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Abstract

Selecting the most appropriate algorithm to use when tackling a black-box
continuous optimization problem is a challenging task. with a wide range of optimization
algorithms being benchmarked each year and easy access to black-box optimization functions,
primarily due to the efforts of the COCO platform, an automated method for algorithm selection
in single-objective black-box optimization problems has become necessary. In this dissertation,
we have chosen to employ DL technology in combination with ELA techniques to predict the
optimal solver (SBS) for any given problem set. The performance of the proposed DL-based model
is superior to a framework based on machine learning algorithms when applied to a continuous

black-box optimization problem set, showcasing its effectiveness.
Key words:
Algorithm Selection, Black-Box Optimization, Exploratory Landscape Analysis, Deep Learning,

Single-Objective Continuous Optimization, COCO framework
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Abstract

Résumé

Sélectionner 1’algorithme le plus approprié pour résoudre un probléme
d’optimisation continu a boite noire est une tache complexe. Avec une gamme étendue
d’algorithmes d’optimisation évalués annuellement et un accés facilit¢é aux fonctions
d’optimisation a boite noire, principalement grace aux efforts de la plateforme COCO, une
méthode automatisée de sélection d’algorithmes pour les problémes d’optimisation a boite noire a
objectif unique est devenue nécessaire. Dans ce memoire, nous utilisons la technologie Deep
Learning combinée a des techniques d'Exploratory Landscape Analysis pour prédire le solveur
optimal (SBS) pour n’importe quel ensemble de problemes donné. Les performances du modéle
proposé basé sur le Deep Learning surpassent celles d’un modéle basé sur des algorithmes
d’apprentissage automatique lorsqu’il est appliqué a un ensemble de problémes d’optimisation a

boite noire continu, démontrant ainsi son efficacite.
Mots-clés : Sélection d’algorithmes, Optimisation a boite noire, Analyse du paysage exploratoire,

Apprentissage profond, Optimisation continue a objectif unique, plateforme COCO.
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General introduction

General introduction

In continuous optimization problems, selecting the most suitable algorithm plays a vital
role in achieving effective and efficient solutions. These problems are very common in scientific
and engineering fields, often possess complex landscapes characterized by numerous local
optima points, non-linearity, and high dimensionality. Traditionally, practitioners relied on
manual selection from a variety of available algorithms, which proved challenging and prone to

suboptimal choices as the complexity increased.

It was at this time that the interest in machine learning as a very promising solution to
algorithm selection gained momentum, focusing mainly on statistical learning and traditional
machine learning models to guide decision-making. For quite a long time, meta-learning was the
favorite among a lot of fields due to the insight it gave into the optimal choices of algorithms.
Thus, as the number of benchmarked optimization algorithms increased and black-box
optimization functions were supplied by platforms like COCO, an automated algorithm selection
method for single-objective black-box optimization problems became realized.

In recent years, DL was able to gain strength in modeling higher-level abstractions using
higher complexity DNN architectures. Having seen success in many fields, the avenues of
automating the algorithm selection process open up. On the other hand, DL models are good at
taking hold of complex patterns and representations from data and hence projecting problem-
specific characteristics in a critical way to predict algorithm performance, this data-driven
approach has huge potential for revolutionizing the field and eventually turns automated

Algorithm Selection into a classification-based model.

This thesis focuses on the development of an automated algorithm selection model for
black-box optimization problems. The core objective is to address the challenges practitioners
encounter in selecting the best algorithm out of a pool. This will be achieved by using Deep
Learning technology combined with ELA techniques within the framework for developing a
robust efficient model that can predict an optimal algorithm—a Single Best Solver—against the

given black-box optimization problem sets.

By automating the process of algorithm selection for continuous optimization problems,

we can unlock several key benefits. First, it will increase efficiency. On the other hand, it reduces
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the burden of manual effort. Additionally, automated algorithm selection has the potential to
produce better optimization results via the power of Deep Learning models, which will include
problem specific characteristics with the help of Exploratory Landscape Analysis techniques
(ELA). This data-driven approach enables us to make informed predictions about algorithm
performance, increasing the likelihood of identifying the optimal solver for a given black-box

optimization problem.
This manuscript is structured as follows:

Chapter 1 this chapter delves into the fundamental concepts of Black-Box Optimization Problems
(BBOP), encompassing critical principles, a variety of architectural strategies, and widely used
frameworks integral to the development and implementation of deep learning solutions. By
examining these foundational elements, we aim to provide a comprehensive understanding of how
BBOPs operate.

Chapter 2 explores the core concepts for Algorithm Selection Problem (ASP) and its
characteristics, architectural approach, as well presenting the Exploratory Landscape Analysis

(ELA) technique and its role in optimizing the algorithm selection.

In Chapter 3, we outline the steps involved in the implementation of the Deep learning model and

briefly the data set and evaluation methods.

In Chapter 4, we present the results obtained along with the discussion over said results and the

application made for our work
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Chapter 1 Black-Box Optimization Problem (BBOP)

Introduction:

We call an optimization problem as black-box optimization (BBO) when the
objective function is not defined, understood, complex or expensive to evaluate and there is no
explicit mathematical formulation. These types of problems are found widely in various fields such
as engineering, design, machine-learning hyperparameters tuning, and scientific modeling.
traditional optimization techniques generally fail in BBO problems thereby necessitating advanced

methodologies and benchmarks for algorithm performance assessment.

1.1 History and development

The concept of black-box optimization has changed over time significantly. Initially, these
problems were addressed using simple heuristic methods. However, the complexity of real-world
applications that came into play indicated a need for advanced algorithms.

Consequently, several optimization algorithms like Genetic Algorithms (GAs), Particle
Swarm Optimization (PSO), Differential Evolution (DE) and others were developed. Black-Box
Optimization Benchmarking (BBOB) originated from the necessity to systematically evaluate
and compare such algorithms thus necessitating a standardized benchmarking platform. It is now
an important research tool where researchers and practitioners have access to a variety of test

functions as well as performance measures.

1.1.1 What is Benchmarking?

In the field of algorithm selection, benchmarking involves analyzing and comparing how
different algorithms perform on problem instances that are not common, in identifying which is
the best performing algorithm in different conditions and developing a strong method for
predicting which algorithm is most appropriate for a given problem, its main objective is to test as

many algorithms as possible.
Benchmarking is typically conducted following the next steps:
1. Problem Instance Collection

v Diverse Dataset: Collect a large and diverse set of problem instances that represent the
range of difficulties and characteristics the algorithms will encounter in real-world

scenarios.
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v' Representation: Ensure that the problem instances are well-represented across different

domains, scales, and types of problems.
2. Choosing Algorithms

v Variety of Algorithms: Choose a diverse set of algorithms to benchmark, they should
include different types and approaches to solving the problem at hand.
v Parameter Settings: Test each algorithm with various parameter settings to capture a

wide range of performance outcomes.
3. Performance Metrics

v Accuracy and Efficiency: Measure both the accuracy (quality of the solution) and
efficiency (computation time, resource usage) of each algorithm.
v Other Metrics: Depending on the problem domain, other metrics like robustness,

scalability, and stability might also be crucial.
4. Evaluation Method

v Cross-validation: Use cross-validation techniques to ensure that the performance
evaluation is robust and not biased by the particular set of problem instances.
v’ Statistical Analysis: Employ statistical methods to analyze the performance data,

identifying significant differences and trends among the algorithms.
5. Benchmarking Frameworks

v/ Standardized Frameworks: Use standardized benchmarking frameworks and tools to
ensure consistency and reproducibility of the results. Examples include the Algorithm
Selection Library (ASlib) and related tools.

v' Community Benchmarks: Engage with the research community to compare results and

improve benchmarking practices through shared datasets and methodologies.

6. Reporting and Analysis

v’ Detailed Reports: Provide detailed reports and visualizations of the benchmarking
results, highlighting the strengths and weaknesses of each algorithm.
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v Interpretability: Ensure that the results are interpretable and actionable, providing
insights into why certain algorithms perform better on specific types of problem

instances.

Steps to
Benchmarking

06:

Refine &
02: Reiterate

Gather

Data
05:

Review
03: Results

04:

Take
Action

Analyze

Figure(1.1): Benchmarking process plan

Benchmarking in algorithm selection is crucial for understanding the landscape of
algorithm performance and for developing reliable methods to automatically select the best
algorithm for a given problem instance. It involves a careful and systematic approach to
evaluating algorithms, extracting meaningful insights, and building predictive models that can
guide algorithm selection in practice.
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1.2 BBOB Framework

Black-box Optimization Framework is a term used to refer to optimization problems with
objective functions that are either unknown or too complicated to explicitly state. Here, the
objective function will not have an explicit analytical form. instead, it is known as “black box”

where one evaluates it at specific points but does not know about its internal details.

The task of solving black-box optimization (BBOP) problems presents considerable
challenges. These challenges primarily arise from the lack of an analytical form, the absence of
derivative information, and the substantial computational expense involved in numerically

approximating derivatives.

objective function

decision ’? objective
vector x = vector f(x)

(e.g. simulation model)

Optimization Algorithm:

only allowed to evaluate f (direct |_
search) s

Figure (1.2) : Schema for black box optimization framework

1.2.1 Characteristics of Black-Box continuous Optimization Problems

The main characteristics of black-box continuous optimization problems are:

1.Lack of mathematical expression: Black-box problems often do not have a
mathematical model that describes the relationship between the input variables and the
objective function. The objective function is typically evaluated through black-box
evaluations, where the function's behavior is observed through input-output samples

without explicit knowledge of its internal workings.
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2.Absence of Derivative Information: In black-box optimization, derivative information
such as gradients or Hessians of the objective function is typically unavailable or
computationally expensive to obtain.

3.Computational Cost: Evaluating the objective function in black-box optimization
problems can be computationally expensive

4.Noisy and Stochastic Behavior: Black-box objective functions may exhibit noise or
stochasticity, meaning that repeated evaluations of the same input may vyield slightly
different function values.

5.Global Optimization Challenges: Black-box continuous optimization problems often
involve searching for the global optimum in a high-dimensional search space. The presence
of multiple local optima and complex landscape structures makes finding the global
optimum a challenging task.

6.Limited Problem-Specific Knowledge: In black-box optimization, there is limited or
no prior knowledge about the problem structure, properties, or constraints. The
optimization algorithms must rely solely on the evaluations of the objective function to
guide the search process, making it crucial to design adaptive and intelligent search

strategies.

1.3 COCO Framework

One of the most prominent initiatives in the field of black-box optimization

benchmarking is the Comparing Continuous Optimizers (COCO) platform. COCO is an open-

source platform designed to provide rigorous and standardized benchmarks for continuous

optimization problems. It offers a wide range of test functions, performance indicators, and tools

for analyzing algorithm performance.
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C/C++
interface
[S
Python
interface

Python

Results of other
solvers

COCO experiments

Test suites:
Java ~ bbob Results of the 00
interface o user-provided post-processing
- bbob-biobj solver
Java - m

Logging functionality

Latex, HTML

Matlab/Octave
interface

User-provided
solver

HTML pages Latex templates
Matlab - —"

Rust
interface
R

Figure (1.3): COCO project general structure

COCO benchmarking platform has contributed immensely to the field of optimization
algorithm benchmarking by providing standardized test functions where it provides a diverse set
of test functions that mimic real-world optimization challenges. These functions vary in terms of
dimensionality, modality, separability, and ruggedness, offering a comprehensive evaluation

environment.

The platform includes well-defined performance metrics such as runtime distributions,
convergence rates, and success rates, allowing for detailed analysis and comparison of algorithms
and on top of that COCO supports automated benchmarking, enabling researchers to evaluate their

algorithms efficiently and consistently.

1.4 BBOB Test Suites

The blackbox optimization benchmarking (BBOB) test suite is COCOQO's standard test suite
with 24 noiseless, single-objective and scalable test functions. Each function is provided in
dimensions (2, 3, 5, 10, 20, 40) and in 15 instances, however also available for arbitrary dimensions

and number of instances.

1.4.1 Benchmark Functions
The Black-Box Optimization Benchmarking (BBOB) suite consists of 24 single-objective
noiseless functions which are categorized into five groups based on their characteristics. This

suite allows for the creation of different problem instances, making it ideal for evaluating the
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stability and invariance of optimization algorithms under various transformations. This feature is

particularly useful in testing the robustness of algorithms by applying different transformations

to the same problem, ensuring that the results are consistent and reliable across different

scenarios [3]. A brief description of each group and the functions in the table

Group

Functions

Characteristics

1. Separable Functions

f1: Sphere Function

f2: Separable Ellipsoidal Function
f3: Rastrigin Function

f4: Bliche-Rastrigin Function

5: Linear Slope

separable and can be
optimized independently.

2. Functions with low or
moderate conditioning

f6: Attractive Sector Function

f7: Step Ellipsoidal Function

f8: Rosenbrock Function (original)
f9: Rosenbrock Function (rotated)

low or moderate
conditioning, meaning the
curvature of the function
changes gradually.

3. Functions with high
conditioning and unimodal

f10: Ellipsoidal Function

f11: Discus Function

f12: Bent Cigar Function

f13: Sharp Ridge Function

f14: Different Powers Function

high conditioning and
unimodal, meaning they
have a single global
optimum.

4. Multi-modal functions with
adequate global structure

f15: Rastrigin Function
f16: Weierstrass Function
f17: Schaffer's F7 Function
f18: Schaffer's F7 Function
f19: Composite Griewank-
Rosenbrock Function F8F2

multi-modal, meaning
they have multiple local
optima, but they still have
a clear global structure.

5. Multi-modal functions with
weak global structure

f20: Schwefel Function

f21: Gallagher's Gaussian 101-me
Peaks Function

f22: Gallagher's Gaussian 21-hi
Peaks Function

f23: Katsuura Function

f24: Lunacek bi-Rastrigin Function

multi-modal and have
weak global structure,
meaning the local optima
are not clearly related to
the global optimum.

Table 1.1: Classification of the noiseless BBOB functions based on their properties (multi-

modality, global structure, separability, variable scaling, homogeneity, basin-sizes, global to

local contrast))

10
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1.4.2 Evaluation metrics for algorithm performance:

The choice of evaluation metrics depends on the specific optimization problem, the algorithm
being evaluated, and the desired characteristics of the solution.
Several evaluation metrics are commonly used to assess the performance and effectiveness of

different algorithms. Some of the key evaluation metrics are:

1.Convergence: It measures how speed an algorithm reaches a satisfactory solution or approaches
the optimal solution. It typically assesses the rate of improvement over iterations or generations.

Faster convergence indicates more efficient performance.

2.Fitness/Objective Function Value: Fitness or objective function value represents the quality of
the solution obtained by an algorithm. It measures how well an algorithm performs on the objective
function being optimized.

3.Solution Quality: Solution quality evaluates the optimality or closeness to the global optimum
achieved by an algorithm. It compares the obtained solution with known or benchmark solutions
to assess the accuracy and effectiveness of the algorithm. Metrics such as distance to the global

optimum or error rate can be used to measure solution quality.

4.Efficiency/Computational Time: Efficiency metrics focus on the computational resources
required by an algorithm to find a solution. It calculates the time taken to reach a solution, the

number of function evaluations performed, or the computational complexity.

1.5 Importance of Benchmarking

Benchmarking is essential in the field of black-box optimization for several reasons:

Algorithm Comparison: Benchmarking allows for systematic comparison of different
optimization algorithms under standardized conditions. This helps identify the most

effective algorithms for specific types of problems.

11
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Performance Evaluation: Through benchmarking, researchers can evaluate the
performance of their algorithms in terms of convergence speed, solution quality,

robustness, and scalability.

Algorithm Development: Insights gained from benchmarking can guide the
development of new algorithms and improvements to existing ones. Understanding where

current methods fall short can inspire novel approaches.

Reproducibility: Standardized benchmarks ensure that results are reproducible and
comparable across different studies and research groups. This fosters collaboration and

cumulative progress in the field.

Conclusion

Black-box optimization benchmarking, especially through platforms like COCO and its
BBOB test suites, has become pivotal in the research and development of optimization algorithms.
These platforms offer a standardized, rigorous evaluation environment, enabling researchers to
methodically compare and refine optimization techniques. This systematic approach drives
advancements in tackling complex real-world challenges. As the field progresses, benchmarking
will continue to be essential in enhancing our understanding and capabilities in black-box

optimization.

Looking ahead, the field is guided toward further growth with developments in machine
learning, reinforcement learning, and meta-heuristic approaches, promising even more advanced
solutions to black-box optimization challenges. For researchers and practitioners, mastering these
methodologies and their applications provides robust tools for efficiently solving complex real-

world problems.
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Chapter 2
The Algorithm Selection Problems (ASP)
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Introduction

For computationally challenging problems, there is a plethora of algorithms available, each
with its own benefits and limits when applied to different instances of these problems. As a result,
continuously, the question of determining the most suitable algorithm for a specific problem
instance to achieve optimal performance is arisen. The field of algorithm selection aims to address
this question by devising decision policies known as algorithm selectors. These selectors provide
recommendations on which algorithm should be chosen for a given problem instance

In this chapter, the Algorithm Selection Problem will be inquired trough, we introduce the
concept of ELA technique, which is widely regarded as the sole valid approach for measuring the
problem characteristics of Black Box Continuous Optimization Problems. Additionally, we
explore the challenges associated with algorithm selection and highlight relevant research

conducted in this field and popular methods used for solving the ASP problem.

2.1Exploratory Landscape Analysis (ELA) for characterizing problem landscapes

Exploratory Landscape Analysis (ELA) is a sophisticated approach to characterize a
landscape of a problem by means of numerical feature values introduced by [2].
In its original version, ELA covered a total of 50 features - grouped into six so-called low-level
properties (Convexity, Curvature, y-Distribution, Levelset, Local Search and Meta Model).
These (numerical values) were used to characterize (usually categorical and expert-
designed) high-level properties, such as the Global Structure, Multimodality or Variable Scaling.

The figure (2.1) below visualizes the connections between the low- and high-level properties.
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Search space
/| homogeneity
7

Global structure &

Multimodality
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Variable scaling
\ Basin size
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Global to local |,
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Figure(2.1) :Relationships between high-level features (grey) and low-level feature classes

(white)

[1] argued that the introduction of the low-level features can be seen as a major step towards

automatically computable landscape features and hence automated algorithm selection .

The figure (2.2) below illustrates the application of ELA to enhance the process of automated

algorithm selection.

Optimization
Algorithms

Algorithm

Selection
Model

figure(2.2) : Schematic view of how (ELA) can be used for improving the automated algorithm

selection process.
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2.3 Evaluation metrics for algorithm performance:

The choice of evaluation metrics depends on the specific optimization problem, the algorithm
being evaluated, and the desired characteristics of the solution
several evaluation metrics are commonly used to assess the performance and effectiveness of

different algorithms. Some of the key evaluation metrics are:

1.Convergence: It measures how speed an algorithm reaches a satisfactory solution or approaches
the optimal solution. It typically assesses the rate of improvement over iterations or generations.
Faster convergence indicates more efficient performance.

2.Fitness/Objective Function Value: Fitness or objective function value represents the quality of
the solution obtained by an algorithm. It measures how well an algorithm performs on the objective

function being optimized.

3.Solution Quality: Solution quality evaluates the optimality or closeness to the global optimum
achieved by an algorithm. It compares the obtained solution with known or benchmark solutions
to assess the accuracy and effectiveness of the algorithm. Metrics such as distance to the global

optimum or error rate can be used to measure solution quality.

4.Efficiency/Computational Time: Efficiency metrics focus on the computational resources
required by an algorithm to find a solution. It calculates the time taken to reach a solution, the

number of function evaluations performed, or the computational complexity.

2.6 Algorithm selection problem:

In Algorithm selection [4], the goal is to find the best Algorithm A; from a set of candidate
Algorithms {44, 4,, ...., Ax} = A for a problem instance I € I from a problem instance space 1.
formally, the aim is to find a mapping, called algorithm selector s:I — A, which maximizes a

costly-to-evaluate performance measure m:A x I — R. the optimal selector is defined as

57 (1) e zu‘:;::m:: E[m(A,T))
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2.4 Algorithm selection framework

In [4], the components of the algorithm selection framework are interconnected and have
mutual influence on each other. Together, they form a comprehensive approach for selecting the
best algorithm for a specific problem instance. This ensures that the chosen algorithm not only
matches the problem requirements but also exhibits strong performance in terms of the desired

evaluation metrics. Figure (2.3) displays the diagram of the algorithm selection framework.

Problem Performance
Space Space
)| fer peP | (3)
A
E.ﬁ_
ge 3
w
-2 g
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g2 o=
5 £ < g
g o C9
> -
£}
L J
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Using ¢, select o
: — to minimize p -
Characteristics Algorithm
Space Space

Figure (2.3): Diagram of the algorithm selection framework proposed by Rice in his 1976 paper

The diagram consists of four components: the problem, algorithm, algorithm selection, and
performance evaluation. Each component plays a crucial role in the algorithm selection process.

» Problem Space: represents the set of all possible problem instances that the algorithm
selection framework aims to address. It encompasses a range of optimization problems,
each with its distinct characteristics, requirements, and objectives. [3] declares that ELA
methods, are the only valid approach to measure the problem characteristics for Black

box Continuous optimization Problems
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» Performance Space: Refers to the set of performance metrics used to evaluate the
effectiveness and quality of the algorithms in solving the problem instances. It can
include convergence rate, solution accuracy, robustness, ... The performance space
provides a quantifiable way to assess and compare the performance of different
algorithms.

» Algorithm Space: Denotes the collection of candidate algorithms (Algorithm Portfolio)
available for solving the optimization problems in the problem space. It encompasses
various algorithms with different characteristics

» Characteristics Space: Represents the set of algorithm properties to describe and
distinguish the algorithms in the algorithm space. These characteristics can include
algorithm complexity, search strategy, population size, mutation rate, selection
mechanism, or any other relevant attributes of the algorithms. The characteristics space
helps in understanding the strengths and weaknesses of different algorithms and their

suitability for solving specific problem instances.

2.5 Algorithm Selection Approaches
Since the topic of AS is around for quite some time, naturally, a lot of different
approaches to AS have been suggested in the literature.
In the following, a taxonomy of different algorithm selection solutions based on the type of
learning problem presented by [5]. A visual overview of the taxonomy is presented in
Figure (2.4).
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Algorithm Selection Solutions
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Figure (2.4) Taxonomy of different algorithm selection solutions [5]

» Classification Solutions

Classification-based algorithm selection approaches work by directly trying to learn the by
the means of classification instead of learning a surrogate loss function. There exist various
approaches in the literature, which directly follow this scheme using different kinds of machine
learning models to model h such as decision trees [6] [7], k-nearest neighbor models [8] or
support vector machines [9].

» Regression Solutions

Instead of treating the AS problem as a classification problem, it is treated as a multi-target
regression problem with one regression target for each algorithm. A large set of literature exists,
which suggests methods leveraging regression models to predict the performance of an algorithm
on an instance [10, 15, 18, 19].

» Ranking Solutions
Ranking-based AS solutions are motivated by the observation that the ability to predict a
correct ranking across the algorithms for a given instance is potentially an ability easier to
achieve than the ability to correctly predict the true loss function value for each algorithm. As
examples, work of [24] [1] and [26].
» Hybrids of Ranking and Regression Solutions
This idea was proposed by [27] and was later refined by [32]
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» Clustering Solutions

They decompose the algorithm selection on the complete instance space to multiple AS
problems. Examples following this strategy are [33], [36], [37].

» Collaborative Filtering Solutions

Treating the AS problem as a recommendation problem similar to, for example, recommending

products (i.e., algorithms) to customers (i.e. instances). As examples, [38] and [39; 42].

2.6 Algorithm Selection Strategies

Static vs. Dynamic Selection

> Static Selection: In static selection, the algorithm is chosen based on the initial problem

instance characteristics, and the choice remains fixed throughout the solution process.

> Dynamic Selection: In dynamic selection, the algorithm choice can change during the

solution process based on intermediate results and evolving instance characteristics.
Portfolio Approaches

Portfolio approaches combine multiple algorithms to handle a variety of problem instances. Key
strategies include:

> Algorithm Portfolios: A set of algorithms is maintained, and the best algorithm for each

new instance is selected based on past performance data.

> Hybrid Algorithms: Algorithms are combined in a way that leverages the strengths of
each. For example, a hybrid optimization algorithm might use a genetic algorithm for

global search and a local search algorithm for fine-tuning solutions.

2.7 Adaptive and Online Learning
Adaptive and online learning strategies continuously improve algorithm selection over time:

> Adaptive Learning: The selection strategy adapts based on feedback from previous

performance, refining its predictions and choices.

> Online Learning: The selection model updates in real-time as new problem instances are

solved, ensuring that the model remains current and effective.

2.8 Related work for algorithm selection in black-box continuous optimization
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In the field of continuous black-box optimization, have been proposed and have shown
promising results. The following are some related works in case of single-objective

continuous black-box optimization.

- [1] proposed a sophisticated machine learning techniques combined with informative
exploratory landscape features. This work provides an extensive study on feature-based

algorithm selection in case of single-objective continuous black-box optimization.

Three classes of supervised learning strategies were considered for training the algorithm
selection models: A classification approach, a regression approach, and pairwise regression.

- [55] explored feature-free approaches that leverage advanced deep learning techniques
(convolutional Reduced Multi-Channel conv-rMC) applied to either images or point clouds. they
demonstrate that point-cloud-based approaches are competitive and significantly decrease the

size of the solver portfolio needed.

- [56] introduced. the CNN-HT two-stage algorithm selection framework is In the initial
stage, a Convolutional Neural Network (CNN) is utilized to classify problems. Subsequently, in
the second stage, the Hypothesis Testing (HT) technique is employed. They adopted Exploratory
Landscape Analysis (ELA) features of the problem as the input and utilize feature selection

techniques to reduce the redundant ones.

- [57] proposes an algorithm selector (AS), capable of selecting a promising
configuration of a modularized version of the most prominent meta-heuristic CMA-ES for
single-objective continuous optimization. They construct a two-dimensional gray-scale picture
which is called fitness map. Using this fitness map as input, they construct an algorithm selector
based on a Deep CNN. The algorithm selector is a collection of different distinct CMA-ES

versions provided by the modular CMA-ES framework.
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Conclusion
In this chapter, we first provided an explicit definition of Algorithm Selection problem, then

emphasized on its importance to improve performance and efficiency over different applications.

Then, we explored both theoretical and practical aspects of algorithm selection by discussing
factors influencing algorithm choice. Different continuous problems where algorithm selection
plays a vital role were also explained together with criteria for assessing effectiveness of

algorithms.

The next chapter will be more pragmatic than theory as it explains our proposed model in details.
Our development process will be presented including design options, strategies in implementation

as well as rational behind our technical approach.
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Chapter 3

A Deep Learning Approach for Algorithm Selection in
Numerical BBOP
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Introduction

This chapter outlines the research methods used in our study, detailing each step taken. We
begin with an overview of our proposed approach, which integrates Algorithm Selection on
continuous Black-Box optimization problems with deep learning instead of a traditional machine
learning approach.

Next, we discuss data collection, focusing on selecting high-performing solvers from the
COCO platform's optimization algorithm results. Our goal is to create a model that surpasses any
single solver's performance. To achieve this, we expanded our dataset through data augmentation
to ensure we have sufficient data for the training and testing phases.

We then move on to feature engineering, where we employ Exploratory Landscape
Analysis (ELA) to characterize problem landscapes numerically. We describe the preprocessing

steps applied to the raw data and the network architecture before proceeding with model training.

In this section, we provide details about the construction and training of the network
architectures and present our results. Our key contribution lies in combining ELA techniques
with deep learning to predict the optimal outcomes for single-objective noiseless problems. This

approach yields superior results while requiring fewer computational resources.

3.1 The Dataset

The dataset is composed of two main separate bodies. The first body concerns the
performance of the portfolio of algorithms we chose to train the model on. We begin by defining
the Algorithm Selection Problem (ASP) as follows: Given a set of optimization algorithms A4,
which represents our portfolio of algorithms, and a set of problem instances I, our objective is to
find a model m: I — A that selects the best algorithm a € A from the portfolio for an unseen

problem instance i € I.

Although there exists a plethora of competent algorithms, even when considering only single-
objective continuous optimization problems, none of them can be considered a superior choice
over all others across all optimization problems. Therefore, it is still relevant to find a sophisticated
mechanism to select the optimal solver for each problem.
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The dataset is composed of 2 main separate bodies one is for the performance of the portfolio
of algorithms we chose to train the model on, we start by defining the ASP as follows:
given a set of optimization algorithms A which represents our portfolio of algorithms, and a set of
problem instances | our objective is to find a model m: I — A that selects the best algorithm a €
A from the portfolio for an unseen problem instance i € I, although there exist a plethora of
competent algorithms even when we only specify the single-objective continuous optimization
problems, none of them can be considered as superior choice over other ones across all the
optimization problems so it’s still relevant to find a sophisticated mechanism to select the optimal

solver to each problem.

The performance data remained static over the years as a setup in the COCO-platform,
specifically in terms of dimensions (D) € {2, 3, 5, 10, 20, 40} for the benchmarked functions. Each
algorithm is evaluated on the functions (FID) € {1, ...,24}, and the number of instances (1ID) €
{1, ...,15} [1]. The data contains a log of the performed number of function evaluations and the
achieved fitness value. This information allows us to determine if the solver successfully found a
global optimum for the problem instance i € | within a proximity of ¢ = 10"-2. Additionally, it
provides insights into the number of function evaluations (FEi(g)) performed by the solver until

termination, irrespective of success or failure.

For our work, we consider various data collection settings based on the combinations of
problem dimensionality. Specifically, we utilize the domain D = {2, 3, 5, 10} to represent different

dimensional versions of the benchmark functions.

We can determine the success of a solver by considering the precision domain of €. In other
words, we define Success (€) = 1 if the solution found, denoted as x*, lies within the range [-5,
+5]d and its fitness value falls within [f(xopt), f(xopt) + €], where xopt represents the global
optimum. To calculate the ERT (Expected Runtime to Target), we consider both the success of the

solver and the number of function evaluations.

The performance results obtained by running an algorithm on the COCO platform provide
us with detailed fitness value calculations and graphical representations for all the problem
instances. We utilize these calculations to determine the Expected Runtime (ERT) for each pair of
Algorithm A and function F on dimension D. The ERT is calculated using the following formula:
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2.1 FE;(¢)

ERT(e) = Y. i Success;(€)

We proceed by comparing the Expected Runtime (ERT) of different algorithms with the
best algorithm found, known as the Success-Based Selection (SBS), on the same function. This
comparison is done using the Relative Expected Runtime (RELERT) formula, which is provided

below.

ERT,rp

RELERT, rp =
AED ™ Min(ERT p)

Our final dataset for training our model is created by merging the features and performance data
during the preprocessing stage. This dataset is obtained by combining the performance of the
algorithm portfolio with the feature set collected from the Flacco GUI [28]. The dataset is
represented in Table 3.1, which displays the merged data.

Dataset Number of Rows Number of features
dataset 1 480 151

Table (3.1): Table that show the dataset composition.

3.2.1 Performance:

The performance data for each optimization algorithm is organized into columns, with instances

separated by the "%" symbol, as outlined below:

The 1st column indicates the problem instance selected by the algorithm.

The 2nd column displays the function evaluation.

The 3rd column represents the best noise-free fitness - Fopt.

The 4th column represents the best noise-free fitness, -Fopt, for the entire instance.
The 5th column displays the measured fitness.

The 6th column represents the best measured fitness.
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Starting from the 7th column and onward, the columns contain the values of the variables (x) that
define the instance. The number of x values depends on the dimension of the problem. Figure 3.1

provides a sample of the preprocessed performance data for dimension 2.

=== 2..txt ===

% f evaluations | best noise-free fitness - Fopt | noise-free fitness - Fopt (7.948000860000e+01) | measured fitness |
1 +2.548460290e+01 +2.548468290e+01 +1.049646029e+02 +1.849646029e+02 -3.5854e+80 +2.2137e+00

2 +1.361478386e+00 +1.361478386e+00 +8.08414783%9e+81 +8.88414783%+01 +2.9566e-081 -2.3228e+00

4 +9.605204258e-01 +9.685204258e-01 +8.044052043e+01 +8.044852043e+01 +2.5824e-01 -2.1368e+00

61 +1.896345213e-81 +1.896345213e-81 +7.958963452e+01 +7.9585963452e+01 +4.9262e-081 -9.2850e-01

179 +7.180934711e-82 +7.100934711e-02 +7.955180935e+01 +7.955180935e+01 +4.3536e-01 -9.626%e-01
257 +2.576151887e-82 +2.576151887e-02 +7.958576152e+01 +7.958576152e+01 +1.7651e-01 -1.0156e+080
282 +2.183563286e-82 +2.183563286e-02 +7.950183563e+01 +7.950183563e+01 +1.1642e-01 -1.2137e+00
439 +1.626385826e-082 +1.626385826e-02 +7.949626386e+01 +7.949626386e+01 +2.1124e-01 -1.0362e+00
524 +1.609451209e-82 +1.609451289e-02 +7.949689451e+01 +7.949689451e+01 +3.7468e-01 -1.1923e+00
571 +1.578968318e-82 +1.578960318e-02 +7.949578968e+01 +7.9495785960e+01 +3.0720e-01 -1.2701e+00
612 +9.875797017e-83 +9.875797017e-03 +7.948987580e+01 +7.948987580e+01 +1.5806e-01 -1.1868e+00
721 +1.334365585e-83 +1.334365585e-03 +7.948133437e+01 +7.948133437e+01 +2.1632e-01 -1.1548e+00
763 +6.112868803e-84 +6.112868803e-04 +7.94806112%+01 +7.948061129e+01 +2.3351e-01 -1.1723e+00
1159 +5.834247685%e-04 +5.83424768%e-04 +7.948058342e+01 +7.948058342e+01 +2.6746e-01 -1.1376e+00

1196 +1.870057146e-04 +1.070057146e-04 +7.943010701e+01 +7.948010701e+81 +2.5105e-01 -1.1466e+00
1581 +9.845741345e-05 +9.045741345e-05 +7.943009046e+01 +7.948009046e+01 +2.4331e-01 -1.1562e+00
1541 +5.961910446e-05 +5.961910446e-05 +7.948005962e+01 +7.948005962e+81 +2.4510e-01 -1.1574e+00
1637 +3.449297779e-06 +3.449259777%e-06 +7.943000345e+01 +7.948000345e+81 +2.5095e-01 -1.156%e+00
1757 +1.918415222e-06 +1.918415222e-06 +7.943000191e+01 +7.948000191e+81 +2.5156e-01 -1.1562e+00
1847 +8.10417489%6e-07 +8.104174896e-07 +7.943000081e+01 +7.9483000081e+01 +2.5213e-01 -1.1562e+00
2147 +4.012343311e-07 +4.012343311e-07 +7.943000040e+01 +7.943000040e+01 +2.5252e-01 -1.1574e+00
2336 +1.744265887e-07 +1.744265887e-07 +7.943000017e+01 +7.948000017e+01 +2.5301e-01 -1.1564e+00
2551 +4.383706198e-08 +4.383706198e-08 +7.943000004e+01 +7.943000004e+01 +2.5291e-01 -1.1578e+00
2911 |+1.5?1336838e-@9 +1.571336838e-89 +7.945000000e+01 +7.948000000e+01 +2.5281e-81 -1.1568e+00

figure (3.1) Sample of the raw performance data pre-treatment of dimension 2 data.

It was determined that we would utilize 5 instances from each function within the domain
{1...24}. Thanks to the numerous GECCO (Genetic and Evolutionary Computation Conference)
BBOB competitions held over the years, the performance data of the best-performing state-of-
the-art algorithms across the 480 BBOB [1] instances is available online in the BBOB data
archive. This availability is a result of the systematic construction of an online algorithm selector
archive, and the results were aggregated based on the 256 solvers that were submitted to the
COCO-platform.

The BBOB datasets collected by the COCO platform can be accessed at [29]. Figure 3.2
illustrates the online archive for the BBOB datasets collected by the COCO platform.
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coco-data-archive

Algorithm data sets for the bbob test suite

Number Algorithm Name Year Author(s) link to data related PDFs, source code, and remarks

Figure (3.2): The BBOB datasets by the coco-data archive.

3.2.2 Demonstrative examples on calculating ERT and RELERT
ERT (Expected Runtime)

In this section, we provide illustrative examples of how the measures used to rank algorithms

were calculated. we begin with an example of calculating the Expected Runtime (ERT).

For the ERT calculation, we identify the success cases by examining the measured fitness values
(shown in red) that have achieved the Fopt (shown in blue) within a range of £ = 0.01. Figure

(3.3) serves as a representative example of this process.
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Figure (3.3): ERT calculation example

YiFE(s) _ 1032
Y. iSuccess(¢g) 11

ERT(i) = — 03.8181818

The ERT value is calculated for each individual instance across all algorithms. These calculated
ERT values are then utilized in the calculation of the Relative Expected Runtime (RELERT).

RELERT (Relative Expected Runtime )

To calculate the RELERT, we require the minimum ERT value for all instances within a specific

dimension and the minimum ERT value for the corresponding function. These minimum ERT
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values are used as reference points for comparison. By comparing the RELERT values of

different algorithms, we can determine the ranking of the algorithms based on their performance.

Algorithm FID D Dimensio ERT min ERT RELERT
BIPOPsaA11.0 1 2|93.81818181818lq93.81818181818181 I 1.0

BIPOPsaAt11.0 1 3 135.2 124.08333333333333 1.0895903290799194
BIPOPsaA11.0 1 5 226.44 222.35 1.0183944232066562
BIPOPsaAt1.0 1 10 391.33333333333-391.3333333333333 1.0

BIPOPsaA11.0 2 2|l74.14285714285193.81818181818181 I 1.8561738648947952
BIPOPsaA11.0 2 3 170.57142857142¢ 124.08333333333333 1.3746522114554351
BIPOPsaAt11.0 2 5 233.04761904761<222.35 1.0481116215319048
BIPOPsaA11.0 2 10 402.72 391.3333333333333 1.0290971039182284
BIPOPsaAt1.0 3 2'126.2 I 93.81818181818181' 1.34515503875969
BIPOPsaA11.0 3 3 138.0 124.08333333333333 1.112155809267965
BIPOPsaA11.0 3 5 256.65217391304:222.35 1.1542710767395705
BIPOPsaAt11.0 3 10 392.95833333333-391.3333333333333 1.0041524701873936
BIPOPsaA11.0 4 2'116.0 I 93.81818181818181' 1.2364341085271318
BIPOPsaAt1.0 4 3 139.75 124.08333333333333 1.1262592343854936
BIPOPsaA11.0 4 5 227.96 222.35 1.0252304924668316
BIPOPsaA11.0 4 10 458.86363636363€391.3333333333333 1.1725646585101441
BIPOPsaAt11.0 5 2|103.625 I 93.81818181818181' 1.10453003875969
BIPOPsaA11.0 5 3 124.08333333333:124.08333333333333 1.0

Figure (3.4): RELERT calculation example

ERT (i)
Min(ERT (i)

RELERT(i) = = Result

3.2.3 Algorithm portfolio

We have selected 10 algorithms to train our model, which are variations of the two main
optimization algorithms we relied on: Covariance Matrix Adaptation (CMA) and Differential

Evolution (DE). The list of selected algorithms is as follows:
The CMA-based algorithms that we have selected are as follows:

-CMAES : short for covariance matrix adaptation-evolution strategy is an evolutionary algorithm
for continuous stochastic non-linear and non-convex optimization problems with non-linear and
non-convex search landscapes, population-based optimization algorithm that means it works with

population of candidate solutions ,the candidates solution selected are evaluated and the best-
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performing ones are used to update the mean and covariance matrix of the sampling distribution

for the next gen of solutions[6]

-CMA: covariance matrix adaptation is a strategy used in the evolutionary algorithms domain for

complex functions it is famous for its implementation in the CMA-ES [5]

-BIPOPsaACM : short for Biased Initialization Population-based Optimization for Self-adaptive
Active Covariance Matrix biased initialization mean that the process with the initial population is
biased toward certain region of the search space, pop-based indicate that the algorithm works with
a groupe of candidate solutions rather than a single solution just like genetic algorithms and particle
swarm optimizations, self-adaptive mean that the algorithm can adapt his parameters based on the

process of the optimization

An advanced optimization technique that combines biased initialization and self-adaptive
strategies within a population-based framework, and it actively modifies the covariance matrix to
enhance the search efficiency. This type of algorithm can be particularly effective for complex
optimization problems where the search space is high-dimensional, noisy, or has many local
optimal [11].

-CMAa: Covariance Matrix Adaptation with active covariance matrix updates Active updates
refer to a specific strategy within CMA-ES that enhances the adaptation process. It involves
adjusting the covariance matrix using not only successful mutations (which lead to better

solutions but also considering unsuccessful mutations (which do not improve the solution) [13].

-IPOP-ACTCMA-ES: Increasing Population Size with Active Covariance Matrix Adaptation
Evolution Strategy [12]

-CMA CSA: Covariance Matrix Adaptation with Covariance Matrix Self-Adaptation. This is an
advanced variant of the Covariance Matrix Adaptation Evolution Strategy. It self-adaptation
mechanisms specifically for the covariance matrix. This approach aims to enhance the flexibility
and efficiency of the optimization process by allowing the algorithm to dynamically adjust the

covariance matrix based on the evolving search dynamics [14].
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-CMA-ESPLUSSEL.: Covariance Matrix Adaptation Evolution Strategy with Plus Selection This
is a specific variant of the standard Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

that incorporates a plus selection mechanism
The DE (Differential Evolution) algorithms that we have selected are as follows:

-JADEDb: algorithm (Joint Approximate Diagonalization of Eigen-matrices for blind source

separation is an adaptive variant of the DE

-DE-rand: is arguably the most popular DE variant [16][17]
-DE uniform_fialho_noiseless: DE uniform is a variant that employs a uniform crossover
mechanism. The DE uniform variant developed by Fialho and colleagues enhances DE by
incorporating adaptive strategies to improve performance [22], particularly in noiseless

environments where precision is crucial.

3.2.2 Features

The second part of the dataset comprises the features, which play a crucial role in our
work. While the landscape of features can be computed for any optimization problem, our focus

is specifically on single-objective continuous optimization problems.

Our work revolves around the ELA (Exploratory Landscape Analysis) technique, which
involves characterizing a problem landscape using numerical feature values. This

characterization aids in the selection of the most suitable algorithm for solving the problem.

To obtain these features, we employ systematic sampling of the decision space using various
methods. In our case, we utilize Latin hypercube sampling (LHS) [4]. LHS generates a near-
random sample of parameter values for multidimensional distributions, allowing us to effectively

capture the characteristics of the landscape.

These features enable us to identify specific landscape characteristics, such as convexity,
roughness, or funnel structure. These characteristics have a significant impact on the
performance of optimization algorithms. By considering these features, we can make informed
decisions and choose algorithms that are well-suited to the problem's landscape. To obtain these
problem-specific features, we utilized the online tool called Flacco GUI, as shown in Figure

(3.3). The Flacco GUI provides a graphical user interface that simplifies the extraction and
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analysis of ELA features. It offers a variety of tools for computing different landscape
descriptors. The Flacco GUI can be accessed at [28], where users can utilize its features to

compute and analyze landscape descriptors specific to their optimization problems.

flaccoGUI SNGERISIMPGENSSI BBOB-Import  smoof-Import

Feature Calculation Visualization
Feature Set

all Features Lo

cm_angle dist_ctr2best mean 262
cm_angle dist_ctr2best sd 0.08
cm_angle dist_ctr2worst mean 294
cm_angle dist_ctr2worst sd 0.26
cm_angle angle. mean 168.33
cm_angle.angle.sd 5:15
cm_angle.y_ratio_best2worst. mean 0.74
cm_angle.y_ratio_best2worst.sd 0.16
cm_angle.costs_fun_evals 0.00
5,000 cm_angle.costs_runtime 0.00

cm_grad.mean 0.62

1008 1507 2006 2505 3004 3503 4002 4501 5000

cm_grad.sd 0.09
cm_grad.costs_fun_evals 0.00
cm_grad.costs_runtime 0.02
ela_conv.conv_prob 1.00
ela_conv.lin_prob 0.00

ela_conv.lin_dev.orig -5.59

ela_conv.lin_dev.abs 5.59

figure (3.5) The graphical user interface Flacco for BBOB features extraction

Feature extraction was performed using the Flacco GUI tool, specifically with Benchmarking
Black-Box Optimization (BBOB) instances. The steps involved in this process are outlined

below:

- BBOB-FID Selection: We chose the BBOB-FID values ranging from 1 to 24,
representing 24 different functions, for each algorithm.

- BBOB-IID Selection: We selected the BBOB-IID values from 1 to 5, covering a set of 5
instances that span the dimension domain. The dimension domain, denoted as D, includes
values 2, 3, 5, and 10.

- Sample Size Calculation: We determined the sample size using the following formula:
Sample configuration for each dimension equals to 50 times the dimension. The bounds

for the samples were set from -5 to 5. For instance, if the dimension is 2, we used 100
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samples, while for a dimension of 10, we used 500 samples. This configuration ensures

an adequate number of samples to capture the landscape characteristics effectively.

We opted to use the Flacco GUI tool specifically because it was configured to extract features from
the BBOB instances. The tool simplifies the feature extraction process by providing parameter
selection options and performing the necessary calculations without requiring data to be loaded
into the tool separately. This streamlined approach facilitated the extraction of features for our

analysis.
3.3.3 The types of extracted features:

We extracted various types of features using the Flacco GUI, including numerous descriptors that
capture different aspects of the optimization landscape. Some of the classic features that were
extracted include:

Convexity: a measure of the convexity of the landscape, which help the algorithms to make the

process of finding the global optimal an easier task.[35]

Curvature: which is an analysis of the local curvature of the landscape, it is crucial for the
gradient information based algorithms.

Level set: Distribution of feature levels, it provides information about landscape topology.

Local Search: performance of the local search methods on the landscape, indicating the presence

of local minima.[35]
Metamodel: fitting simple models to the data, to figure out the complexity of the landscape.

Distribution of y: Statistical analysis of function values, to evaluate the dispersion and shape of
the data.[23]

We can say that the general workplan for our implementation can be presented in figure (3.6)

below:
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—

Figure (3.6): Scheme model development plan
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3.2 Preprocessing

The preprocessing phase received special attention as it was meticulously designed to ensure
that the data was properly cleaned, consistent, and suitable for training the deep learning model.
The process involved loading the ELA features and transforming them, handling missing values
and NaNs, as well as addressing the class imbalance problem. For balancing the class distribution
imbalance, the SMOTE (Synthetic Minority Over-sampling Technique) method was utilized,

which creates synthetic samples for the minority classes, the steps are detailed below:

- Data Loading and Transformation:
The ELA data was loaded from its corresponding CSV file. Next, the data was pivoted to transform
the 'Feature name' into columns, while using 'FID', 'l1D’, and 'Dimension’ as indices. This reshaping
process was performed to prepare the data in a format suitable for deep learning models. The

transformed data was then saved into a new CSV file for future use.

1. Handling Missing Values:

Columns such as 'measured_fitness', 'Fotp', and 'N_function_evaluation' were converted to

numeric types, ensuring that any non-numeric data and NaN values were appropriately handled.

2. Oversampling with SMOTE

To address the issue of class imbalance, we employed the SMOTE (Synthetic Minority Over-
sampling Technique) method. This technique is used to generate synthetic samples for the
minority classes, which helps in balancing the class distribution and enhances the model's ability

to learn from all classes equally

Below is figure 3.7, which shows the pseudo code for the preprocessing phase.
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Algorithm 1 Preprocessing

1: Function PREPROCESS(Performance, Features)
2: datal < LoApDATA(Performance)
3
‘|
5

3: data2 + LoADDATA(Feature)
: datal + CALCULATERELERT(datal)
. data « MERGEDATA(datal, data2)
6: data ¢ FILTERDATA(datas)
7: data «+ CLEANDATA(data)
8: X + data.DROP_COLUMNS(["Target'])
9: y + data['Target'
10: X ¢ NORMALIZEDATA(X)
11: y + ENCODETARGET(y)
12: X_resampled, v_resampled + ArPLYSMOTE(X, v)
13: return Normlized data
14: End Function

Figure (3.7): Pseudo code for the preprocessing phase

The data was split according to Table 3.2 after the preprocessing phase was completed:

Data split table after smote

Dataset split Percentages Mumber of rows
Train B0% 712

Validation 20% 238

Test 20% 238

All 100% 1188

Table (3.2): Data split table

3.3 Network architecture:
We developed two distinct models for the purpose of AS, each with its own network

architecture. The descriptions of these network architectures are outlined below:

3.4.1 Model architecture (Model 1)

1. Input layer : The input layer receives the input data with a shape corresponding to the
number of features in X_train (151).

2. First Dense Layer:
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Dense Layer: 32 neurons, ReLU activation function.

Regularization: L1 regularization with a regularization coefficient of 0.001 to

prevent overfitting by adding a penalty for large weights.

3. Batch Normalization:
It is a normalization step for the outputs of the first dense layer. Such a normalization
step ensures that outputs have an average of close to zero and an output standard
deviation of close to one, hence improving the training speed and stability. With the
normalized outputs, it will be more feasible to have better learning and optimization of
subsequent layers during training.

4. Dropout Layer:

e Dropout rate of 0.3, meaning 30% of the neurons are randomly dropped out
during training to prevent overfitting by introducing noise and forcing the
network to learn more robust features.

5. Output Layer :

e Dense Layer: Number of neurons equal to the number of unique classes in
y_train(10).

e Activation Function: Softmax activation function to output a probability

distribution over the classes.

3.4.2 Model Compilation (Model 1)

e Optimizer: The model utilizes the Adam optimizer with a learning rate of
0.0001. The Adam optimizer is chosen for its efficiency and adaptive gradient-
based optimization capabilities.

e Loss Function: The model employs the Sparse Categorical Crossentropy loss
function, which is specifically designed to handle multi-class classification
problems where the labels are represented as integers.

e Metrics: The chosen metric for monitoring the training and validation

performance of the model is accuracy. Accuracy is a commonly used metric in
classification tasks, which measures the proportion of correctly classified

samples over the total number of samples.
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e Callbacks

1. Early Stopping:

Through the training process, the validation loss will be monitored to prevent overfitting.
In the case when validation loss does not improve, the training shall be stopped through
early stopping. This procedure prevents the model from too tight a fit to the training
dataset and helps in generalizing better to unseen data.

It has a patience of 15 epochs, which means that the training will stop if there is no
improvement in validation loss for 15 epochs in a row. This early stopping mechanism
avoids overfitting and saves time used for training by stopping it when there is no
significant improvement in the validation loss over some number of epochs.

The parameter restore_best_weights=True ensures that the model weights from the epoch

with the best validation loss are used.

2. ReduceLROnPlateau:

Monitors validation loss (val_loss) and reduces the learning rate by a factor of 0.1 if the
validation loss does not improve for 5 consecutive epochs.
Minimum learning rate set to 0.000001 to ensure the learning rate does not reduce to an

ineffective level.

Class Weights
Class weights are calculated to handle class imbalance by assigning a weight to each
class inversely proportional to its frequency in the training data. This ensures the model

does not become biased towards the majority class.

3.4.3 Model training (Model 1)

The model is trained for a maximum of 290 epochs, reduced from the original 600 epochs. Each

epoch utilizes a batch size of 32. The training process incorporates class weights and early

stopping to mitigate overfitting.

During training, the validation data is used to assess the model's performance on unseen data.

The validation loss (val_loss) is monitored, and if there is no improvement after five consecutive
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epochs, the learning rate is reduced by a factor of 0.1. To ensure the learning rate does not drop

below an ineffective level, a minimum learning rate of 0.000001 is set.

This comprehensive approach ensures that the model is well-regularized and capable of

generalizing to new data, making it suitable for the classification task at hand. By using class

weights, early stopping, and monitoring the validation loss, the model is trained in a controlled

manner to achieve optimal performance while avoiding overfitting.

Training parameters:

Epochs: 600.
Batch Size: 32.
Validation Data: Provided during training.

Callbacks: Early stopping and learning rate reduction.

3.4.4 Model architecture (Model 2)

1.

Input layer : The input layer receives the input data with a shape corresponding to the
number of features in X_train.
First Dense Layer:
e Dense Layer: 128 neurons, ReLU activation function.
e Regularization: L1 regularization with a regularization coefficient of 0.001 to
Prevent overfitting by adding a penalty for large weights.
Batch Normalization:

e Normalizes the outputs of the first dense layer to improve training speed and
stability by maintaining the mean output close to zero and the output standard
deviation close to one.

Dropout Layer:

e Dropout rate of 0.3, meaning 30% of the neurons are randomly dropped out
during training to prevent overfitting by introducing noise and forcing the
network to learn more robust features.

Hidden Layer:
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We added two additional Dense Layers each one with 128 neurons with ReLU activation
function, L1 Regularization of 0.001 followed by Batch Normalization and a Dropout
rate of 30%.

Output Layer:

e Dense Layer: Number of neurons equal to the number of unique classes in
y_train.
e Activation Function: Softmax activation function to output a probability

distribution over the classes.

3.4.5 Model Compilation (Model 2)

e Optimizer: Adam optimizer with a learning rate of 0.001 for efficient and
adaptive gradient-based optimization.

e Loss Function: Sparse Categorical Crossentropy to handle multi-class
classification problems where labels are provided as integers.

e Metrics: Accuracy to monitor the training and validation performance.

Callbacks

1. Early Stopping:

Monitors validation loss (val_loss) to prevent overfitting by stopping training when the
validation loss stops improving.

Patience set to 15 epochs, meaning training will stop if the validation loss does not
improve for 15 consecutive epochs.

restore_best_weights = True ensures the model weights from the epoch with the best

validation loss are used.

2. ReduceLROnNPIlateau:

Monitors validation loss (val_loss) and reduces the learning rate by a factor of 0.1 if the
validation loss does not improve for 5 consecutive epochs.
Minimum learning rate set to 0.000000001 to ensure the learning rate does not reduce to

an ineffective level.
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Class Weights

e Class weights are calculated to handle class imbalance by assigning a weight to each
class inversely proportional to its frequency in the training data. This ensures the model

does not become biased towards the majority class.

3.4.6 Model training (Model 2)

The second model is trained for a maximum of 178 epochs, reduced from the original 600 epochs.
Each epoch employs a batch size of 32. The training process incorporates class weights and early
stopping to prevent overfitting. Additionally, the validation data is used during the training to see
how good it is on unseen data. Moreover, the validation loss (val_loss) is monitored and if there is
no improvement after five consecutive epochs, learning rate gets reduced by a factor of 0.1. To
ensure that the learning rate does not drop below an ineffective level, a minimum learning rate of
0.000000001 is set. This prevents the learning rate from becoming too small, which could hinder
the model's ability to converge or make meaningful updates to its parameters.. This comprehensive
approach can guarantee that the model is well-regularized, capable of generalizing to new data,

making it suitable for the classification task at hand.
Training parameters:

e Epochs: 600.
e Batch Size: 32.
e Validation Data: Provided during training.

e Callbacks: Early stopping and learning rate reduction.

Conclusion
In this chapter, we focused on the implementation of the suggested method. We began by
discussing the data collection phase and then proceeded to perform the necessary preprocessing

on the collected data to make it suitable for training the models. Additionally, we provided an
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explanation of the network architecture we utilized for our model, along with the process of

model compilation and training to optimize the hyperparameters.

Using a deep learning model for Algorithm Selection shows immense potential as a
significant advancement in the field of continuous optimization. By exploiting the power of deep
learning, our model can effectively navigate the complex landscape of algorithm selection,

providing robust and accurate recommendations.
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Chapter 4

Experiments and results
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Introduction

In this chapter, we present and discuss the results obtained by our DL-based models through

a series of experiments. The primary objective of these experiments is to assess the performance,

robustness, and generalizability of the models in the task of selecting the most suitable

algorithms across a diverse set of continuous problem sets.

4.1 Model evaluation and comparison

The results observed for the performance metrics (accuracy, loss) after training the models

will be presented in Table 4.1 below. The table displays the different results obtained for both the

models used in the training phase.

Model Epochs Train loss Train acc Val loss Val acc
Model 1 290 1.2525 0.6825 1.2781 0.7381
Model 2 178 1.3716 0.9014 1.5516 0.8912

Table (4.1): The results obtained on training the two ASM

Training vs Validation Accuracy(M1): The model achieved a higher accuracy on the
validation set (73.81%) compared to the training set (68.25%). This suggests that the model
generalizes well to unseen data.

Training vs. Validation Loss :

The training and validation losses are very close, indicating that the model is not
overfitting.

Training vs Validation Accuracy(M2): The model achieved a validation accuracy of
89.12% and a training accuracy of 90.14%, with the training accuracy slightly higher than
the validation accuracy. This indicates that the model is performing well and demonstrating
adequate generalization to the validation set. The fact that the training accuracy is slightly
higher suggests that the model has learned the underlying patterns in the training data
effectively. Overall, these results indicate that the model is likely performing well and has

the potential to make accurate predictions on unseen data.
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e Training vs. Validation Loss (M2): There is a slight difference between the training loss
and validation loss, which can be observed. However, as the training progresses, this
difference decreases over epochs. The loss curves converge and stabilize, with the
validation loss slightly higher than the training loss. This pattern is commonly observed

and indicates a good fit without severe overfitting.
Analysis :

e Epochs and convergence :
Model 1 required 290 epochs to converge, whereas Model 2 achieved convergence faster,
taking only 178 epochs. The convergence speed of Model 2 indicates that it was able to
reach a satisfactory level of performance in a shorter amount of time compared to Model
1.

e Training Performance:
Model 1 has a lower training loss (1.2525) compared to Model 2 (1.3716), indicating that
Model 1 fits the training data better. Training accuracy for Model 1 is 0.6825, whereas
Model 2 reach a significantly higher training accuracy of 0.9014.

e Validation Performance :
Model 1 has a lower validation loss (1.2781) compared to Model 2 (1.5516),
suggesting that Model 1 generalizes better to the validation data.
Validation accuracy for Model 1 is 0.7381, which is lower than Model 2’s validation

accuracy of 0.8912.

4.2 Performance plots

In this section, we will present the evolution of validation and accuracy values per epoch. We
will visually depict the performance of both models on the dataset using plots in Figures 4.1 and

4.2. These figures highlight the differences in training and validation accuracy and loss over
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epochs.
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Figure (4.1): Accuracy and loss of the ASM 1 on the Dataset
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Figure (4.2): Accuracy and loss of the ASM 2 on the Dataset

The provided plots show the training and validation accuracy as well as the training and
validation loss for both models
Models Accuracy and Loss Analysis
1. Model Accuracy :
Model 1:

e The training and validation accuracy both show an increasing trend reaching 0.68
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e Validation accuracy surpasses training accuracy at 0.73, which suggests good

generalization.
Model 2 :

e The training accuracy increase at a high rate and stabilize around 0.90
e Validation accuracy does increase as well and become stable at 0.89

2. Models Losses:
Model 1 :

e Training loss decreases steadily, starting high and reaching around 1.25.
e Validation loss also decreases steadily, following a similar trend and stabilizing
around 1.28.

Model 2 :

e Training loss decreases quickly, starting high and reaching around 1.37.

e Validation loss follows a similar trend but is slightly higher than the training loss,
stabilizing around 1.55.

Conclusion:

Model 1 shows a consistent improvement in both training and validation accuracy and a
steady decrease in loss, indicating good generalization and no significant overfitting.

Model 2 demonstrate a rapid improvement in accuracy and a significant decrease in loss
initially, the notable point lay in higher validation loss compared to the training loss, indicating
potential presence of overfitting.

4.3 Confusion matrix review

Below we present the confusion matrixes for our models where we illustrate the

evaluation on the VBS against the SBS in other words the predicted labels against the true ones

The classes were encoded following the Table (4.2)
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BIPOPsaACM 0
CMA 1
CMA-ESPLUSSEL 2
CMAES 3
CMAa 4
CMAcsa 5
DE-rand 6
DEuniform_fialho_noiseless 7
IPOP-ACTCMA-ES 8
JADED 9

Table(4.2) : Table for the encoded classes values

Table (4.3) and Table (4.4) represent the confusion matrix for both models.
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Table (4.4): Represents the confusion matrix for training of the ASM for the second model.

4.4 Interpretation of Confusion Matrix

The provided confusion matrix presents a detailed view of the model's performance. The

diagonal values in the matrix represent the percentage of correct predictions, indicating how

accurately the model classified instances of each class. On the other hand, the off-diagonal

values in the matrix represent the percentage of misclassifications. These values indicate how

often instances of one class are predicted as another, representing false positives or false

negatives.
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Classwise performance :

1. ClassO:
Model 1
e 88% correctly classified.

e 4% misclassified as class 2 and 8% as class 8.
Model 2

e 92% correctly classified.
e 4% misclassed as class 4 with another 4% as class 5.
2. Class1:
Model 1
e 66.67% correctly classified.

e Misclassifications are spread across several classes, with the highest (16.67%)

being misclassified as class 9.
Model 2

e 90% correctly classified.
e The rest were misclassed across different classes the largest was class 5
3. Class2:
Model 1
e 21.43% correctly classified.
¢ Significant confusion with classes 0 (10.71%), 4 (25%), and 9 (14.29%).

Model 2

e 28.57% correctly classified.

e 8% misclassed as class 5

4. Class3:
Model 1 :
e 81.08% correctly classified.

e Some confusion with classes 0 (8.11%) and 1 (5.41%).
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5.

6.

7.

8.

Model 2 :

e Had a 100% accurate classification
e There were no misclassifications.
Class 4 :
Model 1 :
e 48% correctly classified.

e 20% misclassified as class 5 and 16% as class 9.
Model 2 :

e 88% classes were correctly classified
e 12% misclassified as class 2
Class 5 :

Model 1 :

e 60.61% correctly classified.

e Some misclassifications with classes 1 (15.15%) and 2 (18.18%).
Model 2 :

e 93.94% correctly classified.

o 3.3% mistakenly classified as either class 2 or class 3
Class 6 :
Model 1 :

e 100% correctly classified.

e No misclassifications.
Model 2 :

e 100% correctly classified.
e No misclassifications.
Class 7 :
Model 1:
e 96.77% correctly classified.
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e Minor confusion with class 1 (3.23%).
Model 2 :

e 100% correctly classified
e No misclassifications.
9. Class8:
Model 1 :
e 53.33% correctly classified.
e Misclassified mainly as class 0 (10%) and class 1 (13.33%).

Model 2 :

e 76.67% correctly classified.
e 6.67% were misclassified as classes 0,5,9.
10. Class 9 :

Model 1

e 76.92% correctly classified.
e Misclassified as class 0 (3.85%), class 2 (7.69%), class 4 (3.85%), and class 8
(3.85%).

Model 2

e 92.31% correctly classified.

e 3.85% were misclassified as classes 8 and 2.
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4.5 Solvers review

BBOB CMA. DE. DEl.,InIfOTm- IPOP-
D BIPOPsaACM CMA CMAES | CMAa | CMAcsa fialho- ACTCMA- | JADEb
Groupe ESPLUSSEL rand _
noiseless ES
F1-F5 40020.0 80006.8 2338 40024.1 40021.1 147.9 80009.1 40023.4 40007.5
40035.4
F6-F9 25 42 2.0 4.0 3.7 4.0 9.1 5.1 3.0 2.9
2 F10-F14 1.8 5.1 2.7 4.1 36 33 10.4 40005.0 42 55
F15-F19 174 10.0 120016.3 23.9 75 9.5 15.3 7.4 10.6 80008.4
53.4
F20-F24 160039.8 240007.1 69.2 160032.9 | 200036.1 26.1 200007.8 200066.2 120012.4
Al 8022.1 88007.0 25.0 40014.4 48014.8 41.8 64006.9 480215
40015.8 48007.4
F1-F5 160148.5 240009.5 160003.7 40021.3 | 240012.1 | 240009.6 129.1 240011.2 240006.9 40007.7
F6-F9 2.8 3.4 2.2 33 2.7 2.7 17.6 8.4 3.1 100004.3
3 F10-F14 4.4 42 2.7 43 35 3.2 20.2 40006.6 3.4 6.1
F15-F19 6.4 6.6 320014.7 225 7.6 4.4 17.7 40009.3 13.1 121
F20-F24 40031.1 200038.6 200023.9 46.9 200049.7 | 280022.9 | 200023.0 200008.3 200025.5 200035.6
All 40038.6 88012.4 136009.5 8019.6 88015.1 104008.6 400415 104008.8 88010.4 68013.2
F1-F5 240049.2 280005.6 200001.5 320006.8 | 360004.6 | 3600035 318.2 280017.6 440003.4 40009.8
F6-F9 2.8 48 71 6.6 338 3.4 46.2 11.4 3.7 100007.8
5 F10-F14 1.2 5.2 33 5.0 3.9 3.7 82.3 11.0 3.9 10.3
F15-F19 25.6 13.4 520001.6 200040.1 13.3 8.2 240051.7 120054.0 10.2 320017.0
F20-F24 80197.4 480176.0 440029.4 300014.8 | 4801585 | 360122.1 | 3601185 360027.3 480125.6 360092.7
Al 64055.2 152041.0 232008.6 164014.7 | 168036.8 | 1440282 | 1201234 152024 3 184029.3 164027.5
F1-F5 281159.6 400008.2 200002.7 400003.3 | 4400029 | 4400024 80815.8 440018.5 400003.5 120020.6
F6-F9 2.7 5.0 150013.0 15.2 35 3.2 2125 185 4.0 250009.9
10 F10-F14 1.2 5.7 5.8 6.0 3.8 4.1 800039.2 17.1 3.8 31.9
F15-F19 295.1 1015 560001.9 441074.1 67.0 82.6 600169.8 600004.8 74.2 720005.9
F20-F24 200091.7 600014.9 480022.3 550043.3 | 680016.7 | 640015.7 | 760088.7 760021.8 640015.3 560034.8
Al 96310.1 200027.1 278009.1 2782284 | 2240188 | 2160216 | 4482652 360016.1 208020.1 330020.7
ALL Al 52106.5 120024.1 1835085 112571.9 130021.3 1280183 152118.0 170014.0 1320203 152517.2

Table 4.5: Summary of the relative expected runtime of the 10 portfolio solvers shown per

dimension and BBOB function group. (The single best solver (SBS) for each of these

combinations is printed in red and the overall SBS (BIPOPsaACM) is highlighted in blue. Values in

red indicate that this solver was better than the rest of solvers in general. )
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Comparing the ASM’s with the SBS :

Dimension BBOB Groupe BIPOPsaACM Model 1 Model 2
F1-F5 40035.4 40022.6 80009.6
F6-F9 2.5 3.2 2.2
2 F10-14 1.8 5.7 2.5
F15-19 17.4 40013.8 40014.9
F20-24 53.4 200029.4 200010.1
All 8022.1 56014.9 64007.9
F1-F5 160148.5 6.1 4.1
F6-F9 2.8 2.6 1.9
3 F10-14 4.4 2.4 2.4
F15-19 6.4 40008.1 2.1
F20-24 40031.1 80038.8 80014.7
All 40038.6 24011.6 16005.0
F1-F5 240049.2 5.1 40001.9
F6-F9 2.8 2.1 1.7
5 F10-14 1.2 2.7 2.8
F15-19 25.6 40022.3 6.9
F20-24 80197.4 400063.1 240041.2
All 64055.2 88019.1 56010.9
F1-F5 281159.6 120965.3 320024.1
F6-F9 2.7 2.2 2.2
10 F10-14 1.2 15 1.2
F15-19 295.1 56.9 40054.8
F20-24 200091.7 360040.6 400018.7
All 96310.1 96213.3 152020.2

Table 4.6: Comparison of RELERT table between SBS and the ASM’s across dimensions and
BBOB function groups

For most of the BBOB groups, the relative ERTs of our ASM’s are below the ones of the SBS
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And the overall average of model 1 stands superior to the other model and the SBS.

4.6 Discussion and results

Based on the results achieved, one could argue that the DL models demonstrated superior
RELERT across most of the BBOB functions. The SBS (BIPOPsaACM) instances, which were
selected as the SBS earlier showed greater RELERT only at the dim=2. However, we can notice
that both models managed to surpass the SBS, First model at the high dimensional space (dim=
10) and model 2 at the low dimension function (Dim= {2,5}).

We as well can deduce from the Table 4.5 the distribution of results across lower
dimensions of different algorithms claims the best performance in terms of relative expected
runtime while in the higher dimensions that performance was dominated by the selected SBS, even
though the ASM’s trained managed to achieve better RELERT on average over the SBS at
numerous instances in different function groups both at high and low dimensionality that is proved
at the Table 4.6. Which demonstrate that the classification based DNN models managed to only

partially capture the best results at specific dimensions.

We believe that jack of all trades model for algorithm selection can’t be achieved based on
our work, since capturing the difficulty problems on a single measure basis isn’t a realistic

approach
It seems to be more logical to set the target for single dimensional feature based selection.

We also think that our dataset creation method wasn’t optimal at some point since the
results shows high noise specially on low dimension groups ,we also believe that the performance
would be boosted more if more problem instances were available for the training. While the
performance of the ASM’s can be clearly distinguished from the baseline of the SBS we think a
single dimensional feature targeting approach for problem instances could be a better potential
solution to the ASP.

4.7 Application’s implementation

The figures below demonstrate the developed web app for our work:

1- The home interface: is the first interface where the user can choose to use our trained

models or train the models on new data set.
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Selection Algorithm

Main Interface

use Pretrained Model train new dataset

Figure 4.3: The home interface for the web app

2- If the user chose to use the pretrained model he can choose see the results our models
managed to achieve in detail where we present the confusion matrix and the plot
depending on the user desire.

Selection Algorithm

Use our Model

Show Plots Test Model

Figure 4.4: The pretrained model interface
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3- The show plots button present the accuracy and loss plots were the progress of accuracy
and loss for both validation and training is presented

Selection Algorithm

The Training Plots

Model Accuracy Model Loss
35

Training Aceura Training Loss
or validation Accuracy JMM Validation Loss

Figure 4.5: ASM training plot

4- Test the model button can test the model performance for any given data the user want to
try by uploading the testing data for the model.

Selection Algorithm

Test Model

Upload Test Data

Figure 4.6: Testing model interface
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Selection Algorithm

Upload Test Data
Upload Test Dataset: Aucun fichier choisi

Figure 4.7: Uploading the testing data

5- Testing the model will present the confusion matrix with the choice of downloading test

reports and the predictions:
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Selection Algorithm

Evaluate Pretrained Model

Model Accuracy: 0.5583333333333333

Confusion Matrix

Figure 4.8: Testing results

6- If the user want to train the model on a new data set the option to train the model is

available:

Selection Algorithm

Train the model with your dataset

Upload Training Data

Figure 4.9: Train model on new dataset
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7- Upload the new dataset and start the training process and when the model finish training

the results can be accessed.

Selection Algorithm

Upload Training Data

Upload Training Dataset: | Choisir un fichier | Aucun fichier choisi

Train

Figure 4.10: Uploading the training dataset

8- The final interface is for presenting the results of the training
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Selection Algorithm

Model Training Results
Training Accuracy: 0.7945945858955383

Model Loss

Download Trained Model Test Model

Figure 4.11: Results from training
4.8 Used libraries and frameworks

4.8.1 TensorFlow

TensorFlow, originally created by researchers at Google, is the most popular one among
the plethora of deep learning libraries. The term 'Tensor' refers to an N-dimensional array, while
'Flow' denotes the concept of performing calculations based on a data flow diagram." Tensorfow
is a system that transfers complex data structures to artifcial neural networks for analysis and

processing. It can be wused in a wide variety of programming languages,
including Python, JavaScript, C++, and Java, [20].

1" TensorFlow

Figure (4.12) TensorFlow Logo
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4.8.2 Keras

Keras is an API designed for human beings, not machines. Keras follows best practices
for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user
actions required for common use cases, and it provides clear & actionable error messages. Keras
also gives the highest priority to crafting great documentation and developer guides.Keras is a deep
learning API written in Python and capable of running on top of either JAX, TensorFlow,
or PyTorch. Keras is an API designed for human beings, not machines. Keras follows best practices
for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user
actions required for common use cases, and it provides clear & actionable error messages. Keras

also gives the highest priority to crafting great documentation and developer guides. [21]

Keras

Figure (4.13) : Keras Logo

4.8.3 PyTorch

PyTorch is a python package that provides the following two advanced features, one is GPU-
based tensor calculation, like NumPy, in most cases can replace NumPy. The second is to build a
unique dynamic neural network. PyTorch uses a technique known as Reverse-mode auto-
diferentiation to allow users to change network performance in a zero-delay or overhead manner.
Although this technology is not unique to PyTorch, it is one of the fastest implementations to date.
This is also the biggest advantage of PyTorch compared to other frameworks [20].

O PyTorch

Figure (4.14) : Pytorch Logo
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4.8.4 Pandas

Pandas is a Python package that provides fast, flexible, and expressive data structures
designed to make working with "relational” or "labeled"data both easy and intuitive. It aims to be
the fundamental high-level building block for doing practical, real world data analysis in Python.
Additionally, it has the broader goal of becoming the most powerful and flexible open source data
analysis / manipulation tool available in any language. It is already well on its way towards this

goal .

|H|pandas

Figure (4.15) : Pandas Logo

4.8.5 matplotlib

Matplotlib is a plotting library for the Python programming language and its numerical
mathematics extension NumPy . It provides an object-Oriented API for embedding plots into
applications using general-purpose GUI toolkits like Tkinter , wxPython , Qt, or GTK. There is
also a procedural “pylab” interface based on a state machine (like OpenGL), designed to closely
resemble that of MATLAB, though its use is discouraged. SciPy makes use of Matplotlib.The

matpl:tlib
Figure (4.16) : Matplotlib Logo
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4.8.6 Numpy

is a general-purpose array-processing package. It provides a high-performance
multidimensional array object, and tools for working with these arrays. It is the fundamental
package for scientific computing with Python. Besides its obvious scientific uses, Numpy can also

be used as an efficient multi-dimensional container of generic data.

9P

F 2 NumPy

!

Figure(4.17): Numpy logo

4.8.7 Google Colab

Google colab is an interactive notebook environment based on the cloud. It is meant for running
python code and has a focus on data analysis as well as machine learning tasks. A basic need for
collaborative and remote python data science work is Google Colab. Moreover, Google Colab
can be applied in coding tutorials and demonstrations that are interactive although this might not

be obvious at first glance because it is heavily utilized in data science.

Figure (4.18) : Google Colab logo
4.9 Our machine capabilities:

The results achieved using a laptop with the specification shown at the figure below:
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Appareil
Fabricant ; Intel Corporation

Type de processeur : Intel(R) HD Graphics Family
Type de convertisseur (CNA) : Internal

Type dappareil ; Périphérique daffichage Complet

Mémoire totale approx. : 4172 MB
Afficher fa mémoire 128 MB

Mémoire partagée ; 4044 MB

Mode d'affichage actuel : 1920 x 1080 (32 bit) (60Hz)

Moniteur : Generic PnP Monitor

Informations systéme

Date/heure du jour :
Nom de ['ordinateur :
Systéme d'exploitation :
Langue :

Fabricant du systeme :
Modéle du systéme :
BIOS:

Processeur :

Mémaire :

Fichier de pagination :
Version DirectX :

Figure 4.19: Our machine specifications

Conclusion

dimanche 23 juin 2024, 11:02:47 PM
DESKTOP-LADLHEQ

Windows 10 Professionnel 64 bits (10.0, build 19045)
frangais (Paramétres régionaux : francais)
nfa

nfa

nfa

n/a (4 CPUs)

8192MB RAM

6457 Mo utilisé(s), 9822 Mo disponible(s)
DirectX 12

In conclusion, our study on automated algorithm selection for continuous black-box

optimization problems covered the experimental setup, methodology, and results. Through

extensive experiments, our deep learning model demonstrated the ability to predict the most

suitable solver for a given problem instance. Specifically, we found that BIPOPsaACM

outperformed other solvers in terms of robustness for the majority of cases. These findings

highlight the effectiveness of our approach and the potential of deep learning models for

algorithm selection in optimization problems.
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General conclusion

This dissertation was interested in Algorithm Selection problem (ASP) in black box

continuous optimization.

The proposed approach considers the ASP task as a classification problem we based the selection
process on feature selection where we employ the exploratory landscape analysis technique to
Low-level features gathered by systematic sampling of the function on the feasible set are used

to predict the most optimal-performing algorithm out of a given portfolio The algorithm selection

problem ASP doesn’t have a rule of thumb general way of

implementation hence researchers all over the world try to develop their unique specific methods
to solve this problem,

we chose in our work to rely on the Exploratory landscape analysis (ELA) techniques to
visualize the landscape of the problem features along with several high performing algorithm-
portfolio to build a deep learning model that can predict the optimal solver (algorithm) to any
given problem set.

The first step we took is the collection and treatment of data needed for the model next comes the
treatment of the said data for the subsequent step of preprocessing, then the model building and

training after that we present the results, we managed to achieve along with graphic representation

we finish with a conclusion.

The results we have obtained are promising. However, it is important to note that while our
model outperforms the state-of-the-art study in certain group functions, it falls short in others.

This project has been beneficial to us in multiple ways. It has allowed us to acquire new
knowledge and strengthen our existing skills. We have delved into the field of black box
optimization and algorithm selection, with a specific emphasis on feature characterization using

ELA and deep learning techniques.
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