


LOZI, HÉNON AND BELYKH CHAOTIC ATTRACTORS

NEW RESULTS FIFTY YEARS ON

Edited by René Lozi, Lyudmila Efremova, Mohammed-Salah Abdelouahab and Safwan El Assad

Lozi, Hénon and Belykh Chaotic Attractors

Over the past fifty years, the development of chaotic dynamical systems theory and its subsequent wide applicability in science and technology has been an extremely important achievement of modern mathematics. Chaotic attractors are not a fleeting curiosity, and their continued study is important for the progress of mathematics.

This book collects several of the new relevant results on the most important of them: the Lozi, Hénon, and Belykh attractors. Existence proofs for strange attractors in piecewise-smooth nonlinear Lozi-Hénon and Belykh maps are given. Generalization of Lozi map in higher dimensions, Markov partition, or embedding into the 2D border collision normal form of this map are considered. K-symbol fractional order discrete-time and relationship between this map and maxtype difference equations are explored. Statistical self-similarity, between this map and maxtype difference equations are explored. Statistical self-similarity, control of chaotic transients, and target-oriented control of Hénon and Lozi attractors are control of chaotic transients, and target-oriented control of Hénon and Lozi attractors are control controlling chimera and solitary states by additive noise in networks of chapresented. Controlling chimera and solitary states by additive noise in networks of chapresented. Controlling chimera and solitary states by additive noise in networks of chapresented. In piecewise-linear maps, and studying border collision bifurcations in a piecewise linear duopoly model complete this book.

This book is an essential companion for students and researchers in mathematics, physics, engineering, and related disciplines seeking to deepen their understanding of chaotic dynamical systems and their applications.

The chapters in this book were originally published in *Journal of Difference Equations* and Applications.

René Lozi is Emeritus Professor at Université Côte d'Azur, France, and Vice-President of the International Society of Difference Equations. His research areas include complexity and emergence theory, dynamical systems, bifurcations, control of chaos, cryptography based on chaos, and memristors.

Lyudmila Efremova is Professor at Lobachevsky State University of Nizhny Novgorod and Moscow Institute of Physics and Technology, Russia. Her scientific interests include regular and chaotic properties of low-dimensional discrete dynamical systems.

Mohammed-Salah Abdelouahab is Professor at Abdelhafid Boussouf University Center of Mila, Algeria. He is the head of the research team in fractional calculus and its applications at the laboratory of mathematics and their interactions, and the Editor-in-Chief of the *Journal of Innovative Applied Mathematics and Computational Sciences*.

Safwan El Assad is Professor at Polytech Nantes (Nantes Université), Nantes, France. Between 1988 and 2005, his research activities concerned radar imagery and digital communications. Nowadays his research largely focuses on chaos-based cryptography, encryption, crypto-compression, steganography, hash functions, and authenticated encryption.

Lozi, Hénon and Belykh Chaotic Attractors

New Results Fifty Years On

Edited by René Lozi, Lyudmila Efremova, Mohammed-Salah Abdelouahab and Safwan El Assad

First edition published 2025 by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

and by CRC Press

2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

© 2025 selection and editorial matter, René Lozi, Lyudmila Efremova, Mohammed-Salah Abdelouahab and Safwan El Assad; individual chapters, the contributors

CRC Press is an imprint of Informa UK Limited

The right of René Lozi, Lyudmila Efremova, Mohammed-Salah Abdelouahab and Safwan El Assad to be identified as the author of the editorial material, and of the authors for their individual chapters, has been asserted in accordance with sections 77 and 78 of the Copyright, Designs and Patents

Introduction © 2025 René Lozi, Lyudmila Efremova, Mohammed-Salah Abdelouahab and Safwan El Assad.

Chapters 1-4, 6-12 @ 2025 Taylor & Francis

Chapter 5 © 2023 Diogo Baptista. Originally published as Open Access.

With the exception of Chapter 5, no part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. For details on the rights for Chapter 5, please see the chapter's Open Access footnote.

For permission to photocopy or use material electronically from this work, access www.copyright. com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-1-032-94042-7 (hbk) ISBN: 978-1-032-94045-8 (pbk)

ISBN: 978-1-003-56864-3 (ebk) DOI: 10.1201/9781003568643

Typeset in Minion Pro by Newgen Publishing UK

Publisher's Note

The publisher accepts responsibility for any inconsistencies that may have arisen during the conversion of this book from journal articles to book chapters, namely the inclusion of journal terminology.

Disclaimer

Every effort has been made to contact copyright holders for their permission to reprint material in this book. The publishers would be grateful to hear from any copyright holder who is not here acknowledged and will undertake to rectify any errors or omissions in future editions of this book.

Contents

	Citation Information Notes on Contributors	vii ix
	Introduction – Lozi, Hénon, and Belykh chaotic attractors: new results fifty years on René Lozi, Lyudmila Efremova, Mohammed-Salah Abdelouahab, and Safwan El Assad	1
l	Controlling chaotic transients in the Hénon and the Lozi map with the safety function Rubén Capeáns and Miguel A. F. Sanjuán	7
2	On target-oriented control of Hénon and Lozi maps Elena Braverman and Alexandra Rodkina	16
3	Controlling chimera and solitary states by additive noise in networks of chaotic maps Elena Rybalova, Eckehard Schöll and Galina Strelkova	40
4	Statistical self-similarity in Lozi and Hénon's strange attractors Alexandre M. de Paula Viveiros	62
5	Markov partition in the attractor of Lozi maps Diogo Baptista	83
6	Lozi map embedded into the 2D border collision normal form Irina Sushko, Viktor Avrutin and Laura Gardini	96
7	A higher-dimensional generalization of the Lozi map: bifurcations and dynamics Shakir Bilal and Ramakrishna Ramaswamy	113

vi CONTENTS

8	Existence proofs for strange attractors in piecewise-smooth nonlinear Lozi-Hénon and Belykh maps Vladimir N. Belykh, Nikita V. Barabash and Dina A. Grechko	125
9	On the relationship between Lozi maps and max-type difference equations Antonio Linero Bas and Daniel Nieves Roldán	146
10	K-symbol fractional order discrete-time models of Lozi system <i>Rabha W. Ibrahim</i>	176
11	Border collision bifurcations in a piecewise linear duopoly model Laura Gardini and Davide Radi	196
12	Detecting invariant expanding cones for generating word sets to identify chaos in piecewise-linear maps David J. W. Simpson	225
	Index	258

Citation Information

The following chapters in this book were originally published in the *Journal of Difference Equations and Applications*, volume 29, issue 9–12 (2023). When citing this material, please use the original page numbering for each article, as follows:

Chapter 1

Controlling chaotic transients in the Hénon and the Lozi map with the safety function Rubén Capeáns and Miguel A. F. Sanjuán *Journal of Difference Equations and Applications*, volume 29, issue 9–12 (2023), pp. 876–884

Chapter 2

On target-oriented control of Hénon and Lozi maps
E. Braverman and A. Rodkina
Journal of Difference Equations and Applications, volume 29, issue 9–12 (2023),
pp. 885–908

Chapter 3

Controlling chimera and solitary states by additive noise in networks of chaotic maps Elena Rybalova, Eckehard Schöll and Galina Strelkova Journal of Difference Equations and Applications, volume 29, issue 9–12 (2023), pp. 909–930

Chapter 4

Statistical self-similarity in Lozi and Hénon's strange attractors
Alexandre M. de Paula Viveiros
Journal of Difference Equations and Applications, volume 29, issue 9–12 (2023),
pp. 931–951

Chapter 5

Markov partition in the attractor of Lozi maps
Diogo Baptista
Journal of Difference Equations and Applications, volume 29, issue 9–12 (2023),
pp. 952–964

viii

Chapter 6

Lozi map embedded into the 2D border collision normal form I. Sushko, V. Avrutin and L. Gardini Iournal of Difference Equations and Applications, volume 29, issue 9-12 (2023), pp. 965-981

Chapter 7

A higher-dimensional generalization of the Lozi map: bifurcations and dynamics Shakir Bilal and Ramakrishna Ramaswamy *Iournal of Difference Equations and Applications*, volume 29, issue 9–12 (2023), pp. 982-993

Chapter 8

Existence proofs for strange attractors in piecewise-smooth nonlinear Lozi-Hénon and Belykh maps

Vladimir N. Belykh, Nikita V. Barabash and Dina A. Grechko *Journal of Difference Equations and Applications*, volume 29, issue 9–12 (2023), pp. 994-1014

Chapter 9

On the relationship between Lozi maps and max-type difference equations A. Linero Bas and D. Nieves Roldán Journal of Difference Equations and Applications, volume 29, issue 9-12 (2023), pp. 1015-1044

Chapter 10

K-symbol fractional order discrete-time models of Lozi system Rabha W. Ibrahim Journal of Difference Equations and Applications, volume 29, issue 9-12 (2023), pp. 1045-1064

Chapter 11

Border collision bifurcations in a piecewise linear duopoly model Laura Gardini and Davide Radi Journal of Difference Equations and Applications, volume 29, issue 9-12 (2023), pp. 1065-1093

Chapter 12

Detecting invariant expanding cones for generating word sets to identify chaos in piecewise-linear maps D. J. W. Simpson Journal of Difference Equations and Applications, volume 29, issue 9-12 (2023), pp. 1094-1126

For any permission-related enquiries please visit: www.tandfonline.com/page/help/permissions

Notes on Contributors

- Mohammed-Salah Abdelouahab, Laboratory of Mathematics and Their Interactions, Abdelhafid Boussouf University Center of Mila, Mila, Algeria.
- Viktor Avrutin, IST, University of Stuttgart, Stuttgart, Germany.
- Diogo Baptista, ESTG, Polytechnic of Leiria, Leiria, Portugal; INESC Coimbra, Coimbra, Portugal; CIMA-UE, University of Évora, Évora, Portugal.
- Nikita V. Barabash, Volga State University of Water Transport, Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
- Vladimir N. Belykh, Volga State University of Water Transport, Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
- Shakir Bilal, Center for Global Health Infectious Disease Research Interdisciplinary Research Building (IDRB), University of South Florida, Tampa, FL, USA; Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram (Manesar), India.
- Elena Braverman, Department of Mathematics and Statistics, University of Calgary, Canada.
- Rubén Capeáns, Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan, Carlos, Móstoles, Madrid, Spain.
- Alexandre M. de Paula Viveiros, Departamento de Física, CCEN, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, Paraíba, Brazil; Departamento de Formação Geral, Centro Federal de Educação Tecnológica de Minas Gerais - Unidade III, Leopoldina, Minas Gerais, Brazil.
- Lvudmila Efremova, Department of Differential Equations, Mathematical and Numerical Analysis, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; Department of Fundamental Mathematics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
- Safwan El Assad, Polytech Nantes (Nantes Université), Nantes, France.
- Laura Gardini, DESP, University of Urbino Carlo Bo, Urbino, Italy.
- Dina A. Grechko, Volga State University of Water Transport, Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.

- **Rabha W. Ibrahim**, Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
- **Antonio Linero Bas**, Mathematics, Facultad de Matemáticas, University of Murcia, Murcia, Spain.
- René Lozi, Université Côte d'Azur, Laboratoire J. A. Dieudonné, Nice Cedex, France.
- **Daniel Nieves Roldán**, Mathematics, Facultad de Matemáticas, University of Murcia, Murcia, Spain.
- **Davide Radi**, DiMSEFA, Catholic University of the Sacred Heart, Milan, Italy; Department of Finance, VŠB Technical University of Ostrava, Ostrava, Czech Republic.
- Ramakrishna Ramaswamy, Department of Chemistry, Indian Institute of Technology, New Delhi, India.
- Alexandra Rodkina, Department of Mathematics, The University of the West Indies, Kingston, Jamaica.
- Elena Rybalova, Institute of Physics, Saratov State University, Saratov, Russia.
- Miguel A. F. Sanjuán, Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan, Carlos, Móstoles, Madrid, Spain.
- **Eckehard Schöll**, Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Potsdam Institute for Climate Impact Research, Potsdam, Germany.
- **David J. W. Simpson**, School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand.
- Galina Strelkova, Institute of Physics, Saratov State University, Saratov, Russia.
- Irina Sushko, Institute of Mathematics, NAS of Ukraine, Kyiv, Ukraine.

CRC Press titles are available as eBook editions in a range of digital formats

an **informa** business

