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Abstract

By using drone images, this thesis investigates how computer vision methods
can e�ectively assess damage caused by natural disasters, such as �oods. It uses
deep learning techniques, particularly Arti�cial Neural Networks, which have been
extensively explored for tasks such as Semantic Segmentation, Object Detection,
and Visual Question Answering. The primary objective of this research is to identify
and classify various damages resulting from disasters. The study evaluates several
architectures of Arti�cial Neural Networks, including Deeplabv3 and Unet + Resnet
backbone using the Floodnet dataset in the context of semantic segmentation. As
for the detection and classi�cation of di�erent types of damage, object detection
techniques like YOLOv8n are applied using the mentioned dataset above. Lastly
for visual questions answering the process of answering and prediction go through
BERT and GPT-2.

key-words: deep learning, Convolutional neural networks, Image Classi�ca-
tion, Semantic segmentation, Object detection, Unet, DeeplabV3+, Resnet, BERT
, GPT-2, YOLOv8n, Visual Question Answering.
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 ملخص

باستخدام صور الطائرات بدون طيار، تبحث هذه الأطروحة في كيفية استخدام طرق الرؤية الحاسوبية 

تستخدم هذه  عالية حيث لتقييم الأضرار الناجمة عن الكوارث الطبيعية، مثل الفيضانات، بفعالية

ها بشكل مكثف لمهام مثل غلالالدراسة تقنيات التعلم العميق، ولا سيما الشبكات العصبية ، التي تم است

التقسيم الدلالي، واكتشاف الأجسام، والإجابة على الأسئلة المرئية. الهدف الرئيسي من هذا البحث هو 

م تقييم العديد من هياكل الشبكات يت حيثتحديد وتصنيف الأضرار المختلفة الناتجة عن الكوارث.

 Floodnetصورباستخدام مجموعة ResNet مع  Unet و +Deeplabv3 العصبية ، بما في ذلك

في سياق التقسيم الدلالي. بالنسبة لاكتشاف وتصنيف أنواع الأضرار المختلفة، يتم تطبيق تقنيات 

أعلاه. وأخيراً، للإجابة على المذكورة  صورباستخدام مجموعة ال YOLOv8n اكتشاف الأجسام مثل

  GPT-2 .و Bert  تيباستخدام تقني عن الاسئلة جابةالأسئلة المرئية، يتم تنفيذ عملية الا

: التعلم العميق، الشبكات العصبية ، تصنيف الصور، التقسيم الدلالي، اكتشاف مفتاحيةالكلمات ال

، الإجابة على Unet ،Deeplabv3+ ،ResNet ،BERT ،GPT-2 ،YOLOv8nالأجسام، 

 .الأسئلة المرئية
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Résumé

En utilisant des images de drones, cette projet examine comment les méthodes
de vision par ordinateur peuvent évaluer e�cacement les dommages causés par
des catastrophes naturelles, telles que les inondations. Elle utilise des techniques
d'apprentissage profond, en particulier les réseaux de neurones arti�ciels, qui ont
été largement explorés pour des tâches telles que la segmentation sémantique, la dé-
tection d'objets et les réponses visuelles aux questions. L'objectif principal de cette
recherche est d'identi�er et de classi�er divers dommages résultant de catastrophes.
L'étude évalue plusieurs architectures de réseaux de neurones arti�ciels, y compris
Deeplabv3+ et Unet avec backbone Resnet, en utilisant le jeu de données Floodnet
dans le contexte de la segmentation sémantique. En ce qui concerne la détection
et la classi�cation des di�érents types de dommages, des techniques de détection
d'objets comme YOLOv8n sont appliquées en utilisant le jeu de données mentionné
ci-dessus. En�n, pour les réponses visuelles aux questions, le processus de repondre
et la prédiction passent par BERT et GPT-2.

Mots-clés : Apprentissage Profond, Réseaux de Neurones Convolutifs, Classi�-
cation d'images, Segmentation Sémantique, Détection d'Objets, Unet, DeeplabV3+,
ResNet, BERT, GPT-2, YOLOv8n, Réponses Visuelles aux Questions.
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General introduction

In the �eld of disaster management, the ability to swiftly assess the damage
and respond e�ectively is paramount. Unmanned Aerial Vehicles (UAVs), com-
monly known as drones, have emerged as indispensable tools in addressing these
challenges. Leveraging their capabilities, drones facilitate the acquisition of high-
resolution imagery and essential data from areas that are otherwise inaccessible or
perilous.

The integration of deep learning methodologies such as convolutional and re-
current Neural Networks, particularly in the �elds of semantic segmentation, object
detection, and visual question answering, greatly augments the disaster management
capabilities of drones. Through Deep Learning algorithms, drones can swiftly pin-
point and categorize speci�c objects or structures, such as compromised buildings
or critical infrastructure, aiding in the prioritization of response e�orts and optimal
resource allocation.

This thesis delves into the fundamental principles and methodologies underpin-
ning image semantic segmentation and object detection and Visual Question An-
swering, pivotal for bolstering the e�cacy and precision of disaster management
endeavors. Notably, models such as UNet, DeepLab, YOLOv8 and GPT2 show-
case exceptional pro�ciency in accurately identifying and classifying objects within
drone-captured imagery. The following synopsis outlines the principal themes ex-
plored within this master's thesis:

In the �rst chapter, we explore the de�nition of a disaster and provide exam-
ples of various types, such as earthquakes, �oods, and forest �res. We delve into
the concept of Disaster Management, de�ning its purpose and signi�cance. Addi-
tionally, we discuss the de�nition of drones and why they are utilized in Disaster
Management. We present examples of Disaster Management Drone applications
and discuss the CNNs importance for Floods management. Lastly, we delve into the
analysis of drone-captured images for surveillance purposes, including techniques
such as semantic segmentation, image classi�cation, object detection, and Visual
Question Answering.

In the second chapter, our focus will be on two signi�cant tasks within com-
puter vision: semantic segmentation and object detection then we will pay attention
to Natural Language Processing more precisely Visual Question Answering. We will
delve into these tasks and explore a range of techniques and approaches employed
to tackle these challenges using deep learning methods. Throughout the chapter, we

1



General Introduction 2

will discuss and analyze popular architectures such as UNet, DeepLabV3+, YOLO
v8, and �ne-tuning GPT2 and BERT. By examining these architectures, we will
uncover their respective strengths and weaknesses.

In the Third chapter, we focus on the results of experiments of semantic
segmentation, object detection, and Visual Question Answering techniques to drone
images. We begin by de�ning the problem we aim to solve in this context. Next,
we provide a detailed description of the dataset we will use. then delve into the
network design details employed to solve the problem and how they were trained.
Following that, we conclude by describing our experiments, validations, and results.

In the Final chapter, we present the web application that facilitates seman-
tic segmentation, object detection, and Visual Question-answering models Training,
evaluation, and prediction. the application starts with an index interface that rep-
resents the services that we provide, then we focus on describing each view by its
functionalities. Finally, we describe some of the most popular deep learning frame-
works and tools that we used in this application.



Chapter 1

Computer vision in Disasters

Management

1.1 Introduction

Recently, the frequency and intensity of natural disasters have surged, highlighting
the necessity for prompt and precise damage assessments to minimize the impact on
lives and economies. Notably, the United States recorded signi�cant economic losses
from multiple natural disasters within a few years, emphasizing the urgent need for
e�cient response mechanisms. Traditional methods of damage assessment, often
hampered by the inaccessibility of a�ected zones, are increasingly complemented by
advanced technologies such as UAVs and satellite imagery. These tools provide high-
resolution visuals, o�ering a clearer picture of the damage extent, which is crucial
for strategic planning and resource allocation [1].

The integration of deep learning with aerial imagery has opened new avenues for
analyzing disaster impacts, allowing for the automatic detection and classi�cation of
damages. This blend of UAV technology and arti�cial intelligence has the potential
to drastically improve disaster management, making damage assessments faster and
more accurate than ever before. As the world grapples with the escalating challenge
of natural disasters, leveraging these advanced technologies is key to enhancing dis-
aster response and recovery e�orts, ultimately aiming to reduce both human and
�nancial losses [1].

This chapter will make terms, concepts, and approaches clearer using solid de�-
nitions, details, and examples.

1.2 Disasters Overview

1.2.1 Types of Disasters

Disasters can be broadly categorized into two main types: natural disasters and man-
made disasters. Each type encompasses various events that can cause signi�cant
harm to environments, economies, and populations.

3
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1.2.1.1 Human-Caused Disasters

Man-made disasters are catastrophic events arising from human activities that ad-
versely a�ect both the environment and society. These activities typically involve
technological failures, industrial accidents, and inadequate environmental steward-
ship, re�ecting a disregard for the natural world. Unlike natural disasters, which
are prompted by natural phenomena, man-made disasters stem directly from human
actions such as errors, negligence, or the failure to prudently manage interactions
with the environment [2].

Examples of man-made disasters include industrial accidents, pollution, defor-
estation, and urban sprawl, each contributing to environmental decline and height-
ening the risk of further disasters. These instances underscore the critical need
for responsible environmental management and preventive measures to safeguard
against such catastrophic outcomes [2].

1.2.1.2 Natural Disasters

Natural disasters are categorized into various types based on their origin and inher-
ent characteristics. These extreme events, stemming from Earth's natural processes,
signi�cantly a�ect human societies and natural ecosystems. The process of risk anal-
ysis for these disasters involves evaluating their likelihood of occurrence, potential
impacts, and the e�ectiveness of response and mitigation strategies. Such a detailed
classi�cation is crucial for comprehensively understanding the multifaceted nature of
natural disasters and their disparate e�ects across diverse regions and communities
[3].

1.2.2 Examples of Natural Disasters

1.2.2.1 Earthquakes

Earthquakes cause immediate destruction to infrastructure, severely disrupting nor-
mal living conditions and healthcare services. For example, the earthquake in
L'Aquila, Italy, not only damaged buildings but also led to signi�cant public health
issues, including a Salmonella outbreak among 155 children, attributed to contam-
inated water supplies. The sudden nature of earthquakes complicates timely emer-
gency response and increases the vulnerability of a�ected populations to infectious
diseases [4]. The �gure 1.1 shows an example of an earthquake in the Turkish city
of Hatay.

Figure 1.1: An aerial view of collapsed buildings in the Turkish city of Hatay

[5]
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1.2.2.2 Forest �res

Forest �res are devastating events that cause the loss of lives and serious damage
to both nature and human properties, including thousands of hectares of forest
and hundreds of homes. These �res are very harmful to healthy forests and the
environment. They cause severe and often permanent damage, adding 30% of the
carbon dioxide (CO2) in the atmosphere, along with large amounts of smoke and
other pollutants. Over time, they negatively a�ect local weather, contribute to
global warming, and lead to the extinction of rare plants and animals. The �gure
1.2 shows an example of a Forest �re in the Mid-Atlantic.

Figure 1.2: Forest �re in a Mid-Atlantic.

[6]

1.2.2.3 Floods

Floods are among the most common natural disasters in Europe and carry a high
risk of spreading infectious diseases. They typically result in widespread water
contamination and disruption of sanitary conditions, leading to diseases such as lep-
tospirosis. Several instances highlight how �oods have increased the incidence of
infectious diseases. For example, in Bulgaria, heavy rainfall in 2014 led to a spike in
leptospirosis cases, from 12 in 2010 to 30 in 2014. The persistent and expansive na-
ture of �oodwaters makes managing these disasters particularly challenging [4]. The
�gure 1.3 shows an example of a neighborhood in Jackson, Kentucky, overwhelmed
by �ash �ooding.

Figure 1.3: A neighborhood in Jackson, Kentucky, is overwhelmed by �ash �ooding after

heavy rains caused the Kentucky River to over�ow in July 2022

[7]
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1.2.3 Disaster Management

1.2.3.1 The Disaster Management Cycle (DMC)

The Disaster Management Cycle (DMC) shown in the �gure 1.4 is a comprehensive
framework used to manage and mitigate the impacts of disasters. It consists of four
interlinked stages that facilitate a systematic approach to disaster risk management.
Each stage plays a crucial role in ensuring the resilience and recovery of a�ected
communities [8].

Figure 1.4: Disaster Management Cycle (DMC).

Here is an elaboration of each stage :

� Mitigation: The initial phase of the DMC involves implementing proactive
measures to prevent the occurrence of disasters or to reduce the community's
vulnerability. Strategies employed during this phase include constructing �ood
defenses, enforcing strict land-use planning laws, and adhering to elevated
building standards. The primary objective is to minimize both human and
material losses before any disaster unfolds [8].

� Preparation: This stage equips the community to respond e�ectively in the
event of a disaster. It encompasses the training of emergency services, public
education on disaster response, and the development of comprehensive evac-
uation and emergency communication plans. These preparations are vital for
ensuring a rapid and e�cient response that can mitigate the disaster's e�ects
[8].

� Response: Activated during a disaster, this phase focuses on the immediate
mobilization of emergency services and �rst responders to safeguard lives and
provide essential services. Key actions include delivering medical care and
supplying food, water, and shelter to a�ected individuals. The response phase
is critical and demands swift, coordinated actions to reduce the overall impact
of the disaster [8].
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� Recovery: The �nal stage aims to restore the a�ected area to its pre-disaster
conditions. This involves the reconstruction of infrastructure, restoration of
essential services, and assistance in the return of displaced populations. Re-
covery e�orts may also extend to include the enhancement of local policies and
practices to improve future resilience against similar events [8].

1.3 Aerial Imagery

Aerial imagery includes photographs and visual data captured from airborne plat-
forms, such as airplanes, helicopters, or UAVs. This form of imagery is a crucial
tool for providing expansive views from above, essential for a variety of applications
from environmental monitoring to urban planning and strategic surveillance.

1.3.1 Applications and Utility

Aerial imagery is fundamental to geographic mapping, delivering detailed visual
representations that assist in land use planning and development control. It also
plays a critical role in environmental monitoring, enabling researchers to observe
temporal changes in ecosystems, such as vegetation dynamics, deforestation rates,
and urban expansion. Furthermore, in the realm of surveillance, both governmental
and non-governmental entities utilize aerial imagery for border security, emergency
response, and monitoring of sensitive locations [9], [10].

1.3.2 Satellite Remote Sensing

Satellites, sophisticatedly engineered to orbit the Earth, are equipped with sensors to
collect data about the Earth's surface. They provide essential insights for global and
environmental monitoring through continuous time-series data. Satellites function
at various resolutions and temporal frequencies, broadly categorized into high-orbit
and low-orbit types. High-orbit satellites, such as MODIS or geostationary satellites,
o�er high temporal frequency data but at coarser spatial resolutions. In contrast,
low-orbit satellites like Pleiades and Ikonos deliver very high spatial resolution data,
though with more limited temporal coverage [9], [10].

1.3.3 Unmanned Aerial Vehicles (UAVs)

Unmanned aerial vehicles (UAVs), often colloquially known as drones, are compact
aircraft designed to �y either autonomously or by remote control. Initially devel-
oped for military applications, they have since become a signi�cant area of study.
In addition to UAVs, these aircraft are also referred to as UAS (Unmanned Aerial
Systems), Remotely Piloted Vehicles (RPVs), and Remotely Piloted Aircraft Sys-
tems (RPAS). UAVs are useful in a variety of applications and can be used for crime
scene surveillance, habitat destruction assessment [1], and even in disaster areas.
In the �gure 1.5, we present an overview of the proposed DisasterVision system for
disaster management using UAVs technology.

.
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Figure 1.5: Unmanned Aerial Vehicles for Disaster Management

1.4 UAVs, Computer Vision and Deep Learning for

Flood Management

1.4.1 Case Studies in UAV and Computer Vision Applica-
tions

Several case studies highlight the successful application of UAVs and computer vision
in disaster management. For instance, after �oods or earthquakes, UAVs have been
deployed to capture detailed imagery of the impacted areas, which is then analyzed
using computer vision techniques to map damage and identify zones requiring urgent
attention as shown in the �gure 1.6. These practical applications underscore the
potential of integrating UAVs and computer vision to enhance the e�ectiveness of
disaster response and recovery e�orts [1].

Figure 1.6: : Illustration of complex scenes of HRUD dataset. The �rst row shows the

original image and the second row shows the corresponding annotations

[11]
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1.4.2 Flood Management Through UAVs

UAVs are employed extensively for capturing high-resolution imagery of �ood-a�ected
regions. Their ability to collect real-time data and operational �exibility make UAVs
indispensable in rapid disaster response scenarios. UAVs facilitate the e�cient mon-
itoring of extensive areas impacted by �oods, delivering critical data essential for
an accurate and timely assessment. The deployment of UAVs in this context sig-
ni�cantly accelerates the assessment process and enhances the safety of response
personnel by minimizing their exposure to hazardous conditions [1].

1.4.3 Application and E�ectiveness of Deep Learning

The application of deep learning in �ood management involves processing UAV-
captured imagery to perform accurate semantic segmentation of the a�ected ar-
eas. This segmentation is crucial as it aids in determining the extent of the �ood-
ing, categorizing the impacted zones, and consequently supporting the management
and mitigation strategies following the disaster. The integration of UAVs with the
DeepLabV3 algorithm enables detailed terrain classi�cation and the identi�cation of
critical areas that require immediate intervention. This synergy between aerial data
collection and advanced image processing techniques enhances the e�ectiveness of
disaster management operations, providing a robust framework for rapid response
and strategic planning in the aftermath of �oods [1].

1.5 Objectives and Contributions of the Study

This study is dedicated to the development of DisasterVision, an innovative com-
puter vision system aimed at revolutionizing disaster management with a particular
emphasis on �ood disasters. By harnessing the capabilities of advanced computer vi-
sion techniques and utilizing the rich data provided by the FloodNet dataset [1], Dis-
asterVision aspires to signi�cantly enhance the e�ciency and accuracy of analyzing
�ood scenes. This section details the study's objectives, anticipated contributions,
and potential impact on disaster response and recovery e�orts.

1.5.1 Perspectives of DisasterVision

The primary objective of this study is the creation of DisasterVision, a system that
embodies the integration of cutting-edge computer vision technologies to o�er a
holistic approach to disaster management. DisasterVision will be designed to:

� Provide rapid and precise semantic segmentation of �ooded areas, facilitating
immediate and informed decision-making, as demonstrated by the work on
�ooded area segmentation using UAV images [1].

� Implement object detection algorithms which involve identifying the speci�c
class to which an object belongs and predicting its location by de�ning a
bounding box around it to identify and assess damage to infrastructure and
natural landscapes [1].
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� Utilize Natural Language Processing (NLP) for Visual Question Answering
(VQA) to enable intuitive interaction with the disaster data, allowing for more
e�cient disaster scene analysis.

1.5.2 Expected Contributions to Disaster Management

The development of DisasterVision is expected to make signi�cant contributions to
the �eld of disaster management, including:

� Advancing the state-of-the-art in computer vision applications for disaster re-
sponse, speci�cally in the context of �ood disaster management, by leveraging
the comprehensive capabilities of UAV imagery for natural disaster damage
assessment [1].

� Providing emergency response teams with a powerful tool for rapid and accu-
rate �ood impact assessment, facilitating quicker and more targeted response
actions.

� Contributing to the body of computer vision and disaster management knowl-
edge through empirical research and development.

1.6 Conclusion

In this chapter, we have explored various disasters and the importance of quick and
precise damage management. Traditional methods often fall short, prompting the
adoption of advanced technologies like UAVs for capturing high-resolution images.
We also discussed both man-made and natural disasters, such as earthquakes, and
�oods, and introduced the Disaster Management Cycle (DMC) for e�ective response.
Additionally, we explored how UAVs and deep learning can aid in �ood management.
Finally, we introduced DisasterVision and its role in accurate damage assessment,
highlighting the signi�cant impact of technology on enhancing disaster response and
recovery.



Chapter 2

Deep Learning Approaches

2.1 Introduction

Deep learning has revolutionized arti�cial intelligence, particularly in computer vi-
sion tasks. Techniques like semantic segmentation, object detection, and visual ques-
tion answering (VQA) play pivotal roles. Semantic segmentation divides images into
meaningful segments, object detection identi�es and classi�es objects, while VQA
enables machines to answer questions about images. In this chapter, we explore the
applications and methodologies behind these deep learning techniques.

2.2 Semantic Segmentation

Semantic segmentation is a crucial task in computer vision, aiming to partition an
image into meaningful regions corresponding to di�erent object classes. In recent
years, deep learning-based approaches have signi�cantly advanced the �eld of se-
mantic segmentation, providing highly accurate and e�cient solutions for a wide
range of applications, from medical imaging to autonomous driving.

2.2.1 U-Net

The U-Net architecture has gained signi�cant popularity in image segmentation
tasks, particularly within the biomedical �eld. It was �rst introduced in a 2015
paper authored by Olaf Ronneberger, Philipp Fischer, and Thomas Brox [12].

The U-Net architecture illustrated in Figure 2.1 is speci�cally tailored for image
segmentation tasks, aiming to categorize each pixel in an image into prede�ned
categories. It comprises two distinct paths: the �rst is known as the contracting
path, encoder, or analysis path, while the second is referred to as the expansion
path, decoder, or synthesis path [13].

The encoder path of the U-Net architecture comprises a sequence of convolutional
and max-pooling layers. These layers progressively diminish the spatial dimensions
of the input image while augmenting the number of channels. This sequential process
enables the network to capture higher-level features of the image, such as edges,
corners, and textures.

11
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On the other hand, the decoder path employs a series of up-convolutional and
concatenation layers to enhance the spatial resolution of the feature maps while
reducing the channel count. The incorporation of skip connections between the en-
coder and decoder paths facilitates the retrieval of detailed information from earlier
layers, thereby enhancing segmentation accuracy.

Figure 2.1: the U-Net architecture for image segmentation

[11]

� Input Image Tile: The U-Net model takes a small portion of an image,
known as an input image tile, as its input.

� Convolution with 3x3 Filter and ReLU Activation: This operation
applies a 3x3 convolutional �lter to the input image tile, followed by a recti�ed
linear unit (ReLU) activation function, aiding in feature extraction.

� Copy and Crop: After each convolutional layer in the contracting path, the
feature maps are duplicated and merged with corresponding feature maps in
the expanding path. Before merging, the expanding path's feature maps are
trimmed to match the size of those in the contracting path.

� Max Pooling with 2x2 Filter: This process decreases the spatial reso-
lution of feature maps while retaining critical features. It's employed in the
contracting path for downsampling.

� Up-Convolution with 2x2 Filter: In the expanding path, this step in-
creases the spatial resolution of feature maps while reducing their channel
count, aiding in upsampling.

� Convolution with 1x1 Filter: This operation blends channels in feature
maps, diminishing dimensionality while enhancing representational capability.

� Output Segmentation Map: The U-Net model's �nal output is a seg-
mentation map, assigning labels to each pixel in the input image tile based on
class predictions.
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2.2.2 DeeplabV3+

Deeplabv3+ was introduced in 2018 [14]. Its architecture adopts an encoder-decoder
structure (see Figure 2.2), integrating atrous separable convolution. This convolu-
tional approach combines depthwise convolution, performing a spatial convolution
for each input channel, with pointwise convolution, which employs a 1x1 convolution
using the output of the depthwise convolution.

DeepLabv3+ stands out as one of the premier semantic segmentation algorithms
today. Building upon the foundation of DeepLabv3, this algorithm enhances its
capabilities by introducing a streamlined and e�cient decoder [15]. The network
architecture of DeepLabv3+ is depicted in Figure below

Figure 2.2: Deeplabv3+ architecture for image segmentation

[12]

As depicted in Figure 2.2, the encoding phase of DeepLabv3+ primarily consists
of two components: the backbone network and the atrous spatial pyramid pooling
(ASPP) module. The decoding phase involves upsampling the output feature map
from the encoding phase and merging it with a low-dimensional feature map. Sub-
sequently, bilinear interpolation is applied to restore the input image size, yielding
the �nal segmentation result [15].

The atrous spatial pyramid pooling module adopts a parallel structure, employ-
ing atrous convolution with varying atrous rates to capture multi-scale information
e�ectively. Within the DeepLabv3+ network structure, the ASPP module encom-
passes a 1x1 convolution, three 3x3 atrous convolutions with atrous rates of 6, 12,
18, and a global average pooling branch. Each operation is followed by a batch
normalization layer for data normalization. The feature maps produced by each
branch are concatenated, and �nally, a 1x1 convolution is applied to compress and
integrate features [15].

The decoding part's structure is relatively straightforward. The �nal output of
the encoding section of the network is a high-dimensional feature map with 256
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channels. This feature map is then sent to the decoder. Initially, it's up-sampled
using bilinear interpolation and then concatenated with low-level features of the
same resolution from the backbone network.

To avoid the in�uence of the larger number of channels in the low-level features
on the semantic information in the high-level features, a 1 x 1 convolution is ap-
plied to the low-level features to reduce their channels before concatenation. The
concatenated features then pass through a 3 x 3 convolution to re�ne them. Finally,
they undergo bilinear interpolation four times for up-sampling to restore them to
the original image size, producing the �nal detection result.

The encoder-decoder structure implemented in DeepLabv3+ is a notable inno-
vation. The encoder is mainly used to encode rich context information, while the
concise and e�cient decoder is used to restore the boundary of the detected object.
Moreover, the network employs atrous convolution to enable feature extraction by
the encoder at various resolutions, enhancing the balance between detection speed
and accuracy.

2.2.3 Performance Metrics

After developing a deep learning model for semantic segmentation, the next step is to
assess its predictive performance. This involves partitioning the data into training,
validation, and test sets to calculate relevant metrics. These metrics include:

Accuracy

This metric quanti�es the percentage of correct predictions made by the model. It's
calculated by dividing the number of correct predictions by the total number of
predictions. The formal de�nition of accuracy is:

Accuracy =
Number of correct predictions

Total number of predictions

IoU

The Intersection-Over-Union (IoU) method is frequently employed to evaluate the
performance of image segmentation techniques. This method computes the IoU
for each semantic class and then averages over all classes, making it a standard
assessment metric for semantic image segmentation [16].

Mean IoU is a variant of IoU used speci�cally for semantic segmentation. It
calculates the IoU for each semantic class separately before averaging over all classes.
It's de�ned as the ratio of true positive predictions to the sum of true positive, false
positive, and false negative predictions for each class. IoU is de�ned as follows:

IoU =
TP

TP + FN + FP

where, TP, FP, and FN denote the true positive, false positive and false negative
counts, respectively.
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2.3 Objects Detection

Object detection is a key task in computer vision, involving identifying and localizing
objects within images or videos by outputting bounding boxes around detected ob-
jects, as shown in Figure 2.3 . It enables computers to understand visual information
like humans, recognizing objects despite variations. Historically reliant on manual
feature design and simple models, object detection has advanced with deep learn-
ing, particularly Convolutional Neural Networks (CNNs), which automate feature
extraction and enhance accuracy. Modern methods such as R-CNN, Fast R-CNN,
Faster R-CNN, YOLO, and SSD have set new performance benchmarks. Innovations
like the Focal Loss function address challenges like class imbalance and real-time pro-
cessing needs. Object detection is crucial for applications in autonomous driving,
tra�c monitoring, security surveillance, and human-computer interaction. The �eld
is expected to grow, incorporating sophisticated neural architectures and learning
schemes for complex real-world scenarios [17] , [18].

Figure 2.3: Example of predicted bounding boxes consolidated into an inference image.

2.3.1 Object Detection Approaches in Deep Learning

Object detection is a pivotal area in computer vision, signi�cantly enhanced by
deep learning technologies. These techniques have evolved from traditional machine
learning approaches to sophisticated deep learning models that improve accuracy
and e�ciency in detecting objects across various domains. Below, as shown in
Figure 2.4 , we explore some key techniques and approaches for object detection
using deep learning.
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Figure 2.4: Object detection stages

2.3.1.1 Two-Stage Detectors

Two-stage detectors, such as R-CNN and its variants (Fast R-CNN, Faster R-CNN),
have set a high standard in object detection accuracy. These methods work in two
phases: �rst, they generate regions or proposals where objects might be located,
and second, they classify each proposal into di�erent object classes [18].

2.3.1.2 One-Stage Detectors

One-stage detectors such as YOLO (You Only Look Once) and SSD (Single Shot
MultiDetector) provide a faster alternative by eliminating the proposal generation
phase and detecting objects in a single pass through the network. Despite their
speed, these methods have traditionally struggled with accuracy compared to two-
stage methods. However, with improvements such as the use of feature pyramids and
focal loss, one-stage detectors are closing the accuracy gap while o�ering signi�cant
speed advantages [18].

2.3.2 YOLO (You Only Look Once)

YOLO fundamentally changes the approach to object detection by framing it as a
single regression problem, straight from image pixels to bounding box coordinates
and class probabilities. Unlike traditional methods that apply a classi�er to di�er-
ent regions of an image, YOLO simultaneously predicts multiple bounding boxes
and class probabilities for those boxes. This approach allows YOLO to achieve
high speeds and accuracy, making it suitable for applications requiring real-time
processing [19].



Chaptre2 : Deep Learning Approaches 17

2.3.3 YOLO Process for Object Detection

2.3.3.1 Image and Grid Setup

� Input and Preprocessing: YOLO processes images in a single forward pass
using a deep convolutional neural network. It �rst resizes the input image to a
�xed dimension (e.g., 416x416 pixels for certain versions), ensuring uniformity
for e�cient processing [20].

� Grid Division: The image is divided into an SS grid ( where S is the number
of cells in the grid ) as shown in Figure 2.5 . Each cell in the grid is responsible
for predicting objects whose center point falls within the cell. This division
simpli�es the problem by spatially segregating the predictions [20].

Figure 2.5: Divide the input image to an SS grid

[21]

2.3.3.2 Prediction of Bounding Boxes and Probabilities

� Bounding Box Predictions: Each grid cell predicts multiple bounding
boxes. For each box, the model predicts four coordinates (center x, center
y, width, height), normalized relative to the cell's location, and a con�dence
score that indicates the presence of an object and how well the predicted box
�ts the object [20].

� Class Probabilities: Each cell predicts the probabilities of various classes
for the objects it detects. These probabilities are conditioned on the cell
containing an object. The combination of bounding box predictions and class
probabilities allows YOLO to localize and identify objects in a single pass
through the network [20].

Figure 2.6 provides a visual representation of the process involved in predicting
bounding boxes and class probabilities in object detection.
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Figure 2.6: Prediction of Bounding Boxes and Probabilities

[22]

2.3.3.3 Model Architecture and Output

� Network Design: YOLO uses a single convolutional network that simultane-
ously predicts multiple bounding boxes and class probabilities for those boxes.
The design includes features like anchor boxes, which help the model learn to
predict correct box sizes based on the dataset it was trained on [20].

� Output: The output from YOLO is typically a tensor of shape [SS(B5+C)]
as shown in Figure 2.7 , where B is the number of bounding boxes each cell
predicts, 5 represents the value of the four bounding box coordinates plus the
con�dence score, and C is the number of class probabilities [20].

Figure 2.7: The output tensor shape of YOLO

[23]

2.3.3.4 Post-processing via Non-Max Suppression

� Re�ning Predictions: To reduce the number of overlapping boxes and im-
prove the model's precision, YOLO employs non-max suppression. This pro-
cess �lters out boxes that have a high overlap (as de�ned by IoU) with a
stronger predicted box [20].
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2.3.3.5 Loss Function During Training

� Box Loss: This loss measures the accuracy of the predicted bounding boxes'
locations and dimensions relative to the ground truth [20] . It is calculated
using the sum of squared errors for the coordinates and dimensions:

Box Loss =
∑
i∈pos

λcoord

[
(xi − x̂i)

2 + (yi − ŷi)
2 + (

√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2

]

Here, x, y, w, h denote the ground truth coordinates and dimensions, x̂, ŷ, ŵ, ĥ
are the predicted values, and λcoord is a scaling factor that adjusts the impor-
tance of this loss component.

� Classi�cation Loss: This component penalizes incorrect class predictions us-
ing cross-entropy loss between the predicted class probabilities and the ground
truth labels:

Classi�cation Loss = −
∑
i∈pos

C∑
c=1

yi,c log(ŷi,c)

In this formula, C represents the number of classes, yi,c is the ground truth
label for class c (1 for the actual class, 0 otherwise), and ŷi,c is the predicted
probability of class c for the i-th bounding box [20].

� Con�dence Loss: This loss calculates the error in the predicted con�dence
scores for the bounding boxes, penalizing both overcon�dent false predictions
and undercon�dent true predictions:

Con�dence Loss =
∑
i∈pos

(Ci − Ĉi)
2 + λnoobj

∑
j∈neg

(Cj − Ĉj)
2

Ci and Ĉi are the ground truth and predicted con�dence scores for bounding
boxes that overlap with ground truth objects (positives), while Cj and Ĉj are
for those that do not (negatives), with λnoobj scaling down the in�uence of
negative examples [20].

2.3.3.6 Accuracy Metrics During Training

� Precision and Recall: These are fundamental metrics derived from the con-
fusion matrix, re�ecting the proportion of correct positive predictions and the
model's ability to capture all relevant instances, respectively:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

Here, TP , FP , and FN stand for true positives, false positives, and false
negatives, respectively [20].

� Intersection over Union (IoU): This metric quanti�es the overlap between
the predicted and ground truth bounding boxes:

IoU =
Area of Overlap

Area of Union
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� Mean Average Precision (mAP): This is a comprehensive performance
metric, calculated by averaging the area under the precision-recall curve for
each class and each IoU threshold:

mAP =
1

C

C∑
c=1

AUCPR(c)

C is the number of classes and AUCPR(c) is the area under the curve for class
c [20].

2.4 Natural Language Processing

Natural Language Processing (NLP) is a �eld of arti�cial intelligence that focuses
on the interaction between computers and humans through natural language. It
involves the development of algorithms and models to understand, interpret, and
generate human language data. NLP has numerous applications, including machine
translation, sentiment analysis, text summarization, and question answering. Visual
Question Answering (VQA) is a way for computers to answer questions about what
they see in pictures or videos using words. It mixes together computer vision, which
helps machines understand images, with natural language processing, which helps
them understand and generate text-based responses [24].

2.4.1 Pre-Processing Techniques

The Text pre-processing step is simply means bringing the document to a format
that is easily understandable, predictable, and analysable by the machine through
the various machine learning algorithms [25] while The objective of Visual Question
Answering (VQA) is to extract semantics relevant to the question from images.
This encompasses tasks ranging from detecting intricate details to inferring abstract
scene attributes across the entire image, all based on the speci�c question posed
[26]. Some of the widely used pre-processing techniques are:

2.4.1.1 Tokenization

Tokenization involves breaking sentences into individual units such as words, char-
acters, and punctuation marks, each of which is referred to as a token. The splitting
process typically occurs at spaces or punctuation marks. This initial step aids in
removing unnecessary words during subsequent processing stages [25].

2.4.1.2 StopWords Removal

Common words like "the", "are", "is", and "and" typically lack signi�cance in nat-
ural language processing, except in speci�c contexts. For instance, in text or doc-
ument classi�cation tasks, these words often don't carry much weight, and only
keywords relevant to the topics are extracted. Therefore, identifying and removing
these stopwords can enhance the performance of classi�cation algorithms. However,
it's essential to note that in certain scenarios, such as conversational models, nega-
tion words like "no", "cannot", "won't", and "not" are crucial for understanding
the context and intent of sentences [25].
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2.4.1.3 Lemmatization

Lemmatization involves either removing or replacing the su�x of a word to bring
it to its base form, known as the lemma. Unlike stemming, the resulting lemma is
always a meaningful word. Lemmatization is a widely used text preprocessing step
in Natural Language Processing and has been shown to yield excellent results.

For instance, the lemma of the word "caring" is "care," which is a meaningful
word [25].

2.4.1.4 Stemming

Stemming is a method of truncating words aggressively to their base root form by
removing su�xes while attempting to preserve the semantic meaning across various
forms of the word. However, this approach doesn't always yield accurate results
because the word may lose its intended meaning.

2.4.2 Feature Extraction Techniques

Feature extraction of text involves converting features into vector forms to make
them comprehensible to the machine. These techniques extract features and repre-
sent them as vectors, which are then inputted into classi�er models. Some of the
feature extraction techniques discussed here are :

2.4.2.1 Named Entity Recognition (NER)

Identi�es entities such as names of people, organizations, and locations within the
text. It functions similarly to POS tagging but speci�cally focuses on distinguish-
ing and categorizing these named entities. NER is valuable for isolating nouns and
providing a clearer understanding of names, places, and organizations mentioned.
It serves as a foundational step in tasks where extracting named entities from doc-
uments is necessary, such as information retrieval [25].

2.4.2.2 The Bag of Words (BoW)

BoW model is a crucial technique for extracting features from text, which are then
used by classi�ers. It groups features together based on the frequency of word
occurrences in the document, without considering their positions in the text [25].

The basic idea is that documents containing the same words are contextually
similar. This model �nds application in document classi�cation, keyword matching,
and similar tasks [25].

One issue with the BoW model is that it favors words with higher occurrence
rates, potentially overemphasizing their importance[27]. However, some frequently
occurring words may lack signi�cant information for classi�cation or clustering tasks.
Additionally, longer documents naturally have higher occurrence rates, which can
lead to decreased accuracy for the BoW model [25].

2.4.2.3 TF-IDF

TF-IDF is utilized to reduce the in�uence of frequent words that carry less signif-
icance in a document's context. It consists of two components: Term Frequency
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(TF) and Inverse Document Frequency (IDF) [25].
TF measures the frequency of a word in a document while normalizing it by

the document's length, ensuring fair accuracy for both small and large datasets[28].
This normalization technique divides the frequency by the document length [25].

On the other hand, IDF determines the importance of a word in the document
by scaling down less important words. It achieves this by computing the logarithm
of the ratio of total documents to the total occurrences of the word in that document
[25].

t�dfi,j = tfi,j log

(
N

dfi

)
where :

� tfi,j = total number of occurrences of i in j

� dfi = total number of documents (speeches) containing i

� N = total number of documents (speeches)

2.4.3 VQA Modeling Techniques

For VQA models, it's crucial to comprehend both the image and the question.
In natural language question understanding, Long Short-Term Memory (LSTM)
networks and Gated Recurrent Unit (GRU) networks are commonly used. These
models have a recurrent structure proven e�ective in modeling natural language
sentences [29].

In image understanding, traditional approaches utilize VGG or ResNet to extract
image features, as both achieve high performance in low-level computer vision tasks
like image classi�cation. However, VGG and ResNet split an image into regions that
don't fully capture its natural semantics. Instead, they proposed using a Faster-
RCNN+ResNet model to extract object-level region features, which provide a more
natural representation of the image. This model has become one of the most popular
approaches for image feature extraction in the VQA task [29].

2.4.3.1 Transformers Architecture

The majority of competitive neural sequence transduction models adopt an encoder-
decoder structure. In this structure, the encoder maps an input sequence of symbol
representations The tuple (x1, . . . , xn). to a sequence of continuous representations
The vector z = (z1, . . . , zn).Once z is obtained, the decoder generates an output
sequence The tuple (y1, . . . , ym). of symbols one at a time. The model is auto-
regressive, meaning it consumes previously generated symbols as additional input
when generating the next one [30].

The Transformer follows this general architecture by employing stacked self-
attention and point-wise, fully connected layers for both the encoder and decoder.
These components are illustrated in the left and right halves of the Figure 2.8,
respectively [30].
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Figure 2.8: The Transformer - model architecture

[30]

Encoder:

The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The �rst is a multi-head self-attention mechanism, and the second is a
simple, position wise fully connected feed-forward network. We employ a residual
connection around each of the two sub-layers, followed by layer normalization. That
is, the output of each sub-layer is LayerNorm(x + Sublayer(x)), where Sublayer(x)
is the function implemented by the sub-layer itself. To facilitate these residual
connections, all sub-layers in the model, as well as the embedding layers, produce
outputs of dimension d model = 512 [30].

Decoder:

The decoder is also composed of a stack of N = 6 identical layers. In addition to the
two sub-layers in each encoder layer, the decoder inserts a third sub-layer, which
performs multi-head attention over the output of the encoder stack. Similar to the
encoder, we employ residual connections around each of the sub-layers, followed
by layer normalization. We also modify the self-attention sub-layer in the decoder
stack to prevent positions from attending to subsequent positions. This masking,
combined with the fact that the output embeddings are o�set by one position,
ensures that the predictions for position i can depend only on the known outputs at
positions less than i [30].
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2.4.3.2 Attention

Attention can be described as a function that maps a query and a set of key-value
pairs to an output, where all of these - query, keys, values, and output - are vec-
tors. The output is computed as a weighted sum of the values, where the weight
assigned to each value is determined by a compatibility function of the query with
the corresponding key [29].

2.4.4 OpenAI GPT-2 model Fine Tuning

Recently, deep learning and pre-trained models have shown impressive performance
across various language tasks. Speci�cally, �ne-tuning pre-trained models like Ope-
nAI's GPT (Generative Pre-Training), GPT-2, and BERT has become the standard
approach for achieving state-of-the-art results. GPT-2, the successor to GPT, and
BERT are both capable of text generation, but the experts found that GPT-2 gener-
ates higher-quality text. In fact, GPT-2 is considered so powerful that there's a high
risk of its malicious use. To address this concern, OpenAI has decided to keep its
largest GPT-2 model (1.5B parameters) closed, allowing more time for discussions
about its potential impacts [31]. Figure 2.9 illustrates the structure of the applied
GPT-2 medium architecture.

Figure 2.9: Structure of the applied GPT-2 medium architecture

[32]

Transfer learning can be an e�ective strategy to adapt models to lower-resource
languages by initially training a model for a source language and then further train-
ing (parts of) the model for a target language. GPT2 is an auto-regressive Trans-
former decoder-based language model for English and comes in four sizes: small (12
layers), medium (24 layers), large (36 layers), and extra large (48 layers) [31].
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2.4.5 Google AI BERT Model

BERT, which stands for Bidirectional Encoder Representations from Transformers,
is a groundbreaking language representation model introduced by Google AI. Un-
like traditional language models that read text either left-to-right or right-to-left,
BERT processes text bidirectionally, allowing it to understand the context of a word
based on all surrounding words in a sentence. This bidirectional approach enables
BERT to capture the nuanced meanings and relationships within the text, making
it highly e�ective for a variety of natural language processing tasks such as question
answering and language inference. In our study, we leverage BERT for preprocessing
text, taking advantage of its ability to generate rich, context-aware embeddings that
enhance the performance of downstream tasks [33].

2.5 Conclusion

In this chapter, we delved into the fundamental concepts and techniques for semantic
segmentation, object detection and visual Question Answering in deep learning. We
explored popular models like UNet, DeepLab, YOLO, GPT-2, and BERT, which
have greatly in�uenced computer vision and NLP tasks. Given the rapid progress
of deep learning, we anticipate the emergence of even more sophisticated models
and techniques in the future, leading to more powerful and accurate deep learning
applications than ever before.



Chapter 3

Experiments and Results

3.1 Introduction

In this chapter, we'll share our study on semantic segmentation, object detection,
and visual question answering. First, we'll explain the problem we were trying to
solve and describe the data we used. Then, we'll talk about the di�erent methods we
tried and how we trained our models. We'll go through the experiments we did and
discuss the results, using speci�c measures to evaluate how well our models worked.
At the end, we'll give some details about the hardware and software that helped us
in this study.

3.2 Dataset

FloodNet o�ers high-resolution images captured from low-altitude sources, which
sets it apart from satellite imagery taken from higher altitudes that may be ob-
structed by clouds and smoke. The distinct characteristics of FloodNet's images
result in clearer scenes, which greatly aid deep-learning models in making more ac-
curate decisions regarding post-disaster damage assessment. By providing detailed
and unobstructed visual data, FloodNet improves the accuracy and e�ectiveness of
deep learning algorithms in analyzing and assessing the extent of damage following
a disaster. The data was collected using a small Unmanned Aerial System (UAS)
platform, DJI Mavic Pro quadcopters, after Hurricane Harvey. The original dataset
comprises 2393 images, split into 3 subsets 1445 for training,500 for validation, and
448 for testing.

The FloodNet dataset encompasses a range of classes or categories essential for
semantic segmentation and object detection tasks. These classes are detailed in
Table 3.1. By incorporating diverse classes, the dataset o�ers crucial insights into
�ooded regions, facilitating precise identi�cation, segmentation, and detection of
distinct objects or regions within the images. The color assignments associated
with each class serve as visual cues, aiding in the di�erentiation of classes during
both segmentation and object detection procedures.

These classes represent various objects or areas within the �ooded scenes and
o�er valuable information for accurately identifying and assessing the extent of �ood-
ing and damages in the a�ected areas [34].

26
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Class Index Class Name
0 Background
1 Building �ooded
2 Building non-�ooded
3 Road �ooded
4 Road non-�ooded
5 Water
6 Tree
7 Vehicle
8 Pool
9 Grass

Table 3.1: FloodNet Dataset Classes

3.3 Semantic Segmentation

3.3.1 Dataset and Model Con�guration

This section will present the dataset con�guration utilized, and model hyperparame-
tres, describe the selected backbone architecture, and explain the results obtained by
applying the U-Net and DeepLabv3+ deep learning models to the FloodNet dataset.

For model training, approximately 60% of the available images from the dataset,
which amounts to 1445 images with a resolution of 256x256 pixels, are used for
training the models. The remaining 40% is reserved for the validation and test
processes, which amounts to 948 images devised as 450 images for validation and
448 images for testing.

The training process involves using a batch size of 32 and running about 60
epochs. The number of steps per epoch is determined by dividing the number of
training images by the batch size (1445/32 = 45).

additionally, the backbone is the architectural element that determines the ar-
rangement of layers in the encoder network and establishes the structure of the
decoder network. The backbone typically includes convolutional neural networks
such as ResNet 34 and ResNet 50 which we have used in our models training.

The model output layer has been used as a softmax activation function, which
is important for multi-category classi�cation functions because it determines prob-
ability scores for each category.

AdamW Optimizer is used during the process of assembling models. As for the
loss function we used the CrossEntropy function.

lastly, for the scheduler, we used the PolynomialLR with an initial Learning rate
of 0,0001.

The model's performance is assessed using two metrics: accuracy, which measures
the general correctness of predictions, and the Intersection over Union (IoU), which
determines the overlap between predicted truth areas and the ground truth in the
segmentation function.

To facilitate easy access without re-training the model from scratch, we store the
models in .PTH format and save the training history, which includes metrics such
as accuracy and loss, as a spy �le once the training is complete. This allows us to
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utilize the models for �ne-tuning or to make a review of their performance at any
desired time.

3.3.2 Models Evaluation and comparison

The performance metrics such as loss, accuracy, and mIoU are given in (Table3.2).
In the training of our segmentation models, we have �xed the Hyperparameters of
training so we can put all the models in the same training environment and evaluate
them together.

Architecture + Backbone Train_loss Train_mIoU Train_Acc Val_loss Val_mIoU Val_Acc
Unet 0,185 0,589 0,935 0,378 0,377 0,888

DeepLabV3+ 0.097 0.855 0.962 0.366 0.678 0.899

Table 3.2: Semantic Segmentation Results comparison

We can observe that the best results are achieved by the Deeplabv3+ model.
This approach gives an mIoU metric of 0.678, which is the best among all the
studied models. The same trend can be noted with the evaluation using the accu-
racy metric, where the highest value is achieved by the Deeplabv3+ model is an
accuracy with the value of 0.899.

On the other side, we can see that the Unet model achieves slightly lower per-
formance in terms of both accuracy and mIoU metrics, with an accuracy value of
0.888 and a mIoU value of 0.377.

As a comparison result, we can say that the Deeplabv3+ model outperforms
the other model in terms of both metrics accuracy and mIoU metrics.

3.3.3 Performences plots

In the �gures 3.2 , 3.1 we display the evolution of the values of the performance
metrics in the �rst epochs of the training and validation process in our models
(DeeplabV3+ and Unet) where the training was at the height of his tender.

DeepLabV3+

(a) Deeplabv3+ accuracy
(b) Deeplabv3+ Loss func-
tion (c) Deeplabv3+ mean IoU

Figure 3.1: Values evolution of the performance metric using Deeplabv3+ model
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Unet

(a) Unet accuracy (b) Unet Loss function (c) Unet mean IoU

Figure 3.2: Values evolution of the performance metric using Unet model

Deeplabv3+ Plots Analysing

� Accuracy per Epoch

This plot shows the training accuracy (train-accuracy) and validation accuracy
(val-accuracy) across epochs.

Observations:

Training Accuracy increases steadily, eventually plateauing around 0.95 after
about 40 epochs.

Validation Accuracy Rises quickly initially and then levels o� around 0.88-0.89
after about 10 epochs.

Analysis: The model demonstrates good generalization performance initially
but starts over�tting after around 10 epochs. This is evidenced by the gap
between training and validation accuracy, which widens as training progresses.

� Loss per Epoch

This plot illustrates the training loss (train) and validation loss (val) over
epochs.

Observations:

Training Loss decreases continuously, leveling o� around 0.2 after about 40
epochs. Validation Loss drops sharply initially, then �uctuates and stabilizes
around 0.4 after about 10 epochs.

Analysis:

The decrease in training loss indicates the model is learning e�ectively on the
training data.

� Score (Mean Intersection over Union - mIoU) per Epoch

This plot displays the mean Intersection over Union (mIoU) for training (train-
mIoU) and validation (val-mIoU) data across epochs.

Observations:

Training mIoU: Increases steadily and reaches around 0.82 after about 50
epochs. Validation mIoU: Rises quickly and then oscillates around 0.65-0.68
from about epoch 10 onward.
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Analysis:

The trend in mIoU is consistent with the accuracy and loss plots, showing
good initial learning followed by over�tting.

Unet Plots Analysing

� Accuracy per Epoch

Observations:

Training Accuracy: Increases steadily, reaching around 0.88 by the end of the
epochs.

Validation Accuracy: Rises initially but �uctuates around 0.84 to 0.86 after
approximately 10 epochs.

Analysis: The steady increase in training accuracy indicates the model is
learning well on the training data. The validation accuracy, however, shows
a much �atter increase and signi�cant �uctuation, which suggests that the
model's performance on the validation data is not improving as consistently.
The gap between training and validation accuracy widens over epochs, indi-
cating the potential onset of over�tting.

� Loss per Epoch

Observations:

Training Loss: Decreases continuously and steadily throughout the training
period.

Validation Loss: Drops initially but then �uctuates and stabilizes around 0.45.

Analysis:

The continuous decrease in training loss indicates e�ective learning on the
training data. The validation loss's �uctuation and stabilization around a
higher value than the training loss further supports the presence of over�tting.
The divergence between training and validation loss suggests that the model
performs well on the training data but does not generalize as e�ectively to
validation data.

� Score (Mean Intersection over Union - mIoU) per Epoch

Observations:

Training mIoU: Increases steadily, reaching around 0.58.

Validation mIoU: Rises initially but then oscillates around 0.50 to 0.54.

Analysis:

The trend in mIoU is consistent with the accuracy and loss plots. It shows good
initial learning followed by signs of over�tting. The oscillation in validation
mIoU suggests inconsistency in model performance on the validation set
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3.3.4 Confusion Matrices review

The confusion matrices presented in Figure 3.3 illustrate the performance of both
Deeplabv3+ and U-Net across all classes.

(a) Confusion Matrix of DeepLabV3+.

(b) Confusion Matrix of Unet.

Figure 3.3: Confusion Matrices of DeepLabV3+ and Unet.

As previously discussed, there is a signi�cant di�erence in performance be-
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tween Deeplabv3+ and Unet. This disparity is evident in the confusion matrices.
Deeplabv3+ demonstrates high accuracy across nearly all classes, achieving 90% for
water, 90.6% for grass, 89% for road-non-�ooded, and high accuracy for buildings-
�ooded. However, it struggles with the Vehicle class, achieving only 37.6%. In
contrast, Unet faces challenges with certain classes, such as Vehicles 3% and Pool
21.3%. Nevertheless, it performs well in some categories, with 93.9% accuracy for
grass, 79.4% for road-non-�ooded, and 77.7% for trees.

3.3.5 Visual Results Comparison

Figure 3.4 presents the visual results of comparing U-Net and DeeplabV3+ with the
ground truth masks of several samples.

Figure 3.4: Visual results for the semantic segmentation using DeepLabV3+ vs Unet
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3.4 Object Detection

3.4.1 Dataset Preparation

The initial FloodNet-Supervised v1.0 dataset consisted of high-resolution aerial im-
ages annotated with pixel-level segmentation masks, ideal for semantic segmentation
tasks. However, YOLO object detection models require bounding boxes instead of
detailed segmentation masks. Therefore, we converted these masks into bounding
boxes. So to convert these masks into bounding boxes, we follow the steps below:

� Extraction of Contours: The �rst step involved extracting contours from
the segmentation masks. These contours are continuous lines that outline the
boundaries of objects, identi�ed through changes in image intensity or color.

� Bounding Box Calculation: Once the contours were de�ned, the smallest
possible bounding rectangle that could fully enclose each contour was calcu-
lated. This rectangle is speci�ed by its top-left corner coordinates (x, y) and
its dimensions (width, height), capturing the essential spatial location and size
of each object.

� Normalization of Coordinates: The bounding box coordinates were then
normalized relative to the image dimensions to ensure compatibility with the
YOLO model. This involves scaling the coordinates so that the bounding box's
center and dimensions are expressed as fractions of the total image width and
height.

� Annotation File Creation: An annotation �le in .txt format was cre-
ated for each image. These �les detail the bounding boxes, with each line
formatted as <object-class> <x_center> <y_center> <width> <height>,
suitable for YOLO training requirements.

The restructured FloodNet dataset is now optimally con�gured for training and
deploying YOLO object detection models, which are highly e�ective for identifying
and categorizing objects in high-resolution aerial images of disaster-a�ected areas.
Figure 3.5 shows an example of an image and its mask from the original FloodNet-
Supervised v1.0, alongside the annotated image from the new FloodNet dataset.

(a) image (b) original mask (c) annotated image

Figure 3.5: Example of an image, mask, and the annotated image from the new �oodnet

dataset.
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3.4.2 Training Hyperparameters for YOLO

The hyperparametres that we have used in the YOLO training are shown in the
table below:

Table 3.3: Training Hyperparameters for YOLO

Hyperparameter Value Description

Model Architecture YOLOv8n The YOLO version used
Epochs 300 Total number of training epochs
Batch Size 64 Number of training samples per batch
Learning Rate (lr0) 0.00001 Initial learning rate
Optimizer SGD (auto tuned) Optimization algorithm used
Image Size (imgsz) 640x640 Dimensions of input images
Workers 16 Number of worker threads for data loading
Training Device GPU (CUDA) Hardware used for training
Project Speci�ed directory Path for saving training outputs
Exist OK True Overwrite existing �les without error
Loss Components Box, Class, DFL Loss functions used (Box loss, Class loss, DFL)
Momentum 0.937 (auto tuned) Momentum factor for optimizer
Weight Decay 0.0005 L2 regularization coe�cient
Scheduler Cosine Annealing Learning rate scheduler used
Pretrained Weights Yes Use pretrained model weights

3.4.3 Evaluation and Results

Table 3.4 evaluates the YOLOv8 model's performance on the FloodNet dataset,
detailing the total instances for each category and the model's accuracy in identifying
true positives. It provides insights into precision using Mean Average Precision
(mAP) at an Intersection over Union (IoU) threshold of 0.50 (mAP@0.50) and mAP
across a range of 0.50 to 0.95 (mAP@0.50-0.95). Higher values in these metrics
indicate better performance in correctly identifying and outlining damaged areas.
Additionally, the Recall metric highlights the model's e�ectiveness in detecting true
positives across various damage categories. Here are the detailed results:

Class Instances Box(p) R MAP50 MAP50-95
All 4821 0.656 0.402 0.544 0.396

Background 207 0.615 0.0773 0.352 0.31
Building-�ooded 687 0.665 0.699 0.672 0.545

Building-non-�ooded 691 0.667 0.627 0.687 0.537
Road-�ooded 326 0.473 0.135 0.296 0.176

Road-non-�ooded 717 0.746 0.439 0.622 0.481
Water 1076 0.762 0.205 0.499 0.423
Vehicle 883 0.575 0.424 0.519 0.297
Pool 234 0.747 0.607 0.703 0.401

Table 3.4: Performance Evaluation of the YOLOv8 Model
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Figure 3.6 shows the manual labeling details of objects in the dataset through
four sub�gures:

� Bar Chart (Top Left): Shows the number of instances per category. The
category "Water" is particularly prominent, depicted in bright green, showing
more instances than other categories.

� Bounding Box Distribution (Top Right): Shows typical object locations
within images, using colors to indicate the concentration of bounding boxes.

� Heatmap of Positional Density (Bottom Left): Uses shades of blue to
show how often objects appear at di�erent points, with darker colors indicating
higher frequencies.

� Object Dimensions Distribution (Bottom Right): Depicts the heights
and widths of objects. Lighter shades represent higher frequencies of objects
with those dimensions.

Figure 3.6: Information about objects in FloodNet Track 1 dataset

The Figure 3.7 displays a normalized confusion matrix, a valuable tool used to evalu-
ate the accuracy of an object detection model. This matrix helps us understand how
well the model has performed in classifying various types of objects and scenarios
within the dataset.

Explanation of the Confusion Matrix:

� Structure and Function: The matrix is set up with the actual categories
of the objects listed along the bottom (True) and the model's predicted cat-
egories along the side (Predicted). Each cell shows what percentage of each
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actual category was predicted as each category by the model. The cells along
the diagonal line from top left to bottom right show the percentage of cor-
rect predictions for each category, which are crucial for assessing the model's
accuracy.

� Visual Guide: The shading of the cells, from lighter to darker blue, visu-
ally represents lower to higher percentages, making it easier to spot which
categories the model is most and least accurate at predicting.

This confusion matrix not only quanti�es the model's overall performance but also
pinpoints speci�c categories where the model may need further training or adjust-
ment. Particularly, it highlights the need for improved distinction in the model's
handling of similar categories, such as di�erentiating between �ooded and non-
�ooded roads.

Figure 3.7: The confusion matrix normalized of objects in FloodNet Track 1 dataset

Figure 3.8 showcases a variety of graphs that help us understand how our model
is learning and performing through both its training and validation stages.

� Training Loss (box-loss, cls-loss, d�-loss): These graphs track the loss
during training, which is essential for seeing how well the model is picking up
on how to predict bounding boxes and classify di�erent objects correctly. As
these curves trend downward, it indicates that the model is e�ectively learning
and improving over time.

� Validation Loss (box-loss, cls-loss, d�-loss): These graphs represent the
model's performance on a validation dataset, which includes data that the
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model hasn't encountered during its training. A gradual decrease in these
graphs is a good sign, showing that the model is performing well and can
generalize its learning to new, unseen data.

� Performance Metrics (precision, recall, MAP50, MAP50-95): These
curves measure how precise and reliable the model is in detecting objects' loca-
tions and how many of the actual objects it can correctly identify. Increasing
trends in these metrics are promising, suggesting that the model is becoming
more accurate and dependable at pinpointing where objects are in the images.

Together, these graphs give a detailed picture of the model's ongoing progress and
e�ectiveness, highlighting its capabilities and areas where it might still need some
improvement. This visual feedback is crucial for tweaking the model to ensure it
delivers the best possible performance.

Figure 3.8: Graphs Performance Metrics Curves for the Yolo Model

3.4.4 Visual results

Figures 3.9 and 3.10 display visual results from the application of the YOLOv8
model on the FloodNet dataset.

Figure 3.9: Examples 01 of visual results for the Object Detection using Yolov8



Chaptre3 : Experiments and results 38

Figure 3.10: Examples 02 of visual results for the Object Detection using Yolov8

3.5 Visual Question Answering

3.5.1 FloodNet Track 2 Dataset

The FloodNet Track 2 dataset consists of 2,343 high-resolution aerial photographs
captured using DJI Mavic Pro quadcopters following Hurricane Harvey. This dataset
is designed to support disaster response enhancements through a Visual Question
Answering (VQA) framework.

3.5.1.1 Dataset Composition

The FloodNet Track 2 dataset is divided into three primary sets, as detailed in the
table below:

Set Number of Images VQA Pairs
Training 1450 4511
Validation 468 1415

Test 425 1429
All 2343 7355

Table 3.5: Composition of the FloodNet Track 2 Dataset

3.5.1.2 Annotations and Question Types

The dataset provides detailed semantic annotations that support various types of
VQA tasks. The types of questions included in the VQA tasks are summarized in
the following table:
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Question Type N. Training N. Validation N. Testing All
Simple Counting 636 197 201 1034
Complex Counting 693 216 222 1131

Condition Recognition 2315 726 728 3769
Yes/No Questions 867 276 278 1421

Table 3.6: Statistics of Question Types in the FloodNet Track 2 Dataset

Question Type Description Possible
Answer

Simple Counting Questions such as "How many buildings are
in the image? ", "How many buildings are in
this image?", "How many buildings can be
seen in the image?", "How many buildings
can be seen in this image?"

1,2,3,4...

Complex Counting Questions require counting based on at-
tributes, e.g., "How many buildings are
�ooded in this image?", "How many build-
ings are �ooded?", "How many buildings are
non �ooded in this image?", "How many
buildings are non �ooded?", "How many
�ooded buildings can be seen in this image?",
"How many non �ooded buildings can be
seen in this image?"

1,2,3,4...

Condition Recognition Questions focus on the condition of infras-
tructure, e.g., "What is the condition of the
road in the given image?", "What is the con-
dition of the road in this image?", "What is
the condition of road?"

Flooded,
Non-
Flooded,
Flooded
and Non-
Flooded

Yes/No Questions Binary questions such as "Is the entire road
�ooded?", "Is the entire road non �ooded?"

Yes, No

Table 3.7: Types of VQA Tasks in the FloodNet Track 2 Dataset

3.5.1.3 Example of Training Set Usage

This section presents an actual example from the training set of the FloodNet Track
2 dataset. Figure 3.11 shows an image, followed by Table 3.8 , which illustrates
a sample of the questions posed and the correct answers based on the provided
annotations.
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Figure 3.11: Image from the FloodNet Track 2 Training Set

Question Type Question Answer
Simple Counting How many buildings are in this

image?
3

Complex Counting How many buildings are non
�ooded?

3

Condition Recognition What is the condition of the road
in this image?

non �ooded

Yes/No Questions Is there any �ooded road in the
image?

No

Table 3.8: Questions and Answers for the Image

3.5.2 Process Flow of the VQA Model

The VQA model integrates image and text processing to generate answers based
on visual and textual inputs. Figure 3.12 outlines the process �ow, including tok-
enization with BERT, feature extraction with YOLO, and answer generation with
GPT-2.
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Figure 3.12: The Detailed Flowchart Representing The VQA Model Process

� Question Input: The user provides a question related to the image. This
text input serves as the query that the VQA model will process to generate
an answer.

� BERT Tokenization: The question text is tokenized into input IDs and
attention masks.

� Input IDs: These are numerical representations of the tokens in the
question.

� Attention Masks: Binary masks indicating the presence of actual to-
kens (1) or padding (0).

� BERT Embedding:

� BERT Model: The input IDs and attention masks are passed through
the BERT model to obtain embeddings.

� Text Embeddings: High-dimensional vector representations of the ques-
tion, speci�cally using the pooler output for the [CLS] token.

� Image Input: The user also provides an image related to the question. This
visual input is processed to extract relevant features.

� YOLO Feature Extraction:

� Object Detection (YOLOv8): The image is processed using the YOLO
model to detect objects and extract features.

� Image Features: These include bounding box coordinates, con�dence
scores, and class values for detected objects.

� Feature Combination: The text embeddings obtained from BERT and the
image features extracted by YOLO are combined. This step creates a uni�ed
representation that integrates information from both text and image inputs.

� Projection to GPT-2 Dimension:

� Linear Layer: The combined features are projected to match the input
dimension required by GPT-2.
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� Projected Features: The transformed combined features are now suit-
able for processing by the GPT-2 model.

� Answer Generation with GPT-2:

� GPT-2 Model: The projected features are passed through the GPT-2
model to generate an answer.

� Logits: The output from GPT-2, which includes the probability distri-
butions used for predicting the answer.

3.5.3 Training Hyperparameters for VQA Model

The hyperparametres that we have used in the VQA training are shown in the table
below:

Table 3.9: Training Hyperparameters for VQAModel

Hyperparameter Value

Learning Rate 0.0001
Batch Size 64
Number of Epochs 100
Optimizer Adam
Loss Function CrossEntropyLoss
Hidden Dimension 256
Max Length for
Tokenizer

64

Image
Transformations

Resize (224, 224), ToTensor()

Device GPU (CUDA)

3.5.4 Evaluation and Results

3.5.4.1 Training Performance Metrics

This section presents the training performance metrics for the VQA model. The
�gures 3.13 , 3.14 illustrate the average accuracy and average loss per epoch for 100
training epochs.
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Figure 3.13: Average Accuracy VQA Model

Figure 3.14: Average Loss VQA Model

The �gure 3.13 displays the average accuracy achieved by the VQA model at
each training epoch. The accuracy is measured as the proportion of correct answers
out of the total questions answered. The graph demonstrates the model's learning
progress and convergence over time.

� The accuracy increases signi�cantly during the initial epochs, indicating rapid
learning.

� There are �uctuations in accuracy, which are common in training deep learning
models due to the stochastic nature of optimization algorithms.

� After approximately 50 epochs, the accuracy stabilizes around 0.65, indicating
that the model has reached a point where additional training epochs yield
diminishing improvements.

The �gure 3.14 illustrates the average loss per epoch during the training process.
The loss function quanti�es the di�erence between the model's predictions and the
actual answers, with lower values indicating better model performance. The graph
provides insight into the model's convergence behavior.
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� The average loss decreases sharply in the initial epochs, re�ecting the model's
rapid adaptation to the training data.

� There are occasional increases in loss, which can occur due to the learning rate
adjustments.

� After around 60 epochs, the loss stabilizes just below 1.0, suggesting that the
model has reached a state of consistent performance with minimal further
improvement.

3.5.4.2 Validation Performance Metrics

The validation of the VQA model provided the following results:

Metric Accuracy (%) Average Loss
Overall 64.51 0.8833
Condition Recognition 91.02 0.2521
Yes/No Questions 51.56 0.7046
Simple Counting 27.67 2.0694
Complex Counting 25.97 2.1270

Table 3.10: Validation Performance Metrics

During validation, the model's performance was evaluated across di�erent ques-
tion types. The results highlight signi�cant variation in accuracy and loss among
these types, indicating areas where the model performs well and others where im-
provements are needed. The overall accuracy of the model was 64.51%, with an
average loss of 0.8833. The model performed exceptionally well in Condition Recog-
nition tasks, achieving an accuracy of 91.02% with a low average loss of 0.2521.
For Yes/No Questions, the model achieved a moderate accuracy of 51.56% and an
average loss of 0.7046. However, the model struggled with Simple Counting and
Complex Counting tasks, with accuracies of 27.67% and 25.97% respectively, and
higher average losses of 2.0694 and 2.1270.

3.5.4.3 Model Predictions

This section provides examples of the VQA model's performance on various inputs.
Each example includes the input image, the question posed to the model, and the
answer generated by the model.
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Figure 3.15: Example 1 of the VQA

model predictions
Figure 3.16: Example 2 of the VQA

model predictions

Example Question Model's Answer
Example 1 How many buildings are in this

image?
13

Example 1 How many buildings are �ooded
in this image?

13

Example 1 Is the entire road non �ooded? No
Example 1 What is the condition of the road

in this image?
Flooded

Example 2 How many buildings are in this
image?

4

Example 2 How many buildings are non
�ooded in this image?

3

Example 2 Is the entire road non �ooded? No
Example 2 What is the condition of the road

in this image?
Non Flooded

Table 3.11: Examples of VQA Model's Performance

In Figure 3.15, the model accurately identi�es the condition of the road as
�ooded. Similarly, in Figure 3.16 the road as non �ooded, the model correctly
counts the number of visible buildings. These examples demonstrate the model's
ability to process both condition recognition and counting tasks e�ectively. Addi-
tional questions and their corresponding answers are provided in Table 3.11.

3.6 Deep learning Software and Tools

In this section, we will de�ne and explain the programming languages, software, and
tools utilized in the development of our application.

3.6.1 Python programming language

Python, created by Guido van Rossum, is a high-level programming language known
for its readability and simplicity. It uses indentation to de�ne code blocks, enhanc-
ing legibility and easing maintenance. Supporting procedural, object-oriented, and
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functional programming, Python is versatile for web development, scienti�c com-
puting, and AI. Its extensive standard library and interpretive nature enable quick
development. As an open-source language, Python promotes collaborative develop-
ment and is widely used across various �elds [35].

3.6.2 Google Colaboratory

Google Colaboratory Colab is a cloud platform using Jupyter Notebook technology
for machine learning and deep learning research. It integrates with Google Drive for
easy sharing and collaboration. Colab provides a free, powerful GPU for intensive
tasks, especially with TensorFlow and Pytorch, though it has CPU and operation
time limitations. Despite this, Colab is a valuable, maintenance-free tool for educa-
tion and preliminary AI studies [36].

3.6.3 Deep Learning Framework and Library

3.6.3.1 PyTorch

PyTorch is an open-source machine learning and deep learning library developed
by Facebook, Inc. It is Python-based, as its name suggests, and aims to provide a
faster alternative/replacement to NumPy) by providing a seamless use of GPUs and
a platform for deep learning that provides maximum �exibility and speed [37].

3.6.3.2 Ultralytics

Ultralytics o�ers a comprehensive suite of tools and libraries designed for the �eld
of arti�cial intelligence and machine learning. It is speci�cally tailored to streamline
the development and training of deep neural network models, with a particular focus
on image analysis and object detection. The platform provides an array of powerful
features and user-friendly APIs, enabling researchers and practitioners to e�ciently
conduct experiments and thoroughly analyze their results.

3.7 Conclusion

In this chapter, we have explored various deep learning approaches to address crit-
ical tasks in disaster management, speci�cally focusing on semantic segmentation,
object detection, and visual question answering using the FloodNet dataset. The
detailed experiments and evaluations highlight the e�cacy of advanced models such
as DeepLabV3+ and YOLOv8 in accurately segmenting and detecting objects in
�ood-a�ected areas. The VQA model demonstrated its capability to integrate tex-
tual and visual information, providing insightful answers to questions about the
images. Despite the promising results, the varying performance across di�erent
tasks indicates areas for further improvement, particularly in complex counting sce-
narios. The insights gained from these experiments underscore the potential of deep
learning technologies in enhancing disaster response and management strategies.



Chapter 4

DisasterVision System Web

Application

4.1 Introduction

In this chapter we present our web application that leverages cutting-edge computer
vision techniques, including semantic segmentation, object detection, and visual
question answering (VQA), to enhance disaster response capabilities. By integrating
these technologies, the application not only automates identifying and categorizing
disaster-related objects and regions in aerial images but also allows users to inter-
actively query the system for speci�c information about the disaster scene. This
holistic approach facilitates real-time analysis and decision-making, providing emer-
gency responders and decision-makers with critical insights that can save lives and
resources.

The application encompasses three primary functionalities: model training, pre-
diction, and evaluation. It harnesses large datasets of annotated aerial imagery
through model training to build robust and accurate models. The prediction module
applies these trained models to new, unseen data, precisely identifying and segment-
ing disaster-a�ected areas. Finally, the evaluation component ensures continuous
improvement and validation of the models by assessing their performance against
ground truth data.

4.2 Disaster Vision System Graphical User inter-

faces

Here we present for you our application view windows with a description of its
functionalities

47



Chaptre 4 : DisasterVision System Web Application 48

4.2.1 Main View

This view shown in Figure 4.1 provides an overview of the Disaster Vision project,
which focuses on �ood scene analysis using computer vision and natural language
processing techniques. It showcases samples from the FloodNet dataset and empha-
sizes its applications in semantic segmentation, object detection, and visual question
answering.

(a) Summery and Dataset Samples

(b) DisasterVision Web App Services.

Figure 4.1: Main View - Index

Followed by a description of the three main services o�ered by the application
which are training, evaluation, and prediction o�ering models of various approaches
like segmentation, object detection, and visual question answering.

4.2.2 Training View

This view shown in Figure 4.2 , the user can choose one of the three Deep-learning
approaches to train a model
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Figure 4.2: Training Main View

4.2.2.1 Semantic Segmentation Training

This view shown in Figure 4.3 is used for setting up the training con�guration.
Users can specify parameters (as shown in Figure 4.4 ) such as dataset path, type
of Device, pre-trained models, device type, number of classes, batch size, epochs,
learning rate, and image size. The "Start Training!" button initiates the training
process.

Figure 4.3: Semantic Segmentation Training View
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Figure 4.4: Training History

The training results provide an overview of the training history, encompassing
details such as learning rate, image size, and optimizer con�guration. The sub-
sequent section presents the model's performance metrics, including training loss,
mean Intersection over Union (mIoU), accuracy values, and validation too.

4.2.2.2 Object Detection Training

This view is used for setting up the training con�guration. Users can specify pa-
rameters (as shown in Figure 4.5 ) such as dataset path, type of label, pre-trained
models, device type, number of classes, batch size, epochs, learning rate, number of
workers, and image size. The "Start Training!" button initiates the training process

Figure 4.5: Object Detection Training View
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Figure 4.6: Training History

4.2.2.3 Visual Question Answering Training

As well as this view that is used for setting up the training con�guration of Visual
Question Answering models. Users can specify parameters (as shown in Figure
4.7 ) such as images and Questions dataset paths, pre-trained models, device type,
number of classes, batch size, number of epochs, and learning rate. The "Start
Training!" button initiates the training process

Figure 4.7: Visual Question Answering Training View

Upon completion of the training, the following view (as shown in Figure 4.8 )
will appear to inform the user that the training has successfully concluded.
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Figure 4.8: Visual Question Answering Training Result View

4.2.3 Evaluation View

In this view shown in Figure 4.9 you can load your semantic segmentation model to
view its training information by clicking on evaluate your model, including loss,
accuracy, and IoU plots, as well as the number of epochs it has been trained and
the confusion matrix of the classes.

(a) Model Evaluation

(b) Model Evaluation Results

Figure 4.9: Evaluation Views
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4.2.4 Prediction Views

In this part, we can see three types of prediction, in Semantic Segmentation you
need to choose an image and then press the prediction button, in the case of visual
question answering you need to choose an image and a question.

4.2.4.1 Semantic Segmentation Prediction

For Semantic Segmentation, you can select any image and then click on Predict
Your Model. This will automatically redirect you to the results view, where you
can view the segmented image with color-coded regions as shown in Figure 4.10 .

(a) Semantic Segmentation Prediction

(b) Semantic Segmentation result

Figure 4.10: Prediction and Result Views

4.2.4.2 Object Detection Prediction for Images and videos

For Object Detection, you can choose between an image or a video and then click
on Predict Your Model as shown in Figure 4.11 . This will automatically redirect
you to the results page, where you can view the detected objects within the selected
image or video.
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(a) Objects Detection Prediction

(b) Object Detection Result

Figure 4.11: Object Detection Prediction and Result Views

4.2.4.3 Visual Question Answering Prediction

Finally, for Visual Question Answering, you can select any image and enter a ques-
tion, then click on Generate Answer as shown in Figure 4.12 . This will automat-
ically redirect you to the results view as shown in Figure 4.13 , where the answer to
your question will be displayed below the image and the question.

Figure 4.12: Visual Question Answering Prediction
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Figure 4.13: Visual Question Answering result

4.2.5 System Deployment Tools and Frameworks

4.2.5.1 Web Development Tools

HTML is used to structure the content of a webpage, de�ning elements like headings,
paragraphs, and images. CSS is used for styling and layout, allowing you to control
the appearance of the HTML elements, such as colors, fonts, and spacing. JavaScript
is a programming language that enables interactive elements on web pages.

4.2.5.2 Bootstrap Framework

Bootstrap is the most popular CSS Framework for developing responsive and mobile-
�rst websites.

4.2.5.3 Flask Framework

Flask is a lightweight web framework for Python that helps you build web applica-
tions easily and quickly. It provides the tools and features needed to create a web
server, handle requests, and generate responses with minimal code.

4.2.5.4 Ajax and jQuery

AJAX (Asynchronous JavaScript and XML) with jQuery is a web development
technique that allows parts of a web page to be updated without reloading the
entire page. It uses JavaScript to send and receive data asynchronously with a
server. jQuery simpli�es the use of AJAX by providing convenient methods to
perform these requests.
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4.3 Conclusion

The development and deployment of this web application represent a signi�cant
step forward in utilizing computer vision for disaster management. By combining
semantic segmentation, object detection, and visual question answering, the applica-
tion provides a comprehensive tool for analyzing aerial imagery in the aftermath of
disasters. This integration not only streamlines the assessment process but also en-
hances the accuracy and speed of response, ultimately contributing to more e�ective
disaster mitigation and recovery e�orts.

As the application evolves, further enhancements and re�nements will be guided
by ongoing feedback from users and advancements in the underlying technologies.
The potential for integrating additional data sources, improving model accuracy,
and expanding the range of disasters covered is vast. By continuing to leverage the
power of computer vision, this application aims to be at the forefront of innovative
solutions for disaster management, o�ering a critical resource in the face of increasing
global challenges posed by natural disasters.



General conclusion

In conclusion, this research aimed to e�ectively assess damage to buildings and
evaluate post-natural disaster damage using aerial image analysis. The primary goal
was to create an automated system capable of detecting and categorizing di�erent
types of damage, with a particular focus on identifying a�ected areas. Signi�cant ad-
vancements were made in semantic segmentation, object detection, and even natural
language processing, thanks to unmanned aerial vehicles (UAVs) and deep learning
techniques, speci�cally convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). Various models, such as Unet, Deeplabv3, YOLOv8n, BERT,
and GPT2, were assessed in this study. Each model exhibited strengths and weak-
nesses, and their performance was evaluated to achieve precise and reliable results
in detecting and classifying di�erent types of damage.

The research �ndings illustrate the potential of using aerial image analysis and
deep learning Approaches to assess post-natural disaster damage e�ciently. The de-
veloped system o�ers valuable insights into the extent and types of damage, aiding
in rapid response and recovery e�orts. However, further research and enhancements
are necessary to improve the system's performance and broaden its real-world ap-
plications.

By utilizing drones and deep learning algorithms, this research contributes to
disaster management, paving the way for more e�ective and automated assessment
methods. The adoption of such technologies can signi�cantly mitigate the impacts of
natural disasters and streamline timely responses and recovery operations. Despite
constraints in resources and time, this study represents a crucial step toward more
e�cient disaster relief e�orts.
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