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Abstract

In this work, we explore fundamental concepts for studying a Failure Recovery
and Tolerant in large Distributed Graph Systems.
We propose a novel approach based on Luby’s Maximal Independent Set (MIS) al-
gorithm, designed to enhance fault tolerance in distributed settings. Our approach
involves distributed selection of coordinator nodes using the modified MIS algorithm,
ensuring robustness and resilience to nodes failures.a guard node is assigned Each
coordinator to take over in case of failure.
Furthermore, we assign each node in the system to a specific coordinator to ensure
balanced network load and efficient resource utilization. The proposed system has
been validated, demonstrating its effectiveness in managing large-scale graph com-
putations while ensuring resilience to node failures.
Keywords: Distributed graph system,Luby’s Maximal Independent Set (MIS) al-
gorithm, distributed algorithm



Résumé

Dans ce travail, nous explorons des concepts fondamentaux pour atteindre la
tolérance aux pannes et la récupération dans les grands systémes de graphes dis-
tribués. Nous proposons une nouvelle approche basée sur un algorithme Luby de
I'ensemble indépendant maximal (MIS) , con¢u pour améliorer la tolérance aux
pannes dans les environnements distribués. Notre approche implique la sélection
distribuée des noeuds coordinateurs en utilisant I'algorithme MIS modifié¢, garan-
tissant la robustesse et la résilience aux pannes des noeuds. Chaque coordinateur
se voit attribuer un noeud de garde pour prendre le relais en cas de panne. De
plus, nous attribuons chaque noeud du systéme & un coordinateur spécifique afin
d’assurer une charge réseau équilibrée et une utilisation efficace des ressources.

Le systéme proposé a été validé, démontrant son efficacité dans la gestion des calculs
de graphes a grande échelle tout en assurant la résilience aux pannes de noeuds.
Mots clés : Systéme de graphes distribués, algorithme d’ensemble indépendant
maximal de Luby (MIS), algorithme distribué.
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(zeneral introduction

In today’s interconnected world, distributed systems have become an integral
part of our daily lives, supporting various applications such as cloud computing,
social media, and online banking. However, the complexity of these systems also
introduces challenges, particularly in maintaining fault tolerance. Failure Recovery
and Tolerance in Large Distributed Graph Systems is a thesis that aims to explore
the strategies and techniques for enhancing fault tolerance in distributed systems,
with a specific focus on large distributed graph systems.

The primary objective of this thesis is to investigate the importance of fault
tolerance in distributed systems and the various methods used to achieve it. We
will discuss the benefits of fault tolerance, such as increased availability, scalability,
and performance, as well as the challenges it poses, including complexity, resource
overhead, and balancing consistency and availability.

To address these challenges, our approach involves a modified version of Luby’s
algorithm. In this modified algorithm, a guard node is designated for each node in
the Maximum Independent Set (MIS). If an MIS node fails, its guard immediately
replaces it, ensuring continuous system operation without significant interruptions.
This method aims to enhance fault tolerance by providing a reliable mechanism for
node replacement in large distributed graph systems.

This general introduction provides an overview of the topic, context, and prob-
lem. The rest of the thesis is organized as follows:

Chapter 1: This chapter entitled Graph Theory and Parameters, in which
we introduce the most appropriate model in the field of distributed systems which is
graph. First, we explores the foundational concepts of graph theory including nodes,
edges, node degree, sub graphs, connected components. Then we examine essential
parameters such as dominating set, independent set, matching and critical nodes.
Since the complexity of the algorithms that determine the values of these parame-
ters i1s very high in general, it is very important to review the different distributed
and parallel approach to determine these parameters. The self-stabilizing approach
appears to be a promising approach for overcoming the problem of complexity, in
addition, it is fault-tolerant, which allows dealing with the main problem of dis-
tributed systems.

Chapter 2: This chapter will be devoted to Distributed Systems and Fault
Tolerance, The second chapter covers distributed systems from various perspec-
tives, defining their core concepts and examining their usage in distributed com-



General introduction

puting. It illustrates fault tolerance through concrete examples, such as blockchain
technology, and reviews the state of the art of fault tolerance in sensor networks.

Chapter 3: the final chapter Topological fault tolerance approach in
distributed computing system in which we explain our contribution for fault
tolerance in distributed computing systems. We introduce a distributed approach
that strengthens the coordinator nodes set represented by the maximum stable set
as a set of replacemnt ones called guard set. This lead to reinforce the system al-
lows Failures recovery. The approach also dispose a network decomposition which
facilitate fault recovery. Finally, the approach is tested and its performance is hei-
glighted.

10



Chapter 1

Graph Theory and Parameters

1.1 Introduction

In the realm of general graphs, graph theory stands out for its ability to model and
analyze a wide range of structures and phenomena. Continuously evolving, this the-
ory provides a powerful framework for understanding complex relationships among
various sets of objects. Applied across diverse fields such as transportation net-
works, information networks, and electronic circuits, it enables the exploration and
interpretation of data from various contexts, thus offering fresh and valuable insights.

In this chapter, we will delve into the key parameters of graphs, starting with
their basic definitions. We will then examine distributed algorithms designed to
solve problems in environments where resources are distributed across a network of
interconnected nodes. Additionally, we will address self-stabilizing algorithms aimed
at ensuring the system returns to a correct state regardless of its initial condition.
Finally, we will discuss fault tolerance in self-stabilizing algorithms, highlighting
the importance of maintaining system stability even in the presence of failures. By
combining these concepts, we will establish a comprehensive framework for under-
standing and analyzing graph parameters, providing valuable insights for effectively
solving various problems in distributed and resilient contexts.

11



Chapter 1 — Graph Theory and Parameters

1.2 General concepts

Definitions
Undirected Graph: An undirected graph G is a pair G = (V, E) such that:

e V is a finite set of vertices, the graph is mentioned in case of confusion as

V(G).

e E is a set of unordered pairs of vertices {v;,v;} € V2, the graph is denoted as
E(G) to avoid confusion.
A pair {vj,v;} iIs called an edge. We say that vertices v; and v; are adja-
cent.The edge {v;,v;} is called an edge incident to v; and v; [01].

Figure 1.1: Undirected Graph

Exemple 01:
The graph in Figure 1.1 represents an undirected graph G = (V, E) with V =
{1,2,3,4,5,6,7} and E = {{1,2},{3,5},{2,3},{5,6}, {4.6},{4,7}}.

Directed Graph: A directed graph G is a pair G = (V, E) such that:

e V is a finite set of vertices.
e E is a set of ordered pairs of vertices (v;,v;) € V2.

An ordered pair (v;, v;) is called an arc, and is graphically represented by v; — v;. v;
1s the initial or source vertex, and v; is the terminal or destination vertex. The arc
a = (v;, vj) is said to be outgoing from v; and incident to vj, and v; is a successor of
v;, while v; is a predecessor of v;. The set of successors of a vertex v; € V' is denoted
by Succ(v;) = {v; € V' | (vi,v;) € E}. The set of predecessors of a vertex v; € V' is
denoted by Pred(v;) = {v; € V' | (v;,v;) € E}|01].

Figure 1.2: irected Graph

12



Chapter 1 — Graph Theory and Parameters

Example 02: The graph in Figure 1.2 represents a directed graph G = (V, E)
with V' ={1,2,3,4,5,6,7} and E = {{1,2},{2,5},{2,6},{2,3},{3,4}, {4, 7}}.

Simple Graph: A simple graph is a graph that does not contain any self-loops
or multi-edges. In other words, each edge connects two distinct vertices, and there
is at most one edge between any pair of vertices [03]. The graph in Figure 1.3
represents a Simple Graph.

Figure 1.3: Simple Graph

Multi-graph: A multi-graph is a graph that may have self-loops and/or multi-
edges. This means that it allows for multiple edges between the same pair of vertices
and also permits edges that connect a vertex to itself{04]. The graph in Figure 1.4
shows a multi- Graph.

>—@

Figure 1.4: multi- Graph

Complete graph: A complete graph is an undirected simple graph in which
every pair of vertices is adjacent. The complete graph with n vertices is denoted
K,,. The complement of an undirected simple graph G is the graph H such that
G + H is a complete graph.

Subgraph: Graph G' (V' E’) is an induced subgraph of G if V! C V and E' is
the collection of edges in G among that subset of vertices.

Consider a given graph G(V| E).

Example 03: The graph in Figure 1.5 represents Undirected Graph and Figure
1.6 represents an induced subgraph of G by V' = {1,2,3,5}: G' = G[V'].

13



Chapter 1 — Graph Theory and Parameters

Figure 1.5: Undirected Graph

Figure 1.6: subGraph

Degree: The degree d, of a vertex v in a graph G is the number of edges incident
to v. In other words, it is the number of edges connected to the vertex v.

1 3 3 2

Figure 1.7: degree Graph

Example 04: The graph in Figure 1.7 represents the degree of a vertex V' =
{1,2,3,,4,5,6,7}: dv={1,3,3,2,3,3,1}.

1.3 Graph Parameters

Typically, we solve problems using graphs, by interpreting the problem in question
using one of the graph parameters. For example, to disseminate information in a
telecommunication network, we choose a certain number of nodes represented by
a dominant set, which enables efficient dissemination protocols while minimizing
cost. To this end, in what follows, we will try to review the most important graph
parameters.

14



Chapter 1 — Graph Theory and Parameters

1.3.1 Graph Matching

An exact graph matching is a correspondence between the vertices of two graphs, G
and G5, such that if there is an edge between two vertices in the first graph, then the
corresponding vertices in the second graph are also connected by an edge. Various
variants of graph matching exist, including isomorphism, subgraph isomorphism,
monomorphism, homomorphism, and maximal isomorphic subgraph|01] .

1.3.2 Dominating Set

A dominating set in a graph comprises vertices where each vertex either belongs
to the set or is adjacent to a set vertex. Essentially, these sets enable monitoring
or controlling the entire graph through their vertices. For instance, in a social
network, a dominating set could represent influential users capable of influencing
others’ behaviors [12]. A dominating set is said to be minimal dominating set
(MDS) if it does not contain another dominating subset [12]. Dominating set has
several variants, among which we cited:

Total Dominating Set (TDS):

In a total dominating set, every graph vertex either belongs to the set or is
adjacent to a set vertex. This concept is crucial in communication networks
where every vertex requires surveillance or control. For example, in a sensor
network, a total dominating set ensures complete coverage and monitoring .
A minimal total dominating set (MTDS) is a total dominating set that does
not contain another total dominating subset .

Distance-k Dominating Set (DKDS):

A distance-k dominating set (DKDS) is a subset of nodes such that for each
node (i) in the set of nodes (V) that is not in the dominating set (V-S) there
exists a node (j) in the dominating set (S) such that the distance between
them is less than k .

k-dominating Set (MKDS): A minimal k-dominating set (MKDS) is a
subset of nodes such that each node (i) in the set of nodes (V) that is not in
the dominating set (V-S) is adjacent to at least k nodes in the dominating set
(S).

Connected Dominating Set (CDS):

A connected dominating set is a dominating set where the induced subgraph
(formed by set vertices and their edges) remains connected. This is vital in
wireless sensor networks to maintain connectivity. By having a connected
dominating set, communication pathways stay intact even if some sensors fail
or get disconnected .

Independent Dominating Set (IDS):

An independent dominating set is a dominating set where no two set vertices
are adjacent. This parameter is significant in reducing interference in wireless
networks. For instance, in frequency assignment scenarios, arranging trans-
mitting devices in an independent dominating set configuration helps minimize
signal interference .




Chapter 1 — Graph Theory and Parameters

e Strongly Dominating Set (ISDS):

A strongly dominating set is dominating set in the graph such that evry vertex
not in the set is adjacent to a vertex in the set of greater degree. The strongly
dominating set is said to be strongly independent dominating set if no two
vertices are connected by an edge in it [13].

The graph in Figure 1.8 represents some dominanting set vriant

o ® O ® ® o (K
o o O—C o o @
- |

TDS 2-DS DS MDS

Figure 1.8: ezample of dominant set

1.3.3 Critical nodes

Critical nodes represent the most important nodes in the the graph i.e deletion
of which destroy maximally the network connectivity. For that, find the critical
nodes and protect them leads to keep the reliability and enhance network security.
This enables them to be the key players in communication, social and transport
networks.
There exists several vairant of critical nodes problem (CNP) including, K-CNP
which seeks to determine a set of k-nodes deletion of which minimizes the pairwise
connectivity (the set of connected pairs in the network), CCNP [54| for Component-
cardinality-constrained critical node problem which aims the deletion of a minimal
set of nodes to bound the network pairwise connectivity and 3CCNP [55] which
seeks to deletion of A—nodes to minimises the largest connected component in the
residuel graph.

Interested reader can be reffered to the recently published survey for more details
on critical nodes and their applications .

Most decision problem problem related to aforementioned parameters determin-
ing are NP-complete ones.Thus, it is worth interesting to use distributed approach
for dealing with the heigh complexity of sequential classical appraoch.

1.3.4 Independent set

An Independent set in a graph is a set of vertices where no two vertices are connected
by an edge. A stable set is said to be maximum if there is no larger stable set in
the graph, and maximal if the set cannot be enlarged to a bigger stable set. The
number of vertices in a maximum independent set of a graph G is referred to as the
independence number of G, denoted as o(G)[04].

Exmaple 05: Figure 1.9 illustrates a maximal independent set consisting of
three vertices in the Petersen graph, while Figure 1.10 depicts a maximum stable

16
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e Strongly Dominating Set (ISDS):

A strongly dominating set is dominating set in the graph such that evry vertex
not in the set is adjacent to a vertex in the set of greater degree. The strongly
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which seeks to determine a set of k-nodes deletion of which minimizes the pairwise
connectivity (the set of connected pairs in the network), CCNP [54| for Component-
cardinality-constrained critical node problem which aims the deletion of a minimal
set of nodes to bound the network pairwise connectivity and 3CCNP [55] which
seeks to deletion of A—nodes to minimises the largest connected component in the
residuel graph.

Interested reader can be reffered to the recently published survey for more details
on critical nodes and their applications .

Most decision problem problem related to aforementioned parameters determin-
ing are NP-complete ones.Thus, it is worth interesting to use distributed approach
for dealing with the heigh complexity of sequential classical appraoch.

1.3.4 Independent set

An Independent set in a graph is a set of vertices where no two vertices are connected
by an edge. A stable set is said to be maximum if there is no larger stable set in
the graph, and maximal if the set cannot be enlarged to a bigger stable set. The
number of vertices in a maximum independent set of a graph G is referred to as the
independence number of G, denoted as o(G)[04].

Exmaple 05: Figure 1.9 illustrates a maximal independent set consisting of
three vertices in the Petersen graph, while Figure 1.10 depicts a maximum stable
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set consisting of four vertices in the Petersen graph ( Petersen graph P, a(P) = 4).

Figure 1.9: a mazimal stable set Figure 1.10: a mazimum stable set

1.4 Complexity Classes

Since the majority of problems relating to graphs are NP-hard problems, so it is
worth interesting to highlight the different complexity classes of problems .

Class NP (Non-deterministic Polynomial:)

The class NP contains all decision problems for which solutions can be verified in
polynomial time [08|.

NP-complete Problems (NPC):

A problem is NP-complete if it is both in the class NP and every problem in NP
can be reduced to it in polynomial time [09].

NP-hard Problems (NPH):

A problem is NP-hard if it has the property that all problems in NP can be reduced
to it in polynomial time [10].

Figure 1.11 illustrates the Relationship between classes of complexity NP, NP-complete
and NP-hard.
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Figure 1.11: Relationship between classes of complezity

1.5 Distributed algorithms

Distributed algorithms are specialized algorithms designed for a group of indepen-
dent computing units, each executing its own code to achieve a common goal. These
algorithms operate under the premise of limited global state awareness, where each
process only has knowledge of its local state and possesses partial information about
the system. It is commonly assumed that processes can receive information from
others, but this information may become outdated due to system changes or sender
state alterations.

Classic problems addressed by distributed algorithms include [07]:

e Leader election: the process of selecting a known process in the system to
make decisions and act as a reference point.

e Information dissemination: the act of sending information to a group of
identified processes, necessitating specific communication primitives.

e Mutual exclusion: ensuring that shared resources are accessed in a serialized

and fair manner to prevent simultaneous use.

e Virtual topology construction: some algorithms are tailored for specific
topologies that aid in program execution control. However, real distributed
systems may lack these ideal topologies, requiring higher-level distributed al-
gorithms to virtually construct them.

1.5.1 Types of Distributed Algorithms

e Uniform Algorithm: In this type of algorithm, all processes execute the
same code.

e Semi-Uniform Algorithm: In a semi-uniform algorithm, all processes exe-
cute the same code except for one process that runs a different code.

e Non-Uniform Algorithm: In a non-uniform algorithm, each process has its
own unique code.

1.6 Self-stabilization

Self-stabilizing algorithms are distributed algorithm which ensure to fault tolerance
constraint. This enables a prominent approach in graph parameters computation.
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In what follows, we introduce such an approach and review its application in field
of graph theory.

Self-stabilization is a fault-tolerance technique that addresses transient faults in
a distributed system, it was introduced by E. W. Dijkstra in 1974. A distributed
algorithm is considered self-stabilizing if, from any initial state, it is guaranteed
to reach a correct state after a finite time, in other words, when a transient fault
(temporary interruption) affects one or more components, the algorithm may pass
transiently but an incorrect configuration known as an illegitimate configuration and
recover the correct execution (legitime state) in an infinite time [11].

Now, we present some self-stabilizing distributed algorithms that enable the con-
struction of dominant and independent sets in an arbitrary graph.

1.7 self-stabilizing distributed algorithms of domi-
nant and independent sets

Hedetniemi et al. [14] introduce few self-stabilizing distributed algorithms, for com-
puting a domnating set and maximal independent set. these one utilize a centralized
demon (coordinator). The proposed algorithms are straightforward and operate in
an arbitrary topology.

Turau [11] introduced two algorithms for calculating a Maximal Independent
Set (MIS) and a Minimal Dominating Set (MDS) using a distributed demon. Ad-
ditionally, Turau proposed an enhancement to improve the performance of these
algorithms.

Chiu et al. [20] recently proposed a self-stabilizing algorithm for the MDS prob-
lem that reaches a stable state with only 4n — 2 movements, utilizing a distributed
demon. This algorithm is simple and works in an arbitrary topology.

Goddard et al. [15] presented an algorithm for computing a Maximal Indepen-
dent Set (MIS) that is deterministic and utilizes a distributed demon. The algorithm
assumes that each node has a unique identifier. They also proposed an algorithm
to calculate a minimal dominating set (MDS) using a distributed demon. The algo-
rithm assumes that each node i has a variable (i) indicating whether the node is in
the dominating set S or not.

Neggazi et al. [16] presented an auto-stabilizing algorithm for calculating an
Independent Strongly Dominating Set (ISDS) in a graph, using a distributed demon
and operating in an arbitrary topology. Each node is assumed to have a unique
identifier ID. The idea of this algorithm is that a node 7 becomes dominant if it does
not have a stronger neighbor. In other words, it becomes dominant if it has the
highest degree and the highest identifier. The neighbors of i then become strongly
dominated nodes.

Srimani et al. [21] introduced a deterministic and uniform algorithm that com-
putes a minimal total dominating set (MTDS) in an arbitrary graph. The algorithm
employs a centralized demon and assumes that nodes have unique identifiers.

Huang et al. [19] presented an algorithm for finding an M2DS in an arbitrary
graph using a centralized demon. This algorithm is an extension of the result found
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Algorithme Resultat Anonymity Demons Complexity
Hedetniemi|8| DS Yes centralized | O(n)Mouvements (n-1 Mouv.)
Hedetniemi|8| MIS Yes centralized | O(n)Mouvements (2nMouv.)
Hedetniemi|8| MDS Yes centralized O(n?)Mouvements

Turaug] MIS No Distributed O(n)Mouvements

Turau8| MDS No Distributed O(n)Mouvements

Chiul8] MDS No Distributed | O(n)Mouvements (4n-2 Mouv.)

Goddard|[8] MIS Yes Distributed O(n)Rounds
Goddard|8] MDS Yes Distributed O(n)Mouvements
Neggazi[8] ISDS No Distributed |  O(n)Rounds (n+1 Round.)
Srimani|8| MTDS No Centralized not mentioned
Huang|§| MEKDS(K=2) No Distributed not mentioned
Lin|§| DKDS(K=2) No Centralized O(n")Mouvements

Table 1.1: Summary of the self-stabilizing algorithms present.

by Shukla et al. [18] that allows for the computation of an MIS, exploitaing the con-
cept of a Maximal Independent Set (MIS) can be viewed as a minimal I-dominating
set, therefore Minimal 2-Dominating Set (M2DS) is an extension of the MIS con-
struction problem.

Lin et al. [17] proposed a self-stabilizing distributed algorithm to find a Minimal
Distance-2 Dominating Set (MD2DS) in an arbitrary graph.

1.8 Conclusion

In this chapter, we have presented the basic concepts relative a graph tool and its

parmeteres. We have seen that almost decision problem relatives to these param-
eters determining are NP-Complete ones. Thus we use the distributed approach
to deal with heigh complexity and also de self-stablizing approach to deal with the
fault occur whenever we distributed the computation to seeral machines. To bet-
ter understand our problematic, the second chapter is devoted to the topic of fault
tolerance and recovery in distributed system.
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Chapter 2

Distributed Systems and Fault
Tolerance

2.1 Introduction

Fault tolerance in distributed systems constitutes a critical area of modern com-
puter science, where the reliability and availability of systems are paramount to
ensure continuous and effective operations. In an interconnected digital world, dis-
tributed systems are ubiquitous, powering our online interactions, cloud services,
social networks, and much more. However, these systems face a constant chal-
lenge: the possibility of hardware or software failures that could compromise their
normal operation. Fault tolerance aims to address this challenge by ensuring that
distributed systems can maintain proper functioning even in the presence of faults
or failures occurring at the level of individual components, such as servers, network
connections, or software.

This general introduction will explore the fundamental principles of fault tol-
erance in distributed systems, shedding light on the challenges encountered, the
strategies employed, and the implications of this discipline for the reliability and
resilience of modern computing infrastructures.
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2.2 Distributed systems

Distributed systems are defined as a collection of multiple independent systems
connected together as a single system. Each independent system has its own mem-
ory and resources, while some common resources and peripheral devices are shared
among the connected devices. The design of distributed systems involves connecting
all nodes or devices, even if they are located at long distances. The challenges faced
by distributed systems include fault tolerance, transparency, and communication
primitives [45].

Nodel
Node?2

Node3

Figure 2.1: Distributed system.

2.2.1 Types of fault distributed systems

e Transient Faults: Transient faults are characterized by their occurrence once
and subsequent disappearance. While they generally don’t cause substantial
harm to the system, they pose a significant challenge in terms of detection
and localization. The typical example of transient faults is the processor fault
[22].

e Intermittent Faults: Intermittent faults manifest as recurring occurrences,
where the fault arises, resolves on its own, and then recurs periodically. A
classic example of an intermittent fault is when a functioning computer freezes
intermittently [22].

e Permanent Faults: Permanent faults persist within the system until the
faulty component is replaced. While they have the potential to cause severe
damage to the system, they are relatively easy to identify. A prime example
of a permanent fault is a burnt-out chip [22].
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2.3 Fault tolerance system

A fault tolerance system is designed to maintain proper program execution and
continue functioning correctly even in the face of partial failures. While system
performance may be impacted by these failures, fault tolerance mechanisms aim
to ensure operational continuity [Bib45|. Failures in fault tolerance systems can
be attributed to hardware or software issues (Node Failure) or unauthorized access
(Machine Error). These events are categorized into performance, omission, timing,
crash, and fail-stop errors [45].

e Performance: Occurs when hardware or software components fail to meet
user demands .

e Omission: Involves components unable to execute specific commands .

e Timing: Refers to components failing to execute commands at the correct
time .

e Crash: Indicates components that fail without recovery .

e Fail-stop: When software detects errors, it halts the process, which is straight-
forward but may not handle complex situations effectively. Respond to the
different types of errors mentioned above, three distinct error scenarios can be
identified:

Permanent Error: Causes lasting damage to software components, re-
quiring program restarts after crashes .

Temporary Error: Results in brief software component damage, resolv-
ing over time to restore normal function .

Periodic Errors: Occur intermittently, like software conflicts when mul-
tiple programs run simultaneously, necessitating program exits to resolve con-
flicts.

Most computers incorporate fault tolerance techniques like microdiagnosis, parity
checking, and watchdog timers. Incompletely fault-tolerant systems may reduce
computing capabilities by removing programs or slowing down processes due to
hardware configuration issues or design flaws .

2.3.1 Replication mechanism

When considering fault tolerance, replication is commonly employed as a general
method to safeguard against system failures. Sebepou et al.[45] pointed out three
principal replication mechanisms, namely :

e State Machine: In this method, the process state of a computer system is
replicated across autonomous systems simultaneously. All replica nodes handle
data in a analogous or matching manner, ensuring coordination among them.
Additionally, all inputs are distributed to every replica at the same time. An
active replica serves as an illustration of a state machine .
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e Process Pairs: The process involves a master (primary)/slave (secondary)
relationship in replication coordination. The primary workstation assumes the
role of a master, transmitting its respective input to the secondary node. Both
nodes maintain a reliable communication link .

¢ Roll Back Recovery (Check-Point-Based): This mechanism momentar-
ily collects checkpoints and then transfers these checkpoint states to either a
stable storage device or backup nodes. This enables a roll back recovery to
be done successfully during or after the recovery process. The checkpoint is
reconstructed to its state prior to the most recent state .

2.3.2 Fault tolerance objectives :

e Availability: Availability refers to how ready and accessible the system is for
immediate use. It means the probability that the system is operating correctly
at any given time, so that it can perform its intended tasks for users. In simple
terms, a highly available system is one that is expected to be up and running
whenever it is needed [22].

e Reliability: Reliability is measured over a set timeframe, while availability
is an instantancous metric. A highly reliable system is expected to function
without interruption for a long duration. The distinction is subtle but impor-
tant. For example, a system that briefly goes down every hour would have
high availability at any moment, but low reliability over time due to the re-
peated outages. On the other hand, a system that shuts down for two weeks
every August may have high reliability when operational, but lower overall
availability that vear. So reliability and availability measure different things -
one tracks failure-free operation over time, while the other looks at the readi-
ness to execute tasks right now. They are separate metrics that can’t be used
interchangeably [22].

e Safety: Safety refers to preventing catastrophic events from happening, even if
the system experiences a temporary failure or malfunction. Safety is extremely
important in certain critical industries like nuclear power plants, spacecraft
systems, etc. These systems absolutely must maintain a high level of safety
because even a brief failure could lead to disastrous consequences. There have
been many historical examples that show how difficult it is to build truly safe
systems that never allow failures to cause catastrophes. Ensuring safety is
an ongoing complex challenge, as even momentary system failures cannot be
allowed to result in dangerous or catastrophic outcomes in these safety-critical
environments.

The key point is that safety goes beyond just system uptime or reliability -
it’s about ensuring no failures can cause catastrophic events, no matter how
brief the failure is. This makes achieving true safety an immense challenge,
especially for critical systemsr [22].

e Maintainability: Maintainability refers to how easily a failed system can be
repaired and restored to proper working condition. A system with high main-
tainability can be fixed quickly and efficiently after a failure occurs. Maintain-
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able systems often also have high availability, especially if they can automati-
cally detect and recover from failures on their own. An ideal scenario is for the
system to repair itself without manual intervention. However, achieving this
level of automatic recovery from failures is very difficult in practice. While
self-healing systems are the goal, implementing this level of maintainability is
a major challenge. So in summary, maintainability focuses on how rapidly a
broken system can be repaired and made operational again after a failure, ei-
ther through manual repairs or ideally through automatic recovery capabilities
built into the system itself[22].

2.3.3  Fault handling steps

The fault handling approahc involves the following steps(see Figure 2.2 ):

Fault Detection: Fault detection represents the initial phase of continuous
system monitoring. It involves comparing actual outcomes with expected ones,
and any discrepancies are promptly identified and notified. These faults may
arise from hardware failures, network issues, or software malfunctions. The
primary objective of this phase is to swiftly detect faults as they arise to
prevent delays in assigned tasks. [22].

Fault Diagnosis: Fault diagnosis entails thoroughly examining the fault iden-
tified in the initial phase to determine its root cause and likely characteristics.
This process can be carried out manually by an administrator or through au-
tomated techniques to rectify the fault and fulfill the designated task. [22].

Evidence Generation: Evidence generation refers to the process of compil-
ing a fault report based on the diagnosis conducted in a preceding phase. This
report outlines the causes and characteristics of the fault, potential solutions
for resolution, as well as alternative measures and preventative actions to be
taken into account. [22].

Assessment: Assessment involves analyzing the damages resulting from faults.
This evaluation often relies on messages relayed from the affected component.
Subsequent decisions are then based on this assessment. [22].

Recovery: Recovery is the endeavor to restore the system to a fault-free state.
This involves implementing various techniques such as reconfiguration and
resynchronization, aiming to return the system to both its forward recovery
and backup recovery states [22].
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Fault
Detection

Fault
Diagnosti

Recovery

Evidence
Generation

Figure 2.2: Distributed system fault dealing.

2.3.4 Fault-tolerant mecanism

Hardware Fault Tolerance: Hardware fault tolerance involves the pro-
vision of additional backup hardware components such as CPUs, memory,
hard disks, and power supply units. While hardware fault tolerance can’t
prevent or detect errors like accidental program interference or program er-
rors, it provides a backup system for hardware failures. Systems employing
hardware fault tolerance automatically address faults arising from hardware
components. Typically, this technique divides the system into units, each
equipped with redundant backup, so if one module fails, others can assume
its function. Two common approaches to hardware fault recovery are Fault
Masking and Dynamic Recovery [45].

Software Fault Tolerance: Software Fault Tolerance refers to a strat-
egy employed to mitigate errors in software systems. It involves utilizing
specialized software to identify and rectify invalid output, runtime glitches,
and programming mistakes. This approach employs both static and dynamic
techniques for error detection and resolution. Additionally, Software Fault
Tolerance incorporates mechanisms like recovery rollback and checkpoints to
enhance resilience [45].

System Fault Tolerance: System fault tolerance encompasses a compre-
hensive system that not only stores checkpoints but also detects errors within
applications. It automatically stores memory blocks and program checkpoints.
In the event of a fault or error, the system offers a corrective mechanism to rec-
tify the error [45]. the table2.1 illustrates Comparison of three fault tolerance
mechanism.
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detecting and correcting

Mechanism Hardware Fault Tolerance Software Fault Tolerance System Fault Tolerance
Major technique Hardware backup | Checkpoint storage | Architecture with error
Rallback
Design complexity Low Medium High
Time/cost expenditure Low Medium High
Fault-tolerance Level Low Medium High

Table 2.1: Comparison of fault tolerance mechanism.

2.4 Fault tolerance in distributed computing system

A distributed computing system with fault tolerance refers to a network of intercon-
nected and autonomous computing entities that collaborate to achieve a common
goal despite potential failures. Fault tolerance in distributed computing involves the
ability of the system to continue operating reliably even in the presence of faults or
failures, ensuring uninterrupted service and preventing catastrophic system break-
downs.

2.4.1 Exemple of Blockchain:

The blockchain technology can also be considered as an example of a distributed
computing system with a certain degree of fault tolerance, although fault tolerance
in this context is somewhat different from that of other systems.

Blockchain is a decentralized and distributed database that contains an im-
mutable ledger of transactions, spread across multiple network nodes. Each block
of transactions is cryptographically linked to the previous one, thus forming a chain
of blocks.

Fault tolerance in a blockchain relies on the principles of decentralization and
distributed consensus. Here’s how it works:

Decentralization: In a blockchain, data is replicated across many network nodes,
meaning there is no single point of failure. Even if some nodes fail, others continue
to operate normally, ensuring continuous availability of data and services.
Distributed consensus: Blockchains use distributed consensus algorithms, such
as proof of work or proof of stake, to reach agreement on the state of the ledger and
the validity of transactions. These mechanisms help maintain the integrity of the
blockchain even in the presence of malicious or failing nodes.

Although blockchains are designed to be resilient to faults and attacks, they are
not entirely immune. Issues such as chain forks and 51 attacks can compromise the
security and availability of the network under certain circumstances. However, secu-
rity mechanisms and consensus protocols continue to evolve to strengthen blockchain
resilience against these potential threats.

We can classify distributed computing solutions into two gategories, Checkpoint-
Based and checkpoint free ones.

2.4.2 Checkpoint-Based Solutions:

Checkpoint-based solutions involve the system creating checkpoints or maintaining
replicas during normal execution. These checkpoints or replicas are utilized for
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recovery in case of failure[26].

Systems like Pregel|30|, GraphLab, GraphX, and PowerGraph employ checkpoint-
based approaches to tolerate failures. They periodically create checkpoints during
normal execution and reload the latest checkpoint upon failure.

There exists several techniques to improve Checkpoint-Based techniques such as
lightweight check-pointing reduce the volume of checkpoint data by saving vertices
and incrementally storing edges. Other strategies, like unblocking checkpointing,
aim to decrease the overhead associated with blocking checkpoints. For example,
CoRAL applies unblocking checkpointing to asynchronous graph processing systems.

While checkpoint-based solutions are effective in tolerating failures, they can
incur significant overhead. These methods may not be suitable for all scenarios,
particularly those involving topological mutations.

2.4.3 Checkpoint-Free Solutions:

Checkpoint-free solutions achieve failure recovery without relying on checkpoints or
replicas. Instead of storing checkpoints, these solutions employ alternative methods
for recovery |26]. Optimistic recovery, proposed by Schelter et al.[42], reloads lost
partitions from input data and applies compensations algorithmically upon failure.
Zorro [43|utilizes implicit replicas of vertices to recover lost vertex values and accel-
erate recovery. Phoenix [44]classifies existing graph algorithms into categories and
provides tailored APIs for each category to achieve failure recovery.

Checkpoint-free solutions offer advantages such as reduced overhead and im-
proved efficiency in recovery, especially in scenarios involving topological mutations.
However, they may require careful consideration of the recovery process and its
impact on system performance.

2.5 Literature review

Xu, Chen, et al.|26] proposed ACF2 to address the limitations of checkpoint-free
solutions. ACF2 introduces two key components: a partition-aware backup strategy
and an incremental protocol. Unlike traditional methods that require reloading input
data, the partition-aware backup strategy retrieves lost sub-graphs directly from
backups stored on the DFS (Distributed File System). This approach minimizes the
recovery overhead typically associated with checkpoint-free solutions.

Shenet al.[23] proposed an innovative approach for rapid failure recovery within
distributed graph processing systems. Their task involved emphasizing the neces-
sity for an effective recovery strategy and advocating for parallelizing the recovery
process to align with the evolving demands of modern graph-based Big Data appli-
cations. The article outlines a novel method involving partitioning the lost graph
components among a subset of operational nodes to enhance system performance
compared to conventional checkpoint-based methods. Their notable contributions
include formalizing the issue of failure recovery, introducing a partition-centric re-
covery approach, and proposing a parallel recovery mechanism.

Han et al.[57] propose a comprehensive evaluation framework for Pregel-type
graph processing systems, focusing on Giraph, GPS, Mizan, and GraphLab. Their
study systematically compares these systems by analyzing their use of graphical
and algorithmic optimizations to efficiently handle large-scale graph processing. By
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assessing performance metrics such as execution time, scalability, and resource uti-
lization, the evaluation provides a detailed and balanced comparison. This approach
aims to inform users and researchers about the most suitable systems for various
graph processing tasks within distributed computing models.

Yinghua Tong et al.[24] focuses on a fault tolerance mechanism tailored for clus-
ter heads in wireless sensor networks. This mechanism integrates static backup and
dynamic timing monitoring to enhance reliability and fault detection capabilities.
It introduces a CH reliability model based on the Markov model, determines the
minimum required number of CHs for reliability, and quantitatively analyzes energy
consumption and latency. The study’s contributions lie in its innovative approach to
improving fault tolerance for cluster heads, offering practical and theoretical insights
in the field.

Weiyu Zhong et al.[25] offers a comprehensive review of Byzantine Fault-Tolerant
(BFT) consensus algorithms, which are crucial for ensuring safety and liveness guar-
antees in distributed systems. The study of BFT algorithms has gained significant
attention due to the rapid growth of blockchain applications, as they enable toler-
ance of arbitrary faults in server actions. The paper delves into fundamental BET
algorithms that achieve consensus and fault tolerance, including classic consensus
algorithms such as PBFT and Hotstuff. These algorithms have been widely imple-
mented in blockchain applications, providing high throughput and low latency. How-
ever, they also face challenges such as bad behavior of master nodes, high network
communication overhead. and low system flexibility. The paper also discusses im-
provements to the PBFT consensus algorithm, including those based on blockchain
technology, which can enhance the performance and reliability of BET algorithms.

Since sensor and Internet of things(IOT) are two sensitives area of distributed
system, it worth interesting to review the articles that addressed the Fault-tolerance
in such domains.

2.5.1 Fault tolerance in sensor networks

Wireless Sensor Networks (WSNs) consist of decentralized arrays of small, energy-
efficient devices furnished with sensors, processors, and wireless communication ca-
pabilities. These sensors are strategically dispersed throughout a geographic region
referred to as the coverage zone or areas of interest [31]. Collaboratively, they
gather, analyze, and relay data pertaining to the surrounding environment or sys-
tem to a central device known as a sink node or base station. This central node
further processes the data, often computing key metrics such as maximum, average,
or median values [32].

Fault tolerance in sensor networks refers to the network’s ability to continue
operating reliably despite hardware or software failures that may occur in individual
sensors or within the network itself. As sensors are often deployed in harsh and
dispersed environments, they are susceptible to various types of failures, such as
sensor failures, radio interference, communication losses, etc[33]. To ensure fault
tolerance in sensor networks, several techniques can be utilized:

e Sensor Redundancy: Data is collected by multiple sensors, and in the event
of one sensor failure, others can take over to ensure continuity of data collec-
tion.
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e Resilient Routing: Routing protocols in sensor networks can be designed to
account for failed nodes or degraded communication links by selecting alternate
paths to transmit data.

e Auto-Configuration and Self-Repair: Sensor networks can be equipped
with auto-configuration and self-repair mechanisms, where defective sensors
can be automatically detected and replaced without human intervention.

e Energy Conservation: Energy management protocols can be used to extend
the lifespan of sensors in case of failures by adjusting energy consumption and
disabling non-essential sensors.

e Congestion Control Protocols: To avoid network congestion that could be
caused by failures or faults, congestion control protocols can be implemented
to regulate data flow and prevent bottlenecks.

By incorporating these and other techniques into the design and deployment of
sensor networks, it is possible to ensure effective fault tolerance and maintain the
reliability and availability of collected data even in challenging environments.

2.5.2 Fault tolerance approaches in wireless sensor networks
and 10T

2.5.3 Checkpoint Approach

Belkadi, et al.[36] introduced a novel method for fault tolerance in WSNs, comprising
two distinct phases. The initial phase identifies critical nodes within the network
whose failure substantially impacts network performance. Subsequently, the second
phase implements an augmentation technique to sustain network connectivity in the
event of failure of one of these critical nodes.

In[37]A. Ghaffari and S. Nobahary . proposed a new method focusing on a fault
detection method in clustered wireless sensor networks utilizing a genetic algorithm.
The proposed method is based on a majority vote mechanism that can accurately
detect permanently faulty sensor nodes. It emphasizes high accuracy and low false
alarm rates in identifying faulty nodes within the network clusters.

In [38],Fan et al. introduced an optimized machine learning technology scheme
for fault detection in wireless sensor networks. Additionally,Fan et al. propose an
innovative approach to enhance fault detection in these networks by integrating
Particle Swarm Optimization (PSO) with machine learning. The authors present a
novel technical solution that combines evolutionary computing and machine learning
to address the challenge of fault detection in data collection within wireless sensor
networks

Rajasegarar, Sutharshan, et al. [39]proposed a solution to the challenge of iden-
tifying misbehavior in wireless sensor networks, focusing on monitoring, fault diag-
nosis, and intrusion detection. Their approach involves a distributed, cluster-based
anomaly detection algorithm aimed at minimizing communication overhead and
energy consumption. By clustering sensor measurements and merging clusters be-
fore transmitting cluster descriptions to other nodes, they reduce communication
requirements.
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Cheng, Yong, and colleagues.[40] proposed a novel fault detection mechanism for
sensor networks that addresses the limitations of existing approaches, which often
result in low precision and high complexity. To improve fault detection, they intro-
duced a mechanism based on support vector regression and neighbor coordination.
The mechanism builds a fault prediction model using support vector regression and
meteorological data from a multi-sensor. This model generates residual sequences
that are used to identify node status through mutual testing among reliable neigh-
bor nodes. The proposed mechanism also reduces communication to sensor nodes
and is suitable for fault detection in meteorological sensor networks with low node
densities and high failure ratios.

Munir, Arslan, Joseph Antoon, and Ann Gordon-Ross [41] proposed a fault-
tolerant approach for Wireless Sensor Networks (WSNs) to meet the application
requirements of lifetime and reliability. They utilized NS-2 to simulate fault de-
tection algorithms and develop Markov models for reliability characterization. The
study emphasizes the significance of integrating fault detection and fault tolerance
in modeling Fault-Tolerant (FT) WSNs and provides insights into future research
directions for enhancing the reliability and trustworthiness of WSNs. The results
demonstrate that an FT WSN comprising duplex sensor nodes can notably enhance
Mean Time to Failure (MTTF) and reliability compared to a Non-Fault-Tolerant
(NFT) WSN.

2.5.4 Conclusion

In this chapter, we have address fault tolerance in distributed systems from various
perspectives.First, We hae defined distributed systems and examined their basic
concepts.  Additionally, we have looked into distributed computing systems and
their fault tolerance, highlighting the specific challenges encountered in this domain.
Finally, we have explored fault tolerance in sensor networks.
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Chapter 3

Topological fault tolerance approach
in distributed computing system

3.1 Introduction

In an increasingly interconnected world where computer systems play a crucial role
in our daily lives, fault tolerance becomes a major concern. Failures, whether due
to hardware malfunctions, software errors, or malicious attacks, can seriously com-
promise system operation, causing disruptions and significant damage. Yet, even
in a fault-prone environment, it is imperative that computer systems continue to
function reliably and efficiently.

In this chapter, we will explore an effective approach, based graph topological,
for fault tolerance in distributed computing system. The approach consists of dis-
tributing checkpoint in some selected nodes while assign to each one a guard that
replace it whenever a fault occurs. In this case we consider a maximal independent
set as the coordinator nodes, in which the checkpoints are saved, while implementing
distributed algorithms that allows computing a maximal dependent set, assigning
guards and ensure a network decomposition that enable an equiload-balancing be-
tween selected nodes. The efficiency of the proposed approach is validated in large
graphs and its validity is highlighted in a case study of a real distributed system.

In what follows, we explain our approach based distributed checkpoint to ensure
failure recovery and tolerant in distributed system .
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3.2 A distributed checkpoint based approach for fault
tolerance in distributed system

As aforementioned, the first step of the proposed approach consists on selecting the
set of nodes in which the checkpoints are saved. For that, we opt for a maximal
independent set which computing using Luby’s algorithm.

3.2.1 Maximal independent set computing

The Luby’s algorithm, pioneered by Michael Luby, is a probabilistic method for
approximating a Maximum Independent Set (MIS) in a graph. It assigns random
probabilities to each vertex and then selects vertices to form a maximum indepen-
dent set using a probabilistic greedy strategy. While it provides a polynomial-time
approximation, the resulting set’s size may vary. This algorithm is utilized when
precise accuracy is not crucial, but a rapid solution is required [47].

3.2.1.1 Distributed Luby’s Algorithm for MIS Determining

Algorithm 1 Distributed MIS
1: [ + 0 Input: Graph(V, E)
Output: A maximal independent set [ € V.

2: status(v) — undecided

3: while status(v) — undecided do

4:  status(v) = ves // belongs to MIS

5:  if d(v) =0 then

6: status(v) = yes // belongs to MIS

7. else

8 v marks itself with probability 1/(2d(v))
9: end if

10: end while

11: Round 1:{

12: notifies neighbors that it is marked and also sends its current degre

13: if v receives a message from a marked neighbor of higher degree (or equal degree
but higher ID) then

14: v unmarks itself

15: end if

16: if v is still marked then

17:  status(v) — yes

18: end if}

19: Round 2:{

20: v notifies all neighbors its status

21: if v receives a message from a neighbor that is in MIS then

22:  status(v) = no

23: end if}

In what follows, we provide the distributed running of Luby’s algorithm.
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Distributed Luby’s Algorithm for MIS computing

e The algorithm operates in synchronous rounds, grouped into phases. A single
phase is as follows:

— Node v marks itself with probability 2/d(v), where d(v) is the current
degree of v

— If no higher degree neighbor of v is also marked, node v joins the MIS. If
a higher degree neighbor of v is marked, node v unmarks itself again. (If
the neighbors have the same degree, ties are broken arbitrarily, e.g., by
identifier).

— Delete all nodes that joined the MIS and their neighbors, as they cannot
join the MIS anymore.

For example, in the graph of figure 3.1 we have d(A) < d(B) then we kept the

node B in MIS and reject A .
O O O O d(A)<d(B) Q 2C> O O

_. —) |
Qo-o ®30“O

Figure 3.1: Coordination between neighboring nodes

e The Correctness in the sense that the algorithm produces an independent set
is relatively simple: Steps 1 and 2 make sure that if a node v joins the MIS,
then v’s neighbors do not join the MIS at the same time. Step 3 makes sure
that v’s neighbors will never join the MIS.

e The algorithm halts when the state of each node is different to undecided.

3.2.2 The Complexity of Luby’s Distributed MIS Algorithm

Luby’s Distributed MIS Algorithm offers an efficient solution to the maximal in-
dependent set problem in distributed systems. With an expected time complexity
of O(logn) and a high probability time complexity of O(logd - logn), where n is
the number of vertices and d is the maximum vertex degree, the algorithm ensures
scalability and practicality. It operates efficiently for large graphs, with logarithmic
time relative to the number of vertices, and also achieves logarithmic time complex-
ity with high probability concerning both the maximum degree and vertex count.
This highlights the algorithm’s effectiveness and adaptability in various network
configurations and graph sizes within distributed computing environments [48|.
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3.2.3 Simulated Annealing for Graph Optimization

Simulated Annealing (SA) is an optimization technique inspired by the annealing
process in metallurgy, where a material is heated to a high temperature and then
slowly cooled to remove defects, thereby reaching a stable, low-energy state. The
technique mimics the physical process of annealing by allowing the algorithm to
probabilistically accept worse solutions early on, facilitating the escape from local
optima, and focusing more on the exploitation of the best solutions as the process
progresses.

Simulated Annealing is particularly effective for optimization problems that have
a large search space and may contain many local optimum.

In this context, we apply Simulated Annealing to enhance the Maximum Inde-
pendent Set (MIS) solution obtained from Luby’s algorithm.

3.2.3.1 Simulated annealing for Luby MIS

Algorithm 2 Simulated annealing for Luby MIS

1: I + 0 Input: Graph G=(V, E), Xy < —Luby(G(V, E))

Qutput: An optimized maximal independent set X, € V.

Initialization:

T = 1000 //

Xp = zero[n] // Vector of n zeros

while 7' > 1 do

6: Reset G(V,E) // reset the graph to its initial state

X,, < —neighbo__solution(Xy)

& F(X,) // Evaluate the fitness of the new solution by summing the elements
of the solution vector.

9:  Validity Check(X) // Ensure the new solution is valid by checking that no
two nodes in the MIS are adjacent.

10:  r < —Randomnumberbetweenlandl

11: C:F(Sf\r)—F(So)

122 if (A>0o0rr<e @D then

LS LI - I ]

o

13: So < =Sy

14: if (Sn > Sb) then
15: Sy < =S,

16: end if

17:  end ifupdate(T) // Use the Boltzmann factor (np.e(=2/T))
18: end while

3.2.3.2 Algorithm Process:
0. Initialization:
e The process begins by obtaining an initial solution using Luby’s algo-
rithm.

e An initial high temperature (temp = 1000) is set to permit wide explo-
ration of the solution space.
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e A decay rate (alpha = 0.9) is defined to control the rate of temperature
reduction.

0. Iteration

e Graph Reset: For each iteration, reset the graph to its initial state.

e Solution Generation: Run Luby’s algorithm on the reset graph to gener-
ate a new potential solution

e Fitness Calculation: Evaluate the fitness of the new solution by summing
the elements of the solution vector.

e Validity Check: Ensure the new solution is valid by checking that no two
nodes in the MIS are adjacent.

e Acceptance Probability: Calculate the change in fitness (delta) between
the new solution and the current solution. Use the Boltzmann factor
(np.exp(-delta / temp)) to probabilistically decide whether to accept the
new solution, allowing acceptance of worse solutions early in the process.

e Update Solution: If the new solution is accepted, update the current
solution. If it improves upon the best known solution, update the best
solution.

e Temperature Decay:Reduce the temperature by multiplying it by the de-
cay rate (alpha).

0. Termination:

e Continue the process until the temperature drops below a certain thresh-
old (eg., T > 1).

e The best solution found during the process is retained as the optimized
result.

3.3 Performance Comparison: Luby’s Algorithm and
Simulated Annealing Method

In the context of computing the maximum independent set (MIS), we have assessed
the performance of two approaches: Luby’s algorithm and a simulated annealing
method. We conducted a series of tests on graphs of varying sizes, ranging from 16
to 500 nodes. Luby’s algorithm, known for its efficiency in graph theory, employs
a probabilistic approach to identify a maximum independent set. The table below
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summarizes the results obtained using Luby’s algorithm, highlighting the number of
MIS nodes determined and the total execution time for each graph size.

number of node 16 30 50 100
number of MIS node 6 10 12 13
total execution time | 235 | 338 | 2378 21.13

Table 3.1: Performance of Luby’s Algorithm on Different Graph Sizes.

Compared to the simple execution of Luby’s algorithm, the simulated annealing
method generally yielded larger maximum independent sets, particularly for larger
graph sizes. However, this improvement in solution quality came at the cost of
increased execution time, as the annealing process required additional computational
effort to explore and refine the solutions. The table below illustrates the performance
of the simulated annealing method, showcasing the number of MIS nodes obtained
and the corresponding execution times for each graph size.

number of node 16 30 50 100
number of MIS node 8 12 15 18
total execution time | 6035 175.13 | 646.12 758.31

Table 3.2: Performance of Simulated Annealing Method on Different Graph Sizes.

3.3.1 Augmented Luby’s Algorithm: Introducing Fault Tol-
erance with Guard Nodes

To ensure resilience against failures, we have developed a new algorithm that aims
to designate guards to replace failing nodes in the maximum independent set (MIS).
This approach guarantees the persistence of critical functions in a distributed en-
vironment, even in the event of hardware or software malfunctions. The proposed
algorithm to ensure this resilience in the designation of guards to replace failing
nodes in the maximum independent set (MIS) can be described as follows:
Replacement Selection: When a MIS node is identified as failing, the other
members of the maximum independent set take action to replace it. They select
a replacement from among the available neighbors based on well-established crite-
ria. First, the neighbor with the highest degree is chosen to ensure continuity in
monitoring. In case of a degree tie, priority is given to the node with the lowest
ID. Furthermore, if multiple failing MIS nodes share a neighbor with the maximum
degree, that neighbor is selected as the replacement to ensure consistency and effi-
ciency of the monitoring,.

The procedure that allows guard attributing is called automatically after adding a
node to the MIS and it work as follows.

Notice that the procedure is also called after each iteration of Simulated annealing
whenever a MIS node is replaced.

Exemple. The graphs in following Figures explain the mechanism of guard
selection. In the graph of Figure 3.2, the algorithm selects the maximal node degree
which is the node 4. Whenever the maximal degree is confused between several
nodes, the algorithm chooses the minimal identifier one (see Figure 3.3). confused
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Algorithm 3 Procedure for Guard Designation in Maximum Independent Set (MIS)
with Fault Tolerance

1: Input: Graph(V, E)

2: Qutput: Guards set of the maximum independent set (MIS)

3: if v has not already a guard in its neighborhood then

4: v Send message its max degree neighbor: "You are guard"
5:  Wait for message of guard designation confirmation

6:  if message received then

7 mazge fgre(V).guard < =True

&  end if

9: end if

'Y 0 ®s

Q [© d(a)>d(8) \f_‘) a3

®  “® ® "o
. .d(8) =2 . .d(f” =2

Figure 3.2: case of marimum degree

Note also Once the replacement is designated, all members of the maximum
independent set send a message to the new guard to complete the tasks.

If the MIS node fails, the newly appointed sentinel responds immediately by
not only sending the MIS node messages to all neighbors of the failed node, but
also these neighbors send a message to the sentinel to take over. This approach
aims to maintain maximum continuity Independent cluster monitoring operations
despite node failure, thus ensuring the robustness of the distributed system even
under degraded conditions.

Exemple 3.4. The graph in Figure 3.4 represents node Mis 1 has broken down the
guard node 2 has to be replaced by making the node MIS tasks
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Figure 3.3: case of equal degrees
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Figure 3.4: replace MIS node failure

3.4 Network Equilibrium Achieving

In simple terms, an equilibrium state is reached in a network whenever:

3.4.1 Balanced Allocation of Nodes

The balancing problem among nodes entails determining the optimal allocation of
common neighboring nodes to different designated nodes. It involves deciding which
designated node should be assigned the common neighboring nodes to ensure a
balanced and efficient distribution of loads.

3.4.2 Adherence to Thresholds
Each MIS node adheres to the following defined thresholds:
0. Minimum Threshold: This is equal to the minimum degree of the graph.
0. Maximum Threshold: This is calculated as: (Totalsize - (Number of MIS
nodes + Number of already assigned guards)) / Number of MIS nodes.
3.4.3 Equitable Distribution

By following these thresholds, each MIS node receives an equitable share of adjacent
nodes. This ensures a uniform distribution of assignments and prevents any overload
or under-utilization of nodes within the network. In summary, the equilibrium state
is achieved when the allocation of adjacent nodes to the MIS nodes is balanced, and
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each MIS node stays within the defined minimum and maximum thresholds, leading
to a fair and efficient distribution of resources across the network.

3.4.4 Drawbacks of Balanced Allocation

While the balanced allocation of nodes to MIS nodes is an effective approach to
achieving equilibrium in a network, there are some drawbacks to consider. One of
the main issues is that certain nodes MIS may reach their maximum threshold while
others do not, leading to some nodes remaining unaffected in the graph. This can
occur when unaffected nodes are solely adjacent to nodes MIS that have already
reached their maximum threshold.

3.4.5 Solution to Imbalance

In such scenarios, the only solution to balance the allocation is to assigned these
unaffected nodes (which are adjacent to MIS node) to the corresponding node MIS,
even if it means deviating from the strictly defined thresholds. This approach ensures
that all nodes in the network are utilized, preventing any overload or underutilization
of nodes within the network.

o @ @ 0
Qoooﬁooo

OO0H® O® O

Figure 3.5: Load Balancing Problem
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The algorithm that allows equiload balancing achieving is as follows.

Algorithm 4 Equiload balancing

1: Input: Graph(V,E),MIS node M, MaxT

[

: Output: S = {S;}
a network decomposition such as each node v; is assigned to only one components
S;

. status(v) = unassigned

4: while status(v) = unassigned do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

v send message to all MIS neighborhood to have theirs components order |S;|.

all MIS send their components |S;| to v.
v send message to the MIS of Minimal order.
if |S;| <= MaxzT then
while |S;| <= MazT do
MIS send acceptance message to v;.
Si = S;U{vs}
end while
MIS send rejected message to all remaining node .
else
v send imergency message to MIS
end if
if v receive acceptance message then
status(v) = unassigned
end if
if MIS receive imergency message then
MIS send acceptance message to v.
S,; = Sl‘ U {'L‘}
end if

24: end while

Figure 3.5 illustrates the process of assigning nodes to Maximum Independent Set

(MIS) nodes to achieve a balanced allocation in a network. The node red represent
MIS node ,and green nodes represent the guard node, The algorithm ensures that
nodes adjacent to MIS nodes are assigned to them, even if it deviates from predefined
thresholds, to prevent overload or underutilization of nodes.
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Figure 3.6: Balanced Node Allocation to Mazimum Independent Set (MIS) Nodes

3.5 Approach simulation

Now, we simulate the proposed approach and evaluate its performance. Beginning
by presenting our development environment.

3.5.1 development tools:
In this part, we will specify the tools used to develop our application:

0. Hardware platform:The implementation of the application is carried out on
a laptop computer having the following characteristics:

o Machine: HP

e Processor: 15-8250U

e Frequency: 1.60GHz 1.80 GHz
e RAM: 8.00 GB

e Graphics card: Intel(R)

e Operating system: Windows 11 Professional

3.5.2 Programming Languages and Development Tools

To develop our simulation, we used Python as the primary programming language
due to its simplicity and power for data processing and modeling. The integrated
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development environments (IDEs) Spyder and Google Colab were chosen for their
complementary features.

e Spyder : is a powerful IDE for Python, particularly suited for scientific de-
velopment. It offers an advanced code editor, debugging tools, and interactive
execution capabilities, making it an ideal choice for the initial development
phase of our simulation.

e Google Colab : is a cloud-based platform that allows running Python code
in a Jupyter Notebook environment. Colab is particularly useful for real-time
collaboration and access to powerful computing resources without complex
hardware setup. It is also convenient for saving and sharing notebooks, facili-
tating documentation and reproducibility of results.

To keep the results of our simulation, we used Python functions that let us write
to text files. By using Python, Spyder, and Google Colab together, we were able to
take advantage of each tool’s strengths. This gave us a solid and flexible solution
for creating our complex simulation, running it, and saving the results.

3.5.3 Testing and Evaluation

We present a detailed evaluation of the system’s performance using MIS nodes for
distributed computations, along with node removal experiments to test the system’s
resilience. This evaluation is essential to understand the efficiency of our approach
in parallel and distributed computing environments. Figure 3.7 illustrates the ini-
tial graph visualizing the MIS nodes, where the nodes belonging to the Maximal
Independent Set are colored in red.

Figure 3.7: the initial graph
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3.5.4 Matrix Multiplication by MIS Nodes

We begin by describing the process of matrix multiplication by the MIS nodes. Each
MIS node computes the product of two square matrices, cach with a size equal to
the number of nodes allocated to that MIS node. Subsequently, each allocated node
(neighbors after rebalancing) computes the product of each row of the first matrix
with the second. The results are then transmitted to the corresponding MIS node,
which forwards them to the guardian node for storage.Figure 3.8 illustrates this task
distribution process The node red represent MIS node ,yellow node represent the
neighbours by MIS node selection, and green nodes represent the guard node.

Figure 3.8: Sending tasks to allocated nodes by an M1S node 4
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3.5.5 Node Removal Experiment

in our simulation, we have removed node 19 and replaced its guard (node 16). Node
19 was a part of the list of MIS nodes, and its removal required a replacement to
maintain the system’s functionality. Node 24 was selected as the replacement guard
for node 44. Figure 3.9 illustrates this process.

Failed MIS Node 24 - Guard and Workers

Figure 3.9: Node removal and replacement: Node 24 removed, Node 44 replaced as guard
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3.5.6 Update of the New Node List

Following the removal and replacement operations, the updated list of MIS nodes
is as follows: MIS Nodes updated: [0, 3, 4, 6, 18, 21, 44, 29, 30, 32, 43, 45, 49].
By updating the MIS node list in this manner, we ensure that the system remains
resilient and can continue to operate effectively even in the face of node failures.
Figure 3.10 depicts the updated node list. The node red represent MIS nodes new
,and green nodes represent the guard node.

Figure 3.10: Updated MIS node list after removal and replacement

3.5.6.1 Selection of Nodes

Random Selection: Randomly select a fixed percentage of MIS nodes for removal
to simulate random failures or drops in a real-world scenario. Replacement Strat-
egy: Node Guard Replacement: Introduce "node guards" as replacements for the
removed MIS nodes. Node guards are designed to take over the responsibilities of
MIS nodes seamlessly.

Test Cases:

Baseline (0% Removals): No nodes are removed. This serves as a control sce-
nario to measure the system’s performance under normal conditions.

Mild Impact (20% Removals): Remove a small percentage of nodes to observe
how the system copes with minimal disruptions.

Moderate Impact (30% Removals): Remove a moderate percentage of nodes
to challenge the system’s resilience and the effectiveness of guardian nodes.
Significant Impact (50-60% Removals): Stress the system by removing a higher
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percentage of nodes.

Severe Impact (70% Removals): Test the system’s limits by removing a sig-
nificant percentage of nodes, evaluating its ability to maintain functionality under
heavy stress.

Severe Impact (More than 80% Removal): Test the system’s limits by remov-
ing a significant percentage of nodes, simulating a critical failure scenario.

3.5.7 Testing Results

We tested our approach on a graph of 200 nodes with 22 identified MIS nodes as
follows: MIS Nodes: [14, 15, 31, 52, 66, 74, 78, 83, 85, 88, 90, 102, 109, 111, 123,
150, 169, 175, 180, 184, 189, 196]

Assigned Guards: {15: 35, 31: 20, 52: 110, 14: 48, 66: 35, 74: 163, 78: 35, 83: 20,
85: 20, 88: 176, 90: 48, 102: 163, 109: 48, 111: 35, 123: 20, 150: 35, 169: 35, 175:
176, 180: 35, 184: 48, 189: 56, 196: 48}

The recorded times for the matrix multiplication task under different test cases are

as follows: The results from both tables show that the execution times (Table [3.3])

Percentage of MIS Removed | 20% | 30% | 40% | 60% | 70% | 80% | 90% | 100%
Removed MIS nodes 4 6 8 13 15 17 20 22
Total Execution Time (s) 25.53 | 25.83 | 25.38 | 23.76 | 23.31 | 23.02 | 22.96 | 21.96

Table 3.3: Execution times for different percentages of guard nodes

Percentage of MIS Removed | 20% | 30% | 40% | 60% | 70% | 80% | 90% | 100%
Removed MIS nodes 4 6 8 13 15 17 20 22
Repair Time (s) 34.26 | 43.853 | 53.54 | 80.37 | 91.05 | 98.57 | 100.61 | 120.6:

Table 3.4: Repair times for different percentages of MIS nodes removed

remain relatively stable and even slightly decrease as the percentage of removed
MIS nodes increases. In contrast, the repair times (Table increase significantly
with the percentage of removed MIS nodes. This indicates that while the system
maintains performance in terms of execution time due to the replacement of MIS
nodes with guard nodes, the repair times still rise with higher removal percentages.
This suggests that the introduction of guard nodes effectively stabilizes execution
time .

3.5.7.1 Visual Representation

To further illustrate the impact of removing MIS nodes on computation time, we
present a plot. Figure 3.11 visually represents the relationship between the percent-
age of removed MIS nodes and the total execution time, providing a clear under-
standing of the system’s performance under different scenarios.
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Figure 3.11: Ezcution time vs percentage of removed mis node

3.6 Implementation

After evaluating the performance of our proposed algorithms through simulations,
we explored the practical implementation of our solutions in a real-world scenario.
One of the key components in building distributed systems and enabling communi-
cation between different nodes or processes is the sockets.

3.6.1 High Availability and Fault Tolerance in Distributed
Systems:

3.6.2 Overview:

High availability and fault tolerance are critical aspects of distributed systems that
ensure continuous service operation despite server failures. This section presents a
practical scenario that demonstrates the implementation of these concepts through a
simple server-client architecture involving a main server, a backup server, and clients.
The example highlights the system’s ability to handle server failures seamlessly and
maintain service continuity for connected clients.

3.6.2.1 System Architecture

In the context of network computing, a socket is a software endpoint that establishes
bidirectional communication between a server and one or more clients. A socket is
bound to a port number so that the TCP layer can identify the application that
data is destined to be sent. Essentially, a socket in an Internet application is a point
where messages can be sent or received using the Internet Protocol (IP) suite.
The system consists of the following components:

e Main Server: Handles all client requests under normal operation and sends
periodic "heartbeat" signals to the backup server to indicate it is active.the
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figure 3,12 shows that signal

Server started, waiting for connections...
Connection established with ('192.168.56.1", 60749)

Received: bonjour moi clientO1
Connection established with ('192.168.56.1", 60760)
Received: bonjour moi cline®2

Figure 3.12: Mawn Server

e Backup Server: Monitors the heartbeat from the main server. It remains in
standby mode until it detects a failure in the main server, at which point it
takes over as the main server.the figure 3,13 shows that If the backup server

Backup server started, waiting for heartbeat...
Heartbeat received
Heartbeat received
Heartbeat received
Heartbeat received
Heartbeat received

Figure 3.13: Backup Server Monitoring Heartbeat

detects a failure in the main server, it takes over as the main server, as shown
in the following figure 3.14.

Heartbeat missed. Taking over as main server...

Backup server ready to take over...
Successfully started backup server as main server.

Figure 3.14: Backup Server Replacing Main Server
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Once the backup server takes over, it connects with the clients to ensure con-
tinuous service, as illustrated in the next figure 3.15.

Heartbeat missed. Taking over as main server...
Backup server ready to take over...
Successfully started backup server as main server.

Connection established with client 1 from ('192.168.56.1", 49289)

Connection established with client 2 from ('192.168.56.1", 49290)
Received from client 1: hi moi client 061
Received from client 2: hi moi client©2

Figure 3.15: Backup Server Connected with Clients

e Clients: Two clients are configured to connect to the main server to send and
receive messages. They are designed to reconnect automatically to the backup
server if the main server fails. The following figures 3.16 and 3.17 show the
clients.

Client 1 connected to 192.168.56.1

Client 1, enter message to send: bonjour moi client@2

Server response to Client 1: ACK: bonjour moi client@2

Client 1, enter message to send: hi oi client2

Connection to 192.168.56.1 failed. Switching to backup server.
Client 1 connected to 192.168.56.1

lient 1, enter message to send:

Figure 3.16: Client 1

Client 2 connected to 192.168.56.1

Client 2, enter message to send: bonjour moi client 01
Server response to Client 2: ACK: bonjour moi client ©1
Client 2, enter message to send: hi moi client@l

Connection to 192.168.56.1 failed. Switching to backup server.
Client 2 connected to 192.168.56.1
Client 2, enter message to send:

Figure 3.17: Client 2

3.6.3 Operational Flow:

Initial Setup and Operation:
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e Main Server Start-Up: Begins its operation and starts listening for client
connections. It also initiates a separate thread to send heartbeat signals to
the backup server every five seconds.

e Backup Server Monitoring: The backup server listens for the heartbeat
on a dedicated port. If it fails to receive any heartbeat within a predefined
interval (e.g., 10 seconds), it prepares to take over.

Client Interaction:

e Client Connections: Clients 1 and 2 attempt to connect to the main server.
Upon successful connection, they send messages which the main server ac-
knowledges.

e Continuous Service: The main server processes and responds to client re-
quests, ensuring smooth communication.

Fault Tolerance Mechanism:

e Detection of Main Server Failure: If the main server stops sending heart-
beats due to a failure, the backup server detects the absence of these signals.

e Role Switching: Upon detecting the failure, the backup server transitions
to become the main server. It starts accepting client connections on the same
port as the original main server.

e Client Reconnection: Clients automatically reconnect to the new main
server (originally the backup) due to their built-in reconnection mechanism.

3.6.4 Failure Handling and System Resilience:

The transition from the main server to the backup server is seamless, with minimal
distuption to client services. This demonstrates the system’s resilience and its ability
to maintain high availability despite server-side failures.

3.7 Conclusion

This chapter makes the kernel of this dissertation, in which we exposed our proposed
approach for failure recovery and tolerance in distributed systems. The approach
consists of determining a maximal independent set MIS in a distributed manner,
this later is considered as a set of coordinator nodes in which the controllers will be
installed, then it determines the set of guards that replace these controllers in case of
failures in some of them and finally, it ensure a network decomposition which permits
an equiload balancing between controllers. The performances of the approach have
been validated in large generated graph system. Furthermore, the approach has
been applied in real case of distributed system using socket. Further research works
in this topic may lead to apply the approach in field of fault tolerance in Internet
Of Things (IOT) systerms.
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(zeneral conclusion

This dissertation is devoted to study the failure tolerance in distributed system,
especially whose used for computation. Given that such systems contains a huge
number of elements connected between them, then it seems that graph is the most
appropriate model to this kind of systems.

after having modeled by a graph, with nodes represent the system entities and
arcs represent the communication links, we are looking for underlying problem solv-
ing. Notice that graph model allows related problem solving based certain pa-
rameters determining, therefore we have to review basic concepts of graph and its
parameters including, dominating set, independent set and critical node. unfortu-
nately, almost problems related to these parameters determining are NP-complete
ones. Thus, we have to use effective technical such as parallel and distributed com-
puting. Thereby, we introduced a literature review of such parameters determining
using distributed algorithms.

It is clear that one of the most well known problem in distributed system is fault
tolerance. Thus, the second chapter is devoted for such a problem beginning by ba-
sic concept introducing and reviewing the related work of literature for distributed
computing systems, sensor networks and IOT systems.

As aforementioned, the third chapter is devoted to the proposed approach about
failure recovery and tolerance in large graph system, which consists of a set of dis-
tributed algorithms that allows, i) to determine a maximal independent set of node
that play the role of controllers. ii)to determine guards that replace these controllers
whenever some failures occurs and iii) allows network decomposition that ensure to
an equiload balacing between controllers. Finally, the proposed approach is vali-
dated based generated large graph system and its correctness is highlighted also
throw a real case implementation.

The last chapter was about displaying the results of our application tests, which
combined three models U-Net, Attention U-Net, and Attention Residual U-Net, in
one place. We have chosen a medical problem related to the segmentation of electron
microscopy images. We have augmented our dataset to get more images to work
with, and we have built all three models and trained them all with the same hyper-
parameters to compare them. The results proved that our models were very efficient
and adaptable in image segmentation problems, the results were close in terms of
performance metrics, but the Attention U-Net model showed a slight superiority in
some areas.



Chapter 3 — Topological fault tolerance approach in distributed computing system

The major advantages of the proposed approach are the following:

e Scalability: In fact, its complexity of order O(log n), this can simply deal
with graph of high order.

e Extensibility: Indeed, adding a new node is fluently made as follow, if the
node is adjacent to some MIS then it add to the component of law order.
Otherwise, it create its own component adding iteratively its adjacent node
from highest component.

Further research in the topic may leading to apply the proposed approach in sensor
networks and TOT systems which enable fault tolerance approach in these later.
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