically for a given instant?

• how can one calculate a physical quantity of quantum system?

• by knowing the state of this system, how can the state be determined

at a later time?

• how to determine the time evolution of the physical system?

To describe the state of quantum state of particles, quantum mechan-

ics has been developed from some postulates that permit to determine

the state of the physical system. These postulates cannot be derived,

they are a result of experimental justification. They represent the min-

imum collection of assumptions that is needed to found the theory of

quantum mechanics, they have been verified through a wide number
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of experiments and have led to remarkable technological advancements.

The postulates of quantum mechanics have been incredibly accurate and

have passed numerous experimental tests. The predictions derived from

quantum mechanics have been confirmed in many areas, from atomic

and molecular interactions to subatomic particles, and more recently,

quantum computing and quantum information

First postulate: Description of the of the system state[14]

The information about a physical system at the microscopic level is con-

tained in state vector where the first postulate is formulated as [14]:

at a time instant t0, the state of a physical system is defined by a function ψ(t0)

that belongs to a hilbert space the so-called: the state space.

Because Schrödinger equation is linear and homogeneous the state of a

system have the property of superposition which means if two or more

quantum states are solutions of the Schrödinger equation, then any linear

combination of these states is also a valid solution. This feature permits

the building of wave functions that can stand for several possible states

simultaneously, which is one of the cornerstones in the field of quantum

mechanics, such that if we consider a state vector ψ1 and another state

vector ψ2 for two scalars λ1, λ2 then the function

ψ = λ1ψ1 + λ2ψ2 (3.1)

presents a state vector.

The first postulate asserts that the particle and the associated wavefunc-

tion are inseparable aspects of a microscopic object, it adds to it the wave

nature behavior of particles, comparable to the superposition principle

for light waves. One wave function is not required to express a system’s
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state; two or more wave functions can be superposed to represent it. A

vibrating string serves as an example from the macroscopic world; its

state can be shown by either a single wave or the superposition of (linear

combination) of several waves. This clearly contradict the classical treat-

ment of a material object,It is impossible to describe the nature of the

relationships that the Superposition principle demands exist between

any system’s states using familiar physical concepts, where it is given no

wave properties to them, and brings into profound conflict with our intu-

itions from a lifetime of experience with macroscopic objects. The objects

of the everyday world in simple way do not behave as some inseparable

combination of particle and wave nature. However, for quantum me-

chanics to be able to anticipate anything about the processes that take

place at the atomic level of matter, particle and wave must merge. The

first postulate is important because it asserts that a quantum system’s

whole description is contained in this wavefunction and that the system

exists in a superposition of all conceivable states defined by this wave-

function prior to any measurements being taken.

Second postulate: Description of physical quantities

Properties that observed or measured of the physical system are called

observables, they are modeled by Hermitian operators, the dynamical

variables that appears in classical mechanics, they are represented math-

ematically by Hermitian operators, then the second postulate is formu-

lated as [14]:

For one measurable physical quantity it is corresponds an operator A acting on

the state vector that describe this physical quantity

Because the laws governing classical systems are deterministic, it is pos-
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sible to ascertain a particle’s trajectory and all other properties in classical

mechanics by knowing its position and momentum. On the other hand,

quantum mechanics presents a radically different paradigm in which

state vectors in a complex Hilbert space represent a system’s state. Quan-

tum mechanics provides probabilities and uncertainties in place of exact

trajectories, and operators acting on these state vectors represent phys-

ical quantities. In stark contrast to classical determinism, this change

emphasizes the significance of superposition and the probabilistic in-

terpretation inherent in quantum systems. The operators are linear and

they act on the state vectors the so-called wavefunction. Each observable

is guaranteed to have orthonormal eigenfunctions and real eigenvalues

by the premise of hermiticity.

Third postulate: The measurement of physical quantities

Possible results of measurement

From the eigenvalue problem of the stationary equation one can con-

clude that the only possible energies are eigenvalues of the Hamiltonian,

this result can be generalized to all physical quantity where the third

postulate states that [14]:

In quantum mechanics, when a measurement is performed on a physical quan-

tity represented by an observable (an operator), the only possible outcomes are

the eigenvalues of that operator.

The quantum system "collapses" to one of the operator’s eigenstates fol-

lowing a measurement if the system is in a superposition of eigenstates of

some observable, and the measurement’s result is the associated eigen-

value.
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Suppose that A is an operator that models an observable and we have

Aψ j = a jψ j (3.2)

then ψ j and a j represents the jth eigenstate and eigenvalue for the opera-

tor A and if the system is in the state ψ j then the measurement gives the

value a j.

If the spectrum is discrete then the results of measurement are quantized.

In quantum mechanics, this postulate radically changes how we think

about measurement. Position, momentum, and other quantities are di-

rectly measured in classical mechanics, and the results are always certain.

A wavefunction, on the other hand, describes the system in quantum me-

chanics, and it is only through measurement that the system "chooses" a

specific value for the observable based on the eigenvalues of the corre-

sponding operator.

Fourth postulate: Principle of spectral decomposition

Let consider a state of a system ψ which is normalized which means

that the norm of the state vector is 1, if we want to predict the result of

measurement of a quantity that is characterized by an observable A then

this prediction is probabilistic and we are going to give the rules how

to calculate the amount probability of obtaining any eigenvalue an of an

operator A:

The case of discrete spectrum

If the operator A has an entirely discrete spectrum and the eigenvalues

an of A are with multiplicity one which means for a given eigenvalue it

exists only an eigenvector, we write

Aun = anun. (3.3)
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Because A represents an observable, then if the vectors un constitutes a

basis in the state space then the vector ψ is expressed as

ψ =
∑

n

cnun, (3.4)

then the probability of finding the result an :P(an), of finding the result an

after the measurement is

P(an) = |cn|
2 = |(un, ψ)|2. (3.5)

The fourth postulate for a spectrum which is discrete and not degenerate

states that [14]:

When an observable is measured on physical system such that this system is

in a state which is normalized ψ, then to compute the probability P(an) of

obtaining the eigenvaluean the following expression is applied

P(an) = |(un, ψ)|2, (3.6)

where the eigenvector un is normalized and it is associated to the operator

A which corresponds to the eigenvalue an.

Now when an degenerate eigenvalue is obtained which mean that it

exist several eigenvectors ui
n associated to the same eigenvalue an for the

operator A

Aui
ne = anui

n, i = 1, 2, . . . , gn (3.7)

then ψ is still can be written as an expansion in terms of the basis {ui
n} as

ψ =
∑

n

gn∑
i=1

ci
nui

n (3.8)

and the probability P(an) is given by

P(an) =
gn∑

i=1

|ci
n|

2 =

gn∑
i=1

|(ui
n, ψ)|2. (3.9)
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Another statement of the fourth postulates in the case of degenerate

eigenvalue is the following [14]:

When a physical system is in a normalized state, and the observable is measured,

then the probability of getting the eigenvalue an given by P(an) is given by the

expression

P(an) =
gn∑

i=1

|(ui
n, ψ)|2, (3.10)

such that the integer gn represents the degree of degeneracy that is associated

to eigenvalue an and the set of vectors {ui
n}(i = 1, 2, . . . , gn) is orthonormal that

constitutes a basis for the eigenspace associated to the eigenvalue an.

The probability P(an) do not dependent on the basis of the eigenspace

associated to the eigenvalue.

The case of continuous spectrum

In this part, let us assume that the operator A spectrum is continuous and

not degenerate for sake of simplicity, we have the orthonormal system

vα in the generalized sense of A

Avα = αvα, (3.11)

constitutes a continuous basis in the space of states, the state ψ is written

as

ψ =

∫
c(α)vαdα, (3.12)

and the probability of getting a value between α and α + dα is given by

P(α) = ρ(α)dα, (3.13)

with

ρ(α) = |c(α)|2 = |(vα, ψ)|2, (3.14)

47



and the fourth postulate for a spectrum which is not degenerate is the

following [14]:

When measuring an observable on a system in the normalized state ψ, the

probability of obtaining a measurement result within the interval [α, α+ dα] is

determined by

P(α) = |(vα, ψ)|2dα, (3.15)

such that |vα⟩ is a generalized eigenvector for the value α of the observable A.

These postulates give rise to the principle of indeterminism in quantum

mechanics by introducing the probabilistic characteristics of measure-

ment of different quantities, this probabilistic nature emerges because

the quantum state of a system does not provide definite values for phys-

ical quantities after measurement that leads to probabilities of various

possible outcomes, then the act of measurement forces the system to take

one of those outcomes.

Fifth postulate: Reduction of the wave packet

By assuming that we want to measure a physical quantity at any given

time,If we know the system’s condition right before the measurement

and it is represented by a ket ψ, according to the fourth postulate we can

predict the probability of various possible outcomes, but obviously after

the measurement only a result is obtained, therefore, the state just after

the measurement of the system is different from ψ.

Let consider a case where the measurement result yields a non-

degenerate eigenvalue an, then the system state just after the measure-

ment is in the state un which represents the eigenvector for the eigenvalue
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an

ψ⇒ un,

and if another measurement is performed after the first one, the result

that will be find is an and the system state is un and not ψ anymore.

When the eigenvalue an is degenerate, then there is a generalization as

follows:

we write the expansion of the state of the system as

ψ =
∑

n

gn∑
i=1

ci
nui

n, (3.16)

then the modified state after the measurement is expressed as follows

ψ⇒
1√∑gn

i=1 |c
i
n|

2

gn∑
i=1

ci
nui

n, (3.17)

where the vector
∑gn

i=1 ci
nui

n is a projection of ψ onto the eigensubspace of

the eigenvalue an, the vector is normalized because it is more convenient

to deal with states with norm 1, then we can write the new state in the

form

ψ⇒
Pnψ√

(ψ,Pnψ)
, (3.18)

and the fifth postulate is formulated as [14]:

If the measurement of an observable is in the state ψ yields the result an, then

one can have that the state just after after the measurement is the following

projection that is normalized as

ψ⇒
Pnψ√

(ψ,Pnψ)
(3.19)

of ψ onto the eigensubspace associated with an.

Before a measurement is made, the state of a quantum system is often
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described by a superposition of different possible states. The reduction of

the wave packet is of probabilistic nature. The wave function provides a

probability distribution for the possible outcomes of a measurement, but

it does not predict the special outcome. Instead, it gives the probability

of obtaining a particular result.

Sixth postulate: The system Time evolution

In quantum mechanics the sixth postulates states that the time evolution

of a given quantum physical system is obtained by Schrödinger equation

that is given by

iℏ
d
dt
ψ(r, t) = Hψ(r, t), (3.20)

such that H is the Hamiltonian operator, it is associated to the system

total energy. The Hamiltonian operator is given by

H = −
ℏ2

2m
∆ + V(r, t), (3.21)

in which its solution, the wave function encoded all information about

the physical system. Stated differently, the wave function’s time evolu-

tion is deterministic and does not require the specification of extra initial

or final data.

3.3 Schrödinger equation

The Schrödinger equation constitutes the most important element of

Wave Mechanics, it is the basic equation for a non-relativistic frame-

work, that describes how the quantum system state changes over time.

Essentially, Schrödinger equation enables us to predict and compute the

dynamics of particles in a way that classical mechanics cannot, where one

can predict the observable quantities like energy levels. The high level
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of validity of this equation is up to the agreement of these predictions

compared to experimental results, it has been one of the most successful

and predictive equations in physics history, providing accurate descrip-

tions and predictions for a wide range of physical phenomena. Since the

foundations of quantum mechanics, because the Schrödinger equation

solution, the wave function, encoded every information about the sys-

tem, resolving a such equation had attracted the attention of researchers,

where they resolved the equation using many techniques and tools such

as the NU method and its extended version that were used widely

[15, 16, 17, 18, 19, 20], Feynman path integral [21, 22, 23, 24, 25], asymp-

totic iteration method [26, 27], or by using Laplace transform [28, 29] and

recently Schrödinger equation solutions has been obtained by resolving

Heun type equations [30, 31, 32, 33], where the solutions has been found

for many type of potentials, either for central potentials where they de-

pend only on the radius not the orientation or non-central ones where an

angular dependency is added to it, like Alberg and Wilets who resolved

Schrödinger equation for the Coulomb [34] that models the electrostatic

interaction between particles, Fernández who treated the equation for

the harmonic oscillator with singular terms [35], Dong et al who dealt

with a new anharmonic oscillator [36], Gareev et al found solutions for

Woods-Saxon potential [37], Ikhdair and Sever constructed polynomial

solutions to Mie potential [38], Dong et al obtained approximate solu-

tions to Eckart potential [39], Drigi Filho and Riccota used the method of

supersymmetric quantum mechanics to resolve the equation for Hulthen

potential [40], Dong and Garcia-Ravelo resolved Scrödinger equation for

Manning-Rosen potential [41], Morales got solutions for Morse potential

[42], Aktaş and Sever has the exact solutions for the ring-shaped har-

51



monic oscillator [43], Dong et al and Garcia-Martinez obtained solutions

for exponential type potentials [44, 45], Hamzavi and Ikhdair obtained

solutions for the trigonometric Pöschl-Teller while Qiang and Dong got

solutions for Scarf potentials [46, 47]. Schrödinger equation is given for

a non-relativistic particle with mass m by

iℏ
d
dt
ψ(r, t) = Hψ(r, t), (3.22)

where ℏ is the reduced Planck’s constant and r is the position vector,H

is the Hamiltonian operator, the operator that is associated to the total

energy of the system, it is Hermitian and given by

H = −
ℏ2

2M
∆ + V(r, t). (3.23)

For Cartesian coordinates r = (x, y, z) one deduces the equation

iℏ
d
dt
ψ(r, t) = −

ℏ2

2m

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
ψ(r, t) + V(r, t)ψ(r, t), (3.24)

the function V is known as the potential function.

for a potential function independent of time, Schrödinger equation be-

comes

iℏ
d
dt
ψ(r, t) =

(
−
ℏ2

2m
∆ + V(r)

)
ψ(r, t), (3.25)

when the system is not subjected to any potential function, then Schrödinger

equation takes the form

iℏ
d
dt
ψ(r, t) =

ℏ2

2m
∆ψ(r, t). (3.26)

Schrödinger equation is a linear PDE of first order according to time

variable and of second order for space variable, its solution is the so-

called wave function ψ, it has a probabilistic interpretation that makes
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the concept of trajectory at the microscopic level is lost such that in quan-

tum mechanics, the probabilistic interpretation, as formulated by Max

Born, implies that the wave function |ψ⟩ does not provide a deterministic

trajectory for a particle. Instead, the square of the absolute value of the

wave function, gives the probability density of finding the particle at

a position x at time t. This fundamentally shifts the understanding of

motion at the microscopic level, as it challenges the classical notion of

a well-defined trajectory, leading to the realization that particles exhibit

behavior that can only be described in terms of probabilities rather than

precise paths, we write [14]

dP(r, t) = C|ψ(r, t)|2dr, (3.27)

where C is a normalization constant.

From the formula (3.27) one concludes that Schrödinger equation solu-

tion must be square integrable function which means that∫
|ψ(r, t)|2dr < ∞, (3.28)

Hence the normalization constant that manifests in (3.27) is obtained by

the following relation
1
C
=

∫
|ψ(r, t)|2dr. (3.29)

The hermiticity of the Hamiltonian operator allows to get only real values

of the energy, This guarantees that the energies are physically meaning-

ful, measurable quantities. This feature is important because it ensures

that probabilities (which are the squares of the wavefunction amplitudes)

remain conserved over time.
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3.4 Time independent Schrödinger equation sta-

tionary solution

Let give Schrödinger equation in the case of a potential that do not

depend on time

iℏ
d
dt
ψ(r, t) =

(
−
ℏ2

2m
∆ + V(r)

)
ψ(r, t), (3.30)

For a potential which is independent of time, the Hamiltonian becomes

explicitly independent of time and this led to a conservative system

where the energy is a constant of motion [14, 48]. We look for for wave

function ψ that has a well-defined energy.

By using separation of variables method, we seek solutions for the

Schrödinger equation to be in the form

ψ(r, t) = X(r)T(t), (3.31)

substituting the function (3.31) in the equation (3.30) leads to the follow-

ing equation

iℏX(r)T′(t) = T(t)
(
−
ℏ2

2m
∆X(r)

)
+ T(t)V(r)X(r), (3.32)

if both sides are divided (3.32) by X(r)T(t) we get

iℏ
T(t)

T′(t) =
1

X(r)

(
−
ℏ2

2m
∆X(r)

)
+ V(r). (3.33)

The right side is dependent only on x equates the left side that is depen-

dent only on t, therefore, both sides have to be equal to a constant that

we note by E and we write

iℏ
T(t)

T′(t) =
1

X(r)

(
−
ℏ2

2m
∆X(r)

)
+ V(r) = E, (3.34)
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then, we have

iℏT′(t) = ET(t), (3.35)

−
ℏ2

2m
∆X(r) + V(r)X(r) = EX(r). (3.36)

The equation (3.36) is written as

HX(r) = EX(r). (3.37)

Equation (3.35) solution is written explicitly by

T(t) = Ae−i Et
ℏ , (3.38)

where A is a constant.

The equation (3.37) is the so-called the time-independent Schrödinger

equation or the stationary equation. In the language of differential equa-

tions, it represents an eigenvalue problem where the function X is an

eigenfunction that is associated to the eigenvalue E.

The function

X(r)e−i Et
ℏ , (3.39)

is a stationary solution to Schrodinger equation, it gives a probability

density that does not depend on time

dP(r, t) = C|X(r)|2dr. (3.40)

By introducing an index n ∈ N we can have the function Xn(x) as a

solution to the stationary equation for the eigenvalue En

HXn(r) = EnXn(r). (3.41)

Using the superposition principle, the general solution to Schrödinger

equation is written as

ψ(r, t) =
∑
n≥0

Cne−
iEnt
ℏ Xn(r), (3.42)
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where the coefficients Cn depend on the initial condition

ψ(r, 0) =
∑
n≥0

CnXn(r). (3.43)

Local conservation of probability: Probability densities and prob-

ability current

In this part, we confine ourselves to the case where the system under

consideration is one non-relativistic particle.

If the state vector |ψ⟩ is normalized, then

ρ(r, t) = |ψ(r, t)|2, (3.44)

is a probability density, and the probability of finding a particle in a

region dx of space at a time t is given by

dP(r, t) = ρ(r, t)dr. (3.45)

Using classical vector analysis, the local conservation of electrical charge

can be written in the following expression

∂
∂t
ρ(r, t) + divJ(r, t) = 0, (3.46)

we are going to prove that is possible to find a vector J(r, t)that represents

a probability current in which it verifies the equation (3.46), in this case

we said that there is a local conservation of probability.

At the beginning, let assume that the particle is influenced by a scalar

potential V(r, t), then, under the principle of correspondance given by

P = −iℏ∇, (3.47)

the Hamiltonian is written as

H =
P2

2m
+ V(r, t), (3.48)
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then, Schrödinger equation is given by

iℏ
∂
∂t
ψ(r, t) = −

ℏ2

2m
∆ψ(r, t) + V(r, t)ψ(r, t), (3.49)

in our case, the potential V(r, t) has to be real so that the Hamiltonian H

is Hermitian. Writing the complex conjugate of equation (3.49) gives

−iℏ
∂
∂t
ψ∗(r, t) = −

ℏ2

2m
∆ψ∗(r, t) + V(r, t)ψ∗(r, t). (3.50)

By multiplying both sides of the equation (3.49) by ψ∗(r, t) and both

sides of the equation (3.50) by −ψ(r, t) and by adding them the following

equation is obtained

iℏ
∂
∂t

[ψ(r, t)ψ∗(r, t)] = −
ℏ2

2m
[ψ∗(r, t)∆ψ(r, t) − ψ(r, t)∆ψ∗(r, t)], (3.51)

that is written as

∂
∂t
ρ(r, t) +

ℏ

2mi
[ψ∗(r, t)∆ψ(r, t) − ψ(r, t)∆ψ∗(r, t)] = 0, (3.52)

if we set

J(r, t) = −
ℏ2

2m
[ψ∗(r, t)∆ψ(r, t) − ψ(r, t)∆ψ∗(r, t)], (3.53)

then

J(x, t) =
1
m

Re
(
ψ∗(r, t)

(
∆ψ(r, t)

))
. (3.54)

Hence, the equation (3.52) can be put in the form of equation (3.46) [14].

3.5 Schrödinger equation for some solvable po-

tentials

The study of the Schrödinger equation has been a central focus in quan-

tum mechanics since its inception, particularly for exactly solvable po-

tentials. These potentials allow for the analytical determination of their
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associated eigenvalues and eigenfunctions, facilitating a deeper under-

standing of quantum systems. The exact solvability of Schrödinger equa-

tion is allowed only for few quantum problems such as the hydrogen

atom, harmonic oscillator, Morse and other potentials.

Here we give the exact eigensolutions for Schrödinger equation in 1-

dimension for some exactly solvable potentials [49]:

3.5.1 Morse potential

The one dimensional Morse potential is given by the following expres-

sion

V(x) = V0(e−2αx
− 2e−αx), V0 > 0, x ≥ 0 (3.55)

where V0 is the depth of the potential and α is related to its range.

The one dimensional Schrödinger equation is given by:

−
ℏ2

2m
d2

dx2ψ(x) + V(x)ψ(x) = Eψ(x). (3.56)

By substituting Morse potential expression (3.55) in the one dimensional

Schrödinger equation (3.56) we obtain

−
ℏ2

2m
d2

dx2ψ(x) + V0(e−2αx
− 2e−αx)ψ(x) = Eψ(x). (3.57)

By considering the following constants and variable

ν =

√
8mV0

α2ℏ2 ,

s =

√
−2mE
α2ℏ2 ,

y = νe−αx,

the equation (3.57) becomes

d2

dy2ψ(y) +
1
y
ψ(y) +

(
ν

2y
−

s2

y2 −
1
4

)
ψ(y) = 0. (3.58)
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By taking the following ansatz

ψ(y) = e
y
2 ysF(y), (3.59)

the equation (3.58) is written as

y
d2

dy2 F(y) + (2s + 1 − y)
d

dy
−

(
s +

1 − ν
2

)
= 0, (3.60)

where the solutions are the confluent hypergeometric functions that are

given as

F(y) = F(s +
1 − ν

2
, 2s + 1, y). (3.61)

By putting the following condition

s +
1 − ν

2
= −n,

the solutions ψ of the differential equation (3.57) are given in terms of

the associated Laguerre polynomials L2s
n as

ψνn = Nν
ne

y
2 ysL2s

n (y),

and the factor Nν
n is the normalization constant which is given by

Nν
n =

√
α(ν − 2n − 1)Γ(n + 1)

Γ(ν − n)
, (3.62)

while the energy is given by the expression

En = −
α2ℏ2

2m

(√2mV0

α2ℏ2 − n −
1
2

)2
. (3.63)

3.5.2 The Harmonic oscillator

The harmonic oscillator potential is given by the expression [49]

V(x) =
1
2

mω2x2, x ∈ R, (3.64)
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where m is the mass of the particle andω is the frequency of the oscillator.

The one dimensional Schrödinger equation for the harmonic oscillator is

given by

−
ℏ2

2m
d2

dx2ψ(x) +
1
2

mω2x2ψ(x) = Eψ(x). (3.65)

Let consider the following parameters

τ =
2E
ℏω
,

α =

√
mω
ℏ
,

and the following variable

y = αx,

then, the differential equation (3.65) becomes

d2

dy2ψ(y) + (τ − y2)ψ(y) = 0. (3.66)

We take the following ansatz of the wave function

ψ(y) = e−
y2

2 H(y). (3.67)

By substituting the ansatz (3.67) into the differential equation (3.66), we

get the following equation

d2

dy2 H(y) − 2y
d

dy
H(y) + (τ − 1)H(y) = 0. (3.68)

The solutions of the differential equation (3.68) are nothing but Hermite

polynomials Hn(y) with the relation

τ − 1 = 2n

that permits to obtain the eigenvalues as follows

En = ℏω
(
n +

1
2

)
, (3.69)
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while the corresponding eigenfunctions can be written as

ψn(x) = Nne−
α2x2

2 Hn(αx), (3.70)

the normalization constant can be derived starting from the normaliza-

tion condition of the wave functions∫ +∞

−∞

ψn(x)dx = 1 (3.71)

as

Nn =
(

α
√
π2nn!

) 1
2

(3.72)

3.5.3 The pseudoharmonic oscillator

Let us begin by presenting the pseudoharmonic oscillator expression as

[49]

V(x) =
1
2

mω2x2 +
ℏ2

2m
α

x2 , x ∈ R (3.73)

where m represents the mass of the particle while α represents the

strength of the external field.

The one dimensional Schrödinger equation for the pseudoharmonic os-

cillator is written as

−
ℏ2

2m
d2

dx2ψ(x) +
(1
2

mω2x2 +
ℏ2

2m
α

x2

)
ψ(x) = Eψ(x). (3.74)

By taking ℏ = m = ω = 1 and by defining the new variable

y = x2, (3.75)

the differential equation (3.74) can be written as

d2

dy2ψ(y) +
1

2y
d

dy
ψ(y) −

(1
4
+

α

4y2 −
E
2y

)
ψ(y) = 0. (3.76)
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Let be the following parameter

s =
1 +
√

1 + 4α
4

, (3.77)

and the following ansatz of the wave function

ψ(y) = yse−
y
2ω(y). (3.78)

Substituting the function (3.78) into the differential equation (3.76) leads

to this differential equation

y
d2

dy2ω(y) +
(
2s +

1
2
− y
) d
dy
ω(y) +

(E
2
− s −

1
4

)
ω(y) = 0. (3.79)

The solutions of the differential equation (3.79) are the confluent hyper-

geometric functions

F
(
s −

E
2
+

1
4
, 2s +

1
2
, y
)
.

Starting from the quantum condition

s −
E
2
+

1
4
= −n,

we obtain the energy expression as

En = 1 + 2n +

√
α +

1
4
. (3.80)

when s − E
2 +

1
4 = −n, then, we use the following relation

Lβn(x) =
Γ(β + n + 1)
n!Γ(β + 1)

F(−n, β + 1, x), (3.81)

and the integral∫
∞

0
xβe−xLβn(x)Lβm(x)dx =

Γ(n + β + 1)
n!

δn,m, (3.82)

in order to obtain the normalized wave functions as

ψ(y) = Nnyse−
y
2 L2s− 1

2
n (y), (3.83)
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where y = x2 and Nn is the normalization constant that is given by

Nn =

√√√√ n!

Γ
(
n + 2s + 1

2

) . (3.84)

3.5.4 Pöschl-Teller like potential

The studied Pöschl-Teller like potential is given by [49]

V(x) = V0 tan2
(
πx
L

)
, x ∈

[
−L
2
,

L
2

]
, (3.85)

where V0 and L are two constants where L > 0.

Schrödinger equation for Pöschl-Teller like potential is given by

−
ℏ2

2m
d2

dx2ψ(x) + V0 tan2
(
πx
L

)
ψ(x) = Eψ(x), (3.86)

such that the solutions must satisfy the boundary conditions

ψ
(L
2

)
= ψ
(
−L
2

)
= 0. (3.87)

By introducing the parameters

ϵ =
2mL2

π2ℏ2 (E + V0), (3.88)

W =
2mL2

π2ℏ2 V0, (3.89)

and the new variable

y =
πx
L
, (3.90)

then, substituting them into the differential equation (3.86) we obtain the

following equation

d2

dy2ψ(y) +
(
ϵ −

W
cos2 y

)
ψ(y) = 0. (3.91)
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Let us consider the following ansatz of the wave function

ψ(y) = Pn(t) cosλ y, λ > 0, (3.92)

where

t = sin y.

Substitution of the ansatz function into the differential equation (3.91)

allows us to have the following equation

(1 − t2)
d2

dt2 Pn(t) − (1 + 2λ)t
d
dt

Pn(t) + (ϵ − λ2)Pn(t) = 0, (3.93)

with the notation

W = λ(λ − 1)

and the condition λ , 0, 1.

From the differential equation for the Gegenbauer polynomials given by

d2

dt2 F(t) +
t(1 + 2λ)

t2 − 1
d
dt

F(t) −
n(2λ + n)

t2 − 1
F(t) = 0, (3.94)

it is concluded that the solutions of the differential equation (3.93) are

nothing but the Gegenbauer polynomials Cλ
n(t) where the expression of

the wave functions is obtained as

ψn(y) = NnCλ
n(y) sin y cosλ y, (3.95)

where Nn is the normalization constant that will be calculated below

from the normalization condition∫ L
2

−L
2

|ψ(x)|2dx = 1, (3.96)

for this Let recall an important formula∫ 1

−1
(1 − x2)ν−

1
2 |Cν

n|
2dx =

π2(1−2ν)Γ(n + 2ν)
n!(n + ν)Γ2(ν)

, Re ν > −
1
2
, (3.97)
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finally the normalization constant is given by

Nn =

√
n!(n + λ)Γ2(λ)

L2(1−2λ)Γ(n + 2λ)
. (3.98)

From the following condition

ϵn = (n + λ)2, n = 0, 1, 2, . . . (3.99)

the eigenvalues of the corresponding quantum system are obtained as

En =
π2ℏ2

2mL2

(
n2 + 2nλ + λ

)
. (3.100)

65



CHAPTER 4

APPLICATION
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4.1 Introduction

Schrödinger equation is a crucial equation in non-relativistic quantum

mechanics because according to the sixth postulate it governs the time

evolution of the system under consideration [14, 48]. It is an important

equation that allows us to conclude the spectral properties of any quan-

tum physical system, Schrödinger equation also play very crucial role in

many Science branches such as chemistry and spectroscopy where the

solutions are used to describe the electronic distribution and structure of

atoms and molecules, they provide the necessary information about the

energy levels and the distribution of electrons, they are helpful in predict-

ing the chemical properties such as bond and bond angles in which they

are essential in explaining the chemical reactions, Schrödinger equation

is used also to understand the composition, structure, identification and

quantification of substances, it is essential to explain the absorption and

emission spectra and predict the properties of molecules and atoms with

their spectroscopic behavior besides to determine the thermodynamics

properties, it is crucial tool in determining the energies levels and transi-

tions of quantum physical systems that are fundamental in spectroscopy

analyses [50, 51, 52]. Since the early days of quantum mechanics, the

exact solvable problems of Schrödinger equation has attracted the in-

terest of researchers, here we mean by the exact solvable Scrödinger

equation the case when all the energy levels and corresponding wave

functions expressions can be obtained explicitly in closed form and al-

though this kind of quantum mechanical models such as the Coulomb

and the harmonic oscillator play an important role in many fields of

quantum physics, it generally they are with limited applications. Re-
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cently a new class of spectral problems in quantum mechanics has been

discovered [53, 54, 55], this class is with many applications more than

the class of exactly solvable potentials, it took the name of quasi exactly

solvable problem and it attracted the attention of researchers, the concept

of quasi exactly problems in quantum mechanics has been introduced in

the late of 1980s by the physicist Alexander Turbiner, in contrast to the

class of exactly solvable problems, for the situation when the solvablity

of Schrödinger equation is quasi exact only a finite part of the discrete

spectrum or their eigenfunctions are obtained exactly in full expression.

The class of central potentials constitute a very important class because

it models the different interactions between atoms and molecules, this

potentials are used extensively in chemistry since they provide accurate

predictions about vibrational properties like determining the vibrational

energies and understanding molecular spectroscopy such as Morse po-

tential and the harmonic oscillator, besides to studying the rotational

properties of molecules and obtaining the rotational energy levels, add

to it understanding the molecular structure [50, 51, 52]. In resolving

Schrödinger equation for the situation where the potential is central, we

solve directly the so-called radial equation, in general solving a such

equation is not trivial due to the existence of the centrifugal term that

makes the resolution of the equation not an easy task, this term add

complexity to potential expression, hence in a such situation when the

radial equation cannot be resolved analytically, approximate solutions

are required, by approximating the effective potential using an appropri-

ate scheme, this method allows to tansform the original radial equation

to another equation that can be resolved and its solutions are known

[57, 58].
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In this work, we search the approximate bound states for the Scrödinger

equation in the case of quasi exactly Scrödinger equation problems, for

some potentials that would be taken as central potentials, a single po-

tential potential is written as

V(r) = VC(r) + Ve(r), (4.1)

where the potential VC is called the generalized Cornell potential, it is

given by

VC(r) =
2∑

i=−2

airi, (4.2)

in which the parameters that appear in the expansion ai, i = −2, . . . , 2 are

real constants, at the other side Ve is an exponential potenial, precisely

the potential that will be treated in this work are:

• Schiöberg potential..

• The generalized Pöschl-Teller.

•Manning-Rosen potential.

•Morse.

• Yukawa class potential.

The generalized Cornell potential is a sum of the inverse square potential,

Coulomb, the linear potential and the harmonic oscillator, this potential

is important, it is one of the most applicable potential in quantum me-

chanics, it combine between the inverse square potential models the

electrostatics force between electron and nucleus, the Coulomb poten-

tial arises in describing systems involving charged particles such as the

force between the electron and proton in the hydrogen atom, the linear

potential is used to approximate forces that are nearly constant or to ap-
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proximate the harmonic oscillator in its equilibrium point, this potential

can describe some kind of physical behavior such as the displacements

from the equilibrium, or in systems that are confined the linear potential

models an external electric field applied on the system, the harmonic

oscillator models force proportional to its displacement from an equilib-

rium and vibrations of individual atoms and molecules, it models also

the force that links bosons, one of the building blocks in the macroscopic

scale. By combing this potentials besides to the exponential potentials,

we get a better description of the forces applied on the physical system.

in the next sections, we are going to deal with the radial equation for

some central potentials that are in the form of (4.1), In order to treat the

radial equation for this central potentials, for each one we use an ap-

propriate approximation scheme that allows us to transform the radial

equation to a diffrent equation where the resolution is allowed, exactly,

to the biconfluent Heun’s equation, then, the approximate solutions will

be obtained analytically.

4.2 Schrödinger equation in the case of central

potential

Schrödinger equation taken for ℏ = 1 is given by(
−
∆

2M
+ V(r, t)

)
Ψ(r, t) = i

∂
∂t
Ψ(r, t), (4.3)

in which M represents the mass of the particle and ∆ is the Laplacian

operator, V is the potential function, r is the position vector and where

its solution is the so-called the wave function.

Let consider the potential V to be time-independent, then, by separating

70



the spatial and time dependencies and by putting the wave function in

the form below

Ψ(r, t) = ψ(r)e−iEt, (4.4)

we obtain the time-independent Schrödinger equation or the stationary

equation as (
−
∆

2M
+ V(r)

)
ψ(r) = Eψ(r). (4.5)

We choose the position vector to be in spherical coordinates system

r = (r, θ, ϕ), then the stationary equation (4.5) becomes(
−

1
2Mr2

(
∂
∂r

(
r2 ∂
∂r

)
−Ω2

)
+ V(r, θ, ϕ)

)
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ), (4.6)

where Ω2 is given by

Ω2 =
1

sinθ
∂
∂θ

(
sinθ

∂
∂θ

)
+

1
sin2 θ

∂2

∂ϕ2 (4.7)

By considering the potential function to depend only on the radius,

which means that the potential is central and using, then the equation

(4.6) is written as(
−

1
2Mr2

(
∂
∂r

(
r2 ∂
∂r

)
−Ω2

)
+ V(r)

)
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ), (4.8)

using the separation of variables method, we separate the radial and

angular dependencies as

ψ(r, θ, ϕ) =
R(r)Y(θ, ϕ)

r
, (4.9)

then we insert the function (4.9) in the equation (4.8) to have

d2R(r)
dr2 + 2M(E − V(r))r2 = −Ω2Y(θ, ϕ), (4.10)

and since the equation (4.10) give a side that depends only on r equals

a side that depends only on θ and ϕ which means that the both sides
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equal a constant ξ

d2R(r)
dr2 + 2M(E − V(r))r2 = −Ω2Y(θ, ϕ) = ξ. (4.11)

From the equation (4.10) we obtain the following system of equations

1
sinθ

∂
∂θ

(
sinθ

∂Y(θ, ϕ)
∂θ

)
+

1
sin2 θ

∂2Y(θ, ϕ)
∂θ2 = −ξ, (4.12)

d2R(r)
dr2 + 2M

(
E − V(r) −

ξ

2Mr2

)
R(r) = 0. (4.13)

The differential equation (4.12) admits solutions Ym
l that are the spherical

harmonics [14, 56], the eigenfunctions of the differential operator Ω2 in

which this operator eigenvalue are l(l + 1) , here the number l represent

a positive integer while the number m is a relative integer that takes its

values from −l to l, their expression is given by

Ym
l (θ, ϕ) = NPm

l (cosθ)eimϕ, (4.14)

N = (−1)m

√
2l + 1

4π
(l −m)!
(l +m)!

,

where N is a normalization constant and Pm
l represents the associated

Legendre function, their full expression are given by

Pm
l (u) =

√
(1 − u2)m dm

dum Pl(u), −1 ≤ u ≤ 1, (4.15)

and Pl are Legendre polynomial written as

Pl(x) =
1

l!2l

dl

dxl
(x2
− 1)l. (4.16)

The bound states equation (4.8) are in the following form

ψn,l,m(r, θ, ϕ) =
Rn,l

r
Ym

l (θ, ϕ), (4.17)

where Rn,l are the radial eigenfunctions, the solutions to the radial equa-

tion below

−
1

2M
d2Rn,l(r)

dr2 +
(
V(r) +

l(l + 1)
2Mr2

)
Rn,l(r) = En,l,mRn,l(r), (4.18)
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this term
l(l + 1)
2Mr2 ,

is called the centrifugal term, while the expression

V(r) +
l(l + 1)
2Mr2 , (4.19)

is called the effective potential, hence solving the stationary equation in

the case of central potentials is based on obtaining the radial equation

solutions.

In the next parts, we are going to resolving Schrödinger equation for

few potential in specific form, this potentials are are central, using an

accurate approximate scheme for each case. A single central potential

is composed of the generalized Cornell potential plus an exponential

part. Approximating the central potentials leads to the resolution of the

equation of Heun in its biconfluent form, where the analytic approximate

bound states will be obtained in closed form.

4.3 Biconfluent Heun’s equation polynomial so-

lutions

The biconfluent Heun’s equation in its normal form is provided by

d2U(x)
dx2 +

(A
x2 +

B
x
+ C +Dx − Fx2

)
U(x) = 0, (4.20)

here the parameters that appear in the equation are real such that the

parameters B and F do not vanish.

Let consider the following ansatz

U(x) = y
1+α

2 e−
y2+βy

2 P(y), (4.21)

73



where the new variable y is given by

y =
4√

Fx, (4.22)

then the biconfluent Heun’s equation normal form is transformed to the

canonical form as follows

y
d2P(y)

dy2 +
(
1+α−βy−2y2

)dP(y)
dy
+
(
(γ−α−2)y−

1
2

(
δ+ (1+α)β

))
P(y) = 0,

(4.23)

such that the parameters α, β, γ and δ are given by

α =
√

1 − 4A,

β = − D
4√

F3
,

γ = D2

4
√

F3
+ C
√

F
,

δ = − 2B
4√F
.

(4.24)

When α is a non-negative integer, then, the canonical equation (4.23)

accepts the series solution below

P(y) =
∑
k≥0

Γ(1 + α)bk

Γ(1 + α + k)
yk

k!
, (4.25)

so that the following recurrence relation links the coefficients bk

b0 = 1,

b1 = −ωb0,

b2 = −(ω − β)b1 − (1 + α)(γ − α − 2)b0,

bk+2 = −(ω − (k + 1)β)bk+1 − (1 + k + α)(γ − α − 2 − 2k)(k + 1)bk, k ≥ 0,
(4.26)
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where

ω = −
1
2

(
δ + (1 + α)β

)
.

It is possible to infer from the recurrence relation (4.26) that the coefficient

bk represents for each k ∈N a polynomial with a degree k in ω.

A polynomial solution is derived from the recurrence relation (4.26)

provided that the two requirements listed below are met:
γ − α − 2 = 2n,

bn+1 = 0,

(4.27)

where bn+1 is a polynomial of degree n+1 inω and when we have 1+α > 0

and β ∈ R, bn+1 has n + 1 real roots that we denote them by

ωn,µ = −
1
2

(δn
µ + (1 + α)β), 0 ≤ µ ≤ n.

The first five coefficients are provided by the recurrence relation (4.26)

b0 =1,

b1 = − ω,

b2 =ω
2
− βω − (γ − α − 2)(α + 1), (4.28)

b3 = − ω
3 + 3βω2

−

(
2β2
−

2∑
i=1

i(γ − α − 2i)(α + i)
)
ω − 2β(γ − α − 2)(α + 1),

b4 =ω
4
− 6βω3 +

(
11β2

−

3∑
i=1

i(γ − α − 2i)(α + i)
)
ω2
− β
(
4(γ − α − 6)(α + 3)

+ 6β2
−

3∑
i=1

(i + 4)(γ − α − 2i)(α + i)
)
ω + 3(γ − α − 2)(α + 1) (4.29)

.
(
(γ − α − 6)(α + 3) − 2β2

)
. (4.30)

75



4.4 Approximate eigensolutions for few central

potentials

The purpose of next part is to give the analytic expressions of the eigen-

solutions for central potentials where the generalized Cornell potential

plus an exponential component add up to a single potential. by ap-

proximating the effective potential using an appropriate approximation

scheme, after that we give the closed-form of the energy levels then in

the numerical application part, for given values of the parameters,For

a subset of the roots ωn,µ of bn, we compute the bound state’s analytic

formula.

4.4.1 Morse potential

We give Morse potential expression as follows

Ve(r) = V0e−2λr + V1e−λr. (4.31)

Morse potential is an important potential in quantum mechanics and

related fields such as chemistry, it was introduced for the first time in

1929 [60], named after the physicist Philip M. Morse, it is appropriate for

studying vibrational and rotational properties of diatomic molecules,

Morse potential is one of the available models in quantum mechan-

ics to model the vibrations of molecules such as diatomic models and

even polyatomic molecules, this potential allows to study the anhar-

monicity of molecular vibrations as well as the ionization besides to

the stabilization of atoms and molecules electronic states [61], usually

Morse potential is helpful for investigating the spectroscopic properties
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of diatomic molecules and studying the anharmonic vibrational dynam-

ics in addition to its application in analyzing the vibrational spectra of

real molecules. Morse potential attracted the attention of researchers

[61, 62, 63]. where Schrödinger equation has been resolved for Morse

potential by many methods where Miraboutalebi and Rajaei used the

Laplace transform [62] while Dayi and Duru resolved Schrödinger equa-

tion in terms of the q-canonical transformation [63], Han et al obtained

solutions for Morse potential using the approach of supersymmetric

quantum mechanics [64] while Arda and Sever obtained bound states

using NU method [65], Berkdemir and Han applied Pekeris approxima-

tion to obtain l-state solutions using the same method [66], Yu et al used

the serie solution method [67]and Barakat et all obtained exact solutions

for Schrödinger equation for Morse potential by asymptotic iteration

method [68].

In order to have the potential that we resolve the radial equation for, we

substitute this exponential potential of Morse in (4.1) to get

V(r) =
a−2

r2 +
a−1

r
+ a0 + a1r + a2r2 + V0e−2λr + V1e−λr, (4.32)

then inserting the central potential (4.32) in the radial equation (4.18)

leads to the following equation

−
1

2M
d2Rn,l(r)

dr2 +
( l(l+1)

2M + a−2

r2 +
a−1

r
+a0+a1r+a2r2+V0e−2λr+V1e−λr

)
Rn,l(r) = ERn,l(r).

(4.33)

Due to the expression of the effective potential that combine between

polynomial terms and exponential term, the radial equation (4.33) can’t

be resolved in explicit way, for this, the following approximation scheme
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is adopted [59]
1

1 − e−λr ≈
1
λr

(4.34)

and the following figure shows that the curves of 1
λr and 1

1−e−λr are so close

when the parameter λ is small, where it takes the value 0.1

Figure 4.1: The curves of 1
λr and 1

1−e−λr for λ = 0.1

in order to approximate the effective potential and have an equation

that we can resolve the previous approximation scheme is used, where

the left side is a good approximation of the right side and is accurate for

tiny values of the parameter λ.

We take the term 1
1−e−λr and we approximate it by the term 1

λr in the

effective potential in the radial equation (4.33), then we get the following

equation

d2Rn,l(r)
dr2 +

(A1

r2 +
B1

r
+ C1 +D1r + F1r2

)
Rn,l(r) = 0. (4.35)

The differential equation (4.35) is the normal form of Heun’s differential
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equation for the following parameters

A1 = −2Ma−2 − l(l + 1),

B1 = −2Ma−1,

C1 = 2M(E − V0 − V1 − a0),

D1 = 2M(λ(2V0 + V1) − a1),

F1 = 2M(a2 + V0λ2).

(4.36)

The normal Heun equation in his biconfluent form is transformed to the

following canonical form

y
d2P(y)

dy2 +
(
1+α1−β1y−2y2

)dP(y)
dy
+
(
(γ1−α1−2)y−

1
2

(
δ1+(1+α1)β1

))
P(y) = 0,

(4.37)

for this set of parameters

α1 =
√

1 + 4(l(l + 1) + 2Ma−2),

β1 =
(
a1 − λ(2V0 + V1)

)
4

√
2M

(a2+V0λ2)3 ,

δ1 = 2a−1
4

√
8M3

a2+V0λ2 ,

γ1 =
(
E − V0 − V1 − a0

)√
2M

a2+V0λ2

+
(
λ(2V0 + V1) − a1

)2√
M

8(a2+V0λ2)3 .

(4.38)

The canonical equation (4.37) has polynomial solutions in the following

form

P(y) =
n∑

k≥0

Γ(1 + α1)bk

Γ(1 + α1 + k)
yk

k!
, (4.39)
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And the recurrence expression (4.26) links the coefficients bk. Hence only

a portion of the eigenfunctions can be written in explicit form, which

means that the case here is quasi-exactly solvability of Schrödinger equa-

tion.

Now we calculate the energy eigenvalues, by returning to the first con-

dition in (4.27) which is given by

γ1 − α1 − 2 = 2n, (4.40)

to get the approximate energy values as

En,l,m =
(λ(2V0 + V1) − a1)2

4(a2 + V0λ2)
+a0+V0+V1+

√
a2 + V0λ2

2M

(
2+2n+

√
1 + 4(l(l + 1) + 2Ma−2)

)
,

(4.41)

for the condition 1 − 4A1 ≥ 0 to have real values of the energy besides to

the condition F1 > 0.

Finally the approximate wave function of Schrödinger equation in the

case of the central potential: the generalized Cornell potential plus Morse

potential is given by

ψn,l,m(ρ, θ, ϕ) = ρ
α1−1

2 e−
ρ2+β1ρ

2

( n∑
k≥0

Γ(1 + α1)bk

Γ(1 + α1 + k)
ρk

k!

)
(1−cos2 θ)

m
2 .

dl+m

d cosθl+m
(1−cos2 θ)leimϕ,

(4.42)

for the following variable ρ = 4
√

F1r.

Numerical application for the approximate eigensolutions of Morse

potential

We take into consideration the following numerical values of the param-

eters to provide some examples of the estimated bound states for the
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case of Morse potential

a−2 = a0 = a1 = a2 = 0,

V0 = 2,V1 = 1,

M = 0.001, l = m = 1, λ = 0.01

(4.43)

• For n = 1

The roots of the coefficient b2 are

ω1,0 = −2.0039,

ω1,1 = 3.9921, (4.44)

choosing the root ω1,0 yields
ψ1,1,1(ρ, θ, ϕ) = e−

ρ2

2 +1.9882ρ
(
1 − 0.501ρ

)
sinθeiϕ,

E1,1,1 = 25.1359.

(4.45)

Figure 4.2: The graph of the radial part of ψ1,1,1

• For n = 2

81



The roots of the coefficient b3 are

ω2,0 = −4.2307, (4.46)

ω2,1 = 1.7889, (4.47)

ω2,2 = 8.4063, , (4.48)

for the case of the root ω2,1 we have
ψ2,1,1(ρ, θ, ϕ) = e−

ρ2

2 +1.9882ρ
(
1 + 0.4472ρ − 0.4089ρ2

)
sinθeiϕ,

E1,1,1 = 31.4605.

(4.49)

Figure 4.3: The graph of the radial part of ψ2,1,1

• For n = 3
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The roots of the coefficient b4 are

ω3,0 = −6.7 (4.50)

ω3,1 = −0.5571, (4.51)

ω3,2 = 5.9816, (4.52)

ω3,3 = 13.2046, (4.53)

the root ω3,2 gives the following approximate energy and bound state
ψ3,1,1(ρ, θ, ϕ) = e−

ρ2

2 +1.9882ρ
(
1 + 1.4954ρ − 0.0028ρ2

− 0.3326ρ3
)

sinθeiϕ,

E3,1,1 = 37.7851.
(4.54)

Figure 4.4: The graph of the radial part of ψ3,1,1

• For n = 4
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The roots of the coefficient b5 are

ω4,0 = −9.4248 (4.55)

ω4,1 = −3.0688, (4.56)

ω4,2 = 3.464, (4.57)

ω4,3 = 10.5564, (4.58)

ω4,4 = 18.3549, (4.59)

selecting the root ω4,4 yields

ψ4,1,1(ρ, θ, ϕ) = e−
ρ2

2 +1.9882ρ
(
1 + 4.5887ρ + 6.7103ρ2 + 3.8306ρ3+

0.7365ρ4
)

sinθeiϕ,

E4,1,1 = 44.1096.
(4.60)

• For n = 5

The roots of the coefficient b6 are

ω5,0 = −12.4108, (4.61)

ω5,1 = −5.7704, (4.62)

ω5,2 = 0.8386, (4.63)

ω5,3 = 7.845, (4.64)

ω5,4 = 23.831, (4.65)

ω5,5 = 15.4893, (4.66)
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choosing the root ω5,4 yields the following approximate bound state and

energy as

ψ5,1,1(ρ, θ, ϕ) = e−
ρ2

2 +1.9882ρ
(
1 + 5.9577ρ + 12.0134ρ2 + 10.6033ρ3

+4.1915ρ4 + 0.6035ρ5
)

sinθeiϕ,

E5,1,1 = 50.4342,
(4.67)

• For n = 6

The roots of the coefficient b7 are

ω6,0 = −15.6576, (4.68)

ω6,1 = −8.6833, (4.69)

ω6,2 = −1.9157, (4.70)

ω6,3 = 5.0628, (4.71)

ω6,4 = 29.6109, (4.72)

ω6,5 = 12.5781, (4.73)

ω6,6 = 20.7565, (4.74)

choosing the root ω6,5 yields the following approximate bound state and

energy as

ψ6,1,1(ρ, θ, ϕ) = e−
ρ2

2 +1.9882ρ
(
1 + 3.1445ρ + 2.13ρ2

− 0.7291ρ3
− 0.7808ρ4+

0.0191ρ5 + 0.0588ρ6
)

sinθeiϕ,

E6,1,1 = 56.7587,
(4.75)
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for the following variable ρ = 5.0297 ∗ 10−7r.

Comparison

In the absence of the centrifugal term and the generalized Cornell poten-

tial, we compare the estimated energy eigenvalues calculated for the gen-

eralized Cornell plus Morse potential (4.41) with alternative values(for

the value l = 0).

Let be the nergy levels that are computed in [66] for l = 0 are given by

En,0,0 = −
−λ2

2M

( √2MD
λ

− n −
1
2

)2
, (4.76)

where the approximate energy levels of the generalized Cornell plus

Morse potential are written for the parameters of Morse potential in the

reference [66] for the following parameters

V0 = De2λr0, (4.77)

V1 = −2Deλr0. (4.78)

then, writing the approximate energy eigenvalues in (4.41) in the absence

of the terms of the generalized Cornell potential gives

En,0,0 = −D + λeλr0

√
D

2M

(
2 + 2n ± 1

)
. (4.79)

By comaring the approximate energy eigenvalues in (4.76) and those in

(4.79), we deduce that they are different.

4.4.2 The generalized Pöschl-Teller potential

Pöschl-Teller potential is one of the famous models in quantum mechan-

ics that are exactly solvable, it is a crucial potential that has many appli-

cation in chemistry and spectroscopy, it can represent the interaction be-

tween particles, atoms and molecules, it is a realistic model that is used in
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anharmonic molecular vibrations, it allows the prediction of vibrational

spectra of molecules, it introduces anharmonicity in the vibrational en-

ergy levels, it is a good approximation for the potential energy surface, it

can describe potential wells or potential barriers. Many formulas exists

for Pöschl-Teller potential that the researchers treated in their papers,

where You et al obtained solutions to the Schrödinger equation for the

second Pöschl-Teller potential [69], Yahya and Oyewumi obtained ap-

proximate l-state solutions to Schrödinger equation for the pöschl-Teller

like potential [70], Assi et al obtained solutions for Schrödinger equation

in D-dimension for the hyperbolic Pöschl-Teller potential plus modified

ring-shaped term [71].

In this part, we are interested in the generalized Pöschl-Teller potential

that is given in [72] where its expression is given by

Ve(r) =
V2

sinh2λr
−

V3coshλr
sinh2λr

, V2 > V3, (4.80)

in which V2, V3 λ are related to the properties of the potential.

to obtain the potential that we resolve the radial equation for, we substi-

tute this exponential potential of Pö in (4.1) to get

V(r) =
a−2

r2 +
a−1

r
+ a0 + a1r + a2r2 +

V2

sinh2λr
−

V3coshλr
sinh2λr

, (4.81)

then by inserting the central potential (4.81) in the radial equation (4.18)

to get

−
1

2M
d2Rn,l(r)

dr2 +
( l(l+1)

2M + a−2

r2 +
a−1

r
+a0+a1r+a2r2+

V2

sinh2λr
−

V3coshλr
sinh2λr

)
Rn,l(r) = ERn,l(r).

(4.82)

It is clear that the expression of the effective potential in the case of the

generalized Cornell plus the generalized Pöschl-Teller potential makes
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the solvability of the radial equation (4.82) hard to resolve analytically,

for this reason, we use the following approximation scheme [73]

1
sinhλr

≈
1
λr
, (4.83)

where the figure below shows that the curves of the two functions 1
λr and

1
sinhλr

Figure 4.5: The curves of 1
λr and 1

sinhλr for λ = 0.1

and this approximation scheme is used to approximate the effective

potential to obtain an equation where the analytic solution are known,

this approximation is appropriate for small values of the parameter λ

where the left side is a good approximation of the right side.

By taking the term 1
sinhλr and approximating it by the term 1

λr in the

effective potential of the radial equation (4.82), we obtain the following

equation

d2Rn,l(r)
dr2 +

(A2

r2 +
B2

r
+ C2 +D2r + F2r2

)
Rn,l(r) = 0. (4.84)
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The differential equation (4.84) is the normal form of biconfluent Heun’s

equation for the following parameters

A2 = −2M
(
a−2 +

V2−V3
λ2

)
− l(l + 1),

B2 = −2Ma−1,

C2 = 2M
(
E − a0 +

V3
2

)
,

D2 = −2Ma1,

F2 = 2Ma2.

(4.85)

Biconfluent Heun’s equation in his normal form is transformed to the

following canonical form

y
d2P(y)

dy2 +
(
1+α2−β2y−2y2

)dP(y)
dy
+
(
(γ2−α2−2)y−

1
2

(
δ2+(1+α2)β2

))
P(y) = 0,

(4.86)

for this set of parameters

α2 =

√
4
(
l(l + 1) + 2M

(
a−2 +

V2−V3
λ2

))
+ 1,

β2 = a1 4

√
2M
a3

2
,

δ2 = 2a−1
4

√
8M3

a2
,

γ2 = a2
1

√
M
8a3

2
+
(
E − a0 +

V3
2

)√
2M
a2
.

(4.87)

The canonical equation 4.86 has polynomial solutions in the following

form

P(y) =
n∑

k≥0

Γ(1 + α2)bk

Γ(1 + α2 + k)
yk

k!
, (4.88)

where the coefficients bk are related by the recurrence expression (4.26).

Here, only a finite number of the eigenfunctions can be written in ex-
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plicit form, which means that the case here is quasi-exactly solvability of

Schrödinger equation.

Now to obtain the energy eigenvalues, we return to the first condition in

(4.27) which is given by

γ2 − α2 − 2 = 2n, (4.89)

to get the approximate energy values as

En,l,m = −
a2

1

4a2
+a0−

V3

2
+

√
a2

2M

(√
1 + 4

(
l(l + 1) + 2M

(
a−2 +

V2 − V3

λ2

))
+2+2n

)
,

(4.90)

for the condition 1 − 4A2 ≥ 0 to have real values of the energy besides to

the condition F2 > 0.

As a result, the approximate wave function of Schrödinger equation

in the case of the central potential: the generalized Cornell plus the

generalized Pöschl-Teller potential is given by

ψn,l,m(ρ, θ, ϕ) = ρ
α2−1

2 e−
ρ2+β2ρ

2

( n∑
k≥0

Γ(1 + α2)bk

Γ(1 + α2 + k)
ρk

k!

)
(1 − cos2 θ)

m
2

.
dl+m

d cosθl+m
(1 − cos2 θ)leimϕ, (4.91)

for the following variable ρ = 4
√

F2r.

Numerical application for the approximate bound states of the gener-

alized Pöschl-Teller potential

In order to give some examples of the approximate bound states for the

case of the generalized Pöschl-Teller potential, we consider the following
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numerical values of the parameters

a−2 = a1 = 0,

V2 = 2,m = −1,

a0 = a2 = l = V3 = 1, λ = 0.1,M = 0.01

(4.92)

• For n = 1

The roots of the coefficient b2 are

ω1,0 = −2.1641, (4.93)

ω1,1 = 2.1641, (4.94)

choosing the root ω1,1 gives the following approximate wave function

and energy value
ψ1,1,−1(ρ, θ, ϕ) = ρ1.1708e−

ρ2

2

(
1 + 0.9242ρ

)
sinθe−iϕ,

E1,1,−1 = 119.9427.

(4.95)

Figure 4.6: The graph of the radial part of ψ1,1,−1
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• For n = 2

The roots of the coefficient b3 are

ω2,0 = −4.7679, (4.96)

ω2,1 = 0, (4.97)

ω2,2 = 4.7679, (4.98)

choosing the root ω2,1 gives the following approximate wave function

and energy value
ψ2,1,−1(ρ, θ, ϕ) = ρ1.1708e−

ρ2

2

(
1 − 0.5985ρ2

)
sinθe−iϕ,

E2,1,−1 = 164.6641.

(4.99)

Figure 4.7: The graph of the radial part of ψ2,1,−1

• For n = 3
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The roots of the coefficient b4 are

ω3,0 = −7.7984, (4.100)

ω3,1 = −2.4532, (4.101)

ω3,2 = 2.4532, (4.102)

ω3,3 = 7.7984, (4.103)

selecting the root ω3,2 gives the following approximate wave function

and energy value
ψ3,1,−1(ρ, θ, ϕ) = ρ1.1708e−

ρ2

2

(
1 + 3.3303ρ + 2.9882ρ2 + 0.7664ρ3

)
sinθe−iϕ,

E3,1,−1 = 209.3854.
(4.104)

Figure 4.8: The graph of the radial part of ψ3,1,−1

• For n = 4

93



The roots of the coefficient b5 are

ω4,0 = −11.2231, (4.105)

ω4,1 = −5.2639, (4.106)

ω4,2 = 0, (4.107)

ω4,3 = 5.2639, (4.108)

ω4,4 = 11.2231, (4.109)

selecting the root ω4,0 gives the following approximate wave function

and energy value
ψ4,1,−1(ρ, θ, ϕ) = ρ1.1708e−

ρ2

2

(
1 − 1.197ρ3 + 0.2241ρ5

)
sinθe−iϕ,

E4,1,−1 = 254.1068.

(4.110)

• For n = 5

The roots of the coefficient b6 are

ω5,0 = −15.0088, (4.111)

ω5,1 = −8.4522, (4.112)

ω5,2 = −2.6854, (4.113)

ω5,3 = 2.6854, (4.114)

ω5,4 = 8.4522, (4.115)

ω5,5 = 15.0088, (4.116)

choosing the root ω5,3 gives the following approximate wave function
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and energy value

ψ5,1,−1(ρ, θ, ϕ) = ρ1.1708e−
ρ2

2

(
1 + 1.1468ρ − 1.0355ρ2

− 0.9179ρ3 + 0.1754ρ4

+0.1306ρ5
)

sinθe−iϕ,

E5,1,−1 = 298.8282.
(4.117)

• For n = 6

The roots of the coefficient b7 are

ω6,0 = −19.1271, (4.118)

ω6,1 = −12.0064, (4.119)

ω6,2 = −5.6801, (4.120)

ω6,3 = 0, (4.121)

ω6,4 = 5.6801, (4.122)

ω6,5 = 12.0064 (4.123)

ω6,6 = 19.1271, (4.124)

choosing the root ω6,3 gives the following approximate wave function

and energy value

ψ6,1,−1(ρ, θ, ϕ) = ρ1.1708e−
ρ2

2

(
1 + 2.4257ρ + 0.2661ρ2

− 1.7463ρ3
− 0.5639ρ5+

0.2294ρ5 + 0.0808ρ6
)

sinθe−iϕ,

E6,1,−1 = 3.43.5495,
(4.125)

for the following variable ρ = 0.0095r.
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Comparison

We compare the approximate energy eigenvalues obtained in the case of

the generalized Cornell plus the generalized Pöschl-Teller (4.90) without

the generalized Cornell potential with other values obtained for the gen-

eralized Pöschl-Teller potential in this section. This means that the term
1
λr is substituted with the term 1

sinhλr .

Let consider the approximate energy levels that are obtained from the

reference [74] as

En,l,m = −
λ2

8

( 1
2λ

(√
8(V2 + V3) + λ2 −

√
8(V2 − V3) + λ2(2l + 1)2

)
− 1 − 2n

)
,

(4.126)

at the other hand, the approximate energy levels in (4.90) for a−2 = a−1 =

a0 = a1 = a2 = 0 are given by

En,l,m = −
V3

2
. (4.127)

By comparing the approximate energy levels in (4.126) and the approx-

imate energy levels in (4.127), we deduce that the values are totally

different.

4.4.3 Yukawa class potential

One of the well-known exponential type potentials and a well-known

model in quantum mechanics is the Yukawa potential. In particular, the

Yukawa potential is significant in many different fields, it is a well known

potential in many fields such as nuclear physics to describe the strong

nuclear force between nucleons, in solid state physics to describe the in-

teraction where the electric field is screened by surrounded charges and

in plasma physics to describe the interaction between charged particles
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[75]. As the most exponential type potentials, Yukawa potential is not

exactly solvable model in non-relativistic quantum mechanics, where ap-

proximative techniques had been used to deal with Schrödinger for this

potential [76]. When they resolved Schrodinger equation for exponential

potentials, the researchers dealt with many classes of Yukawa potential,

where Onate and Ojonubah obtained eigenfunctions and eigenvalues

for Schrödinger equation using supersymmetric quantum mechanics for

a class of Yukawa potential [77], Rajabi and Hamzavi constructed ex-

plicit approximate solutions for Schrödinger equation for the perturbed

Yukawa potential with a centrifugal term using NU method [78], Okorie

et al. obtained approximate solution to the Schrödinger equation for the

modified Yukawa potential by transforming the radial equation to Gauss

hypergeometric equation [79].

In this part, we are interested in the following Yukawa class [80] which

is given by

Ve(r) = −
V4e−2λr

r2 −
V5e−λr

r
. (4.128)

In order to obtain the potential that we resolve the radial equation for,

we substitute this exponential potential of Yukawa class in (4.1) to get

V(r) =
a−2

r2 +
a−1

r
+ a0 + a1r + a2r2

−
V4e−2λr

r2 −
V5e−λr

r
, (4.129)

then by inserting the central potential (4.129) in the radial equation (4.18)

to get

−
1

2M
d2Rn,l(r)

dr2 +
( l(l+1)

2M + a−2

r2 +
a−1

r
+a0+a1r+a2r2

−
V4e−2λr

r2 −
V5e−λr

r

)
Rn,l(r) = ERn,l(r).

(4.130)

It is clear that the expression of the effective potential in the case of the

generalized Cornell plus Yukawa class potential makes the solvability of
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the radial equation (4.130) not trivial to resolve analytically due to the

combination of exponential terms and polynomial ones, for this reason,

we use the following approximation scheme [59]

1
1 − e−λr ≈

1
λr
, (4.131)

for approximate the effective potential then obtain an equation where the

solutions are known, such that this approximation is accurate for small

values of the parameter λ where the left side is good approximation to

the right one.

By taking the term 1
1−e−λr and approximate it by the term 1

λr in the effective

potential of the radial equation (4.130), we obtain the following equation

d2Rn,l(r)
dr2 +

(A3

r2 +
B3

r
+ C3 +D3r + F3r2

)
Rn,l(r) = 0. (4.132)

The differential equation (4.132) is the normal form of biconfluent Heun’s

equation for the following parameters

A3 = −2M(V4 − a−2) − l(l + 1),

B3 = (V5 − a−1 − 2V4λ)2M,

C3 = 2M(E − a0 − V5λ + V4λ2),

D3 = −2Ma1,

F3 = 2Ma2.

(4.133)

Biconfluent Heun’s equation in his normal form is transformed to the

following canonical form

y
d2P(y)

dy2 +
(
1+α3−β3y−2y2

)dP(y)
dy
+
(
(γ3−α3−2)y−

1
2

(
δ3+(1+α3)β3

))
P(y) = 0,

(4.134)
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for this set of parameters

α3 =

√
4
(
l(l + 1) + 2M(a−2 − V4)

)
+ 1,

β3 = a1 4

√
2M
a3

2
,

δ3 = 2
(
a−1 + 2V4λ − V5

)
4

√
8M3

a2
,

γ3 = a2
1

4

√
M
8a3

2
+
(
E − a0 − V5λ + V4λ2

)√
2M
a2
.

(4.135)

The canonical equation (4.134) has polynomial solutions in the following

form

P(y) =
n∑

k≥0

Γ(1 + α3)bk

Γ(1 + α3 + k)
yk

k!
, (4.136)

And the recurrence expression (4.26) links the coefficients bk. Hence

only a portion of the eigenfunctions can be written in explicit form,

which means that the case here is quasi-exactly solvability of Schrödinger

equation.

Now to obtain the energy eigenvalues, we return to the first condition in

(4.27) which is given by

γ3 − α3 − 2 = 2n, (4.137)

to get the approximate energy values for Yukawa class potential as

En,l,m =
(√

1 + 4(l(l + 1) + 2M(a−2 − V4))+2+2n
)√ a2

2M
−

a2
1

4a2
+a0+λ(V5−V4λ),

(4.138)

for the condition 1 − 4A3 ≥ 0 to have real values of the energy besides to

the condition F3 > 0.

Then, the approximate wave function of Schrödinger equation in the

case of the central potential: the generalized Cornell plus Yukawa class
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potential is given by

ψn,l,m(ρ, θ, ϕ) = ρ
α3−1

2 e−
ρ2+β3ρ

2

( n∑
k≥0

Γ(1 + α3)bk

Γ(1 + α3 + k)
ρk

k!

)
(1 − cos2 θ)

m
2

.
dl+m

d cosθl+m
(1 − cos2 θ)leimϕ, (4.139)

for the following variable ρ = 4
√

F3r.

Numerical application for the approximate bound states of Yukawa

class potential

We take into consideration the following numerical values of the param-

eters to provide some examples of the estimated bound states for the

case of Yukawa class potential

a−2 =
3
2 , V5 =

1
4 ,

a1 = 0, l = 3,

V4 = a2 = m = 2,

M = λ = a0 = 1, λ = 0.001.

(4.140)

• For n = 1

The roots of the coefficient b2 are

ω1,0 = −3.9264, (4.141)

ω1,1 = 3.9264, (4.142)
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then, computing the approximate wave function and energy value for

the root ω1,0 gives
ψ1,3,2(ρ, θ, ϕ) = ρ

3
√

5−1
2 e−

ρ2

2

(
1 + 0.5094ρ

)
sin2 θ cosθe2iϕ,

E1,3,2 = 11.7085.

(4.143)

Figure 4.9: The graph of the radial part of ψ1,3,2

• For n = 2

The roots of the coefficient b3 are

ω2,0 = −

√
24
√

5 + 12, (4.144)

ω2,1 = 0, (4.145)

ω2,2 =

√
24
√

5 + 12 (4.146)

then, computing the approximate wave function and energy value for

the root ω2,0 gives
ψ2,3,2(ρ, θ, ϕ) = ρ

3
√

5−1
2 e−

ρ2

2

(
1 + 1.0513ρ + 0.2595ρ2

)
sin2 θ cosθe2iϕ,

E2,3,2 = 13.7085.
(4.147)
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Figure 4.10: The graph of the radial part of ψ2,1,1

• For n = 3

The roots of the coefficient b4 are

ω3,0 = −12.5302, (4.148)

ω3,1 = −4.1423, (4.149)

ω3,2 = 4.1423, (4.150)

ω3,3 = 12.5302 (4.151)

then, computing the approximate wave function and energy value for

the root ω3,1 gives
ψ3,3,2(ρ, θ, ϕ) = ρ

3
√

5−1
2 e−

ρ2

2

(
1 − 0.5374ρ − 0.2167ρ2 + 0.1046ρ3

)
sin2 θ cosθe2iϕ,

E3,3,2 = 15.7085.
(4.152)

• For n = 4
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Figure 4.11: The graph of the radial part of ψ3,1,1

The roots of the coefficient b5 are

ω4,0 = −17.2034, (4.153)

ω4,1 = −8.5071, (4.154)

ω4,2 = 0, (4.155)

ω4,3 = 8.5071, (4.156)

ω4,4 = 17.2034, (4.157)

then, computing the approximate wave function and energy value for

the root ω4,3 gives

ψ4,3,2(ρ, θ, ϕ) = ρ
3
√

5−1
2 e−

ρ2

2

(
1 + 1.1036ρ + 0.0797ρ2

− 0.2041ρ3

−0.048ρ4
)

sin2 θ cosθe2iϕ,

E4,3,2 = 17.7085.

(4.158)

• For n = 5
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The roots of the coefficient b6 are

ω5,0 = −22.1185, (4.159)

ω5,1 = −13.0979, (4.160)

ω5,2 = −4.3348, (4.161)

ω5,3 = 4.3348, (4.162)

ω5,4 = 13.0979, (4.163)

ω5,5 = 22.1185, (4.164)

then, computing the approximate wave function and energy value for

the root ω5,4 gives

ψ5,3,2(ρ, θ, ϕ) = ρ
3
√

5−1
2 e−

ρ2

2

(
1 + 1.6992ρ + 0.7037ρ2

− 0.1503ρ3
− 0.1445ρ4

−

0.0221ρ5
)

sin2 θ cosθe2iϕ,

E5,3,2 = 19.7085.
(4.165)

• For n = 6
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The roots of the coefficient b7 are

ω6,0 = −27.2699, (4.166)

ω6,1 = −17.9158, (4.167)

ω6,2 = −8.8711, (4.168)

ω6,3 = 0, (4.169)

ω6,4 = 8.8711, (4.170)

ω6,5 = 17.9158, (4.171)

ω6,6 = 27.2699, (4.172)

then, computing the approximate wave function and energy value for

the root ω6,2 gives

ψ6,3,2(ρ, θ, ϕ) = ρ
3
√

5−1
2 e−

ρ2

2

(
1 + 1.1509ρ − 0.1028ρ2

− 0.4265ρ3
− 0.0691ρ4

+0.0332ρ5 + 0.0075ρ6
)

sin2 θ cosθe2iϕ,

E6,3,2 = 21.7085,
(4.173)

for the variable ρ = 2.8284r

Comparison

In this part, we compare the approximate energy eigenvalues that are

obtained in the case of the generalized Cornell plus Yukawa class poten-

tial (4.138) in the absence of the generalized Cornell potential with other

values that are taken only for Yukawa class potential, such that the term
1
λr is substituted by the term 1

1−e−λr .
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Writing the approximate energy eigenvalues that are obtained in the ref-

erence [81] and they are computed for Yukawa class potential using the

NU method as follows

En,l,m = −
λ2

8M

(
− l(l + 1) + MV5

2λ −
1
2 − n(n + 1) + 2(n + 1)

√
1
4 − 2MV4 + l(l + 1)

)2
(
n + 1

2 +
√
+l(l + 1) + 1

4 − 2MV4

)2 .

(4.174)

This is obvious that the approximate energy eigenvalues (4.174) are not

derived from the approximate energy levels (4.138) when the parameters

a−2 = a−1 = a0 = a1 = 0 and a2 → 0.

4.4.4 Schiöberg potential

Schiöberg potential is an exponential potential function, it was proposed

as a modification to existing potentials to improve the description of

different interactions. Although this potential is not a recognized as other

potentials like Morse and Yukawa potentials, Schiöberg potential has

many applications in laboratory, where it is useful to understand energy

levels and bound states of atoms and molecules, it models the vibrational

spectra of diatomic molecules, the accuracy predictions for Schiöberg

potential is improved for molecular vibrational states compared to other

potentials. It helps in understanding the thermodynamic properties of

physical systems.

In this part, we are interested in the following Schiöberg potential [82]

Ve(r) = K(1 − σcothλr)2, σ > 0, K > 0. (4.175)

In order to obtain the potential that we resolve the radial equation for,

we substitute this exponential potential of Schiöberg in the expression
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(4.1) to yield the following central potential

V(r) =
a−2

r2 +
a−1

r
+ a0 + a1r + a2r2 + K(1 − σcothλr)2, (4.176)

Once the radial equation (4.18) has the central potential (4.176) included,

we obtain

−
1

2M
d2Rn,l(r)

dr2 +
( l(l+1)

2M + a−2

r2 +
a−1

r
+a0+a1r+a2r2+K(1−σcothλr)2

)
Rn,l(r) = ERn,l(r).

(4.177)

It is clear that the expression of the effective potential in the case of the

generalized Cornell plus Schiöberg potential makes the solvability of

the radial equation (4.177) not trivial, hence the analytic solution is hard

to obtain due to the combination of exponential terms and polynomial

ones, for this reason, we use the following approximation scheme [73]

1
sinhλr

≈
1
λr
, (4.178)

to approximate the effective potential from equation (4.177) then an equa-

tion is obtained where the solutions are known, such that this approxi-

mation is accurate for small values of the parameter λwhere the left side

is good approximation to the right one.

By taking the term 1
sinhλr and approximate it by the term 1

λr in the effective

potential of the radial equation (4.177), we obtain the following equation

d2Rn,l(r)
dr2 +

(A4

r2 +
B4

r
+ C4 +D4r + F4r2

)
Rn,l(r) = 0. (4.179)
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For the following parameters, Heun’s equation in his biconfluent normal

form is the differential equation (4.179)

A4 = −2M
(
a−2 +

σ2K
λ2

)
− l(l + 1),

B4 =
(

2σK
λ − a−1

)
2M,

C4 = 2M(E − a0 − K(1 + σ2)),

D4 = 2M(Kσλ − a1),

F4 = 2M
(
a2 +

Kσ2λ2

4

)
.

(4.180)

Heun’s equation in his biconfluent normal form is transformed to the

following canonical form

y
d2P(y)

dy2 +
(
1+α4−β4y−2y2

)dP(y)
dy
+
(
(γ4−α4−2)y−

1
2

(
δ4+(1+α4)β4

))
P(y) = 0,

(4.181)

for this set of parameters

α4 = ∓

√
4
(
l(l + 1) + 2M

(
a−2 +

σ2K
λ2

))
+ 1,

β4 =
(
a1 − Kσλ

)
4

√√ 2M(
a2+

Kσ2λ2
4

)3 ,
δ4 = 2

(
a−1 −

2Kσ
λ

)
4

√
8M3

a2+
Kσ2λ2

4

,

γ4 =
(
a1 − Kσλ

)2√√ M

8

(
a2+

Kσ2λ2
4

)3 + (E − a0

−K(1 + σ2)
)√

2M
a2+

Kσ2λ2
4

.

(4.182)
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The canonical equation (4.181) has polynomial solutions in the following

form

P(y) =
n∑

k≥0

Γ(1 + α4)bk

Γ(1 + α4 + k)
yk

k!
, (4.183)

And the recurrence expression (4.26) links the coefficients bk. Here there

is only a finite number of the eigenfunctions that can be written in ex-

plicit form, which means that the case here is quasi-exactly solvability of

Schrödinger equation.

We go back to the first condition in 4.27 to get the energy eigenvalues,

which is provided by

γ4 − α4 − 2 = 2n, (4.184)

to get the approximate energy values for Schiöberg potential as

En,l,m =
(
∓

√
4
(
l(l + 1) + 2M

(
a−2 +

σ2K
λ2

))
+ 1 + 2n + 2

)√4a2 + Kλ2σ2

8M

−
(Kσλ − a1)2

4a2 + Kλ2σ2 + a0 + K(1 + σ2), (4.185)

for the condition 1 − 4A4 ≥ 0 to have real values of the energy besides to

the condition F4 > 0.

Then, the approximate wave function of Schrödinger equation in the case

of the central potential: the generalized Cornell plus Schiöberg potential

is given by

ψn,l,m(ρ, θ, ϕ) = ρ
α4−1

2 e−
ρ2+β4ρ

2

( n∑
k≥0

Γ(1 + α4)bk

Γ(1 + α4 + k)
ρk

k!

)
(1 − cos2 θ)

m
2

.
dl+m

d cosθl+m
(1 − cos2 θ)leimϕ, (4.186)

for the following variable ρ = 4
√

F4r.

109



Numerical application for the approximate bound states of Schiöberg

potential

We take into consideration the following numerical values of the param-

eters to provide some examples of the approximate eigensolutions for

Schiöberg potential situation

K = 4, a−2 = −1

a0 = 1, λ = 0.01,M = 0.0001,

a1 = a2 = l = m = 2,

σ = 1
2 .

(4.187)

• For n = 1

The roots of the coefficient b2 are

ω1,0 = −3.4047, (4.188)

ω1,1 = 3.4983, (4.189)

then, computing the approximate wave function and energy value for

the root ω1,1 gives
ψ1,2,2(ρ, θ, ϕ) = ρ3.004e−0.0636ρ− ρ

2

2

(
1 − 0.5823ρ

)
sin2 θe2iϕ,

E1,2,2 = 906.9497.

(4.190)

• For n = 2
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Figure 4.12: The graph of the radial part of ψ1,2,2

The roots of the coefficient b3 are

ω2,0 = −7.2818, (4.191)

ω2,1 = −0.0587, (4.192)

ω2,2 = 7.1797, (4.193)

then, computing the approximate wave function and energy value for

the root ω2,2 gives
ψ2,2,2(ρ, θ, ϕ) = ρ3.004e−0.0636ρ− ρ

2

2

(
1 − 1.2120ρ + 0.3388ρ2

)
sin2 θe2iϕ,

E2,2,2 = 1107.1.
(4.194)

• For n = 3
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Figure 4.13: The graph of the radial part of ψ2,2,2

The roots of the coefficient b4 are

ω3,0 = −11.1438, (4.195)

ω3,1 = −3.7895, (4.196)

ω3,2 = 3.6123, (4.197)

ω3,3 = 11.1438, (4.198)

then, computing the approximate wave function and energy value for

the root ω3,2 gives
ψ3,2,2(ρ, θ, ϕ) = ρ3.004e−0.0636ρ− ρ

2

2

(
1 − 0.6308ρ − 0.2604ρ2 + 0.1447ρ3

)
sin2 θe2iϕ,

E3,2,2 = 1307.2.
(4.199)

• For n = 4
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Figure 4.14: The graph of the radial part of ψ3,2,2

The roots of the coefficient b5 are

ω4,0 = −15.6913, (4.200)

ω4,1 = −7.7686, (4.201)

ω4,2 = −0.1142, (4.202)

ω4,3 = 7.5263, (4.203)

ω4,4 = 15.412, (4.204)

then, computing the approximate wave function and energy value for

the root ω4,3 gives

ψ4,2,2(ρ, θ, ϕ) = ρ3.004e−0.0636ρ− ρ
2

2

(
1 − 1.2931ρ + 0.1401ρ2 + 0.2784ρ3

−0.0741ρ4
)

sin2 θe2iϕ,

E4,2,2 = 1507.3.
(4.205)

• For n = 5
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The roots of the coefficient b6 are

ω5,0 = −20.3034, (4.206)

ω5,1 = −12.0011, (4.207)

ω5,2 = −4.0484, (4.208)

ω5,3 = 3.7628, (4.209)

ω5,4 = 11.6895, (4.210)

ω5,5 = 19.947, (4.211)

then, computing the approximate wave function and energy value for

the root ω5,4 gives

ψ5,2,2(ρ, θ, ϕ) = ρ3.004e−0.0636ρ− ρ
2

2

(
1 − 1.9976ρ + 0.9879ρ2 + 0.1769ρ3

−

0.2225ρ4 + 0.0381ρ5
)

sin2 θe2iϕ,

E5,2,2 = 1707.4.
(4.212)

• For n = 6
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The roots of the coefficient b7 are

ω6,0 = −25.7406, (4.213)

ω6,1 = −16.4877, (4.214)

ω6,2 = −8.2047, (4.215)

ω6,3 = −0.1674, (4.216)

ω6,4 = 7.8564, (4.217)

ω6,5 = 16.1033, (4.218)

ω6,6 = 24.7406, (4.219)

then, computing the approximate wave function and energy value for

the root ω6,4 gives

ψ6,2,2(ρ, θ, ϕ) = ρ3.004e−0.0636ρ− ρ
2

2

(
1 − 1.3656ρ − 0.0629ρ2 + 0.5896ρ3

− 0.1172ρ4
−

0.0521ρ5 + 0.0133ρ6
)

sin2 θe2iϕ,

E6,2,2 = 1907.6,
(4.220)

for the variable ρ = 0.0028r

Comparison

In this part, we compare the approximate energy eigenvalues obtained

for the generalized Cornell plus Schiöberg potential with other values

that were obtained for a situation of Schiöberg potential, where the 1
λr is

substituted with 1
sinhλr .

We write the approximate energy eigenvalues that are obtained in [83]
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using the asymptotic iteration method as

En,l,m =
((1 − σ)2MK

2λ2 −

(
(n + 1)2 + l(l + 1) − 2σ(1 − σ)

MK
λ2

+ (2n + 1)
(
−

1
2
+

√
1
4
+ 2

MKσ2

λ2 + l(l + 1)
))2

/
(
4
(
n +

1
2
+

√
1
4
+ 2

MKσ2

λ2 + l(l + 1)
)2))2λ2

M
. (4.221)

Hence the approximate energy levels (4.221) cannot be a limit case of

the approximate energy eigenvalues (4.185) when the coefficients a−2 =

a−1 = a0 = a1 = a2 = 0.

4.4.5 Manning-Rosen potential

Manning-Rosen function is an exponential potential function, it is a well-

known potential in quantum mechanics. In particular Manning-Rosen

potential has an important role in physics and related domains, it has

several applications in theoretical physics, such that in molecular physics

Manning-Rosen potential often used to model the different interactions

between diatomic molecules, it is helpful to describe the vibrational

energy levels of molecules. Manning-Rosen potential attracted the at-

tention of researchers where Ikhdair and Sever obtained approximate

l−state solutions to the Schrödinger equation for Manning-Rosen poten-

tial, Qiang and Dong established approximate solutions of Manning-

Rosen potential in the presence of the centrifugal term [85], Dong and

García-Ravelo obtained exact solutions to the s−wave Schrödinger equa-

tion for the same potential [86].
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We are interested in the Manning-Rosen potential that is given by [87]

Ve(r) =
λ2

2M

(ξ(ξ − 1)e−2λr

(1 − e−λr)2
−

K1e−λr

1 − e−λr

)
. (4.222)

To obtain the central potential that we resolve the radial equation for, we

replace the exponential potential of Manning-Rosen in the expression

(4.1) to have

V(r) =
a−2

r2 +
a−1

r
+ a0 + a1r + a2r2 +

λ2

2M

(ξ(ξ − 1)e−2λr

(1 − e−λr)2
−

K1e−λr

1 − e−λr

)
, (4.223)

then by inserting the central potential (4.223) in the radial equation (4.18)

to get

−
1

2M
d2Rn,l(r)

dr2 +
( l(l+1)

2M + a−2

r2 +
a−1

r
+ a0 + a1r + a2r2+

λ2

2M

(ξ(ξ − 1)e−2λr

(1 − e−λr)2
−

K1e−λr

1 − e−λr

))
Rn,l(r) = ERn,l(r). (4.224)

It is clear that the expression of the effective potential in the case of the

generalized Cornell plus Yukawa class potential makes the solvability of

the radial equation (4.224) not trivial to resolve analytically due to the

combination of exponential terms and polynomial ones, for this reason,

we use the following approximation scheme [59]

1
1 − e−λr ≈

1
λr
, (4.225)

for approximate the effective potential then obtain an equation where

the solutions are known, such that this approximation is accurate when

the values of λ are tinywhere the left side is accurate approximation to

the right one.

By taking the term 1
1−e−λr and approximate it by the term 1

λr in the effective

potential of the radial equation (4.224), we obtain the following equation

d2Rn,l(r)
dr2 +

(A5

r2 +
B5

r
+ C5 +D5r + F5r2

)
Rn,l(r) = 0. (4.226)
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Heun’s differential equation in its biconfluent normal form for the fol-

lowing parameters is the differential equation (4.226)

A5 = −2Ma−2 − l(l + 1) + ξ(1 − ξ),

B5 = λ(K1 + 2ξ(ξ − 1)) − 2Ma−1,

C5 = 2M(E − a0) + λ2(ξ(1 − ξ) − K1),

D5 = −2Ma1,

F5 = 2Ma2.

(4.227)

The normal form is transformed to the following canonical form

y
d2P(y)

dy2 +
(
1+α5−β5y−2y2

)dP(y)
dy
+
(
(γ5−α5−2)y−

1
2

(
δ5+(1+α5)β5

))
P(y) = 0,

(4.228)

for this set of parameters

α5 =
√

4(l(l + 1) + ξ(ξ − 1) + 2Ma−2) + 1,

β5 = a1 4

√
2M
a3

2
,

δ5 = 2
(
a−1 − λ

2ξ(ξ−1)+K1

2M

)
4

√
8M3

a2
,

γ5 = a2
1

√
M
8a3

2
+
(
E − a0 + λ2 ξ(1−ξ)−K1

2M

)√
2M
a2
.

(4.229)

The canonical equation (4.228) has polynomial solutions in the following

form

P(y) =
n∑

k≥0

Γ(1 + α5)bk

Γ(1 + α5 + k)
yk

k!
, (4.230)

And the recurrence expression (4.26) links the coefficients bk. Hence

only a portion of the eigenfunctions can be written in explicit form,
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which means that the case here is quasi-exactly solvability of Schrödinger

equation.

We go back to the first condition in (4.27) to get the energy eigenvalues,

which are provided by

γ5 − α5 − 2 = 2n, (4.231)

to get the approximate energies of Manning-Rosen potential as

En,l,m =
(√

4(l(l + 1) + ξ(ξ − 1) + 2Ma−2 + 1) + 2 + 2n
)√ a2

2M
−

a2
1

4a2
+ a0

+ λ2ξ(ξ − 1) + K1

2M
, (4.232)

for the condition 1 − 4A5 ≥ 0 to have real values of the energy besides to

the condition F5 > 0.

Then, the approximate wave function of Schrödinger equation in the case

of the central potential: the generalized Cornell plus Manning-Rosen

potential is given by

ψn,l,m(ρ, θ, ϕ) = ρ
α5−1

2 e−
ρ2+β5ρ

2

( n∑
k≥0

Γ(1 + α5)bk

Γ(1 + α5 + k)
ρk

k!

)
(1 − cos2 θ)

m
2

.
dl+m

d cosθl+m
(1 − cos2 θ)leimϕ, (4.233)

for the following variable ρ = 4
√

F5r.

Numerical application for the approximate bound states of Manning-

Rosen potential

We take into consideration the following numerical values of the param-

eters to provide some examples of the estimated bound states for the
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Manning-Rosen potential case

a−2 = ξ = 1
2 ,

a0 =
1
3 , a2 = 2,

a1 = K1 =M = m = l = 1, λ = 0.01.

(4.234)

• For n = 1

The roots of the coefficient b2 are

ω1,0 = −
1

2
√

2
−

√
17
8
+ 4
√

3, (4.235)

ω1,1 = −
1

2
√

2
+

√
17
8
+ 4
√

3, (4.236)

then, computing the approximate wave function and energy value for

the root ω1,1 yields
ψ1,1,1(ρ, θ, ϕ) = ρ

√
3− 1

2 e−
ρ2

2

(
1 + 0.5948ρ

)
sinθeiϕ,

E1,1,1 = 7.6725.

Figure 4.15: The graph of the radial part of ψ1,1,1
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(4.237)

• For n = 2

The roots of the coefficient b3 are

ω2,0 = −7.0833, (4.238)

ω2,1 = −0.6358, (4.239)

ω2,2 = 5.5988, (4.240)

then, computing the approximate wave function and en-
ergy value for the root ω2,1 givesψ2,1,1(ρ, θ, ϕ) = ρ

√
3− 1

2 e−
ρ2

2

(
1 − 0.1426ρ − 0.3669ρ2

)
sinθeiϕ,

E2,1,1 = 9.7625.
(4.241)

Figure 4.16: The graph of the radial part of ψ2,1,1

• For n = 3
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The roots of the coefficient b4 are

ω3,0 = −11.1484, (4.242)

ω3,1 = −4.2307, (4.243)

ω3,2 = 2.2996, (4.244)

ω3,3 = 8.8368, (4.245)

then, computing the approximate wave function and en-
ergy value for the root ω3,2 givesψ3,1,1(ρ, θ, ϕ) = ρ

√
3− 1

2 e−
ρ2

2

(
1 + 0.5151ρ − 0.4073ρ2

− 0.1843ρ3
)

sinθeiϕ,

E3,1,1 = 11.7625.
(4.246)

Figure 4.17: The graph of the radial part of ψ3,1,1

• For n = 4
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The roots of the coefficient b5 are

ω4,0 = −15.5398, (4.247)

ω4,1 = −8.1377, (4.248)

ω4,2 = −1.2326, (4.249)

ω4,3 = 5.4713, (4.250)

ω4,4 = 13.7625, (4.251)

then, computing the approximate wave function and en-
ergy value for the root ω4,3 gives
ψ4,1,1(ρ, θ, ϕ) = ρ

√
3− 1

2 e−
ρ2

2

(
1 + 1.2256ρ − 0.0391ρ2

− 0.3931ρ3

−0.0947ρ4
)

sinθeiϕ,

E4,1,1 = 15.7625.
(4.252)

• For n = 5

The roots of the coefficient b6 are

ω5,0 = −20.1851, (4.253)

ω5,1 = −12.3568, (4.254)

ω5,2 = −5.0292, (4.255)

ω5,3 = 1.9385, (4.256)

ω5,4 = 8.8955, (4.257)

ω5,4 = 16.1851, (4.258)

then, computing the approximate wave function and en-
ergy value for the root ω5,4 gives
ψ5,1,1(ρ, θ, ϕ) = ρ

√
3− 1

2 e−
ρ2

2

(
1 + 1.9927ρ + 0.8359ρ2

− 0.3776ρ3

−0.3073ρ4
− 0.0494ρ5

)
sinθeiϕ,

E5,1,1 = 17.7625.
(4.259)
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• For n = 6

The roots of the coefficient b7 are

ω6,0 = −25.2314, (4.260)

ω6,1 = −16.8794, (4.261)

ω6,2 = −9.1079, (4.262)

ω6,3 = −1.8008, (4.263)

ω6,4 = 5.31, (4.264)

ω6,4 = 12.5811, (4.265)

ω6,4 = 20.2792, (4.266)

then, computing the approximate wave function and en-
ergy value for the root ω6,4 gives
ψ6,1,1(ρ, θ, ϕ) = ρ

√
3− 1

2 e−
ρ2

2

(
1 + 2.8183ρ + 2.3288ρ2 + 0.2274ρ3

− 0.512ρ4

−0.2187ρ5
− 0.026ρ6

)
sinθeiϕ,

E6,1,1 = 19.7625,
(4.267)

for the variable ρ = 2.8284r.
Comparison
The energy eigenvalues obtained for the generalized Cor-
nell plus Manning-Rosen potential are compared with other
values obtained in the case of Manning-Rosen potential
only in this section, where in the radial equation, the
term 1

λr is substituted with the term 1
1−e−λr .

We write the approximate energy eigenvalues that are ob-
tained in [red81] using Nikiforov-Uvarov method as

En,l,m = −
λ2

8M

(
K1 − l

(
l + 1
)
−

1
2 − n

(
n + 1

)
+ 2
(
n + 1

)√
1
4 + ξ

(
ξ − 1

)
+ l
(
l + 1
))2

(
n + 1

2 +
√

1
4 + ξ

(
ξ − 1

)
+ l
(
l + 1
))2 .

(4.268)

It is clear that the values (blue4.268) are not a limit case
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of the values (blue4.232) when a−2 = a−1 = a0 = a1 = 0
and a2 → 0.
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CONCLUSION

The aim of this work is to establish approximate bound
state of Schrödinger equation for some central potentials,
where each potential is in the form the generalized Cor-
nell potential plus an exponential potential, and in or-
der to bemore precise, the exponential potentials that we
treated in this work are Manning-Rosen, Pöschl-Teller,
Yukawa class,Morse and Schiöberg in the framework of
quasi-exactly solvable problems. At the first place, we
started by giving some mathematical notions that are the
basis of quantum mechanics, then we introduced Schrödinger
equation with some related properties and results such as
the probabilistic interpretation of the wave function and
the postulates of quantum mechanics, then we resolved
approximately Schrodinger equation for some central po-
tentials, for each potential, solving the radial equation is
not trivial due to the combination of polynomial terms
besides to exponential terms that appeared in the effec-
tive potential, hence, finding the exact solutions is not
an easy task, for this reason we used for each case an
approximation scheme that allowed us to transform the
radial equation to the Heun’s equation in his biconfluent
normal, then the approximate eigenfunctions and the ap-
proximate energy levels are put in closed-form, at last for
numerical values of the parameters, we computed some
approximate eigenfunctions and energy eigenvalues.

For other works, we will try to resolve Schrödinger equa-
tion for other type of potentials central and non-central
ones and we will try to extend the proposed method to
treat other equations such as Dirac and Klein-Gordon
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equations.
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