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Abstract

In this thesis, we resolved Schrodinger equation spectral problem, for few central potentials, a
single potential is the sum of the generalized Cornell potential plus an exponential potential,
in the framework of quasi-exactly solvable problems. The exponential potentials that were
treated are : Morse potential, the generalized Poschl-Teller potential, Yukawa class potential,
Schidberg potential and Manning-Rosen potential. After inserting the central potential in the
radial equation, the effective potential became a combination of terms that made the
resolution of the radial equation not trivial to find, for this purpose, an approximation scheme
was used to transform the radial equation into the normal form of biconfluent Heun’s
equation, where the solutions are known, hence the approximate bound states of Schrodinger
equation and their energy eigenvalues are obtained in explicit form. At the end, for given
values of the parameters, some of the approximate bound states and their energy levels were
given.

Keywords:

Schrédinger equation, the generalized Cornell potential, quasi-exactly solvable problems, :
Morse potential, the generalized Pdschl-Teller potential, Yukawa class potential, Schidberg
potential, Manning-Rosen potential, biconfluent Heun’s equation, approximate bound states.



Résumé :

Dans cette these, nous avons résolu le probléme spectral de 1'équation de Schrodinger, pour
quelques potentiels centraux, un seul potentiel est la somme du potentiel de Cornell généralisé
plus un potentiel exponentiel, dans le cadre de problémes quasi-exactement solubles. Les
potentiels exponentiels qui ont été traités sont : le potentiel de Morse, le potentiel de Pdschl-
Teller généralisé, le potentiel de Yukawa, le potentiel de Schidberg et le potentiel de
Manning-Rosen. Pour ce potentiel et par un schéma d'approximation bien précis on a pu
transformer 1'équation radiale en 1'équation de Heun biconfluente, ot on a déterminé les états
liés approximatifs de 1'équation de Schrodinger et leurs niveaux d'énergie correspondante
sous une forme explicite. A la fin, pour des valeurs données des paramétres, certains des états
liés approximatifs et leurs niveaux d'énergie associée ont été donnés.

Mots clés :

Equation de Schrodinger, potentiel de Cornell généralisé, problémes quasi-exactement
solubles, potentiel de Morse, potentiel de Poschl-Teller généralisé, potentiel de classe de
Yukawa, potentiel de Schidberg, potentiel de Manning-Rosen, équation de Heun biconfluente,
états liés approximatifs.
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CHAPTER 1

INTRODUCTION

The foundation of classical mechanics was created at the beginning of
the seventeenth century, by Newton who published in 1687 his work
“Philosophiae Naturalis Principia Mathematica”, since three centuries
ago, he gave rise to the foundation of Newtonian mechanics, which is
the branch of physics that predicts and describes perfectly the motion of
macroscopic object. Beside to the theory of electromagnetism founded by
Maxwell, enabled physicists to develop a comprehensive understanding
of a wide range of observed phenomena in nature, they are a determinis-
tic theories, but, how about the microscopic world? When the physicists
tried to extend the principles of these theories to puzzle out the world
at the atomic and subatomic scale, they found that the classical laws
aren’t applicable and they break down at this levels, they were unable
to answer questions that classical theories could not explain like the
black body radiation problem, stability of atoms or Young’s double-slit
experiment, then they released that infinitely objects are governed by

other types of laws. Consequently, quantum mechanics came to us as
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a result of the failure of newtonian mechanics and Maxwell theory to
describe the microscopic world behaviour, hence, the eventful transition
from classical to non-classical laws of physics and then, the creation of
the new branch of physics, under the name of quantum mechanics. In
the universe one distinguishes two kinds of object: radiation and matter,
matter is made of localized particles where the state of particle is defined
perfectly at any instant by its position and velocity, that are derived from
Newton’s laws, in the other side radiation that has been treated as a
wave in which it can not be localized, since it is impossible to split ra-
diation into small particles obeys Maxwell’s laws of electromagnetism.
Quantum mechanics foundation made a truly revolutionary theory of
physics, by its rejection of the absolute ideas of classical understanding
of physical events and concepts. The first who gave the act of birth of
Quantum Mechanics was Planck in 1900 work [1], by its assumption of
quantization of energy, he argued that the exchange of energy between
electromagnetic waves and matter occurs only in discrete form, in this
way he was able to find an answer to the black body radiation problem.
Where in fact, classically the energy is treated as a continuous entity and
this make the classical picture of energy is not able to account for predict
the black body spectral properties. Planck discovered a new universal
constant which bears his name, thus, he created the first building block
of a new theory. Followed by Planck, by the time when it was univer-
sally accepted that light was treated as a wave among physicists, which
is experimentally proved by the existence of diffraction and interference
pattern in double slit experiment, Einstein by his hypothesis of quantum
nature of light in 1905, he was inspired by the black-body problem solu-

tion of Planck, that led him to resolve the paradox of the photoelectric

12



LIST OF FIGURES

effect, leading to particle-wave duality of light, he proposed that light
of fixed energy is composed of small units, a single unit called photon
and its energy is given by the following expression E = hf where f
represents the frequency of light and & is Planck’s constant. In parallel
with this discoveries, the structure of atoms were studied, where in the
year 1913, the physicist Niels Bohr was able to explicate the hydrogen
atom stability besides to the discreteness in the energy levels spectrum,
just by partially rejecting the classical concepts, he proposed a model of
atoms where there is the electrons evolving around the nucleus, on orbits
with well-defined discrete energy levels and they can only absorb well-
defined energies. Since light exhibit both wave and particle behaviour,
in 1924, de Broglie in his doctoral dissertation took the critical step, he
extended the wave-particle duality behaviour to all microscopic objects,
since there was no manifestation of wave nature of matter until it was
experimentally proven by the two scientists Davisson and Germer in the
year 1927, where they by chance proved the interference and diffraction
of electron. Another proof of the wavelike properties of the electron
was in the same year by Thomson, after the subatomic particle the so-
called neutron were discovered by Chadwick in 1932, the experiment of
Young’s double slit were carried out using this subatomic particle. The
real birth of quantum mechanics was by Heisenberg publishing his work
in 1925, who put for the first time a mathematical background for the
new theory based on non-commutative multiplication rule as matrices,
this work on matrix mechanics, that appeared in the early days of twen-
tieth century, was indeed advanced in significant way by physicists such
as Born and Jordan. Later, both Born and Wiener explored the concept of

physical variables as linear operators, leading to the modern mathemat-
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ical framework where physical quantities are represented as matrices.
This revolutionary development allowed for a more rigorous and ab-
stract understanding of quantum mechanics, paving the way for future
advancements in the field, including the formulation of Heisenberg’s
matrix mechanics and the eventual unification with wave mechanics.
In 1927, Heisenberg derived his uncertainty principle that imposes lim-
its on the concurrent measurability of both momentum and position of
particles, this principle arises from the inherent wave-particle duality
of quantum entities, indicating that the more precisely one property is
measured, the less precisely the other can be determined, if one try to
know exactly the position which is a corpuscular aspect of the particle, all
information about its momentum is lost where the momentum is a wave
characteristic. In 1926, Schrédinger proposed wave mechanics, instead
of matrices, he dealt with partial differential equations, he proposed
his famous equation. Matrix mechanics was difficult to understand by
the physicists so wave mechanics was more accessible and intuitive,
Schrodinger in 1926 showed that they are equivalent. The standard tool
in wave mechanics is the wave equation the so-called Schrédinger equa-
tion, itis valid for any non-relativistic system, where the solution is called
a wave function that is still without a physical meaning and in 1927 Bohr
suggested the probabilistic interpretation of the wave function known
as Copenhagen interpretation of quantum mechanics, he stated that its
square modulus is a probability density of the system under considera-
tion, hence the notion of determinism in the atomic world is abandoned
by quantum mechanics. It is postulated in the context of non-relativistic
quantum mechanics, that every information about the physical system

for a given instant is derived starting from the knowledge of the solu-
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tion of Schrodinger equation, namely the wave function. Then Dirac
suggested a simple formulation of quantum mechanics named Dirac Al-
gebra, he dealt with the general concepts by introducing the operators,
ket and bras vectors. In parallel with the construction of the new theory,
a very important discovery were made that contribute to more over-
all formulation later, where Ulhenbeck and Goudsmit proposed in 1925
the existence of an intrinsic magnet moment of the electron that they
called spin, that was discovered by Stern and Gerlach in 1922 where
they proved experimentally the quantifiction of the magnetic moment
of atoms. The proposed quantum mechanics theory by Schrodinger and
Heisenberg is valid only when dealing with non-relativistic phenomena.
For particles with mass and by combining between special relativity and
quantum mechanics, the origins of the first relativistic wave equation
known as Klein-Gordon equation was obtained, the early versions of
the equation were due to several physicists, it was proposed simultane-
ously by many physicists among them Klein, Schrodinger, Kudar and
Fock in 1926, it is the relativistic extension of Schrodinger equation in
which it describes a free electrically-charged spin-0 particle. In 1928
Dirac published his equation that was named after him, he extended
quantum mechanics to relativistic phenomena for particles with spin
where his equation deals with spin 1/2 particles, in 1930 Dirac predicted
the existence of antiparticles while he tried to overcome the difficulties
of Klein-Gordon equation negative probability densities [2, 3, 4, 5, 6, 7].
Quantum mechanics theory is the basic theory that is still leading to
modern development in technologies that are based on principles of
quantum phenomenon, it has a lot of important applications in which

it offers significant advantages and create new capabilities in comput-
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ing, communication , cryptography, measurement, etc. One of quantum
mechanics applications the characterization of matter in laboratory and
chemical analysis is based on the principle of absorption of photons from
the photoelectric effect, the phenomenon of diffraction allows to access
to the crystallographic structure of matter besides to visualize matter at
the smallest details using electron microscopes that use electrons instead
of light and the scanning tunneling microscopes are other type of micro-
scopes that was invented by Gerd Binnig and Heinrich Rohrer in 1981
that uses the tunneling effect to image surfaces of materials, the magnet
resonance imaging (MRI) that is used to diagnose diseases works thanks
to the property of spin to generate images of human bodies, laser which
is a beam of focused monochromatic light widely used in medicine for
eye surgery or the treatment of local lesions, lasers are used also for
optical disk storage (DVDs), for industry there is laser cutting which
has been used since 1980, it is a manufacturing process that uses laser
to make cuts in materials like metals with high precision. One of the
most transformative features of quantum principles is its application in
quantum computing which employs superposition and entanglement to
process information in ways unlike classical computers, such that instead
of using bits that represents either 0 or 1, quantum computing uses qubit
that use them simultaneously as a superposition, this feature allows the
quantum computer to make many operations at once, this will improve
data analysis and accelerate the performance. Quantum sensing is an
advanced sensor technology that highly improves the accuracy of mea-
surement, it measure changes at the atomic level with higher degree of
precision, and the Global Positioning System (GPS) is one of Quantum

sensing realizations, it uses very accurate atomic clocks for geolocation.
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In this thesis, we resolved some problems that are in relation with
non-relativistic quantum mechanics in the framework of quasi-exactly
solvable problems, particularly we resolved Schrdinger equation for few
central potentials and a single potential is in the form of the general-
ized Cornell plus some exponential potentials, where the quasi-exactly
solvability of Schrodinger equation came from approximating the radial
equation to the biconfluent Heun’s equation using an appropriate ap-
proximation scheme such that the normalized solutions of this equation
are possible after imposing some specific conditions on the equation,
the thing that gives only a finite portion of the discrete spectrum with
the associated eigenfunctions in analytic form. The thesis is composed
of three chapters, the first chapters is for introducing some mathemat-
ical tools that are basic to understand quantum mechanics such as the
notion of linear operators and the different kinds of spectrum of these
operators, where they have a fundamental role in quantum mechanics
since they provide a mathematical framework for describing the observ-
ables of physical and the evolution of quantum systems, for example
many physical quantities like energy, position, momentum and spin
have been represented by linear operators. at the other side, the notion
of discrete spectrum is also important in the quantum theory because
it plays a crucial role in explaining and understanding the behavior of
quantum systems, especially in terms of measurement outcomes of the
observables, then we give a brief introduction about Heun’s biconfluent
equation with the associated canonical form and its polynomial solutions
that leads to the approximate normalized eigensolutions of Schrédinger

equation. The second chapter is dedicated to the basic notions that

17



formulated the theory of quantum mechanics such as the fundamental
principles that form the foundation of the entire framework of quantum
mechanics, known as the postulates of quantum mechanics, these postu-
lates are essential because they define the mathematical background and
the conceptual structure that governs the behavior of physical systems at
microscopic scales, where classical physics does not apply. Besides to the
fundamental equation of quantum mechanics "Schrédinger equation”, it
is crucial to understand the world at the microscopic scale, because it
governs how the solution the so-called wavefunction evolves over time
allowing us to predict the system future states from its initial conditions.
In the third chapter, we give approximate bound states of Schrédinger
equation for few central potentials, where one potential if formed as
the generalized Cornell potential plus an exponential potential, starting
by transforming the radial equation to the biconfluent Heun'’s equation,
then using the results from chapter one about the solutions of biconfluent
Heun's equation to construct the analytic approximate eigensolutions of
Schrodinger equation and for given values of the parameters, we com-

pute some approximate bound states of Schrodinger equation.

18



CHAPTER 2

PRELIMINARY NOTIONS

For this chapter, we are going to expose the preliminary notions that
are useful in this thesis, we present the mathematical background of

quantum mechanics

For the next sections, the considered vector spaces are defined on a field

K suchthat K=RorK =C.

2.1 Hilbert space

2.1.1 Sesquilinear forms

Definition 1. [8] Let consider X to be a vector space over a field K. the following
mapping q : X X X — Kis called a sesquilinear form on the vector space X if

forV¥x,y,z€ XandVa,p € K

1) glax + By, z) = aq(x,z) + Bq(y, z),

if) q(x, ay + B2) = aq(x, y) + B4(x, 2).

A sesquilinear form is said to be Hermitian if for every element x and y from X

19



we have

q(x, y) = q9(y, x).
A sesquilinear form is a non-negative on X if for every element x € X where x

we have

q(x,x) > 0.
Definition 2. [8] The following mapping
(,): XxX->K

is a scalar product if and only if for every element x, y, z € X and for every scaalr

o € K we have the following
N (x+y,2)=(x2)+(,2),
i) (ax, y) = a(x, y),

iii) (x,y) = (y, %),

iv) (x,x) = 0,

v) (x,x) > 0if x # 0.

Definition 3. A pre-Hilbert space by definition is a vector space with scalar

product where a norm which is defined as follows

llxll = v (x, x).

Theorem 1. (Cauchy-Schwartz) [9] For every elements x and y that are

belonging to the pre-Hilbert space X we have

|Ce, I < lx[Hlyl-

Definition 4. A Hilbert space by definition is a pre-Hilbert space which is

complete according to the norm induced by that scalar product.

20



Example 1. Every pre-Hilbert space of finite dimensions is a Hilbert space in

particular C" with the following scalar product

n

(xr y) = Z xk%/

k=1

is a finite dimensional Hilbert space for the norm

n

— 2
il = 4| Y 2.

k=1
Example 2. [([a, b)) the space of square integrable functions defined on the

interval [a, b] with the scalar product

b —_—
(f.g) = f f(03@x,

is a Hilbert space for the norm

b
Ifll = \/ f £ ()P

Proposition 1. Let be Xa pre-Hilbert space, Vx,y € X we have the following

identities
i) The parallelogram law
[l + yII* + Il = ylI* = 211l + 21yl

ii) Polarisation identity

Complex case:
40, y) = llx + ylP =l = yIi* + dllx + iyl = dllx — iy,
Real case:
4(x,y) = llx + yl* = llx = yI?,
iii) The triangular inequality

[l + yll < llx[] + llyll.

21



2.2 Orthogonality

Definition 5. Two vectors x and y from a pre-Hilbert space X are said to be

orthogonal if the scalar product of these vactors vanishes, which means that

(x,y) =0.

Definition 6. Let consider Q to be a subspace of pre-Hilbert space X, then its
orthogonal is defined as

Qt={yeX;x Ly, ¥xeQ)

it is the set of vectors where each vector is orthogonal all vectors of Q.

Qs called the orthogonal complement of Q.

Proposition 2. Q" is a closed subspace of X.

Corollary 1. [9]Let be Q a closed linear subspace of a Hilbert space H, then
Q=(Q"),

and we have

X=060Q"

Theorem 2. [9] Let be H a Hilbert space and Q is a closed linear subspace. Let

consider a vector x € H, then we have

i) there exists a unique q € Q such that
llx = gll = minzeq llx - z|,
it) the vector q is the only vector from Q such that

x—q€Qr.

22



Theorem 3. (Orthogonal decomposition)[9] Let Q be a closed linear space

of a Hilbert space H, then each vector x € H is uniquely representable as

X=q+p,
where q € Q is called the orthogonal projection of x upon Q and p € Q*.
Proposition 3.

Let X be a pre-Hilbert space, then we have
i) {0}t = X and X+ = {0}.
i)AcB = BtfcA*t
Definition 7. (Orthogonal projection) Let be Q a closed subspace of a Hilbert

space H, the mapping
PQ X > Q

X+ Pox =q
is called orthogonal projection of x on Q.
The mapping Pg has the following properties
i) Pg is linear,
if) Pé = Py,
ii1) ||[Pox|| < ||x|| for every vector x of H,
iv) |IPgll = 1.
Definition 8. Let E be a linear space and K is a field. The mapping

f:E—=K

x e f(x),

23



that verifies
flax +py) = af(x) + pf(y),

for every elements x and y from E while a and B from K is called a linear

functional.

Definition 9. A linear functional f defined on a normed space E is bounded if

it exists a constant c strictly positive that

fOI < clixdl,
for every x € E.

Theorem 4. (Riesz representation theorem)[9] Let be f a bounded linear
functional defined on a Hilbert space H, then it exist some vector a € H such

that
fx) = (x,a)

for every element x € H in addition

1f1I= llall.

2.3 Hilbertian base

Definition 10. Let H be a Hilbert space. A set (e;); is said to be an orthonormal
system if

(ei,ej) = 0i.
Theorem 5. [9] Let H be a Hilbert space. By considering the orthonormal

system (ex)keN, the following expressions are obtained

1) for any vector x € H

Y I e # i,
k=1

24



2) for any vector x € H, the following serie converges

(oe)
Z (x, ex)ex,
k=1

3) for any vector x € H we have the following equality

(ee]
Y 16 e = 1P,
k=1

for
[ee]
X = Z(x, ex)ex.
k=1

Definition 11. Let H is considered as a Hilbert space, then an orthonormal

system (ex)ken s called a hilbertian basis if for every element of H we have

[e0]
X = Z(x, ex)ex.
k=1

Example 3. By considering the Hilbert space I, of sequences that are square
summable for the scalar product
(x,y) = Z Xk Yks
k>1

then the following family that is given by
e;=(0,0,...,0,1,0,...),1>1,

where the vector number i presents a sequences of zeros except for the position i

is an orthonormal basis for this space.

Theorem 6. (Gram-Schmidt Orthonormalization process)
Gram-Schmidt Orthonormalization process is an algorithm that transfer a set of
vectors of a Hilbert space which they are linear independent into an orthonormal
vectors.

Let consider {zx, 1 # k # n} a set of linear independent vectors, then an

25



orthogonal set (wy)}_, starting from the set of vectors where they are linearly

independent is constructed as follows

w1 = 21,
— . _ (2w1)
W2 =227 Gy P
Ws = 73 — (z3,01) _ (zz,w2)

(w1,w1) 1 ™ (ws,w,)

n-1 (Zn wk)
Z‘k 1 (wy, wk)

by normalizing this vectors the orthonormal set is obtained.

2.4 Linear operator

Definition 12. Let consider the set X and the set Y to be linear spaces .
The mapping A : D(A) — Y where the domain D(A) is a subspace of X is

called a linear operator if

ﬂ(ﬁq + X2) = ﬂ(xl) + ﬂ(JCz),
Alaxy) = aA(x),
whenever x1,x, € D(A) and « is a scalar.

Definition 13. Let X and Y be linear spaces, a is a complex number and

A D(A) — Y isa linear operator. We define the operator aA as follows
aA: DA - VY,
such that for every element x € D(A) we have

(aA)x = a(Ax).

26



Definition 14. Let X1, X, and Y be linear spaces .

Two linear operators Ay and A, are defined as
Ay Z)(fﬁ) - Y ’

and

A DA) - Y.
For the two operators Ay and Ay, the sum Ay + Ay is defined by
A+ A, Z)(ﬂl +ﬂ2) - J/,

where

DAL + Ar) = D(Ar) N D(A),

and

(ﬂl + ﬂz)x = A1x + Ayx,
while the product of the two operators Ay and A; is defined by

ﬂ1ﬂ2 : @(ﬂlﬂz) — y,

where

DAA) ={x € Ay and  Fpx € D(A)},

and

(A1A)x = A (Arx).
Definition 15. A linear operator A, where
Ay D(A) = Y,
is called an extension of a linear operator Ay which is defined by

ﬂl : D(ﬂl) — y,
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D(A) € D(A),

and

Arx = Apx, Vx € D(A).

Definition 16. The set R(A) is called the range of the operator A, it is given

by
R(A) = {Ax ,x € D(A).

Definition 17. Ker(A) is the nul space of the operator A, it is given by
Ker(A) = {x € D(A) ,Ax =0}
Lemma 1. Ker(A) is a subspace of X and R(A) is a subspace of Y.

Definition 18. Let X and Y be linear spaces .

The linear operator A : X — Y is surjective if
RA) =Y,

and it is injective if

Ax=Ay = x=uy.

Definition 19. Let consider A : X — Y to be a linear operator where the set
X and the set Y are normed spaces. Then the operator ‘A is said to be bounded

if and only if it exists a positive constant c such that
| Ax|| < cllx|], VxelX.

Proposition 4. Let be A : X — Y a linear operator where X and Y are

normed spaces. Then the following statements are equivalent:

o A is continuous at 0.
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o A is continuous on X.
o [t exists a positive number ¢ > 0 such that ||Ax|| < c||x||, Vx € X.

o [t exists a positive number ¢ > 0 such that ||Ax|| < c||x|| , Vx € X where

Il < 1.
We denote by L(X) the space of bounded linear operators from X in X.

Definition 20. Let X and Y be a Banach spaces. The linear operator
A XY,

is said to be invertible if it exist a linear operator B : Y — X such that

AB =1y,

BA =1y,
then, in this case we put

B=A"

Definition 21. (Continuously invertible operator) We say that a linear

operator A is continuously invertible if
i) AL exists.

i1) A~ is bounded.

2.5 Adjoint operator

Definition 22. [10] Let consider a linear operator A : D(A) c X — Y with
dense domain D(A), (The density of the domain D(A) is a necessary condition
for the uniqueness of the adjoint).

The adjoint of the operator ‘A is the linear operator

A DA CY - X,
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defined as
(f, Ax) = (A f,xy , YxeDA) , YfeDA),
where
DA) ={feY', >0 [Kf, A <cllxll, Yxe DA},

while X' and Y’ present respectively the dual space of X and Y while (, ) is the
product of duality.

2.5.1 The adjoint operator on Hilbert space

Definition 23. Let be Hy and H, two Hilbert spaces and a linear operator A
densely defined from Hy into Hj.
The operator B is called the adjoint of A if we have

(Ax, y) = (x, By),
and we put B = A*, if A" = A then A is called self-adjoint operator.
Properties: Let be A, B € L(H) and A is a scalar, then we have
i) (AA) = AA,
) (A+B) =A+5,
1) (AB) = B°A".
Definition 24. A linear operator defined from a Hilbert space into itself is
hermitian if
A=A.
Definition 25. Let be A and B two linear operator from L(H) such that H is

a Hilbert space. The commutator of two operators is defined by

[A, B] = AB - BA.
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If we have [(A, B] = 0 we say that the two operators commute.
Properties

Let be A,B and C linear operator from L(H) where H is a Hilbert space,

then we have the following properties

i) [A, B] = —-[B, Al

ii) [A,B+C] = [A B] +[ACl.

iii) [A, BC] = [A, BIC + B[A, C].

iv) If the operators A and B are hermitians, then we have
[A, B] = -[B, Al

) [A18,Cl] = [8,[C, All + [C, [A, B]].

2.6 Spectrum of an operator

Let A be a linear operator defined from a Banach space to itself with

domain D(A) and A is a complex number.

Definition 26. The scalar A is called a regular point of a linear operator A if
the operator defined by A — Al is continuously invertible. which means that

(A — A~ exists and it is bounded.

The set of every regular point of the operator A is called the resolvent set and it

is given by
p(A) ={A e C, A- Alis continuously invertible},

and the following operator (A — AI)™! is called the resolvent of A.

The complement of the resolvent set p(A) in C is called the spectrum of the
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operator (A, it is the set of point where A — Al fails to be continuously invertible

and it is denoted by o(A).

The resolvant set is an open set, then o(A) is a closed set.

Definition 27. The spectrum of an operator is represented in the union of 3

sets:
i) The point spectrum it is the set
op(A) ={A € C suchthat Ker(A- Al)+ {0},
if A belongs to the point spectrum it exist an element x # 0 such that
Ax = Ax,

then the element x is called an eigenvector associated to the eigenvalue A, which

means that the operator A — Al is not injective.

ii) continuous spectrum it is the set:

0(A)={A € C suchthat A-AI isinjectiveand R(A-AI)is dense but
(A — AI)7Lis not bounded).

iii) residual spectrum it is the set:

o/(A)={A € C suchthat A-Al isinjectiveand R(A-AI)is not dense}
then the spectrum of an operator is the following union
o(A) = 0,(A) U 6(A) U 0,(A),

and we have
C = p(A) U 0,(A) U 0(A) U o, (A).
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Theorem 7. [11] Let be ‘A a bounded linear hermitian operator, then its spec-

trum o(A) is on the real axis, in particular we have

i) All of its eigenvalues are real.

it) Two eigenvectors that are associated to two different eigenvalues are orthog-

onal.

2.6.1 Spectral decomposition of an auto-adjoint operator

Definition 28. [10] Let A be a self-adjoint operator on a Hilbrt space H, then,
there exists a projection-valued measure E(A) on the spectrum o(A) C R,

such that
A:f AdE(A). (2.1)
a(A)

2.7 Heun’s differential equations

After Heun’s equation appeared in 1889 which is a second order linear
ordinary differential equation that possesses 4 singular points, it has been
involved in many fields of applied sciences and it has a lot of applications
in many domains like quantum physics, special relativity, chemistry and

optics.

Heun’s differential equation in his general form is given by [12]

dy (v, 0 e \dy _ apx—gq
_+(;+x—1+x—a)%+x(x—1)(x—a

12 )y =0, (2.2)

such that y is the function and x is the variable while a, 5,7, 6,€,q and a

are arbitrary parameters related by this relation

y+e+d=a+p+1, (2.3)
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with the parameter a is different from 1 and 0.

The equation has 3 regular singular point at the finite complex plane at
x = 0,1,a4 and one regular singular point at infinity. The exponents of
these singularities are respectively {0,1 —y},{0,1-6},{0,1 — €}, {a, B} and

the sum of these exponents has to take the value 2.

2.7.1 Normal form of Heun’s differential equation and its
confluent cases

Heun’s differential equation has 4 confluent cases confluent: there is
the confluent, biconfluent, double confluent and triconfluent Heun’s

equation and their normal form are given by

i) Heun’s equation

Py (A B C D E F

— +|=+ + + =+ + =0. 24
dx? (x x—-1 x—-a x* (x—1)>? (x—a)z)y 24
ii) Confluent Heun’s equation
d*y B C D E
— +(A+—+ +=+——7y=0. 2.5
dx? ( x x-1 «x? (x—l)z)y 25)
ii1) Biconfluent Heun’s equation
d*y 2 D E
@+(Ax +Bx+C+;+;)y:0. (2.6)
iv) Double confluent Heun’s equation
d*y B C D E
—+|A+—-—+5+—=+—]y=0. 2.7
dx? ( x  x2 x3 ot )y 27)

v) Triconfluent Heun’s equation

2

d°y

T3t (Ax4 +Bx® + Cx* + Dx + E)y = 0. (2.8)
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in each case of the above cases, the parameters that appear in the equa-
tions are not all independent, where some relations emerge between then

in addition for the equation 2.4 we have the condition

A+B+C=0. (2.9)

2.8 Biconfluent Heun’s equation

The canonical form of the biconfluent Heun’s equation is given by

xy” + (1 +a—px— 2x2)y' + (()/ —a—2)x— %(6 +(1+ a)[%))y =0, (2.10)

it is an ordinary linear differential equation with two irregular singular
points, the first irregular singular point is 0 and the second one is co with

rank 2 such that «, §, 7 and 6 are arbitrary parameters.

Using the following transformation [13]

l+a ﬁx+x2

yx)=x"72e 7 z(x), (2.11)

the canonical form becomes in the normal form as

d*z ) D E
@+(Ax +Bx+C+;+;)Z—0. (2.12)

where the parameters that appear in the equation (2.12) are given by

2 _ 2
A=-1, B=-§, c=y—%, D:—g, E=14“.

(2.13)
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2.9 Serie solution to the canonical form of bi-

confluent Heun’s equation

To construct a power serie solutions to the canonical form of biconfluent
Heun’s equation let consider the following expansion

z(x) = Z Cpx" P, (2.14)

n>0

After deriving and substituting in equation ( 2.10) we get the following

conditions
plp+a)=0,

(p+Dp+1+a) - (ﬁp + %(6 +p(1 + a)))co =0, (2.15)
(p+2+n)(p+2+a+n)cys— (ﬁ(p +1+n)+ %(6 + B(1 + a)))cnﬂ

+(y—2—a—2(p+n))cn =0.
When «a is not a negative integer, we denote the solution by N(«, 8,7, 6, x)
obtained for the value p = 0 and ¢y = 1, we write

N(a, B 6x)—Z A X (2.16)
PV O = LA T a), ! '

n>0

such that the coefficients of the entire function (A;),>0 can be calculated

using the following recurrence relation

Ao, A= %(5 £ B(1+ a))AO,

Apy = ((n 1B+ %(5 £ B(1+ a)))An+1 (2.17)
—-nm+1)n+1+a)y-2-a-2nA,, n>0

where
I'(1+a+n)

I'l+a)

(1 + a)n =
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If v is anegative integer &« = —m for m > 11itis possible to put the function
N as
N(-m,B,y,6,x) = x"N(m,B,v,0,x), (2.18)

and it is still a solution to the canonical form of biconfluent Heun’s

equation.
Proposition 5. The following identities are obtained [12]
i) when « is not a negative integer
N(a,B,y,6,x) = PN (a0, —iB, =y, 10, —ix), (2.19)
N(a,B,v,6,x) = N(a, =B, v, —0, —X). (2.20)
ii) when « is a negative integer (o = —m, m > 1)
N(=m,B,7,6,x) = i"eF* N(—m, —if, -, id, —ix), (2.21)

N(-m,B,y,06,x) = (=1)"N(-m,—=p,y, -6, —x). (2.22)

2.9.1 Polynomial solutions of the biconfluent Heun’s equa-
tion

By returning to the recurrence relation (2.17), the function N becomes a
polynomial of degree 7 if and only if the following conditions are verified
at the same time
y—a—2=2n, (2.23)
An+1 = O/

the condition A,+; = 0 means that A, is a polynomial of degree n + 1 in

W = —%(6 +p(1+ a)), and it exists at most n + 1 value of 6 that are denoted

by

O, 0<k<n,
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in addition, if 1 + @ > 0 and § € R then A,,; have at most n + 1 real root.

For more details see the following references [8, 9, 10, 11, 12, 13].
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CHAPTER 3

SCHRODINGER EQUATION
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3.1 Introduction

Newtonian mechanics is founded upon some principles and postulates
that determine perfectly the position and the velocity of any physical sys-
tem, it is based on principle of perfect determinism where every property
of a physical system can be perfectly determined and measured at any
instant using Newton’s laws of motion that give rise to the concept of
trajectory. the duality nature of light namely wavelike and corpuscu-
lar aspect is one of the most important characteristic that is connected
directly to the birth of quantum theory, that led to the principle of su-
perposition, the idea that a quantum system can exist in more than one
state simultaneously until it is measured, where de Broglie generalized
the principle of duality to all microscopic object. the main properties of
the wavelike behaviour are obtained by analogy with optics, by tracking
the analogy between matter waves and classical wave, one can ask if it is
considerable to establish a unified theory and found a wave equation that
describe corpuscular wave nature of matter once and for all microscopic
particles, and to replace the classical theory by a wave theory where the
wave would play the role played by the electromagnetic field in the the-
ory of radiation, to answer that and inspired by the works of de Broglie,
Schrodinger established his equation from a very simple correspondence
rule that allowed to obtain that fundamental equation starting from the
Hamiltonian of the corresponding classical system. Quantum mechan-
ics similarly to the classical theories stands upon some postulates that
provide the framework for understanding and predicting the behavior
of quantum world, these postulates are typically organized into a serie

of statements that describe the physical and mathematical structure of
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quantum mechanics.

3.2 Postulates of quantum mechanics

In classical mechanics, the state of objects is known for an instant ¢ by
the knowledge of some functions of some dynamical variables which
they are fundamental, this variables are the position and the momentum
and any other measured quantity is defined by calculations in function
of these dynamical variables, in addition the prediction of the values of
the variables is possible using Hamilton’s equations at any later time
t’. However, concerning the quantum mechanical counterpart one must

answer these questions

¢ how the state of the system at the microscopic scale can be fundamental

mathematically for a given instant?
e how can one calculate a physical quantity of quantum system?

¢ by knowing the state of this system, how can the state be determined

at a later time?
e how to determine the time evolution of the physical system?

To describe the state of quantum state of particles, quantum mechan-
ics has been developed from some postulates that permit to determine
the state of the physical system. These postulates cannot be derived,
they are a result of experimental justification. They represent the min-
imum collection of assumptions that is needed to found the theory of

quantum mechanics, they have been verified through a wide number
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of experiments and have led to remarkable technological advancements.
The postulates of quantum mechanics have been incredibly accurate and
have passed numerous experimental tests. The predictions derived from
quantum mechanics have been confirmed in many areas, from atomic
and molecular interactions to subatomic particles, and more recently,

quantum computing and quantum information
First postulate: Description of the of the system state[14]

The information about a physical system at the microscopic level is con-

tained in state vector where the first postulate is formulated as [14]:

at a time instant ty, the state of a physical system is defined by a function (to)
that belongs to a hilbert space the so-called: the state space.

Because Schrodinger equation is linear and homogeneous the state of a
system have the property of superposition which means if two or more
quantum states are solutions of the Schrodinger equation, then any linear
combination of these states is also a valid solution. This feature permits
the building of wave functions that can stand for several possible states
simultaneously, which is one of the cornerstones in the field of quantum
mechanics, such that if we consider a state vector y; and another state

vector Y, for two scalars A;, A, then the function

IP = Aﬂbl + A2¢2 (31)

presents a state vector.

The first postulate asserts that the particle and the associated wavefunc-
tion are inseparable aspects of a microscopic object, it adds to it the wave
nature behavior of particles, comparable to the superposition principle

for light waves. One wave function is not required to express a system’s
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state; two or more wave functions can be superposed to represent it. A
vibrating string serves as an example from the macroscopic world; its
state can be shown by either a single wave or the superposition of (linear
combination) of several waves. This clearly contradict the classical treat-
ment of a material object,It is impossible to describe the nature of the
relationships that the Superposition principle demands exist between
any system’s states using familiar physical concepts, where it is given no
wave properties to them, and brings into profound conflict with our intu-
itions from a lifetime of experience with macroscopic objects. The objects
of the everyday world in simple way do not behave as some inseparable
combination of particle and wave nature. However, for quantum me-
chanics to be able to anticipate anything about the processes that take
place at the atomic level of matter, particle and wave must merge. The
first postulate is important because it asserts that a quantum system’s
whole description is contained in this wavefunction and that the system
exists in a superposition of all conceivable states defined by this wave-

function prior to any measurements being taken.
Second postulate: Description of physical quantities

Properties that observed or measured of the physical system are called
observables, they are modeled by Hermitian operators, the dynamical
variables that appears in classical mechanics, they are represented math-
ematically by Hermitian operators, then the second postulate is formu-

lated as [14]:

For one measurable physical quantity it is corresponds an operator A acting on

the state vector that describe this physical quantity

Because the laws governing classical systems are deterministic, it is pos-
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sible to ascertain a particle’s trajectory and all other properties in classical
mechanics by knowing its position and momentum. On the other hand,
quantum mechanics presents a radically different paradigm in which
state vectors in a complex Hilbert space represent a system’s state. Quan-
tum mechanics provides probabilities and uncertainties in place of exact
trajectories, and operators acting on these state vectors represent phys-
ical quantities. In stark contrast to classical determinism, this change
emphasizes the significance of superposition and the probabilistic in-
terpretation inherent in quantum systems. The operators are linear and
they act on the state vectors the so-called wavefunction. Each observable
is guaranteed to have orthonormal eigenfunctions and real eigenvalues

by the premise of hermiticity.
Third postulate: The measurement of physical quantities
Possible results of measurement

From the eigenvalue problem of the stationary equation one can con-
clude that the only possible energies are eigenvalues of the Hamiltonian,
this result can be generalized to all physical quantity where the third
postulate states that [14]:

In quantum mechanics, when a measurement is performed on a physical quan-
tity represented by an observable (an operator), the only possible outcomes are

the eigenvalues of that operator.

The quantum system "collapses” to one of the operator’s eigenstates fol-
lowing a measurement if the system is in a superposition of eigenstates of
some observable, and the measurement’s result is the associated eigen-

value.
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Suppose that A is an operator that models an observable and we have

AV =ajp; (3.2)
then ¢ and 4, represents the j eigenstate and eigenvalue for the opera-
tor A and if the system is in the state 1p; then the measurement gives the
value a;.

If the spectrum is discrete then the results of measurement are quantized.

In quantum mechanics, this postulate radically changes how we think
about measurement. Position, momentum, and other quantities are di-
rectly measured in classical mechanics, and the results are always certain.
A wavefunction, on the other hand, describes the system in quantum me-
chanics, and it is only through measurement that the system "chooses" a
specific value for the observable based on the eigenvalues of the corre-

sponding operator.
Fourth postulate: Principle of spectral decomposition

Let consider a state of a system i which is normalized which means
that the norm of the state vector is 1, if we want to predict the result of
measurement of a quantity that is characterized by an observable A then
this prediction is probabilistic and we are going to give the rules how
to calculate the amount probability of obtaining any eigenvalue a, of an

operator A:
The case of discrete spectrum

If the operator A has an entirely discrete spectrum and the eigenvalues
a, of A are with multiplicity one which means for a given eigenvalue it
exists only an eigenvector, we write

Auy, = ayu,. (3.3)
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Because A represents an observable, then if the vectors u, constitutes a

basis in the state space then the vector 1) is expressed as

P = Z Culln, (34)

then the probability of finding the result a4, :(a,), of finding the result a,

after the measurement is

P(a,) = |Cn|2 = |(un, Hb)lz (3.5)

The fourth postulate for a spectrum which is discrete and not degenerate

states that [14]:

When an observable is measured on physical system such that this system is
in a state which is normalized 1, then to compute the probability $(a,) of

obtaining the eigenvalues, the following expression is applied

P(an) = |(un, PP, (3.6)

where the eigenvector 1, is normalized and it is associated to the operator

A which corresponds to the eigenvalue a,.

Now when an degenerate eigenvalue is obtained which mean that it
exist several eigenvectors 1!, associated to the same eigenvalue a,, for the
operator A

Auf,le = anufq, i=1,2,...,4x (3.7)

then ¢ is still can be written as an expansion in terms of the basis {u'} as

p=3 Y cul (3.8)
ni=1
and the probability $(a,) is given by
gn g
Plan) = Y IcP =Y Ik, )P (39)
i=1 i=1
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Another statement of the fourth postulates in the case of degenerate

eigenvalue is the following [14]:

When a physical system is in a normalized state, and the observable is measured,
then the probability of getting the eigenvalue a, given by P(a,) is given by the

expression
n
Plan) = Y Ik, 0P, (3.10)
i=1

such that the integer g, represents the degree of degeneracy that is associated
to eigenvalue a, and the set of vectors wli=1,2,..., Qn) is orthonormal that

constitutes a basis for the eigenspace associated to the eigenvalue a,,.

The probability P(a,) do not dependent on the basis of the eigenspace

associated to the eigenvalue.
The case of continuous spectrum

In this part, let us assume that the operator A spectrum is continuous and
not degenerate for sake of simplicity, we have the orthonormal system

v, in the generalized sense of A
Av, = av,, (3.11)

constitutes a continuous basis in the space of states, the state ¢ is written

as
Y= f c(a)vada, (3.12)
and the probability of getting a value between a and a + da is given by
P(a) = pla)da, (3.13)

with
p(a) = lc(@)P = |(va, ¥, (3.14)
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and the fourth postulate for a spectrum which is not degenerate is the

following [14]:

When measuring an observable on a system in the normalized state 1, the
probability of obtaining a measurement result within the interval [a, a + da] is
determined by

P(a) = |(va, )P da, (3.15)

such that |v,) is a generalized eigenvector for the value a of the observable A.

These postulates give rise to the principle of indeterminism in quantum
mechanics by introducing the probabilistic characteristics of measure-
ment of different quantities, this probabilistic nature emerges because
the quantum state of a system does not provide definite values for phys-
ical quantities after measurement that leads to probabilities of various
possible outcomes, then the act of measurement forces the system to take

one of those outcomes.
Fifth postulate: Reduction of the wave packet

By assuming that we want to measure a physical quantity at any given
time,If we know the system’s condition right before the measurement
and it is represented by a ket 1, according to the fourth postulate we can
predict the probability of various possible outcomes, but obviously after
the measurement only a result is obtained, therefore, the state just after

the measurement of the system is different from 1.

Let consider a case where the measurement result yields a non-
degenerate eigenvalue a,, then the system state just after the measure-

ment is in the state 1, which represents the eigenvector for the eigenvalue
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V= uy,

and if another measurement is performed after the first one, the result

that will be find is a4, and the system state is 1, and not {» anymore.

When the eigenvalue a, is degenerate, then there is a generalization as

follows:

we write the expansion of the state of the system as
gn . .
= Z Z clul, (3.16)
noi=1

then the modified state after the measurement is expressed as follows

1 & i1
P=———) cu (3.17)

g ) n“ns
\/Ziil lcul? i=1
where the vector Zfﬁl ciul, is a projection of ¢ onto the eigensubspace of
the eigenvalue a,, the vector is normalized because it is more convenient
to deal with states with norm 1, then we can write the new state in the

form
P,y

Ve V@, P)

and the fifth postulate is formulated as [14]:

(3.18)

If the measurement of an observable is in the state 1V yields the result a,, then
one can have that the state just after after the measurement is the following

projection that is normalized as

P

V@, Pry)

of Y onto the eigensubspace associated with a,,.

= (3.19)

Before a measurement is made, the state of a quantum system is often

49



described by a superposition of different possible states. The reduction of
the wave packet is of probabilistic nature. The wave function provides a
probability distribution for the possible outcomes of a measurement, but
it does not predict the special outcome. Instead, it gives the probability

of obtaining a particular result.
Sixth postulate: The system Time evolution

In quantum mechanics the sixth postulates states that the time evolution
of a given quantum physical system is obtained by Schrodinger equation
that is given by

ih%gb(r, ) = Hy(r, t), (3.20)

such that H is the Hamiltonian operator, it is associated to the system

total energy. The Hamiltonian operator is given by

H = —%A + V(r, 1), (3.21)
in which its solution, the wave function encoded all information about
the physical system. Stated differently, the wave function’s time evolu-
tion is deterministic and does not require the specification of extra initial

or final data.

3.3 Schrodinger equation

The Schrodinger equation constitutes the most important element of
Wave Mechanics, it is the basic equation for a non-relativistic frame-
work, that describes how the quantum system state changes over time.
Essentially, Schrodinger equation enables us to predict and compute the
dynamics of particles in a way that classical mechanics cannot, where one

can predict the observable quantities like energy levels. The high level
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of validity of this equation is up to the agreement of these predictions
compared to experimental results, it has been one of the most successful
and predictive equations in physics history, providing accurate descrip-
tions and predictions for a wide range of physical phenomena. Since the
foundations of quantum mechanics, because the Schrodinger equation
solution, the wave function, encoded every information about the sys-
tem, resolving a such equation had attracted the attention of researchers,
where they resolved the equation using many techniques and tools such
as the NU method and its extended version that were used widely
[15,16,17,18, 19, 20], Feynman path integral [21, 22, 23, 24, 25], asymp-
totic iteration method [26, 27], or by using Laplace transform [28, 29] and
recently Schrodinger equation solutions has been obtained by resolving
Heun type equations [30, 31, 32, 33], where the solutions has been found
for many type of potentials, either for central potentials where they de-
pend only on the radius not the orientation or non-central ones where an
angular dependency is added to it, like Alberg and Wilets who resolved
Schrodinger equation for the Coulomb [34] that models the electrostatic
interaction between particles, Ferndndez who treated the equation for
the harmonic oscillator with singular terms [35], Dong et al who dealt
with a new anharmonic oscillator [36], Gareev et al found solutions for
Woods-Saxon potential [37], Ikhdair and Sever constructed polynomial
solutions to Mie potential [38], Dong et al obtained approximate solu-
tions to Eckart potential [39], Drigi Filho and Riccota used the method of
supersymmetric quantum mechanics to resolve the equation for Hulthen
potential [40], Dong and Garcia-Ravelo resolved Scrodinger equation for
Manning-Rosen potential [41], Morales got solutions for Morse potential

[42], Aktas and Sever has the exact solutions for the ring-shaped har-
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monic oscillator [43], Dong et al and Garcia-Martinez obtained solutions
for exponential type potentials [44, 45], Hamzavi and Ikhdair obtained
solutions for the trigonometric Poschl-Teller while Qiang and Dong got
solutions for Scarf potentials [46, 47]. Schrodinger equation is given for

a non-relativistic particle with mass m by
L d
zhagb(r, t) = H(r, 1), (3.22)

where 71 is the reduced Planck’s constant and r is the position vector, H
is the Hamiltonian operator, the operator that is associated to the total
energy of the system, it is Hermitian and given by

2

i
H =~ A+ V(). (3.23)

For Cartesian coordinates r = (x, y, z) one deduces the equation

12 ( 2  ?

2
o2 + 9y + ;Zz )I,D(r, t) + V(r, HY(r, 1), (3.24)

L d
zhEgb(r, t) = —2m

the function V is known as the potential function.

for a potential function independent of time, Schrodinger equation be-

comes

L d 2
1) = (— A+ V(r))¢(r, , (3.25)
when the system is not subjected to any potential function, then Schrodinger
equation takes the form

'hd = hZA t 3.26
i p(61) = S AY(r ). (326)

Schrodinger equation is a linear PDE of first order according to time
variable and of second order for space variable, its solution is the so-

called wave function 1, it has a probabilistic interpretation that makes
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the concept of trajectory at the microscopic level is lost such that in quan-
tum mechanics, the probabilistic interpretation, as formulated by Max
Born, implies that the wave function [i) does not provide a deterministic
trajectory for a particle. Instead, the square of the absolute value of the
wave function, gives the probability density of finding the particle at
a position x at time t. This fundamentally shifts the understanding of
motion at the microscopic level, as it challenges the classical notion of
a well-defined trajectory, leading to the realization that particles exhibit
behavior that can only be described in terms of probabilities rather than

precise paths, we write [14]
dP(r, t) = Cly(x, t)[dr, (3.27)

where C is a normalization constant.

From the formula (3.27) one concludes that Schrédinger equation solu-

tion must be square integrable function which means that

f Y, HPdr < oo, (3.28)

Hence the normalization constant that manifests in (3.27) is obtained by
the following relation

% = f W(x, t)|*dr. (3.29)
The hermiticity of the Hamiltonian operator allows to get only real values
of the energy, This guarantees that the energies are physically meaning-
ful, measurable quantities. This feature is important because it ensures

that probabilities (which are the squares of the wavefunction amplitudes)

remain conserved over time.
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3.4 Timeindependent Schrodinger equation sta-

tionary solution

Let give Schrodinger equation in the case of a potential that do not

depend on time

2

ih%gb(r, ) = ( - ;—mA ; V(r))¢(r, ), (3.30)

For a potential which is independent of time, the Hamiltonian becomes
explicitly independent of time and this led to a conservative system
where the energy is a constant of motion [14, 48]. We look for for wave

function ¢ that has a well-defined energy.

By using separation of variables method, we seek solutions for the

Schrodinger equation to be in the form
P(r, 1) = XOT(), (3.31)

substituting the function (3.31) in the equation (3.30) leads to the follow-

ing equation
X (F) = T(t)( - %AX(r)) + TOV®X(E), (3.32)

if both sides are divided (3.32) by X(r)T(t) we get

in ., 1 1>
WT (t) = m( - %AX(r)) + V(x). (3.33)

The right side is dependent only on x equates the left side that is depen-

dent only on ¢, therefore, both sides have to be equal to a constant that

we note by E and we write

in_, .1 s _
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then, we have

inT' () = ET(t), (3.35)
2

h
—5-AX(6) + V(R)X(r) = EX(1). (3.36)

The equation (3.36) is written as
HX(r) = EX(r). (3.37)
Equation (3.35) solution is written explicitly by
T(t) = Ae”'¥, (3.38)
where A is a constant.

The equation (3.37) is the so-called the time-independent Schrodinger
equation or the stationary equation. In the language of differential equa-
tions, it represents an eigenvalue problem where the function X is an

eigenfunction that is associated to the eigenvalue E.

The function

Et

X(r)e'n, (3.39)

is a stationary solution to Schrodinger equation, it gives a probability

density that does not depend on time
dP(r,t) = C|X(r)]*dr. (3.40)

By introducing an index n € IN we can have the function X, (x) as a

solution to the stationary equation for the eigenvalue E,
HX,(r) = E,; X, (r). (3.41)

Using the superposition principle, the general solution to Schrodinger
equation is written as
() = Y Cue™ 7 X, (1), (3.42)
n=0
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where the coefficients C,, depend on the initial condition

U(t, 0) = Z CuXn(1). (3.43)

n>0

Local conservation of probability: Probability densities and prob-
ability current
In this part, we confine ourselves to the case where the system under

consideration is one non-relativistic particle.

If the state vector [¢) is normalized, then

p(r, t) = |Y(x, 1), (3.44)

is a probability density, and the probability of finding a particle in a

region dx of space at a time t is given by
dP(x,t) = p(x, t)dr. (3.45)

Using classical vector analysis, the local conservation of electrical charge

can be written in the following expression
J :
Ep(r, t) + div](r,t) = 0, (3.46)

we are going to prove that is possible to find a vector J(r, t)that represents
a probability current in which it verifies the equation (3.46), in this case

we said that there is a local conservation of probability.

At the beginning, let assume that the particle is influenced by a scalar

potential V(r, t), then, under the principle of correspondance given by
P = —ihV, (3.47)

the Hamiltonian is written as

P2
H=— .
o + V(r, t), (3.48)
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then, Schrodinger equation is given by

J 12
i (e 1) = ——AY(r, 1) + V(x, DY(x, ), (3.49)

in our case, the potential V(r, t) has to be real so that the Hamiltonian H

is Hermitian. Writing the complex conjugate of equation (3.49) gives

L 0 12
—zhagb*(r, ) = —%Agb*(r, t)+ V(r, )y’ (x, t). (3.50)

By multiplying both sides of the equation (3.49) by ¢*(r,f) and both
sides of the equation (3.50) by —i/(r, t) and by adding them the following

equation is obtained

d i
ihﬁ[gb(r, Hy'(r, )] = —%[gb*(r, HAY(r, t) — P(r, H)AY(x, 1)], (3.51)

that is written as

S0+ 5= (6 DAYE D ~ Y DAY E DI =0, 35
if we set
60 =~ 06, DAY D — Yl DAY DL, (50
then
306 = ~-Re( (e, Ate 1)) (3.5

Hence, the equation (3.52) can be put in the form of equation (3.46) [14].

3.5 Schrodinger equation for some solvable po-

tentials

The study of the Schrédinger equation has been a central focus in quan-
tum mechanics since its inception, particularly for exactly solvable po-

tentials. These potentials allow for the analytical determination of their
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associated eigenvalues and eigenfunctions, facilitating a deeper under-
standing of quantum systems. The exact solvability of Schrodinger equa-
tion is allowed only for few quantum problems such as the hydrogen
atom, harmonic oscillator, Morse and other potentials.

Here we give the exact eigensolutions for Schrodinger equation in 1-

dimension for some exactly solvable potentials [49]:

3.5.1 Morse potential

The one dimensional Morse potential is given by the following expres-
sion

V(x) = V(e =2¢e7), Vy>0,x>0 (3.55)

where V) is the depth of the potential and «a is related to its range.

The one dimensional Schrodinger equation is given by:

n &
———(x) + V(x)ip(x) = EP(x). (3-56)

2m dx?
By substituting Morse potential expression (3.55) in the one dimensional

Schrodinger equation (3.56) we obtain

n? 42
ST P() + Vole ™" = 267 y(x) = EY(). (3.57)

By considering the following constants and variable

_ 81’1”1V0

V= a’h?’
—2mE

S = |——,
V a2i2

—ax

y=ve ™,

the equation (3.57) becomes

v s 1

d? 1
T+ YW+ (55— 75— ) =0 (358)



By taking the following ansatz

¥(y) = e F(y), (3.59)

the equation (3.58) is written as

2

d d 1—v
yd—yzF(y) +(2s+1- y)@ - (s L ) =0, (3.60)

where the solutions are the confluent hypergeometric functions that are
given as

F(y) = F(s + 1%,25 +1,1). (3.61)

By putting the following condition

the solutions 1 of the differential equation (3.57) are given in terms of

the associated Laguerre polynomials L% as
¥
¢, = Nyey' Ly (y),

and the factor N, is the normalization constant which is given by

N = \/a(v - 2rn(v— }Lr)(n + 1), (3.62)

while the energy is given by the expression

22 [2mVy 1\?

3.5.2 The Harmonic oscillator

The harmonic oscillator potential is given by the expression [49]

1
V(x) = Emwzxz, x €R, (3.64)
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where m is the mass of the particle and w is the frequency of the oscillator.

The one dimensional Schrodinger equation for the harmonic oscillator is

given by
h? d?
2mdx?

Let consider the following parameters

P(x) + %mwzngb(x) = EY(x). (3.65)

T —_— &
 hw’
e Mo
= —
and the following variable
y = ax,

then, the differential equation (3.65) becomes

2
dd—yzw(y) + (T = y¥)P(y) = 0. (3.66)

We take the following ansatz of the wave function

Y(y) = e TH(Y). (3.67)

By substituting the ansatz (3.67) into the differential equation (3.66), we

The solutions of the differential equation (3.68) are nothing but Hermite

polynomials H,(y) with the relation
T—1=2n
that permits to obtain the eigenvalues as follows

E, = ha)(n + %) (3.69)
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while the corresponding eigenfunctions can be written as
Pu(x) = Nye™ 2 Hy(ax), (3.70)

the normalization constant can be derived starting from the normaliza-

tion condition of the wave functions

Im Yu(x)dx =1 (3.71)
as .
vl

3.5.3 The pseudoharmonic oscillator

Let us begin by presenting the pseudoharmonic oscillator expression as
[49]
1 W
V(x) = —ma) x> + T X €R (3.73)
where m represents the mass of the particle while a represents the

strength of the external field.

The one dimensional Schrédinger equation for the pseudoharmonic os-

cillator is written as

2

———¢(x)+( maw*x® + h—g)yb(x) Ey(x). (3.74)

2m dx? 2m

By taking /i = m = w = 1 and by defining the new variable
y =% (3.75)
the differential equation (3.74) can be written as

E
2lP(y) w(y) (— &—Z—)My) . (3.76)

Zydy
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Let be the following parameter

1+ Vi+4a
5= - 4+ ¢ (3.77)

and the following ansatz of the wave function

YY) = e aw(y). (3.78)

Substituting the function (3.78) into the differential equation (3.76) leads

to this differential equation

d? 1 d E 1
yd—y2a)(y) + (25 +5- y)@w(y) + (E —-5— Z)w(y) = 0. (3.79)

The solutions of the differential equation (3.79) are the confluent hyper-

geometric functions

E 1 1
F(S — E + 1,25 + E,y)
Starting from the quantum condition
s-Z4t=p
2 4

we obtain the energy expression as

En=1+mrkﬁa+i. (3.80)

when s — £ + 1 = —n, then, we use the following relation

r+n+1)

By — —
L, (x) = ATET 1) F(—n,B+1,x), (3.81)
and the integral
0 n+p+1
f Pe P ()LE (x)dx = (n n/f )5n,m, (3.82)
0 .

in order to obtain the normalized wave functions as

P(y) = Nnyse‘%Lis_%(y), (3.83)
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where y = x? and N,, is the normalization constant that is given by

N, = : . (3.84)

3.5.4 Poschl-Teller like potential

The studied Poschl-Teller like potential is given by [49]

— vy tan2 (™ —L E]
V(x) = Vptan (L) xe[z,z, (3.85)
where V and L are two constants where L > 0.
Schrodinger equation for Poschl-Teller like potential is given by
n d? TIX
—o () + Vi tan? (T)¢(x) - Eg(), (3.86)
such that the solutions must satisfy the boundary conditions
L —-L
oz)=7)=0 (3.87)
By introducing the parameters
2mL?
€= (E + Vy), (3.88)
2ml?
W= 2 Vo, (3.89)
and the new variable
TIX
y=" (3.90)

then, substituting them into the differential equation (3.86) we obtain the

following equation

d? W
T+ (e~ oy =0 391)

cos? y



Let us consider the following ansatz of the wave function
P(y) = Pu(t)cos*y, A >0, (3.92)

where

t =siny.

Substitution of the ansatz function into the differential equation (3.91)

allows us to have the following equation
(1- tz) P a(t) — (1 + ZA)t%Pn(t) +(e = A*)P,(t) = 0, (3.93)

with the notation

W=AA-1)
and the condition A # 0, 1.

From the differential equation for the Gegenbauer polynomials given by

e t(1 +2) d

- —F(t) + —F(t) - M

— o F() = (3.94)

it is concluded that the solutions of the differential equation (3.93) are
nothing but the Gegenbauer polynomials C:(t) where the expression of

the wave functions is obtained as

Yu(y) = NuCp(y) siny cos* y, (3.95)

where N,, is the normalization constant that will be calculated below

from the normalization condition

f [Y(x)fPdx =1, (3.96)
for this Let recall an important formula
1 _
; 20T (1 + 2v) 1
1— 22y 4 Rdx = =  Rev> -=, 3.97
L( )Gy = ) v=T3 (3:97)

64



finally the normalization constant is given by

B n!(n + M)I'2(A)
M = \/Lzﬂwr(n +21)’ (398)

From the following condition
€=M+ Az, n=0,1,2,... (3.99)

the eigenvalues of the corresponding quantum system are obtained as

T2 H2

~ oml?

E, (n2 +2nA + )\). (3.100)
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CHAPTER 4

APPLICATION
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4,1 Introduction

Schrodinger equation is a crucial equation in non-relativistic quantum
mechanics because according to the sixth postulate it governs the time
evolution of the system under consideration [14, 48]. It is an important
equation that allows us to conclude the spectral properties of any quan-
tum physical system, Schrodinger equation also play very crucial role in
many Science branches such as chemistry and spectroscopy where the
solutions are used to describe the electronic distribution and structure of
atoms and molecules, they provide the necessary information about the
energy levels and the distribution of electrons, they are helpful in predict-
ing the chemical properties such as bond and bond angles in which they
are essential in explaining the chemical reactions, Schrodinger equation
is used also to understand the composition, structure, identification and
quantification of substances, it is essential to explain the absorption and
emission spectra and predict the properties of molecules and atoms with
their spectroscopic behavior besides to determine the thermodynamics
properties, it is crucial tool in determining the energies levels and transi-
tions of quantum physical systems that are fundamental in spectroscopy
analyses [50, 51, 52]. Since the early days of quantum mechanics, the
exact solvable problems of Schrodinger equation has attracted the in-
terest of researchers, here we mean by the exact solvable Scrodinger
equation the case when all the energy levels and corresponding wave
functions expressions can be obtained explicitly in closed form and al-
though this kind of quantum mechanical models such as the Coulomb
and the harmonic oscillator play an important role in many fields of

quantum physics, it generally they are with limited applications. Re-
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cently a new class of spectral problems in quantum mechanics has been
discovered [53, 54, 55], this class is with many applications more than
the class of exactly solvable potentials, it took the name of quasi exactly
solvable problem and it attracted the attention of researchers, the concept
of quasi exactly problems in quantum mechanics has been introduced in
the late of 1980s by the physicist Alexander Turbiner, in contrast to the
class of exactly solvable problems, for the situation when the solvablity
of Schrodinger equation is quasi exact only a finite part of the discrete
spectrum or their eigenfunctions are obtained exactly in full expression.
The class of central potentials constitute a very important class because
it models the different interactions between atoms and molecules, this
potentials are used extensively in chemistry since they provide accurate
predictions about vibrational properties like determining the vibrational
energies and understanding molecular spectroscopy such as Morse po-
tential and the harmonic oscillator, besides to studying the rotational
properties of molecules and obtaining the rotational energy levels, add
to it understanding the molecular structure [50, 51, 52]. In resolving
Schrodinger equation for the situation where the potential is central, we
solve directly the so-called radial equation, in general solving a such
equation is not trivial due to the existence of the centrifugal term that
makes the resolution of the equation not an easy task, this term add
complexity to potential expression, hence in a such situation when the
radial equation cannot be resolved analytically, approximate solutions
are required, by approximating the effective potential using an appropri-
ate scheme, this method allows to tansform the original radial equation
to another equation that can be resolved and its solutions are known

[57, 58].
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In this work, we search the approximate bound states for the Scrodinger
equation in the case of quasi exactly Scrodinger equation problems, for
some potentials that would be taken as central potentials, a single po-

tential potential is written as
V(r) = Vc(r) + Ve(r), (4.1)

where the potential V¢ is called the generalized Cornell potential, it is

given by

2

Ve(r) = Z air', (4.2)

i=—2
in which the parameters that appear in the expansiona;, i = -2,...,2 are

real constants, at the other side V, is an exponential potenial, precisely

the potential that will be treated in this work are:
e Schidberg potential..

e The generalized Poschl-Teller.

e Manning-Rosen potential.

e Morse.

¢ Yukawa class potential.

The generalized Cornell potential is a sum of the inverse square potential,
Coulomb, the linear potential and the harmonic oscillator, this potential
is important, it is one of the most applicable potential in quantum me-
chanics, it combine between the inverse square potential models the
electrostatics force between electron and nucleus, the Coulomb poten-
tial arises in describing systems involving charged particles such as the
force between the electron and proton in the hydrogen atom, the linear

potential is used to approximate forces that are nearly constant or to ap-
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proximate the harmonic oscillator in its equilibrium point, this potential
can describe some kind of physical behavior such as the displacements
from the equilibrium, or in systems that are confined the linear potential
models an external electric field applied on the system, the harmonic
oscillator models force proportional to its displacement from an equilib-
rium and vibrations of individual atoms and molecules, it models also
the force that links bosons, one of the building blocks in the macroscopic
scale. By combing this potentials besides to the exponential potentials,

we get a better description of the forces applied on the physical system.

in the next sections, we are going to deal with the radial equation for
some central potentials that are in the form of (4.1), In order to treat the
radial equation for this central potentials, for each one we use an ap-
propriate approximation scheme that allows us to transform the radial
equation to a diffrent equation where the resolution is allowed, exactly,
to the biconfluent Heun’s equation, then, the approximate solutions will

be obtained analytically.

4.2 Schrodinger equation in the case of central

potential

Schrodinger equation taken for /i = 1 is given by

J
( — ﬁ + V(z, t))\If(r, t) = iE‘I’(r, t), (4.3)

in which M represents the mass of the particle and A is the Laplacian
operator, V is the potential function, r is the position vector and where

its solution is the so-called the wave function.

Let consider the potential V to be time-independent, then, by separating
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the spatial and time dependencies and by putting the wave function in

the form below

W(r, t) = P(r)e ', (4.4)

we obtain the time-independent Schrodinger equation or the stationary

equation as

( _ % + V(r))lp(r) — EU(r). (4.5)

We choose the position vector to be in spherical coordinates system

r = (r, 0, ®), then the stationary equation (4.5) becomes

(_ 2]\111’2(881’( 881’) QZ) V6, ¢))¢(r 0,¢) =Ey(r,0,9),  (4.6)

where Q? is given by

Q? = 1 d (sm@

d 1 02
sin 090 ) (47)

d0/  sin?0 9732
By considering the potential function to depend only on the radius,
which means that the potential is central and using, then the equation

(4.6) is written as

( - Zl\irz(jr( jr) Qz) " V(r))l’b(r’ 0,0) = EY(r,0,p),  (4.8)

using the separation of variables method, we separate the radial and

angular dependencies as

R(r)Y (O, ¢)
¢(r/ 6/ (]5) = %/ (49)
then we insert the function (4.9) in the equation (4.8) to have
2
% +2M(E — V(r)r* = —Q*Y(0, ¢), (4.10)

and since the equation (4.10) give a side that depends only on r equals

a side that depends only on 6 and ¢ which means that the both sides
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equal a constant &

d?R(r)

—2 +2M(E - V(r)rt = -Q*Y(0,¢) = &. (4.11)

From the equation (4.10) we obtain the following system of equations

1 9. Y09 1 PY(©O,9)
sin@%( sin 0 00 )+ sin2@ 002 =<, (4.12)
d’R
drgr) + ZM(E —V(r) - 215&2 )R(r) = 0. (4.13)

The differential equation (4.12) admits solutions Y7" that are the spherical
harmonics [14, 56], the eigenfunctions of the differential operator (% in
which this operator eigenvalue are [(/ + 1) , here the number [ represent
a positive integer while the number m is a relative integer that takes its

values from —I to [, their expression is given by

Y0, ¢) = NP"(cos 0)e™?, (4.14)
w21 = m)!
N=(1) \/4n (I +m)!

where N is a normalization constant and P}" represents the associated

Legendre function, their full expression are given by

m

Pr(u) = (1 - uz)mCZ/l—mPZ(u), “1<u<l, (4.15)

and P; are Legendre polynomial written as

1 d

Pi(x) = 0l 2l

(x? — 1) (4.16)
The bound states equation (4.8) are in the following form

R,
r'l Y?(6,), (4.17)

Ui, 0,0) =

where R,,; are the radial eigenfunctions, the solutions to the radial equa-

tion below

1 dZRnll(T)
2M  dr?

I1+1)
2Mr?

(Vo) + JRui() = EnsinRus(r), (4.18)
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this term
I(1+1)
2Mr2’

is called the centrifugal term, while the expression

I(I+1)
2Mr2’

V(r) + (4.19)

is called the effective potential, hence solving the stationary equation in
the case of central potentials is based on obtaining the radial equation

solutions.

In the next parts, we are going to resolving Schrodinger equation for
few potential in specific form, this potentials are are central, using an
accurate approximate scheme for each case. A single central potential
is composed of the generalized Cornell potential plus an exponential
part. Approximating the central potentials leads to the resolution of the
equation of Heun in its biconfluent form, where the analytic approximate

bound states will be obtained in closed form.

4.3 Biconfluent Heun’s equation polynomial so-
lutions

The biconfluent Heun’s equation in its normal form is provided by

2

here the parameters that appear in the equation are real such that the

parameters B and F do not vanish.

Let consider the following ansatz

l+a yZ

U(x)=yze

= P(y), (4.21)
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where the new variable y is given by
y = VFx, (4.22)

then the biconfluent Heun’s equation normal form is transformed to the

canonical form as follows

d*P(y) dP(y) 1
e (1 +a—By— 2y2) T ((7/ —a—=2)y - 5(5 +(1+ a)ﬁ))P(y) =0,
(4.23)
such that the parameters «, §, and 6 are given by
a= V1 —-4A,
B=-15
9 v (4.24)

— C
y_4\/ﬁ+\/f’

When « is a non-negative integer, then, the canonical equation (4.23)

accepts the series solution below

k
P(y) _ Z rQ+a)b y (4.25)
k>0

T(1+a+k)k’

so that the following recurrence relation links the coefficients by
bo =1,
b1 = —wby,

by = —(w = )b — (1 + a)(y — a — 2)by,

biso = —(@ — (k+ D)B)bra1 — (L +k+a)(y —a —2 -2k + Db, k>0,
(4.26)
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where
1
w = —5(6 +(1+ a)ﬁ).
Itis possible to infer from the recurrence relation (4.26) that the coefficient

bi represents for each k € IN a polynomial with a degree k in w.
A polynomial solution is derived from the recurrence relation (4.26)

provided that the two requirements listed below are met:

y—a—2=2n,
(4.27)
bn+1 = O/

where b, is a polynomial of degree n+1 in w and when we have 1+a > 0

and B € R, b,41 has n + 1 real roots that we denote them by
_ ] O+ (1 0O<u<
W,y = _E( ot 1+ a)p), Susn.

The first five coefficients are provided by the recurrence relation (4.26)

by =1,
bl =—-w,
by =* — fw — (Y —a = 2)(a + 1), (4.28)

2
by = — @ + 3B’ — (252 ~Y iy —a—2i@+ i))a) _2B(y —a—-2)(a+1),

i=1

3
by = — 60 + (1152 -V ity —a-2i@+ i))a)2 _ 5(4@ —a—6)a+3)

=1
3
+6p2 = Y i+ )y —a—2i)a+ i))a) 3y —a-2@+1) (429
=1

.((y _a—6)(a+3) - 252). (4.30)
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4.4 Approximate eigensolutions for few central

potentials

The purpose of next part is to give the analytic expressions of the eigen-
solutions for central potentials where the generalized Cornell potential
plus an exponential component add up to a single potential. by ap-
proximating the effective potential using an appropriate approximation
scheme, after that we give the closed-form of the energy levels then in
the numerical application part, for given values of the parameters,For
a subset of the roots w,,, of b,, we compute the bound state’s analytic

formula.

4.4.1 Morse potential

We give Morse potential expression as follows
Veo(r) = Voe ™V + Ve ™. (4.31)

Morse potential is an important potential in quantum mechanics and
related fields such as chemistry, it was introduced for the first time in
1929 [60], named after the physicist Philip M. Morse, it is appropriate for
studying vibrational and rotational properties of diatomic molecules,
Morse potential is one of the available models in quantum mechan-
ics to model the vibrations of molecules such as diatomic models and
even polyatomic molecules, this potential allows to study the anhar-
monicity of molecular vibrations as well as the ionization besides to
the stabilization of atoms and molecules electronic states [61], usually

Morse potential is helpful for investigating the spectroscopic properties
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of diatomic molecules and studying the anharmonic vibrational dynam-
ics in addition to its application in analyzing the vibrational spectra of
real molecules. Morse potential attracted the attention of researchers
[61, 62, 63]. where Schrodinger equation has been resolved for Morse
potential by many methods where Miraboutalebi and Rajaei used the
Laplace transform [62] while Dayi and Duru resolved Schrodinger equa-
tion in terms of the g-canonical transformation [63], Han et al obtained
solutions for Morse potential using the approach of supersymmetric
quantum mechanics [64] while Arda and Sever obtained bound states
using NU method [65], Berkdemir and Han applied Pekeris approxima-
tion to obtain /-state solutions using the same method [66], Yu et al used
the serie solution method [67]and Barakat et all obtained exact solutions
for Schrodinger equation for Morse potential by asymptotic iteration

method [68].

In order to have the potential that we resolve the radial equation for, we

substitute this exponential potential of Morse in (4.1) to get

a_n a_q _ _
V(r) = = + — Fag + a7 + apr? + Ve NV + Vie™, (4.32)

then inserting the central potential (4.32) in the radial equation (4.18)

leads to the following equation

ta-2 g4

r
_ d +( M + +ao+a1r+a2r2+Voe‘2M+V1€_M)Rn,l(T) = ERy (7).
r r

2
(4.33)

Due to the expression of the effective potential that combine between
polynomial terms and exponential term, the radial equation (4.33) can’t

be resolved in explicit way, for this, the following approximation scheme
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is adopted [59]
1 1
—x — 4.34
1—eM Ar (439)

and the following figure shows that the curves of - and are so close

1— e—/\r

when the parameter A is small, where it takes the value 0.1

40

20

Figure 4.1: The curves of +- and forA =0.1

1- e—Ar

in order to approximate the effective potential and have an equation
that we can resolve the previous approximation scheme is used, where
the left side is a good approximation of the right side and is accurate for

tiny values of the parameter A.

We take the term —— and we approximate it by the term - in the

effective potential in the radial equation (4.33), then we get the following

equation

d’R,,
A7) +(=2L + Bi + Cqy + Dyr + F17% R, (r) = 0. (4.35)
dr? r2 r '

The differential equation (4.35) is the normal form of Heun’s differential
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equation for the following parameters

Ay =-2Ma_, - (I +1),

By = -2Ma_,,

$C1 =2M(E - Vo — V1 —ap), (4.36)

Dl = ZM(/\(ZVO + Vl) - 611),

Fi = 2M(612 + Vo/\z).

The normal Heun equation in his biconfluent form is transformed to the

following canonical form

d’P AP 1
y dy(zj/)+(1+0é1—51y—2y2) d(yy)+(()/1—0(1—2)y—§(61+(1+0z1)‘81))P(y) =0,

(4.37)

for this set of parameters

a; = 1+4(1(1 + 1) + 2Ma_,),

pr = (ﬂ1 - A2V + Vl)):/%/
461 =2a_4 /% (4.38)
1= (E— Vo—V4 —ﬂo)wlﬁ

2

+(/\(2V0 + Vl) — (11) 4 ,W.

The canonical equation (4.37) has polynomial solutions in the following

form

v T+ a)be o
Ply) = kZ>o‘ T(1+ o+ k) k" (4.39)
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And the recurrence expression (4.26) links the coefficients bx. Hence only
a portion of the eigenfunctions can be written in explicit form, which
means that the case here is quasi-exactly solvability of Schrodinger equa-

tion.

Now we calculate the energy eigenvalues, by returning to the first con-

dition in (4.27) which is given by
yi—a1—2=2n, (4.40)

to get the approximate energy values as

(/\(2V0 + Vl) — 611)2 ar + Vo/\z(
E.im= +ag+Vo+Vi+ | ————2+2n+ 1 +4(l(l + 1) + 2Ma_
< Mag + VoA2) orYorha oM nty1+4((+1) +2Ma
(4.41)

for the condition 1 — 4A; > 0 to have real values of the energy besides to

the condition F; > 0.

Finally the approximate wave function of Schrodinger equation in the
case of the central potential: the generalized Cornell potential plus Morse
potential is given by

gHm

_ w1+ an)b Pk) 2 o\ 2 o\
Vuinlp,0,0) = pTe (;Or(l+a1+k) )1-cos? )% ——— —(1-cos? 6)'e
) (4.42)

for the following variable p = VFir.

Numerical application for the approximate eigensolutions of Morse

potential

We take into consideration the following numerical values of the param-

eters to provide some examples of the estimated bound states for the
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case of Morse potential
ao=ap=a1=a,=0,

Wo=2Vi=1, (4.43)

M=0.001,l=m=1,A=0.01
eForn=1
The roots of the coefficient b, are
w19 = —2.0039,
w11 = 3.9921, (4.44)
choosing the root wy o yields
U111(p, 6,9) = e‘§+1'9882p(1 — 0.501,0) sin Oe'?,

3 (4.45)
Ei11 = 25.1359.

\

Figure 4.2: The graph of the radial part of 911

e Forn =2
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The roots of the coefficient b; are

Wy = —4.2307, (4.46)
wr1 = 1.7889, (4.47)
wWrp = 84063,, (448)

for the case of the root w; 1 we have

Un11(p, 6, ) = e~ T+1988% (1 +0.4472p — 0.4089p2) sin Oe®,
J (4.49)

Ey11 = 31.4605.

o

Figure 4.3: The graph of the radial part of 151

e Forn =3
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The roots of the coefficient by are

w3 o = —6.7 (4.50)
w31 = —0.5571, (4.51)
w32 = 5.9816, (4.52)
w33 = 13.2046, (4.53)

the root w3, gives the following approximate energy and bound state

Y311(p,0,0) = e‘%+1'9882p(1 +1.4954p — 0.0028p% — 0.3326p3) sin e'?,

Esq1, = 37.7851.
(4.54)

Figure 4.4: The graph of the radial part of {31

e Forn=4
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The roots of the coefficient bs are

wso = —9.4248 (4.55)
w1 = —3.0688, (4.56)
wso = 3.464, (4.57)
ws3 = 10.5564, (4.58)
ws4 = 18.3549, (4.59)

selecting the root w, 4 yields

2

Va11(p,6,0) = e 2 +1~9882P(1 +4.5887p + 6.7103p? + 3.8306p°+

) O.7365p4) sin O¢'?,

Es11 = 44.1096.

(4.60)
eForn=>5
The roots of the coefficient by are
wso = —12.4108, (4.61)
ws1 = —5.7704, (4.62)
ws» = 0.8386, (4.63)
ws3 = 7.845, (4.64)
ws4 = 23.831, (4.65)

ws5 = 15.4893, (4.66)
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choosing the root ws 4 yields the following approximate bound state and

energy as

Ys11(p, 0,0) = e‘p?+1'98829(1 +5.9577p + 12.0134p? + 10.6033p>

< +4.1915p* + 0.6035p5) sin B¢,

Esq11 = 50.4342,

(4.67)
eForn==6
The roots of the coefficient b; are
we o = —15.6576, (4.68)
w1 = —8.6833, (4.69)
wgo = —1.9157, (4.70)
wg3 = 5.0628, 4.71)
wea = 29.6109, (4.72)
we5 = 12.5781, (4.73)
we 6 = 20.7565, (4.74)

choosing the root we 5 yields the following approximate bound state and

energy as
2
We11(p, 0,0) = e—%+l-9882f)(1 +3.1445p +2.13p% — 0.7291p® — 0.7808p*+

J 0.0191p° + 0.0588p6) sin e,

Eg11 = 56.7587,
(4.75)
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for the following variable p = 5.0297 + 1077r.

Comparison

In the absence of the centrifugal term and the generalized Cornell poten-
tial, we compare the estimated energy eigenvalues calculated for the gen-
eralized Cornell plus Morse potential (4.41) with alternative values(for

the value [ = 0).

Let be the nergy levels that are computed in [66] for | = 0 are given by

(4.76)

—A2/\2MD 1\?
Eno0 = ( ) ,

oM\ A T2
where the approximate energy levels of the generalized Cornell plus
Morse potential are written for the parameters of Morse potential in the

reference [66] for the following parameters
Vo = De*\", (4.77)

Vi = —2De’'". (4.78)

then, writing the approximate energy eigenvalues in (4.41) in the absence

of the terms of the generalized Cornell potential gives

[D
E,.o00 = =D + Ae' 2]—\4(2 +2n + 1). (4.79)

By comaring the approximate energy eigenvalues in (4.76) and those in

(4.79), we deduce that they are different.

4.4.2 The generalized Poschl-Teller potential

Poschl-Teller potential is one of the famous models in quantum mechan-
ics that are exactly solvable, it is a crucial potential that has many appli-
cation in chemistry and spectroscopy, it can represent the interaction be-

tween particles, atoms and molecules, it is a realistic model that is used in
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anharmonic molecular vibrations, it allows the prediction of vibrational
spectra of molecules, it introduces anharmonicity in the vibrational en-
ergy levels, it is a good approximation for the potential energy surface, it
can describe potential wells or potential barriers. Many formulas exists
for Poschl-Teller potential that the researchers treated in their papers,
where You et al obtained solutions to the Schrodinger equation for the
second Poschl-Teller potential [69], Yahya and Oyewumi obtained ap-
proximate [-state solutions to Schrodinger equation for the pdschl-Teller
like potential [70], Assi et al obtained solutions for Schrodinger equation
in D-dimension for the hyperbolic Poschl-Teller potential plus modified

ring-shaped term [71].
In this part, we are interested in the generalized Poschl-Teller potential
that is given in [72] where its expression is given by

Vs B VscoshAr
sinh?Ar  sinh?Ar’

Ve(r) = Vo, > Vs, (4.80)

in which V5, V3 A are related to the properties of the potential.

to obtain the potential that we resolve the radial equation for, we substi-

tute this exponential potential of P6 in (4.1) to get

V> VscoshAr

a-p
sinl?Ar  sinh?Ar ’

V(r) = + a% +ag + arr + ar® + (4.81)

72

then by inserting the central potential (4.81) in the radial equation (4.18)

to get
I(1+1)
1 d*Ryi(r) (a1 +9-2 aa ’ Vs VacoshAr
- —+ +—4apg+ar+arr-+ — R _ EFR .
M dr2 ( 2 y apt+air+asr S i /\r) n1(7) n1(7)

(4.82)
It is clear that the expression of the effective potential in the case of the

generalized Cornell plus the generalized Poschl-Teller potential makes
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the solvability of the radial equation (4.82) hard to resolve analytically,

for this reason, we use the following approximation scheme [73]

1 ~ l
sinh A\r ~ A7’

(4.83)

where the figure below shows that the curves of the two functions % and

_1
sinhAr

Figure 4.5: The curves of - and —— for A = 0.1

and this approximation scheme is used to approximate the effective
potential to obtain an equation where the analytic solution are known,
this approximation is appropriate for small values of the parameter A

where the left side is a good approximation of the right side.

1
sinh Ar

and approximating it by the term < in the

By taking the term =

effective potential of the radial equation (4.82), we obtain the following

equation

danl(T) A B
— (r_zz + 72 +Cy + Dor + Fzrz)Rn,l(f) =0. (4.84)

88



The differential equation (4.84) is the normal form of biconfluent Heun's

equation for the following parameters

Ay = —ZM(a_2 ; V2A—2V3) _Ii+1),
B, = -2Ma_4,
lc, = ZM(E gy + %) (4.85)
D, = —2May,
F, = 2Ma,.

Biconfluent Heun'’s equation in his normal form is transformed to the

following canonical form

d’P AP 1
Y dy(zy)+(1+0(2_52y_2y2) d:(yy)+((7/2—0(2—2)y—§(62+(1+a2)ﬁ2))P(y) =0,

(4.86)

for this set of parameters

oy = \/4(1(1 1)+ 2M(a_2 ; Vz);%)) +1,

_ o uf2M
Po =a1/%5,
2

< (4.87)

— 4/8M3
02 = 2a-14/%, -

— 2 M _ Vs 2M
V2 =4y /—8a3+(E a0+2)‘/a.

The canonical equation 4.86 has polynomial solutions in the following

form

v T+ a)by v
Ply) = kZ>o‘ T(1+a,+ k) k! (4.88)

where the coefficients by are related by the recurrence expression (4.26).

Here, only a finite number of the eigenfunctions can be written in ex-
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plicit form, which means that the case here is quasi-exactly solvability of

Schrodinger equation.

Now to obtain the energy eigenvalues, we return to the first condition in

(4.27) which is given by
Va—ay—2=2n, (4.89)

to get the approximate energy values as

2

_ A, Vs a_z(\/ ( ( V) - V3)) )
Enim = 1 Hag——+ \/ZM 1+4I(0+1)+2M|a_, + - +2+2n),
(4.90)

for the condition 1 —4A; > 0 to have real values of the energy besides to

the condition F, > 0.

As a result, the approximate wave function of Schrodinger equation
in the case of the central potential: the generalized Cornell plus the

generalized Poschl-Teller potential is given by

I'(l+ ap+k) k!
dl+m

"d cos Ol+m

ar—1 24 2 L r 1 b : m
wn,l,m(p/ 0, qb) = pTe_#(Z ( + 0(2) k P_)(l _ COSZ 6)7
k>0
(1 — cos? 0)'e™, (4.91)

for the following variable p = VFor.

Numerical application for the approximate bound states of the gener-

alized Poschl-Teller potential

In order to give some examples of the approximate bound states for the

case of the generalized Poschl-Teller potential, we consider the following
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numerical values of the parameters

\Va=2,m=-1, (4.92)

ap=a,=1=V3=1,1=0.1,M=0.01

eForn=1

The roots of the coefficient b, are

w1 = —2.1641, (4.93)

w11 = 21641, (494)

choosing the root w1 gives the following approximate wave function

and energy value

U11-1(p, 6,¢) = p1'17086_p7(1 + 0.9242p) sin Be™?,
(4.95)

Eyq-1 = 119.9427.

Figure 4.6: The graph of the radial part of 11,1
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e Forn =2

The roots of the coefficient b3 are

w20 = —4.7679, (4.96)
w21 =0, (4.97)
w2 = 47679, (4.98)

choosing the root w,; gives the following approximate wave function

and energy value

2 .
U21-1(p, 0, 9) = pl'mse_p?(l — O.5985p2) sin Oe™'%,
J (4.99)

E1-1 = 164.6641.

Figure 4.7: The graph of the radial part of 11,1

e Forn =3
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The roots of the coefficient by are

w3 = —7.7984, (4.100)
ws1 = —2.4532, (4.101)
w3 = 2.4532, (4.102)
ws3 = 7.7984, (4.103)

selecting the root ws, gives the following approximate wave function

and energy value

V31-1(p, 6, 9) = pl'mse‘%(l +3.3303p + 2.9882p” + 0.7664p3) sin Be™™%,

Es1-1 = 209.3854.
(4.104)

Figure 4.8: The graph of the radial part of )37

e Forn=4
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The roots of the coefficient bs are

Wi = —11.2231, (4.105)
w11 = —5.2639, (4.106)
wyp =0, (4.107)
w43 = 5.2639, (4.108)
waa = 11.2231, (4.109)

selecting the root wyp gives the following approximate wave function

and energy value

Ya1-1(p, 0,0) = pl'mse‘%(l —-1.197p° + O.2241p5) sin Be™™%,
J (4.110)

Es1-1 = 254.1068.

eForn=>5

The roots of the coefficient by are

ws = —15.0088, (4.111)
ws1 = —8.4522, (4.112)
ws» = —2.6854, (4.113)
ws 3 = 2.6854, (4.114)
ws, = 8.4522, (4.115)
ws,5 = 15.0088, (4.116)

choosing the root ws3 gives the following approximate wave function
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and energy value

Us1-1(p, 6,) = p1-1708e—%(1 +1.1468p — 1.035502 — 0.9179p° + 0.1754p*

) +0.1306p5) sin Oe™™%,

Es;1_1 = 298.8282.

(4.117)
eForn==6
The roots of the coefficient b; are
weo = —19.1271, (4.118)
w1 = —12.0064, (4.119)
wgo = —5.6801, (4.120)
w3 =0, (4.121)
w4 = 5.6801, (4.122)
we 5 = 12.0064 (4.123)
we = 19.1271, (4.124)

choosing the root wg 3 gives the following approximate wave function

and energy value

2
Ve1-1(p, 0,) = p1~1708e—%(1 +2.4257p + 0.2661p2 — 1.7463p® — 0.5639p°+

] 0.2294p° + 0.0808p6) sin Oe™®,

Ee1-1 = 3.43.5495,
(4.125)

for the following variable p = 0.0095r.
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Comparison

We compare the approximate energy eigenvalues obtained in the case of
the generalized Cornell plus the generalized Poschl-Teller (4.90) without
the generalized Cornell potential with other values obtained for the gen-

eralized Poschl-Teller potential in this section. This means that the term

1
sinh Ar*

+ is substituted with the term

Let consider the approximate energy levels that are obtained from the

reference [74] as

201
Epim = —%(ﬁ( VB(Va + Vo) + A2 — \B(Va = Vi) + 1221 + 1)2) _1- Zn),
(4.126)
at the other hand, the approximate energy levels in (4.90) fora_, =a_; =

ap = a1 = a; = 0 are given by

1%
Epim = —73. (4.127)

By comparing the approximate energy levels in (4.126) and the approx-
imate energy levels in (4.127), we deduce that the values are totally

different.

4.4.3 Yukawa class potential

One of the well-known exponential type potentials and a well-known
model in quantum mechanics is the Yukawa potential. In particular, the
Yukawa potential is significant in many different fields, it is a well known
potential in many fields such as nuclear physics to describe the strong
nuclear force between nucleons, in solid state physics to describe the in-
teraction where the electric field is screened by surrounded charges and

in plasma physics to describe the interaction between charged particles
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[75]. As the most exponential type potentials, Yukawa potential is not
exactly solvable model in non-relativistic quantum mechanics, where ap-
proximative techniques had been used to deal with Schrodinger for this
potential [76]. When they resolved Schrodinger equation for exponential
potentials, the researchers dealt with many classes of Yukawa potential,
where Onate and Ojonubah obtained eigenfunctions and eigenvalues
for Schrodinger equation using supersymmetric quantum mechanics for
a class of Yukawa potential [77], Rajabi and Hamzavi constructed ex-
plicit approximate solutions for Schrodinger equation for the perturbed
Yukawa potential with a centrifugal term using NU method [78], Okorie
et al. obtained approximate solution to the Schrédinger equation for the
modified Yukawa potential by transforming the radial equation to Gauss

hypergeometric equation [79].

In this part, we are interested in the following Yukawa class [80] which
is given by
V4e—2/\r ~ V5e—Ar

Ve (7’) = - %) "

(4.128)

In order to obtain the potential that we resolve the radial equation for,

we substitute this exponential potential of Yukawa class in (4.1) to get

V4e—2/\r VSB—M

72

a_» a_1
V(r) = ==+ — 4+ a9+ a7 + a1 —
r2 r

) (4.129)

then by inserting the central potential (4.129) in the radial equation (4.18)

to get
I(I+1) B B
1 dZRnll(V) M +ao2 a4 2 Ve 24r V5€ Ar
_2M d?’z r2 + r +a0+a1r+a2r - 1’2 - " )Rn/l(r) = ERn,l(r).
(4.130)

It is clear that the expression of the effective potential in the case of the

generalized Cornell plus Yukawa class potential makes the solvability of
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the radial equation (4.130) not trivial to resolve analytically due to the
combination of exponential terms and polynomial ones, for this reason,
we use the following approximation scheme [59]

11
1—e M A

(4.131)

for approximate the effective potential then obtain an equation where the
solutions are known, such that this approximation is accurate for small
values of the parameter A where the left side is good approximation to

the right one.

By taking the term —— and approximate it by the term - in the effective

potential of the radial equation (4.130), we obtain the following equation

d’R,, Az B
4Ry, (1) + (—3 + = 4+ C3+Dsr + F372)Rnl(7) =0. (4.132)
dr? 2 ,

The differential equation (4.132) is the normal form of biconfluent Heun's

equation for the following parameters

Az = —2M(V4 — a_z) — l(l + 1),

B3 = (V5 —a_1— 2V4A)2M,

1C3 = 2M(E — ag — VsA + V4A2), (4.133)
D3 = —2M611,
F5 = 2Ma,.

Biconfluent Heun'’s equation in his normal form is transformed to the

following canonical form

d’P dP 1
y dy(zy)+(1+a3—53y—2y2) d(yy)+((73—0¢3—2)}/—§(53+(1+0‘3)ﬁ3))P(}/) =0,

(4.134)
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for this set of parameters

a3 = \/4(l(l + 1) + 2M(a_2 — V4)) +1,

_ M
Bs = a1/%5,
2

< (4.135)

83 = 2((1_1 +2V4A — VS);*/%,
V3 = a% 4/% + (E —ap — V5/\ + V4A2)1/%.

The canonical equation (4.134) has polynomial solutions in the following

form

v T+ as)be v
Ply) = kZo‘ T(1+as+kk’ (4.136)

And the recurrence expression (4.26) links the coefficients by. Hence
only a portion of the eigenfunctions can be written in explicit form,
which means that the case here is quasi-exactly solvability of Schrodinger

equation.

Now to obtain the energy eigenvalues, we return to the first condition in

(4.27) which is given by
ys—asz—2=2n, (4.137)

to get the approximate energy values for Yukawa class potential as

aZ

E,., = (\/1 400+ D)+ 2M(a, = V4))+2+2n) BT A (Ve=Vi),
" 2M  4a,
(4.138)
for the condition 1 — 4A3 > 0 to have real values of the energy besides to

the condition F3 > 0.

Then, the approximate wave function of Schrodinger equation in the

case of the central potential: the generalized Cornell plus Yukawa class
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potential is given by

_ w2y T+ as)h p") 2
¢n,l,m(P1 9; (,b) =p e (;0 1_,(1 s+ k) Il (1 COoS 6)

dl+m

m(l — COS2 Q)ZEim¢, (4139)

for the following variable p = V/Fsr.
Numerical application for the approximate bound states of Yukawa

class potential

We take into consideration the following numerical values of the param-
eters to provide some examples of the estimated bound states for the

case of Yukawa class potential

< (4.140)

V4=a2:m:2,

M=A=ay=1,A=0.001.
eForn=1

The roots of the coefficient b, are
w10 = —3.9264, (4.141)

w11 = 3.9264, (4.142)
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then, computing the approximate wave function and energy value for
the root w1 gives

Y132(p,0,0) = pwzg_1 e‘%(l + 0.5094p) sin? 6 cos Q¢

(4.143)
Ey3, = 11.7085.

Figure 4.9: The graph of the radial part of 113,

e Forn=2

The roots of the coefficient b; are

w20 = —\24V5 + 12, (4.144)

w21 =0, (4.145)

w22 = V24 V5 + 12 (4.146)

then, computing the approximate wave function and energy value for
the root w, o gives

23200, 0,0) = p 3 e-%(l +1.0513p + 0.2595p2) sin? 6 cos 0e%?,

Ess, = 13.7085.
(4.147)
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Figure 4.10: The graph of the radial part of V511

e Forn =3

The roots of the coefficient b, are

ws0 = —12.5302, (4.148)
w31 = —4.1423, (4.149)
w3 = 4.1423, (4.150)
w33 = 12.5302 (4.151)

then, computing the approximate wave function and energy value for

the root w3 gives

3v5-1

Y332(p,0,¢) = p 2

e‘%(l — 0.5374p — 0.2167p” + 0.1046p3) sin” O cos 0e*?,

Es3, = 15.7085.
(4.152)

e Forn=4
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Figure 4.11: The graph of the radial part of 131 1

The roots of the coefficient bs are

Wi = —17.2034, (4.153)
ws1 = —8.5071, (4.154)
wyp =0, (4.155)
w13 = 8.5071, (4.156)
waa = 17.2034, (4.157)

then, computing the approximate wave function and energy value for

the root w43 gives

345-1 2
Y3200, 0,0) = p3 e—%(l +1.1036p + 0.0797p? — 0.2041p?

9 —0.048p4)sin2 0 cos 0%, (4.158)

Eys, = 17.7085.

eForn=>5
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The roots of the coefficient by are

w50 = —221185,

ws, = —13.0979,

Ws5p = —43348,

W53 = 43348,

W54 = 13.0979,

W55 = 221185,

(4.159)

(4.160)

(4.161)

(4.162)

(4.163)

(4.164)

then, computing the approximate wave function and energy value for

the root ws 4 gives

3v5-1

4 0.0221 p5) sin’ 0 cos Oe%¢,

Es s, = 19.7085.

e Forn=6
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The roots of the coefficient b; are

weo = —27.2699, (4.166)
we1 = —17.9158, (4.167)
wep = —8.8711, (4.168)
wes =0, (4.169)
wes = 8.8711, (4.170)
we5 = 17.9158, (4.171)
we6 = 27.2699, (4.172)

then, computing the approximate wave function and energy value for

the root wep gives

35
Ye32(0,0,0) = p 2

—1 )2
e—%(l +1.1509p — 0.1028p? — 0.4265p° — 0.0691p*
9 +0.0332p° + 0.0075p6) sin” 0 cos 0e*?,

Egs, = 21.7085,

(4.173)
for the variable p = 2.8284r

Comparison

In this part, we compare the approximate energy eigenvalues that are
obtained in the case of the generalized Cornell plus Yukawa class poten-
tial (4.138) in the absence of the generalized Cornell potential with other
values that are taken only for Yukawa class potential, such that the term

% is substituted by the term %

—e~Are
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Writing the approximate energy eigenvalues that are obtained in the ref-
erence [81] and they are computed for Yukawa class potential using the

NU method as follows
2

(—l(l+1)+Ag—X5—%—n(n+1)+2(n+1)\/%—ZMV4+Z(Z+1))

2

)\2
8M

E nlm — —

(n +2+ \/+l(l +1)+ 1 —ZMV4)

(4.174)
This is obvious that the approximate energy eigenvalues (4.174) are not
derived from the approximate energy levels (4.138) when the parameters

Ao,=a_1=ay=a; =0anda, — 0.

4.4.4 Schidberg potential

Schioberg potential is an exponential potential function, it was proposed
as a modification to existing potentials to improve the description of
different interactions. Although this potential isnotarecognized as other
potentials like Morse and Yukawa potentials, Schioberg potential has
many applications in laboratory, where it is useful to understand energy
levels and bound states of atoms and molecules, it models the vibrational
spectra of diatomic molecules, the accuracy predictions for Schidberg
potential is improved for molecular vibrational states compared to other
potentials. It helps in understanding the thermodynamic properties of

physical systems.

In this part, we are interested in the following Schidberg potential [82]
V.(r) = K(1 — ocothAr)?, o>0,K>0. (4.175)

In order to obtain the potential that we resolve the radial equation for,

we substitute this exponential potential of Schitberg in the expression

106



(4.1) to yield the following central potential
V(r) = == 7 +ag + ar + axr? + K(1 — ocothAr)?, (4.176)

Once the radial equation (4.18) has the central potential (4.176) included,

we obtain
| #R.(r 1(1+1) ta, g
537 drlzl( )+( > +ar1+ao+a1r+azr2+K(1—000th/\7)2)Rn,l(7) = ERyi(r)-

(4.177)
It is clear that the expression of the effective potential in the case of the
generalized Cornell plus Schidberg potential makes the solvability of
the radial equation (4.177) not trivial, hence the analytic solution is hard
to obtain due to the combination of exponential terms and polynomial
ones, for this reason, we use the following approximation scheme [73]

1 ~ i
sinh Ar ~ Ar’

(4.178)

to approximate the effective potential from equation (4.177) then an equa-
tion is obtained where the solutions are known, such that this approxi-
mation is accurate for small values of the parameter A where the left side

is good approximation to the right one.

By taking the term —— and approximate it by the term +- in the effective

sznh/\r

potential of the radial equation (4.177), we obtain the following equation

d’R,,(7) By _
o+ (r_2 +—+Cy+ Dar +Fur ) n1(r) = 0. (4.179)
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For the following parameters, Heun’s equation in his biconfluent normal

form is the differential equation (4.179)

Ay = —ZM(a_2 ; A—K) _Ii+1),

By = (% - ﬂ—1)2M,

Cy = 2M(E — ap — K(1 + 6?)), (4.180)

D4 = 2M(KGA — 111),

Fy= 2M(a2 + KGTA)

Heun’s equation in his biconfluent normal form is transformed to the

following canonical form

d*P(vy) dP(y) 1
Yy dyzy +(1+0¢4—ﬁ4y—2y2) dyy +((7/4—014—2)y—§(64+(1+0(4),84))P(y) = 0,
(4.181)
for this set of parameters
ay = F \/4(1(1 +1)+ ZM(a_z + ";—f)) +1,
‘34 = ((/'ll - KG/\) — M 3,
=
Y60 =20 - 2e) o HE (4.182)
2
)/4=(ﬂ1—KG/\) M 3+(E—ﬂ0
8 a2+K"ZA2
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The canonical equation (4.181) has polynomial solutions in the following

form

P(y) = ;.‘ rr(gl ++ai4ibli)%{’ (4.183)
And the recurrence expression (4.26) links the coefficients by. Here there
is only a finite number of the eigenfunctions that can be written in ex-
plicit form, which means that the case here is quasi-exactly solvability of

Schrodinger equation.

We go back to the first condition in 4.27 to get the energy eigenvalues,
which is provided by
Ya—ay—2=12n, (4.184)

to get the approximate energy values for Schioberg potential as

i a’K 4a, + KA202
Eiim _( F \/4(1(1 +1) + ZM(a_z + 7)) +1+2n+ 2)\/ M

_ (KG/\ - a1)2

o KO +a9+ K(1 + ¢?), (4.185)

for the condition 1 — 4A4 > 0 to have real values of the energy besides to

the condition F4 > O.

Then, the approximate wave function of Schrédinger equation in the case
of the central potential: the generalized Cornell plus Schidberg potential

is given by

I'(1+ ay + k) k!
dl+m

"d cos G1+m

ag-1 248y . I'aa k "
Vuinlp,0,9) = pF e (Y SR cos2 )
k>0
(1 — cos® 0)e™, (4.186)

for the following variable p = VF,r.
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Numerical application for the approximate bound states of Schioberg

potential

We take into consideration the following numerical values of the param-
eters to provide some examples of the approximate eigensolutions for

Schioberg potential situation
K=4, a,=-1

a=1,A = 0.01,M = 0.0001,
< (4.187)

a1=a2=l:m=2,

Q
1]
N—

eForn=1

The roots of the coefficient b, are
Wi o = —3.4047, (4.188)
w11 = 34983, (4189)

then, computing the approximate wave function and energy value for

the root w1 gives

Y122(p, 6, ) = pPOie00636p-"5 (1 _ 05823 p) sin? 02
) (4.190)

E12, = 906.9497.

e Forn=2
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Figure 4.12: The graph of the radial part of 115

The roots of the coefficient b; are

Wy = —7.2818, (4.191)
w1 = —00587, (4192)
wyo = 7.1797, (4.193)

then, computing the approximate wave function and energy value for

the root wy, gives
U222(p,0,0) = p3‘004e‘0'0636p‘p7(1 —1.2120p + 0.3388p2) sin? Ge%9,

Es»p = 1107.1.
(4.194)

e Forn =3
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Figure 4.13: The graph of the radial part of V57,

The roots of the coefficient b4 are

w3 = —11.1438, (4.195)
w31 = —3.7895, (4.196)
w3 = 3.6123, (4.197)
ws3 = 11.1438, (4.198)

then, computing the approximate wave function and energy value for

the root w3, gives

32200, 0, ¢) = p3‘004e_0'0636p_%(1 — 0.6308p — 0.2604p2 + 0.1447p3) sin? 0e9,

Esn, = 1307.2.
(4.199)

e Forn=4
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Figure 4.14: The graph of the radial part of 137,

The roots of the coefficient b5 are

Wy = —15.6913,

w1 = —7.7686,
wsr = —0.1142,
ws3 = 7.5263,
wss = 15412,

(4.200)

(4.201)

(4.202)

(4.203)

(4.204)

then, computing the approximate wave function and energy value for

the root wy3 gives

(4.205)

U122(p,0, ) = p3-004e—0-0636p—§(1 —1.2931p + 0.1401p? + 0.2784p°
y —0.0741 p4) sin” 0e%?,
E42, = 1507.3.
eForn=>5
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The roots of the coefficient by are

ws0 = —20.3034, (4.206)
ws1 = —12.0011, (4.207)
ws = —4.0484, (4.208)
ws 3 = 3.7628, (4.209)
ws,4 = 11.6895, (4.210)
ws5 = 19.947, (4.211)

then, computing the approximate wave function and energy value for

the root ws4 gives
Ysp02(p,0,0) = p3'004e‘0'0636p‘p7(1 —1.9976p + 0.9879102 + 0.1769p3—

< 0.2225p* + 0.0381 p5) sin” 0e%¢,

Esny = 1707.4.
(4.212)

e Forn=6
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The roots of the coefficient b; are

we0 = —25.7406, (4.213)
we1 = —16.4877, (4.214)
wep = —8.2047, (4.215)
we3 = —0.1674, (4.216)
wes = 7.8564, (4.217)
we5 = 16.1033, (4.218)
we = 24.7406, (4.219)

then, computing the approximate wave function and energy value for

the root we 4 gives

Ve22(p,0,¢) = p3-004e-0-0636p-%(1 — 1.3656p — 0.0629p? + 0.5896p° — 0.1172p*—

0.0521p° + 0.0133p6) sin? %9,

E612,2 - 19076,
(4.220)

for the variable p = 0.0028r

Comparison

In this part, we compare the approximate energy eigenvalues obtained
for the generalized Cornell plus Schioberg potential with other values
that were obtained for a situation of Schiberg potential, where the +- is

. . 1
substituted with s

We write the approximate energy eigenvalues that are obtained in [83]
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using the asymptotic iteration method as

_\2
Evim =(% - ((n 12410+ 1) - 20(1 — a)]f—f
2
+ (2n + 1)( = % + \/i +2]\/I}I\<2(72 + (1 + 1)))
1 1 _MKo? 2\\ 212
/(4(n + 5 + \/Z +2 AZG + I(l + 1)) ))ﬁ (4.221)

Hence the approximate energy levels (4.221) cannot be a limit case of
the approximate energy eigenvalues (4.185) when the coefficients a_, =

a_1:a0:a1:a2:0.

4.4.5 Manning-Rosen potential

Manning-Rosen function is an exponential potential function, it is a well-
known potential in quantum mechanics. In particular Manning-Rosen
potential has an important role in physics and related domains, it has
several applications in theoretical physics, such that in molecular physics
Manning-Rosen potential often used to model the different interactions
between diatomic molecules, it is helpful to describe the vibrational
energy levels of molecules. Manning-Rosen potential attracted the at-
tention of researchers where Ikhdair and Sever obtained approximate
[—-state solutions to the Schrodinger equation for Manning-Rosen poten-
tial, Qiang and Dong established approximate solutions of Manning-
Rosen potential in the presence of the centrifugal term [85], Dong and
Garcia-Ravelo obtained exact solutions to the s—wave Schrédinger equa-

tion for the same potential [86].
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We are interested in the Manning-Rosen potential that is given by [87]
2 -1 —2Ar K —Ar
Vi(r) = A (5(5 )e 1€ )

Qg T—en) (4.222)
To obtain the central potential that we resolve the radial equation for, we
replace the exponential potential of Manning-Rosen in the expression
(4.1) to have

5(5 _ 1)6—2/\1’ ~ K e Ar
(1 —e7r)2 1—

V(r) = —+7+a0+a1r+a2r + ( ) (4.223)

then by inserting the central potential (4.223) in the radial equation (4.18)
to get

1(+1)

dzR”l()+(( M S
— 0+ a1 2
2M  dr? 72 r

(e :61_);)2; K Rast = ER ). (4229
It is clear that the expression of the effective potential in the case of the
generalized Cornell plus Yukawa class potential makes the solvability of
the radial equation (4.224) not trivial to resolve analytically due to the
combination of exponential terms and polynomial ones, for this reason,

we use the following approximation scheme [59]

11
1—eM ™ A

(4.225)

for approximate the effective potential then obtain an equation where
the solutions are known, such that this approximation is accurate when
the values of A are tinywhere the left side is accurate approximation to

the right one.

By taking the term —— and approximate it by the term - in the effective

Ar

potential of the radial equation (4.224), we obtain the following equation

d’R,, Bs
1) + (— + — + Cs + Dsr + Fsr ) 21(r) = 0. (4.226)
dr? r2 r ’
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Heun’s differential equation in its biconfluent normal form for the fol-

lowing parameters is the differential equation (4.226)
As =-2Ma_, - I(I+ 1)+ &1 = &),

Bs = A(Kqy +2&(E — 1)) —2Ma_y,

1G5 = 2M(E — ag) + A*(&(1 - &) — Ky), (4.227)
D5 = —2Ma1,
F5 = ZMﬂlz.

The normal form is transformed to the following canonical form

d*P AP 1
y dy(;/)+(1+0é5—55y—2y2) d(yy)+((y5—0z5—2)y—§(65+(1+0z5)ﬁ5))P(y) =0,

(4.228)

for this set of parameters

as = AU+ 1) + E(E— 1) +2Ma_y) + 1,

_ M
Bs =m {75,
2

) (4.229)

Zé 5—1 +K
65 = 2(51—1 A ( ZM) l) \4, 82;13/
’ é 1—5 -K '

The canonical equation (4.228) has polynomial solutions in the following

form

v T +as)be v
Ply) = k; T+ a5+ 10 kI’ (4.230)

And the recurrence expression (4.26) links the coefficients by. Hence

only a portion of the eigenfunctions can be written in explicit form,
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which means that the case here is quasi-exactly solvability of Schrodinger

equation.

We go back to the first condition in (4.27) to get the energy eigenvalues,
which are provided by
Vs —as—2=2n, (4.231)

to get the approximate energies of Manning-Rosen potential as

Enim =( VEIT+ 1)+ EE-D+2Mar + 1) +2+ Zn) \ /”m2 .

25(5 - 1) + Kl
+ A M ,

for the condition 1 —4A5 > 0 to have real values of the energy besides to

the condition F5 > 0.

Then, the approximate wave function of Schrédinger equation in the case
of the central potential: the generalized Cornell plus Manning-Rosen

potential is given by

I'l+as+k)k!
dl+m

"d cos Ol+m

as-1 +p5 - Ira b k m
Rbn,l,m(P/ 0, qb) =p2 e_#(z ( + 0(5) k p—)(l _ C082 6)7
k>0
(1 — cos? 0)'e™, (4.233)

for the following variable p = \/Fsr.

Numerical application for the approximate bound states of Manning-

Rosen potential

We take into consideration the following numerical values of the param-

eters to provide some examples of the estimated bound states for the
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Manning-Rosen potential case

Ja, =2, (4.234)

m=Ki=M=m=1=1,A =0.01.
eForn=1

The roots of the coefficient b, are

1 [17
Wig=———— [|— +4V3, (4.235)
" 2v2 V8
1 [17
Wi = ———=+ 4| — +4V3, (4.236)
1,1 2\/5 8

then, computing the approximate wave function and energy value for

the root w1 yields
Y111(p,0,0) =p ‘/5_%6"%(1 + 0.5948p) sin B¢'?,

Ey11 = 7.6725.

Figure 4.15: The graph of the radial part of 11,11
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(4.237)

e Forn=2

The roots of the coefficient bs are

w0 = —70833, (4238)
wy1 = —0.6358, (4.239)
wWrp = 5.5988, (4.240)

then, computing the approximate wave function and en-
ergy value for the root wy1 gives

a11(p, 0,0) = p @—%e—%(l —0.1426p — 0.3669p2) sin B¢,

E»11 = 9.7625.
(4.241)

Figure 4.16: The graph of the radial part of 111

e Forn =3
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The roots of the coefficient by are

w3 = —11.1484, (4.242)
w31 = —4.2307, (4.243)
w32 = 2.2996, (4.244)
w33 = 8.8368, (4.245)

then, computing the approximate wave function and en-
ergy value for the root wsy gives

1 2 .
Y311(p, 0,0) = p‘/g‘ie‘p?(l +0.5151p — 0.4073p* — 0.1843p3) sin 9e'?,

Esq11 = 11.7625.
(4.246)

Figure 4.17: The graph of the radial part of 131

e Forn=14
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The roots of the coefficient bs are

w40 = —15.5398, (4.247)
w1 = —8.1377, (4.248)
Wi = —1.2326, (4.249)
ws3 = 5.4713, (4.250)
ws 4 = 13.7625, (4.251)

then, computing the approximate wave function and en-
ergy value for the root was gives

Ya11(p, 6, ) = p%—%e—%(1 +1.2256p — 0.0391p2 — 0.3931p>

] —0.0947p4) sin 8¢,
Es11 =15.7625.
(4.252)

e Forn=>5

The roots of the coefficient bg are
wsp = —20.1851, (4.253)
ws1 = —12.3568, (4.254)
wsp = —5.0292, (4.255)
ws3 = 1.9385, (4.256)
ws4 = 8.8955, (4.257)
ws4 = 16.1851, (4.258)

then, computing the approximate wave function and en-
ergy value for the root wsa gives

Ysi1(p, 6, ¢) = p‘/g‘%e‘p?<1 +1.9927p + 0.8359p% — 0.3776°

| ~0.3073p* - 0.0494p5) sin 069,

Esq1 = 17.7625.
(4.259)
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e Forn==6

The roots of the coefficient by are

weo = —25.2314, (4.260)
we1 = —16.8794, (4.261)
wep = —9.1079, (4.262)
we3 = —1.8008, (4.263)
wea = 5.31, (4.264)
wes = 125811, (4.265)
wes = 20.2792, (4.266)

then, computing the approximate wave function and en-
ergy value for the root wea gives

Ve11(p, 0,¢) = p @—%e—’%(l +2.8183p + 2.3288p> + 0.2274p° — 0.512p*

A

—0.2187p° — 0.026p6) sin Oe™®,

E¢11 =19.7625,
(4.267)
for the variable p = 2.8284r.

Comparison

The energy eigenvalues obtained for the generalized Cor-
nell plus Manning-Rosen potential are compared with other
values obtained in the case of Manning-Rosen potential
only in this section, where in the radial equation, the
term % 15 substituted with the term ﬁ

We write the approximate enerqy eigenvalues that are ob-
tained in [red81] using Nikiforov-Uvarov method as

12 (K1—l(l+1>—%—n<n+1)+2<n+1)\/}I+€(£—1)+l(l+1))2.

En,l,m = -

oM (n+%+\/i+£(£—1)+l(l+l))2
(4.268)

It is clear that the values (blued.268) are not a limit case
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of the values (blue4.232) when a_, = a1 =ay=a; =0

and a, — 0.
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CONCLUSION

The aim of this work s to establish approrimate bound
state of Schrodinger equation for some central potentials,
where each potential is in the form the generalized Cor-
nell potential plus an exponential potential, and in or-
der to bemore precise, the exponential potentials that we
treated in this work are Manning-Rosen, Poschl-Teller,
Yukawa class,Morse and Schioberg in the framework of
quasi-exactly solvable problems. At the first place, we
started by giving some mathematical notions that are the
basis of quantum mechanics, then we introduced Schridinger
equation with some related properties and results such as
the probabilistic interpretation of the wave function and
the postulates of quantum mechanics, then we resolved
approximately Schrodinger equation for some central po-
tentials, for each potential, solving the radial equation is
not trivial due to the combination of polynomial terms
besides to exponential terms that appeared in the effec-
tive potential, hence, finding the exact solutions is not
an easy task, for this reason we used for each case an
approximation scheme that allowed us to transform the
radial equation to the Heun’s equation in his biconfluent
normal, then the approzimate eigenfunctions and the ap-
proximate energy levels are put in closed-form, at last for
numerical values of the parameters, we computed some
approximate eigenfunctions and energy eigenvalues.

For other works, we will try to resolve Schrodinger equa-
tion for other type of potentials central and non-central
ones and we will try to extend the proposed method to
treat other equations such as Dirac and Klein-Gordon
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equations.
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