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 Abstract 

Abstract  

 

 Selecting the most appropriate algorithm to use when tackling a black-box 

continuous optimization problem is a challenging task. with a wide range of optimization 

algorithms being benchmarked each year and easy access to black-box optimization functions, 

primarily due to the efforts of the COCO platform, an automated method for algorithm selection 

in single-objective black-box optimization problems has become necessary. In this dissertation, 

we have chosen to employ DL technology in combination with ELA techniques to predict the 

optimal solver (SBS) for any given problem set. The performance of the proposed DL-based model 

is superior to a framework based on machine learning algorithms when applied to a continuous 

black-box optimization problem set, showcasing its effectiveness. 

Key words: 

Algorithm Selection, Black-Box Optimization, Exploratory Landscape Analysis, Deep Learning, 

Single-Objective Continuous Optimization, COCO framework 
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 Abstract 

Résumé 

 Sélectionner l’algorithme le plus approprié pour résoudre un problème 

d’optimisation continu à boîte noire est une tâche complexe. Avec une gamme étendue 

d’algorithmes d’optimisation évalués annuellement et un accès facilité aux fonctions 

d’optimisation à boîte noire, principalement grâce aux efforts de la plateforme COCO, une 

méthode automatisée de sélection d’algorithmes pour les problèmes d’optimisation à boîte noire à 

objectif unique est devenue nécessaire. Dans ce memoire, nous utilisons la technologie Deep 

Learning combinée à des techniques d'Exploratory Landscape Analysis pour prédire le solveur 

optimal (SBS) pour n’importe quel ensemble de problèmes donné. Les performances du modèle 

proposé basé sur le Deep Learning surpassent celles d’un modèle basé sur des algorithmes 

d’apprentissage automatique lorsqu’il est appliqué à un ensemble de problèmes d’optimisation à 

boîte noire continu, démontrant ainsi son efficacité. 

Mots-clés : Sélection d’algorithmes, Optimisation à boîte noire, Analyse du paysage exploratoire, 

Apprentissage profond, Optimisation continue à objectif unique, plateforme COCO. 
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 Abstract 

 ملخص

يعد اختيار الخوارزمية الأنسب لاستخدامها عند التعامل مع مشكلة تحسين مستمرة غير معروفة مهمة صعبة. مع وجود 

التي يتم تقييمها كل عام والوصول السهل إلى دوال التحسين غير المعروفة، وبشكل مجموعة واسعة من خوارزميات التحسين 

، أصبح من الضروري وجود طريقة تلقائية لاختيار الخوارزمية في مشاكل التحسين COCO أساسي بفضل جهود منصة

بالتزامن مع تقنيات تحليل  (DL) غير المعروفة أحادية الهدف. في هذه الأطروحة، اخترنا استخدام تقنية التعلم العميق

لأي مجموعة من المشاكل. أداء النموذج المقترح القائم على  (SBS) للتنبؤ بالمحلل الأمثل (ELA) خصائص المشكلات

التعلم العميق يتفوق على إطار العمل القائم على خوارزميات التعلم الآلي عند تطبيقه على مجموعة من مشاكل التحسين 

وفة، مما يبرز فعاليتهالمستمرة غير المعر .. 

:الكلمات الرئيسية  

 اختيار الخوارزمية، الأمثلة ذات الصندوق الأسود، تحليل المشهد التجريبي، التعلم العميق، الأمثلة المستمرة ذات الهدف

COCO   ،منصةالفردي  
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 General introduction 

General introduction 

 In continuous optimization problems, selecting the most suitable algorithm plays a vital 

role in achieving effective and efficient solutions. These problems are very common in scientific 

and engineering fields, often possess complex landscapes characterized by numerous local 

optima points, non-linearity, and high dimensionality. Traditionally, practitioners relied on 

manual selection from a variety of available algorithms, which proved challenging and prone to 

suboptimal choices as the complexity increased. 

It was at this time that the interest in machine learning as a very promising solution to 

algorithm selection gained momentum, focusing mainly on statistical learning and traditional 

machine learning models to guide decision-making. For quite a long time, meta-learning was the 

favorite among a lot of fields due to the insight it gave into the optimal choices of algorithms. 

Thus, as the number of benchmarked optimization algorithms increased and black-box 

optimization functions were supplied by platforms like COCO, an automated algorithm selection 

method for single-objective black-box optimization problems became realized. 

In recent years, DL was able to gain strength in modeling higher-level abstractions using 

higher complexity DNN architectures. Having seen success in many fields, the avenues of 

automating the algorithm selection process open up. On the other hand, DL models are good at 

taking hold of complex patterns and representations from data and hence projecting problem-

specific characteristics in a critical way to predict algorithm performance, this data-driven 

approach has huge potential for revolutionizing the field and eventually turns automated 

Algorithm Selection into a classification-based model. 

This thesis focuses on the development of an automated algorithm selection model for 

black-box optimization problems. The core objective is to address the challenges practitioners 

encounter in selecting the best algorithm out of a pool. This will be achieved by using Deep 

Learning technology combined with ELA techniques within the framework for developing a 

robust efficient model that can predict an optimal algorithm—a Single Best Solver—against the 

given black-box optimization problem sets. 

By automating the process of algorithm selection for continuous optimization problems, 

we can unlock several key benefits. First, it will increase efficiency. On the other hand, it reduces 
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the burden of manual effort. Additionally, automated algorithm selection has the potential to 

produce better optimization results via the power of Deep Learning models, which will include 

problem specific characteristics with the help of Exploratory Landscape Analysis techniques 

(ELA). This data-driven approach enables us to make informed predictions about algorithm 

performance, increasing the likelihood of identifying the optimal solver for a given black-box 

optimization problem. 

 This manuscript is structured as follows: 

Chapter 1 this chapter delves into the fundamental concepts of Black-Box Optimization Problems 

(BBOP), encompassing critical principles, a variety of architectural strategies, and widely used 

frameworks integral to the development and implementation of deep learning solutions. By 

examining these foundational elements, we aim to provide a comprehensive understanding of how 

BBOPs operate. 

Chapter 2 explores the core concepts for Algorithm Selection Problem (ASP) and its 

characteristics, architectural approach, as well presenting the Exploratory Landscape Analysis 

(ELA) technique and its role in optimizing the algorithm selection. 

In Chapter 3, we outline the steps involved in the implementation of the Deep learning model and 

briefly the data set and evaluation methods. 

In Chapter 4, we present the results obtained along with the discussion over said results and the 

application made for our work
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Chapter 1 

Black-Box Optimization Problem (BBOP) 
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 Chapter 1 Black-Box Optimization Problem (BBOP) 

Introduction: 

 We call an optimization problem as black-box optimization (BBO) when the 

objective function is not defined, understood, complex or expensive to evaluate and there is no 

explicit mathematical formulation. These types of problems are found widely in various fields such 

as engineering, design, machine-learning hyperparameters tuning, and scientific modeling. 

traditional optimization techniques generally fail in BBO problems thereby necessitating advanced 

methodologies and benchmarks for algorithm performance assessment. 

1.1 History and development  

The concept of black-box optimization has changed over time significantly. Initially, these 

problems were addressed using simple heuristic methods. However, the complexity of real-world 

applications that came into play indicated a need for advanced algorithms.  

Consequently, several optimization algorithms like Genetic Algorithms (GAs), Particle 

Swarm Optimization (PSO), Differential Evolution (DE) and others were developed. Black-Box 

Optimization Benchmarking (BBOB) originated from the necessity to systematically evaluate 

and compare such algorithms thus necessitating a standardized benchmarking platform. It is now 

an important research tool where researchers and practitioners have access to a variety of test 

functions as well as performance measures. 

1.1.1 What is Benchmarking? 

In the field of algorithm selection, benchmarking involves analyzing and comparing how 

different algorithms perform on problem instances that are not common, in identifying which is 

the best performing algorithm in different conditions and developing a strong method for 

predicting which algorithm is most appropriate for a given problem, its main objective is to test as 

many algorithms as possible. 

Benchmarking is typically conducted following the next steps: 

1. Problem Instance Collection 

 Diverse Dataset: Collect a large and diverse set of problem instances that represent the 

range of difficulties and characteristics the algorithms will encounter in real-world 

scenarios. 
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 Representation: Ensure that the problem instances are well-represented across different 

domains, scales, and types of problems. 

2. Choosing Algorithms  

 Variety of Algorithms: Choose a diverse set of algorithms to benchmark, they should 

include different types and approaches to solving the problem at hand. 

 Parameter Settings: Test each algorithm with various parameter settings to capture a 

wide range of performance outcomes. 

3. Performance Metrics 

 Accuracy and Efficiency: Measure both the accuracy (quality of the solution) and 

efficiency (computation time, resource usage) of each algorithm. 

 Other Metrics: Depending on the problem domain, other metrics like robustness, 

scalability, and stability might also be crucial. 

4. Evaluation Method  

 Cross-validation: Use cross-validation techniques to ensure that the performance 

evaluation is robust and not biased by the particular set of problem instances. 

 Statistical Analysis: Employ statistical methods to analyze the performance data, 

identifying significant differences and trends among the algorithms. 

5. Benchmarking Frameworks 

 Standardized Frameworks: Use standardized benchmarking frameworks and tools to 

ensure consistency and reproducibility of the results. Examples include the Algorithm 

Selection Library (ASlib) and related tools. 

 Community Benchmarks: Engage with the research community to compare results and 

improve benchmarking practices through shared datasets and methodologies. 

6. Reporting and Analysis 

 Detailed Reports: Provide detailed reports and visualizations of the benchmarking 

results, highlighting the strengths and weaknesses of each algorithm. 
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 Interpretability: Ensure that the results are interpretable and actionable, providing 

insights into why certain algorithms perform better on specific types of problem 

instances. 

 

 

Figure(1.1): Benchmarking process plan 

 

Benchmarking in algorithm selection is crucial for understanding the landscape of 

algorithm performance and for developing reliable methods to automatically select the best 

algorithm for a given problem instance. It involves a careful and systematic approach to 

evaluating algorithms, extracting meaningful insights, and building predictive models that can 

guide algorithm selection in practice. 
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1.2 BBOB Framework 

Black-box Optimization Framework is a term used to refer to optimization problems with 

objective functions that are either unknown or too complicated to explicitly state. Here, the 

objective function will not have an explicit analytical form. instead, it is known as “black box” 

where one evaluates it at specific points but does not know about its internal details. 

The task of solving black-box optimization (BBOP) problems presents considerable 

challenges. These challenges primarily arise from the lack of an analytical form, the absence of 

derivative information, and the substantial computational expense involved in numerically 

approximating derivatives. 

 

Figure (1.2) : Schema for black box optimization framework 

 

 

1.2.1 Characteristics of Black-Box continuous Optimization Problems 

The main characteristics of black-box continuous optimization problems are: 

1.Lack of mathematical expression: Black-box problems often do not have a 

mathematical model that describes the relationship between the input variables and the 

objective function. The objective function is typically evaluated through black-box 

evaluations, where the function's behavior is observed through input-output samples 

without explicit knowledge of its internal workings. 
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2.Absence of Derivative Information: In black-box optimization, derivative information 

such as gradients or Hessians of the objective function is typically unavailable or 

computationally expensive to obtain.  

3.Computational Cost: Evaluating the objective function in black-box optimization 

problems can be computationally expensive 

4.Noisy and Stochastic Behavior: Black-box objective functions may exhibit noise or 

stochasticity, meaning that repeated evaluations of the same input may yield slightly 

different function values. 

5.Global Optimization Challenges: Black-box continuous optimization problems often 

involve searching for the global optimum in a high-dimensional search space. The presence 

of multiple local optima and complex landscape structures makes finding the global 

optimum a challenging task.  

6.Limited Problem-Specific Knowledge: In black-box optimization, there is limited or 

no prior knowledge about the problem structure, properties, or constraints. The 

optimization algorithms must rely solely on the evaluations of the objective function to 

guide the search process, making it crucial to design adaptive and intelligent search 

strategies. 

 

1.3 COCO Framework  

One of the most prominent initiatives in the field of black-box optimization 

benchmarking is the Comparing Continuous Optimizers (COCO) platform. COCO is an open-

source platform designed to provide rigorous and standardized benchmarks for continuous 

optimization problems. It offers a wide range of test functions, performance indicators, and tools 

for analyzing algorithm performance. 
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Figure (1.3): COCO project general structure 

COCO benchmarking platform has contributed immensely to the field of optimization 

algorithm benchmarking by providing standardized test functions where it provides a diverse set 

of test functions that mimic real-world optimization challenges. These functions vary in terms of 

dimensionality, modality, separability, and ruggedness, offering a comprehensive evaluation 

environment. 

The platform includes well-defined performance metrics such as runtime distributions, 

convergence rates, and success rates, allowing for detailed analysis and comparison of algorithms 

and on top of that COCO supports automated benchmarking, enabling researchers to evaluate their 

algorithms efficiently and consistently. 

1.4 BBOB Test Suites 

The blackbox optimization benchmarking (BBOB) test suite is COCO's standard test suite 

with 24 noiseless, single-objective and scalable test functions. Each function is provided in 

dimensions (2, 3, 5, 10, 20, 40) and in 15 instances, however also available for arbitrary dimensions 

and number of instances.  

1.4.1 Benchmark Functions 

The Black-Box Optimization Benchmarking (BBOB) suite consists of 24 single-objective 

noiseless functions which are categorized into five groups based on their characteristics. This 

suite allows for the creation of different problem instances, making it ideal for evaluating the 
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stability and invariance of optimization algorithms under various transformations. This feature is 

particularly useful in testing the robustness of algorithms by applying different transformations 

to the same problem, ensuring that the results are consistent and reliable across different 

scenarios [3]. A brief description of each group and the functions in the table 

Group Functions Characteristics 

1. Separable Functions 

 

f1: Sphere Function  

f2: Separable Ellipsoidal Function 

f3: Rastrigin Function 

f4: Büche-Rastrigin Function 

f5: Linear Slope 

 

separable and can be 

optimized independently. 

 

2. Functions with low or 

moderate conditioning 

f6: Attractive Sector Function 

f7: Step Ellipsoidal Function 

f8: Rosenbrock Function (original) 

f9: Rosenbrock Function (rotated) 

 

low or moderate 

conditioning, meaning the 

curvature of the function 

changes gradually. 

 

3. Functions with high 

conditioning and unimodal 

 

f10: Ellipsoidal Function 

f11: Discus Function 

f12: Bent Cigar Function 

f13: Sharp Ridge Function 

f14: Different Powers Function 

 

high conditioning and 

unimodal, meaning they 

have a single global 

optimum. 

 

4. Multi-modal functions with 

adequate global structure 

 

f15: Rastrigin Function 

f16: Weierstrass Function 

f17: Schaffer's F7 Function 

f18: Schaffer's F7 Function  

f19: Composite Griewank-

Rosenbrock Function F8F2 

 

multi-modal, meaning 

they have multiple local 

optima, but they still have 

a clear global structure. 

 

5. Multi-modal functions with 

weak global structure 

 

f20: Schwefel Function 

f21: Gallagher's Gaussian 101-me 

Peaks Function 

f22: Gallagher's Gaussian 21-hi 

Peaks Function 

f23: Katsuura Function 

f24: Lunacek bi-Rastrigin Function 

 

multi-modal and have 

weak global structure, 

meaning the local optima 

are not clearly related to 

the global optimum. 

 

 

Table 1.1: Classification of the noiseless BBOB functions based on their properties (multi-

modality, global structure, separability, variable scaling, homogeneity, basin-sizes, global to 

local contrast)) 
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1.4.2 Evaluation metrics for algorithm performance: 

The choice of evaluation metrics depends on the specific optimization problem, the algorithm 

being evaluated, and the desired characteristics of the solution. 

Several evaluation metrics are commonly used to assess the performance and effectiveness of 

different algorithms.  Some of the key evaluation metrics are:  

 

1.Convergence: It measures how speed an algorithm reaches a satisfactory solution or approaches 

the optimal solution. It typically assesses the rate of improvement over iterations or generations. 

Faster convergence indicates more efficient performance. 

 

2.Fitness/Objective Function Value: Fitness or objective function value represents the quality of 

the solution obtained by an algorithm. It measures how well an algorithm performs on the objective 

function being optimized.  

 

3.Solution Quality: Solution quality evaluates the optimality or closeness to the global optimum 

achieved by an algorithm. It compares the obtained solution with known or benchmark solutions 

to assess the accuracy and effectiveness of the algorithm. Metrics such as distance to the global 

optimum or error rate can be used to measure solution quality. 

 

4.Efficiency/Computational Time: Efficiency metrics focus on the computational resources 

required by an algorithm to find a solution. It calculates the time taken to reach a solution, the 

number of function evaluations performed, or the computational complexity. 

1.5 Importance of Benchmarking 

Benchmarking is essential in the field of black-box optimization for several reasons: 

Algorithm Comparison: Benchmarking allows for systematic comparison of different 

optimization algorithms under standardized conditions. This helps identify the most 

effective algorithms for specific types of problems. 
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Performance Evaluation: Through benchmarking, researchers can evaluate the 

performance of their algorithms in terms of convergence speed, solution quality, 

robustness, and scalability. 

Algorithm Development: Insights gained from benchmarking can guide the 

development of new algorithms and improvements to existing ones. Understanding where 

current methods fall short can inspire novel approaches. 

Reproducibility: Standardized benchmarks ensure that results are reproducible and 

comparable across different studies and research groups. This fosters collaboration and 

cumulative progress in the field. 

 

Conclusion  

Black-box optimization benchmarking, especially through platforms like COCO and its 

BBOB test suites, has become pivotal in the research and development of optimization algorithms. 

These platforms offer a standardized, rigorous evaluation environment, enabling researchers to 

methodically compare and refine optimization techniques. This systematic approach drives 

advancements in tackling complex real-world challenges. As the field progresses, benchmarking 

will continue to be essential in enhancing our understanding and capabilities in black-box 

optimization. 

Looking ahead, the field is guided toward further growth with developments in machine 

learning, reinforcement learning, and meta-heuristic approaches, promising even more advanced 

solutions to black-box optimization challenges. For researchers and practitioners, mastering these 

methodologies and their applications provides robust tools for efficiently solving complex real-

world problems. 
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Introduction 

For computationally challenging problems, there is a plethora of algorithms available, each 

with its own benefits and limits when applied to different instances of these problems. As a result, 

continuously, the question of determining the most suitable algorithm for a specific problem 

instance to achieve optimal performance is arisen. The field of algorithm selection aims to address 

this question by devising decision policies known as algorithm selectors. These selectors provide 

recommendations on which algorithm should be chosen for a given problem instance 

In this chapter, the Algorithm Selection Problem will be inquired trough, we introduce the 

concept of ELA technique, which is widely regarded as the sole valid approach for measuring the 

problem characteristics of Black Box Continuous Optimization Problems. Additionally, we 

explore the challenges associated with algorithm selection and highlight relevant research 

conducted in this field and popular methods used for solving the ASP problem. 

 

2.1Exploratory Landscape Analysis (ELA) for characterizing problem landscapes 
  

Exploratory Landscape Analysis (ELA) is a sophisticated approach to characterize a 

landscape of a problem by means of numerical feature values introduced by [2]. 

In its original version, ELA covered a total of 50 features - grouped into six so-called low-level 

properties (Convexity, Curvature, y-Distribution, Levelset, Local Search and Meta Model). 

These (numerical values) were used to characterize (usually categorical and expert-

designed) high-level properties, such as the Global Structure, Multimodality or Variable Scaling. 

The figure (2.1) below visualizes the connections between the low- and high-level properties. 

 

 



 

15 
 

 Chapter 2 The Algorithm Selection Problem (ASP) 

 

Figure(2.1) :Relationships between high-level features (grey) and low-level feature classes 

(white)  

[1] argued that the introduction of the low-level features can be seen as a major step towards 

automatically computable landscape features and hence automated algorithm selection .  

The figure (2.2) below illustrates the application of ELA to enhance the process of automated 

algorithm selection. 

 

 

figure(2.2) : Schematic view of how (ELA) can be used for improving the automated algorithm 

selection process. 
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2.3 Evaluation metrics for algorithm performance: 

The choice of evaluation metrics depends on the specific optimization problem, the algorithm 

being evaluated, and the desired characteristics of the solution 

several evaluation metrics are commonly used to assess the performance and effectiveness of 

different algorithms.  Some of the key evaluation metrics are:  

 

1.Convergence: It measures how speed an algorithm reaches a satisfactory solution or approaches 

the optimal solution. It typically assesses the rate of improvement over iterations or generations. 

Faster convergence indicates more efficient performance. 

2.Fitness/Objective Function Value: Fitness or objective function value represents the quality of 

the solution obtained by an algorithm. It measures how well an algorithm performs on the objective 

function being optimized.  

 

3.Solution Quality: Solution quality evaluates the optimality or closeness to the global optimum 

achieved by an algorithm. It compares the obtained solution with known or benchmark solutions 

to assess the accuracy and effectiveness of the algorithm. Metrics such as distance to the global 

optimum or error rate can be used to measure solution quality. 

 

4.Efficiency/Computational Time: Efficiency metrics focus on the computational resources 

required by an algorithm to find a solution. It calculates the time taken to reach a solution, the 

number of function evaluations performed, or the computational complexity. 

 

2.6 Algorithm selection problem: 

In Algorithm selection [4], the goal is to find the best Algorithm 𝐴𝑖 from a set of candidate 

Algorithms {𝐴1, 𝐴2, … . , 𝐴𝐾} = 𝐴 for a problem instance 𝐼 𝐼 from a problem instance space 𝐼. 

formally, the aim is to find a mapping, called algorithm selector s:𝐼 → 𝐴, which maximizes a 

costly-to-evaluate performance measure m:𝐴 𝑥 𝐼 → 𝑅. the optimal selector  is defined as 
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2.4 Algorithm selection framework 

In [4], the components of the algorithm selection framework are interconnected and have 

mutual influence on each other. Together, they form a comprehensive approach for selecting the 

best algorithm for a specific problem instance. This ensures that the chosen algorithm not only 

matches the problem requirements but also exhibits strong performance in terms of the desired 

evaluation metrics. Figure (2.3) displays the diagram of the algorithm selection framework. 

 

Figure (2.3): Diagram of the algorithm selection framework proposed by Rice in his 1976 paper  

The diagram consists of four components: the problem, algorithm, algorithm selection, and 

performance evaluation. Each component plays a crucial role in the algorithm selection process. 

 

 Problem Space: represents the set of all possible problem instances that the algorithm 

selection framework aims to address. It encompasses a range of optimization problems, 

each with its distinct characteristics, requirements, and objectives. [3] declares that ELA 

methods, are the only valid approach to measure the problem characteristics for Black 

box Continuous optimization Problems 
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 Performance Space: Refers to the set of performance metrics used to evaluate the 

effectiveness and quality of the algorithms in solving the problem instances. It can 

include convergence rate, solution accuracy, robustness, … The performance space 

provides a quantifiable way to assess and compare the performance of different 

algorithms. 

 Algorithm Space: Denotes the collection of candidate algorithms (Algorithm Portfolio) 

available for solving the optimization problems in the problem space. It encompasses 

various algorithms with different characteristics   

 Characteristics Space: Represents the set of algorithm properties to describe and 

distinguish the algorithms in the algorithm space. These characteristics can include 

algorithm complexity, search strategy, population size, mutation rate, selection 

mechanism, or any other relevant attributes of the algorithms. The characteristics space 

helps in understanding the strengths and weaknesses of different algorithms and their 

suitability for solving specific problem instances. 

 

2.5 Algorithm Selection Approaches 

Since the topic of AS is around for quite some time, naturally, a lot of different 

approaches to AS have been suggested in the literature.  

In the following, a taxonomy of different algorithm selection solutions based on the type of 

learning problem presented by [5]. A visual overview of the taxonomy is presented in 

Figure (2.4). 
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Figure (2.4) Taxonomy of different algorithm selection solutions [5] 

 Classification Solutions 

 Classification-based algorithm selection approaches work by directly trying to learn the by 

the means of classification instead of learning a surrogate loss function. There exist various 

approaches in the literature, which directly follow this scheme using different kinds of machine 

learning models to model h such as decision trees [6] [7], k-nearest neighbor models [8] or 

support vector machines [9]. 

 Regression Solutions  

Instead of treating the AS problem as a classification problem, it is treated as a multi-target 

regression problem with one regression target for each algorithm. A large set of literature exists, 

which suggests methods leveraging regression models to predict the performance of an algorithm 

on an instance [10, 15, 18, 19]. 

 Ranking Solutions 

  Ranking-based AS solutions are motivated by the observation that the ability to predict a 

correct ranking across the algorithms for a given instance is potentially an ability easier to 

achieve than the ability to correctly predict the true loss function value for each algorithm. As 

examples, work of [24] [1] and [26]. 

 Hybrids of Ranking and Regression Solutions 

This idea was proposed by [27] and was later refined by [32] 
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 Clustering Solutions 

They decompose the algorithm selection on the complete instance space to multiple AS 

problems. Examples following this strategy are [33], [36], [37]. 

 Collaborative Filtering Solutions  

Treating the AS problem as a recommendation problem similar to, for example, recommending 

products (i.e., algorithms) to customers (i.e. instances). As examples, [38] and [39; 42]. 

2.6 Algorithm Selection Strategies 

      Static vs. Dynamic Selection 

 Static Selection: In static selection, the algorithm is chosen based on the initial problem 

instance characteristics, and the choice remains fixed throughout the solution process. 

 Dynamic Selection: In dynamic selection, the algorithm choice can change during the 

solution process based on intermediate results and evolving instance characteristics. 

      Portfolio Approaches 

Portfolio approaches combine multiple algorithms to handle a variety of problem instances. Key 

strategies include: 

 Algorithm Portfolios: A set of algorithms is maintained, and the best algorithm for each 

new instance is selected based on past performance data. 

 Hybrid Algorithms: Algorithms are combined in a way that leverages the strengths of 

each. For example, a hybrid optimization algorithm might use a genetic algorithm for 

global search and a local search algorithm for fine-tuning solutions. 

2.7 Adaptive and Online Learning 
Adaptive and online learning strategies continuously improve algorithm selection over time: 

 Adaptive Learning: The selection strategy adapts based on feedback from previous 

performance, refining its predictions and choices. 

 Online Learning: The selection model updates in real-time as new problem instances are 

solved, ensuring that the model remains current and effective. 

2.8 Related work for algorithm selection in black-box continuous optimization  
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In the field of continuous black-box optimization, have been proposed and have shown 

promising results. The following are some related works in case of single-objective 

continuous black-box optimization. 

 - [1] proposed a sophisticated machine learning techniques combined with informative 

exploratory landscape features. This work provides an extensive study on feature-based 

algorithm selection in case of single-objective continuous black-box optimization. 

Three classes of supervised learning strategies were considered for training the algorithm 

selection models: A classification approach, a regression approach, and pairwise regression. 

 - [55] explored feature-free approaches that leverage advanced deep learning techniques 

(convolutional Reduced Multi-Channel conv-rMC) applied to either images or point clouds. they 

demonstrate that point-cloud-based approaches are competitive and significantly decrease the 

size of the solver portfolio needed. 

- [56] introduced. the CNN-HT two-stage algorithm selection framework is In the initial 

stage, a Convolutional Neural Network (CNN) is utilized to classify problems. Subsequently, in 

the second stage, the Hypothesis Testing (HT) technique is employed. They adopted Exploratory 

Landscape Analysis (ELA) features of the problem as the input and utilize feature selection 

techniques to reduce the redundant ones.  

- [57] proposes an algorithm selector (AS), capable of selecting a promising 

configuration of a modularized version of the most prominent meta-heuristic CMA-ES for 

single-objective continuous optimization. They construct a two-dimensional gray-scale picture 

which is called fitness map. Using this fitness map as input, they construct an algorithm selector 

based on a Deep CNN. The algorithm selector is a collection of different distinct CMA-ES 

versions provided by the modular CMA-ES framework. 
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Conclusion 

In this chapter, we first provided an explicit definition of Algorithm Selection problem, then 

emphasized on its importance to improve performance and efficiency over different applications. 

Then, we explored both theoretical and practical aspects of algorithm selection by discussing 

factors influencing algorithm choice. Different continuous problems where algorithm selection 

plays a vital role were also explained together with criteria for assessing effectiveness of 

algorithms. 

The next chapter will be more pragmatic than theory as it explains our proposed model in details. 

Our development process will be presented including design options, strategies in implementation 

as well as rational behind our technical approach.  
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 Introduction  

This chapter outlines the research methods used in our study, detailing each step taken. We 

begin with an overview of our proposed approach, which integrates Algorithm Selection on 

continuous Black-Box optimization problems with deep learning instead of a traditional machine 

learning approach. 

Next, we discuss data collection, focusing on selecting high-performing solvers from the 

COCO platform's optimization algorithm results. Our goal is to create a model that surpasses any 

single solver's performance. To achieve this, we expanded our dataset through data augmentation 

to ensure we have sufficient data for the training and testing phases. 

We then move on to feature engineering, where we employ Exploratory Landscape 

Analysis (ELA) to characterize problem landscapes numerically. We describe the preprocessing 

steps applied to the raw data and the network architecture before proceeding with model training. 

In this section, we provide details about the construction and training of the network 

architectures and present our results. Our key contribution lies in combining ELA techniques 

with deep learning to predict the optimal outcomes for single-objective noiseless problems. This 

approach yields superior results while requiring fewer computational resources. 

3.1 The Dataset  

The dataset is composed of two main separate bodies. The first body concerns the 

performance of the portfolio of algorithms we chose to train the model on. We begin by defining 

the Algorithm Selection Problem (ASP) as follows: Given a set of optimization algorithms 𝐴, 

which represents our portfolio of algorithms, and a set of problem instances 𝐼, our objective is to 

find a model m: 𝐼 →  𝐴 that selects the best algorithm 𝑎 ∈ 𝐴 from the portfolio for an unseen 

problem instance 𝑖 ∈  𝐼. 

Although there exists a plethora of competent algorithms, even when considering only single-

objective continuous optimization problems, none of them can be considered a superior choice 

over all others across all optimization problems. Therefore, it is still relevant to find a sophisticated 

mechanism to select the optimal solver for each problem. 
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The dataset is composed of 2 main separate bodies one is for the performance of the portfolio 

of algorithms we chose to train the model on, we start by defining the ASP as follows: 

given a set of optimization algorithms A which represents our portfolio of algorithms, and a set of 

problem instances I our objective is to find a model m: 𝐼 → 𝐴 that selects the best algorithm 𝑎 ∈

 𝐴 from the portfolio for an unseen problem instance 𝑖 ∈  𝐼, although there exist a plethora of 

competent algorithms even when we only specify the single-objective continuous optimization 

problems,  none of them can be considered as superior choice over other ones across all the 

optimization problems so it’s still relevant to find a sophisticated mechanism to select the optimal 

solver to each problem. 

The performance data remained static over the years as a setup in the COCO-platform, 

specifically in terms of dimensions (D) ∈ {2, 3, 5, 10, 20, 40} for the benchmarked functions. Each 

algorithm is evaluated on the functions (FID) ∈ {1, …,24}, and the number of instances (IID) ∈ 

{1, ...,15} [1]. The data contains a log of the performed number of function evaluations and the 

achieved fitness value. This information allows us to determine if the solver successfully found a 

global optimum for the problem instance i ∈ I within a proximity of ε = 10^-2. Additionally, it 

provides insights into the number of function evaluations (FEi(ε)) performed by the solver until 

termination, irrespective of success or failure. 

For our work, we consider various data collection settings based on the combinations of 

problem dimensionality. Specifically, we utilize the domain D = {2, 3, 5, 10} to represent different 

dimensional versions of the benchmark functions. 

We can determine the success of a solver by considering the precision domain of ε. In other 

words, we define Success (ε) = 1 if the solution found, denoted as x*, lies within the range [-5, 

+5]d and its fitness value falls within [f(xopt), f(xopt) + ε], where xopt represents the global 

optimum. To calculate the ERT (Expected Runtime to Target), we consider both the success of the 

solver and the number of function evaluations. 

The performance results obtained by running an algorithm on the COCO platform provide 

us with detailed fitness value calculations and graphical representations for all the problem 

instances. We utilize these calculations to determine the Expected Runtime (ERT) for each pair of 

Algorithm A and function F on dimension D. The ERT is calculated using the following formula: 
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𝐸𝑅𝑇(ε) =
∑ 𝑖 𝐹𝐸𝑖(ε)

∑ 𝑖 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖(ε)
 

We proceed by comparing the Expected Runtime (ERT) of different algorithms with the 

best algorithm found, known as the Success-Based Selection (SBS), on the same function. This 

comparison is done using the Relative Expected Runtime (RELERT) formula, which is provided 

below. 

𝑅𝐸𝐿𝐸𝑅𝑇𝐴,𝐹,𝐷 =
𝐸𝑅𝑇𝐴,𝐹,𝐷

𝑀𝑖𝑛(𝐸𝑅𝑇𝐹.𝐷)
 

Our final dataset for training our model is created by merging the features and performance data 

during the preprocessing stage. This dataset is obtained by combining the performance of the 

algorithm portfolio with the feature set collected from the Flacco GUI [28]. The dataset is 

represented in Table 3.1, which displays the merged data. 

Dataset Number of Rows Number of features 

dataset 1 480 151 

 

Table (3.1): Table that show the dataset composition. 

 3.2.1 Performance: 

The performance data for each optimization algorithm is organized into columns, with instances 

separated by the "%" symbol, as outlined below: 

The 1st column indicates the problem instance selected by the algorithm. 

The 2nd column displays the function evaluation. 

The 3rd column represents the best noise-free fitness - Fopt. 

The 4th column represents the best noise-free fitness, -Fopt, for the entire instance. 

The 5th column displays the measured fitness. 

The 6th column represents the best measured fitness. 
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Starting from the 7th column and onward, the columns contain the values of the variables (x) that 

define the instance. The number of x values depends on the dimension of the problem. Figure 3.1 

provides a sample of the preprocessed performance data for dimension 2. 

 

 

figure (3.1) Sample of the raw performance data pre-treatment of dimension 2 data. 

 

It was determined that we would utilize 5 instances from each function within the domain 

{1...24}. Thanks to the numerous GECCO (Genetic and Evolutionary Computation Conference) 

BBOB competitions held over the years, the performance data of the best-performing state-of-

the-art algorithms across the 480 BBOB [1] instances is available online in the BBOB data 

archive. This availability is a result of the systematic construction of an online algorithm selector 

archive, and the results were aggregated based on the 256 solvers that were submitted to the 

COCO-platform. 

The BBOB datasets collected by the COCO platform can be accessed at [29]. Figure 3.2 

illustrates the online archive for the BBOB datasets collected by the COCO platform. 
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Figure (3.2): The BBOB datasets by the coco-data archive. 

 

3.2.2 Demonstrative examples on calculating ERT and RELERT 

ERT (Expected Runtime) 

In this section, we provide illustrative examples of how the measures used to rank algorithms 

were calculated. we begin with an example of calculating the Expected Runtime (ERT). 

For the ERT calculation, we identify the success cases by examining the measured fitness values 

(shown in red) that have achieved the Fopt (shown in blue) within a range of 𝜀 = 0.01. Figure 

(3.3) serves as a representative example of this process. 
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Figure (3.3):  ERT calculation example 

ERT(i) = 
∑ 𝑖𝐹𝐸(𝜀)

∑ 𝑖𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝜀)
 = 

𝟏𝟎𝟑𝟐

𝟏𝟏
 = 93.8181818 

The ERT value is calculated for each individual instance across all algorithms. These calculated 

ERT values are then utilized in the calculation of the Relative Expected Runtime (RELERT). 

 

RELERT (Relative Expected Runtime )  

To calculate the RELERT, we require the minimum ERT value for all instances within a specific 

dimension and the minimum ERT value for the corresponding function. These minimum ERT 
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values are used as reference points for comparison. By comparing the RELERT values of 

different algorithms, we can determine the ranking of the algorithms based on their performance. 

 

Figure (3.4): RELERT calculation example 

 

RELERT(i) = 
𝐸𝑅𝑇(𝑖)

𝑀𝑖𝑛(𝐸𝑅𝑇(𝑖))
 = Result 

3.2.3 Algorithm portfolio  

We have selected 10 algorithms to train our model, which are variations of the two main 

optimization algorithms we relied on: Covariance Matrix Adaptation (CMA) and Differential 

Evolution (DE). The list of selected algorithms is as follows: 

The CMA-based algorithms that we have selected are as follows: 

-CMAES : short for covariance matrix adaptation-evolution strategy is an evolutionary algorithm 

for continuous stochastic non-linear and non-convex optimization problems with non-linear and 

non-convex search landscapes, population-based optimization algorithm that means it works with 

population of candidate solutions ,the candidates solution selected are evaluated and the best-
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performing ones are used to update the mean and covariance matrix of the sampling distribution 

for the next gen of solutions[6] 

-CMA: covariance matrix adaptation is a strategy used in the evolutionary algorithms domain for 

complex functions it is famous for its implementation in the CMA-ES [5] 

-BIPOPsaACM : short for Biased Initialization Population-based Optimization for Self-adaptive 

Active Covariance Matrix biased initialization mean that the process with the initial population is 

biased toward certain region of the search space, pop-based indicate that the algorithm works with  

a groupe of candidate solutions rather than a single solution just like genetic algorithms and particle 

swarm optimizations, self-adaptive  mean that the algorithm can adapt his parameters based on the 

process of the optimization 

An advanced optimization technique that combines biased initialization and self-adaptive 

strategies within a population-based framework, and it actively modifies the covariance matrix to 

enhance the search efficiency. This type of algorithm can be particularly effective for complex 

optimization problems where the search space is high-dimensional, noisy, or has many local 

optimal [11]. 

 

-CMAa: Covariance Matrix Adaptation with active covariance matrix updates Active updates 

refer to a specific strategy within CMA-ES that enhances the adaptation process. It involves 

adjusting the covariance matrix using not only successful mutations (which lead to better 

solutions but also considering unsuccessful mutations (which do not improve the solution) [13]. 

-IPOP-ACTCMA-ES: Increasing Population Size with Active Covariance Matrix Adaptation 

Evolution Strategy [12] 

-CMA CSA: Covariance Matrix Adaptation with Covariance Matrix Self-Adaptation. This is an 

advanced variant of the Covariance Matrix Adaptation Evolution Strategy. It self-adaptation 

mechanisms specifically for the covariance matrix. This approach aims to enhance the flexibility 

and efficiency of the optimization process by allowing the algorithm to dynamically adjust the 

covariance matrix based on the evolving search dynamics [14]. 
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-CMA-ESPLUSSEL: Covariance Matrix Adaptation Evolution Strategy with Plus Selection This 

is a specific variant of the standard Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 

that incorporates a plus selection mechanism 

The DE (Differential Evolution) algorithms that we have selected are as follows: 

-JADEb:  algorithm (Joint Approximate Diagonalization of Eigen-matrices for blind source 

separation is an adaptive variant of the DE  

-DE-rand: is arguably the most popular DE variant [16][17] 

-DE uniform_fialho_noiseless: DE uniform is a variant that employs a uniform crossover 

mechanism. The DE uniform variant developed by Fialho and colleagues enhances DE by 

incorporating adaptive strategies to improve performance [22], particularly in noiseless 

environments where precision is crucial. 

3.2.2 Features 

The second part of the dataset comprises the features, which play a crucial role in our 

work. While the landscape of features can be computed for any optimization problem, our focus 

is specifically on single-objective continuous optimization problems. 

Our work revolves around the ELA (Exploratory Landscape Analysis) technique, which 

involves characterizing a problem landscape using numerical feature values. This 

characterization aids in the selection of the most suitable algorithm for solving the problem. 

To obtain these features, we employ systematic sampling of the decision space using various 

methods. In our case, we utilize Latin hypercube sampling (LHS) [4]. LHS generates a near-

random sample of parameter values for multidimensional distributions, allowing us to effectively 

capture the characteristics of the landscape. 

These features enable us to identify specific landscape characteristics, such as convexity, 

roughness, or funnel structure. These characteristics have a significant impact on the 

performance of optimization algorithms. By considering these features, we can make informed 

decisions and choose algorithms that are well-suited to the problem's landscape. To obtain these 

problem-specific features, we utilized the online tool called Flacco GUI, as shown in Figure 

(3.3). The Flacco GUI provides a graphical user interface that simplifies the extraction and 
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analysis of ELA features. It offers a variety of tools for computing different landscape 

descriptors. The Flacco GUI can be accessed at [28], where users can utilize its features to 

compute and analyze landscape descriptors specific to their optimization problems. 

 

 

figure (3.5) The graphical user interface Flacco for BBOB features extraction 

Feature extraction was performed using the Flacco GUI tool, specifically with Benchmarking 

Black-Box Optimization (BBOB) instances. The steps involved in this process are outlined 

below: 

- BBOB-FID Selection: We chose the BBOB-FID values ranging from 1 to 24, 

representing 24 different functions, for each algorithm. 

- BBOB-IID Selection: We selected the BBOB-IID values from 1 to 5, covering a set of 5 

instances that span the dimension domain. The dimension domain, denoted as D, includes 

values 2, 3, 5, and 10. 

- Sample Size Calculation: We determined the sample size using the following formula: 

Sample configuration for each dimension equals to 50 times the dimension. The bounds 

for the samples were set from -5 to 5. For instance, if the dimension is 2, we used 100 
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samples, while for a dimension of 10, we used 500 samples. This configuration ensures 

an adequate number of samples to capture the landscape characteristics effectively. 

We opted to use the Flacco GUI tool specifically because it was configured to extract features from 

the BBOB instances. The tool simplifies the feature extraction process by providing parameter 

selection options and performing the necessary calculations without requiring data to be loaded 

into the tool separately. This streamlined approach facilitated the extraction of features for our 

analysis. 

3.3.3 The types of extracted features: 

We extracted various types of features using the Flacco GUI, including numerous descriptors that 

capture different aspects of the optimization landscape. Some of the classic features that were 

extracted include: 

Convexity: a measure of the convexity of the landscape, which help the algorithms to make the 

process of finding the global optimal an easier task.[35] 

Curvature: which is an analysis of the local curvature of the landscape, it is crucial for the             

gradient information based algorithms. 

Level set: Distribution of feature levels, it provides information about landscape topology. 

Local Search: performance of the local search methods on the landscape, indicating the presence 

of local minima.[35] 

Metamodel: fitting simple models to the data, to figure out the complexity of the landscape. 

Distribution of y: Statistical analysis of function values, to evaluate the dispersion and shape of 

the data.[23] 

We can say that the general workplan for our implementation can be presented in figure (3.6) 

below: 
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Figure (3.6): Scheme model development plan 

 

  

Predictions 
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3.2 Preprocessing  

The preprocessing phase received special attention as it was meticulously designed to ensure 

that the data was properly cleaned, consistent, and suitable for training the deep learning model. 

The process involved loading the ELA features and transforming them, handling missing values 

and NaNs, as well as addressing the class imbalance problem. For balancing the class distribution 

imbalance, the SMOTE (Synthetic Minority Over-sampling Technique) method was utilized, 

which creates synthetic samples for the minority classes, the steps are detailed below: 

- Data Loading and Transformation: 

The ELA data was loaded from its corresponding CSV file. Next, the data was pivoted to transform 

the 'Feature name' into columns, while using 'FID', 'IID', and 'Dimension' as indices. This reshaping 

process was performed to prepare the data in a format suitable for deep learning models. The 

transformed data was then saved into a new CSV file for future use. 

1. Handling Missing Values:   

Columns such as 'measured_fitness', 'Fotp', and 'N_function_evaluation' were converted to 

numeric types, ensuring that any non-numeric data and NaN values were appropriately handled. 

2. Oversampling with SMOTE   

To address the issue of class imbalance, we employed the SMOTE (Synthetic Minority Over-

sampling Technique) method. This technique is used to generate synthetic samples for the 

minority classes, which helps in balancing the class distribution and enhances the model's ability 

to learn from all classes equally 

Below is figure 3.7, which shows the pseudo code for the preprocessing phase. 
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Figure (3.7): Pseudo code for the preprocessing phase 

The data was split according to Table 3.2 after the preprocessing phase was completed: 

 

Table (3.2): Data split table 

3.3 Network architecture:   

We developed two distinct models for the purpose of AS, each with its own network 

architecture. The descriptions of these network architectures are outlined below: 

3.4.1 Model architecture (Model 1) 

1. Input layer : The input layer receives the input data with a shape corresponding to the 

number of features in X_train (151). 

2. First Dense Layer:  
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 Dense Layer: 32 neurons, ReLU activation function. 

 Regularization: L1 regularization with a regularization coefficient of 0.001 to 

prevent overfitting by adding a penalty for large weights. 

3. Batch Normalization: 

It is a normalization step for the outputs of the first dense layer. Such a normalization 

step ensures that outputs have an average of close to zero and an output standard 

deviation of close to one, hence improving the training speed and stability. With the 

normalized outputs, it will be more feasible to have better learning and optimization of 

subsequent layers during training. 

4. Dropout Layer: 

 Dropout rate of 0.3, meaning 30% of the neurons are randomly dropped out 

             during training to prevent overfitting by introducing noise and forcing the 

             network to learn more robust features. 

5. Output Layer : 

 Dense Layer: Number of neurons equal to the number of unique classes in 

y_train(10). 

 Activation Function: Softmax activation function to output a probability 

distribution over the classes. 

3.4.2 Model Compilation (Model 1) 

 Optimizer: The model utilizes the Adam optimizer with a learning rate of 

0.0001. The Adam optimizer is chosen for its efficiency and adaptive gradient-

based optimization capabilities.  

 Loss Function: The model employs the Sparse Categorical Crossentropy loss 

function, which is specifically designed to handle multi-class classification 

problems where the labels are represented as integers. 

 Metrics: The chosen metric for monitoring the training and validation 

performance of the model is accuracy. Accuracy is a commonly used metric in 

classification tasks, which measures the proportion of correctly classified 

samples over the total number of samples.  
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 Callbacks 

1. Early Stopping:  

- Through the training process, the validation loss will be monitored to prevent overfitting. 

In the case when validation loss does not improve, the training shall be stopped through 

early stopping. This procedure prevents the model from too tight a fit to the training 

dataset and helps in generalizing better to unseen data. 

- It has a patience of 15 epochs, which means that the training will stop if there is no 

improvement in validation loss for 15 epochs in a row. This early stopping mechanism 

avoids overfitting and saves time used for training by stopping it when there is no 

significant improvement in the validation loss over some number of epochs. 

- The parameter restore_best_weights=True ensures that the model weights from the epoch 

with the best validation loss are used.  

2. ReduceLROnPlateau: 

- Monitors validation loss (val_loss) and reduces the learning rate by a factor of 0.1 if the 

validation loss does not improve for 5 consecutive epochs. 

- Minimum learning rate set to 0.000001 to ensure the learning rate does not reduce to an 

ineffective level. 

 Class Weights 

Class weights are calculated to handle class imbalance by assigning a weight to each 

class inversely proportional to its frequency in the training data. This ensures the model 

does not become biased towards the majority class. 

 

3.4.3 Model training (Model 1)   

The model is trained for a maximum of 290 epochs, reduced from the original 600 epochs. Each 

epoch utilizes a batch size of 32. The training process incorporates class weights and early 

stopping to mitigate overfitting. 

During training, the validation data is used to assess the model's performance on unseen data. 

The validation loss (val_loss) is monitored, and if there is no improvement after five consecutive 
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epochs, the learning rate is reduced by a factor of 0.1. To ensure the learning rate does not drop 

below an ineffective level, a minimum learning rate of 0.000001 is set. 

This comprehensive approach ensures that the model is well-regularized and capable of 

generalizing to new data, making it suitable for the classification task at hand. By using class 

weights, early stopping, and monitoring the validation loss, the model is trained in a controlled 

manner to achieve optimal performance while avoiding overfitting. 

Training parameters: 

 Epochs: 600. 

 Batch Size: 32. 

 Validation Data: Provided during training. 

 Callbacks: Early stopping and learning rate reduction. 

3.4.4 Model architecture (Model 2) 

1. Input layer : The input layer receives the input data with a shape corresponding to the 

number of features in X_train. 

First Dense Layer:  

 Dense Layer: 128 neurons, ReLU activation function. 

 Regularization: L1 regularization with a regularization coefficient of 0.001 to 

  Prevent overfitting by adding a penalty for large weights. 

Batch Normalization: 

 Normalizes the outputs of the first dense layer to improve training speed and 

stability by maintaining the mean output close to zero and the output standard 

deviation close to one. 

Dropout Layer: 

 Dropout rate of 0.3, meaning 30% of the neurons are randomly dropped out 

             during training to prevent overfitting by introducing noise and forcing the 

             network to learn more robust features. 

Hidden Layer: 
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We added two additional Dense Layers each one with 128 neurons with ReLU activation 

function, L1 Regularization of 0.001 followed by Batch Normalization and a Dropout 

rate of 30%. 

      Output Layer: 

 Dense Layer: Number of neurons equal to the number of unique classes in 

y_train. 

 Activation Function: Softmax activation function to output a probability 

distribution over the classes. 

3.4.5 Model Compilation (Model 2) 

 Optimizer: Adam optimizer with a learning rate of 0.001 for efficient and 

adaptive gradient-based optimization. 

 Loss Function: Sparse Categorical Crossentropy to handle multi-class 

classification problems where labels are provided as integers. 

 Metrics: Accuracy to monitor the training and validation performance. 

Callbacks 

1. Early Stopping:  

 Monitors validation loss (val_loss) to prevent overfitting by stopping training when the 

validation loss stops improving. 

 Patience set to 15 epochs, meaning training will stop if the validation loss does not 

improve for 15 consecutive epochs. 

 restore_best_weights = True ensures the model weights from the epoch with the best 

validation loss are used. 

2. ReduceLROnPlateau: 

 Monitors validation loss (val_loss) and reduces the learning rate by a factor of 0.1 if the 

validation loss does not improve for 5 consecutive epochs. 

 Minimum learning rate set to 0.000000001 to ensure the learning rate does not reduce to 

an ineffective level. 
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Class Weights 

 Class weights are calculated to handle class imbalance by assigning a weight to each 

class inversely proportional to its frequency in the training data. This ensures the model 

does not become biased towards the majority class. 

3.4.6 Model training (Model 2)   

The second model is trained for a maximum of 178 epochs, reduced from the original 600 epochs. 

Each epoch employs a batch size of 32. The training process incorporates class weights and early 

stopping to prevent overfitting. Additionally, the validation data is used during the training to see 

how good it is on unseen data. Moreover, the validation loss (val_loss) is monitored and if there is 

no improvement after five consecutive epochs, learning rate gets reduced by a factor of 0.1. To 

ensure that the learning rate does not drop below an ineffective level, a minimum learning rate of 

0.000000001 is set. This prevents the learning rate from becoming too small, which could hinder 

the model's ability to converge or make meaningful updates to its parameters.. This comprehensive 

approach can guarantee that the model is well-regularized, capable of generalizing to new data, 

making it suitable for the classification task at hand. 

Training parameters: 

 Epochs: 600. 

 Batch Size: 32. 

 Validation Data: Provided during training. 

 Callbacks: Early stopping and learning rate reduction. 

 

Conclusion 

In this chapter, we focused on the implementation of the suggested method. We began by 

discussing the data collection phase and then proceeded to perform the necessary preprocessing 

on the collected data to make it suitable for training the models. Additionally, we provided an 
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explanation of the network architecture we utilized for our model, along with the process of 

model compilation and training to optimize the hyperparameters. 

Using a deep learning model for Algorithm Selection shows immense potential as a 

significant advancement in the field of continuous optimization. By exploiting the power of deep 

learning, our model can effectively navigate the complex landscape of algorithm selection, 

providing robust and accurate recommendations. 
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Introduction 

In this chapter, we present and discuss the results obtained by our DL-based models through 

a series of experiments. The primary objective of these experiments is to assess the performance, 

robustness, and generalizability of the models in the task of selecting the most suitable 

algorithms across a diverse set of continuous problem sets. 

4.1 Model evaluation and comparison 

The results observed for the performance metrics (accuracy, loss) after training the models 

will be presented in Table 4.1 below. The table displays the different results obtained for both the 

models used in the training phase. 

Model Epochs Train loss Train acc Val loss Val acc 

Model 1 290 1.2525 0.6825 1.2781 0.7381 

Model 2 178 1.3716 0.9014 1.5516 0.8912 

 

Table (4.1): The results obtained on training the two ASM 

 Training vs Validation Accuracy(M1): The model achieved a higher accuracy on the 

validation set (73.81%) compared to the training set (68.25%). This suggests that the model 

generalizes well to unseen data. 

 Training vs. Validation Loss : 

The training and validation losses are very close, indicating that the model is not 

overfitting. 

 Training vs Validation Accuracy(M2): The model achieved a validation accuracy of 

89.12% and a training accuracy of 90.14%, with the training accuracy slightly higher than 

the validation accuracy. This indicates that the model is performing well and demonstrating 

adequate generalization to the validation set. The fact that the training accuracy is slightly 

higher suggests that the model has learned the underlying patterns in the training data 

effectively. Overall, these results indicate that the model is likely performing well and has 

the potential to make accurate predictions on unseen data. 
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 Training vs. Validation Loss (M2): There is a slight difference between the training loss 

and validation loss, which can be observed. However, as the training progresses, this 

difference decreases over epochs. The loss curves converge and stabilize, with the 

validation loss slightly higher than the training loss. This pattern is commonly observed 

and indicates a good fit without severe overfitting. 

Analysis :  

 Epochs and convergence : 

Model 1 required 290 epochs to converge, whereas Model 2 achieved convergence faster, 

taking only 178 epochs. The convergence speed of Model 2 indicates that it was able to 

reach a satisfactory level of performance in a shorter amount of time compared to Model 

1.  

 Training Performance: 

Model 1 has a lower training loss (1.2525) compared to Model 2 (1.3716), indicating that 

Model 1 fits the training data better. Training accuracy for Model 1 is 0.6825, whereas 

Model 2 reach a significantly higher training accuracy of 0.9014. 

 Validation Performance : 

Model 1 has a lower validation loss (1.2781) compared to Model 2 (1.5516), 

suggesting that Model 1 generalizes better to the validation data. 

 Validation accuracy for Model 1 is 0.7381, which is lower than Model 2’s validation 

accuracy of 0.8912. 

4.2 Performance plots 

In this section, we will present the evolution of validation and accuracy values per epoch. We 

will visually depict the performance of both models on the dataset using plots in Figures 4.1 and 

4.2. These figures highlight the differences in training and validation accuracy and loss over 
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epochs.

 

Figure (4.1): Accuracy and loss of the ASM 1 on the Dataset  

 

Figure (4.2): Accuracy and loss of the ASM 2 on the Dataset 

The provided plots show the training and validation accuracy as well as the training and 

validation loss for both models 

Models Accuracy and Loss Analysis 

1. Model Accuracy : 

      Model 1 : 

 The training and validation accuracy both show an increasing trend reaching 0.68 
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 Validation accuracy surpasses training accuracy at 0.73, which suggests good 

generalization. 

     Model 2 : 

 The training accuracy increase at a high rate and stabilize around 0.90 

 Validation accuracy does increase as well and become stable at 0.89 

2. Models Losses:  

  Model 1 :  

 Training loss decreases steadily, starting high and reaching around 1.25. 

 Validation loss also decreases steadily, following a similar trend and stabilizing 

around 1.28. 

        Model 2 : 

 Training loss decreases quickly, starting high and reaching around 1.37.  

 Validation loss follows a similar trend but is slightly higher than the training loss, 

stabilizing around 1.55. 

Conclusion: 

Model 1 shows a consistent improvement in both training and validation accuracy and a 

steady decrease in loss, indicating good generalization and no significant overfitting. 

Model 2 demonstrate a rapid improvement in accuracy and a significant decrease in loss 

initially, the notable point lay in higher validation loss compared to the training loss, indicating 

potential presence of overfitting. 

4.3 Confusion matrix review 

Below we present the confusion matrixes for our models where we illustrate the 

evaluation on the VBS against the SBS in other words the predicted labels against the true ones 

The classes were encoded following the Table (4.2)  
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Class Name  Encoded Value 

BIPOPsaACM 0 

CMA 1 

CMA-ESPLUSSEL 2 

CMAES 3 

CMAa 4 

CMAcsa 5 

DE-rand 6 

DEuniform_fialho_noiseless 7 

IPOP-ACTCMA-ES 8 

JADEb 9 

Table(4.2) : Table for the encoded classes values 

Table (4.3) and Table (4.4) represent the confusion matrix for both models.  



 

 

  50 
 

 

 Chapter 04: Experiments and results 

 
 

 

Table (4.3): Represents the confusion matrix for training of the ASM for the first model. 
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Table (4.4): Represents the confusion matrix for training of the ASM for the second model. 

4.4 Interpretation of Confusion Matrix 

The provided confusion matrix presents a detailed view of the model's performance. The 

diagonal values in the matrix represent the percentage of correct predictions, indicating how 

accurately the model classified instances of each class. On the other hand, the off-diagonal 

values in the matrix represent the percentage of misclassifications. These values indicate how 

often instances of one class are predicted as another, representing false positives or false 

negatives. 
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Classwise performance : 

1. Class 0 : 

Model 1 

 88% correctly classified. 

 4% misclassified as class 2 and 8% as class 8. 

            Model 2 

 92% correctly classified. 

 4% misclassed as class 4 with another 4% as class 5. 

2. Class 1 : 

Model 1 

 66.67% correctly classified. 

 Misclassifications are spread across several classes, with the highest (16.67%) 

being misclassified as class 9. 

            Model 2 

 90% correctly classified. 

 The rest were misclassed across different classes the largest was class 5 

3. Class 2 :  

Model 1 

 21.43% correctly classified. 

 Significant confusion with classes 0 (10.71%), 4 (25%), and 9 (14.29%). 

           Model 2 

 28.57% correctly classified. 

 8% misclassed as class 5 

 

4. Class 3 : 

Model 1 : 

 81.08% correctly classified. 

 Some confusion with classes 0 (8.11%) and 1 (5.41%). 
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            Model 2 : 

 Had a 100% accurate classification 

 There were no misclassifications. 

5. Class 4 : 

Model 1 : 

 48% correctly classified. 

 20% misclassified as class 5 and 16% as class 9. 

            Model 2 : 

 88% classes were correctly classified 

 12% misclassified as class 2  

6. Class 5 : 

       Model 1 : 

 60.61% correctly classified. 

 Some misclassifications with classes 1 (15.15%) and 2 (18.18%). 

             Model 2 : 

 93.94% correctly classified. 

 3.3% mistakenly classified as either class 2 or class 3 

7. Class 6 : 

Model 1 : 

 100% correctly classified. 

 No misclassifications. 

            Model 2 : 

 100% correctly classified. 

 No misclassifications. 

8. Class 7 : 

Model 1 : 

 96.77% correctly classified. 
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 Minor confusion with class 1 (3.23%). 

            Model 2 : 

 100% correctly classified 

 No misclassifications. 

9. Class 8 : 

Model 1 : 

 53.33% correctly classified. 

 Misclassified mainly as class 0 (10%) and class 1 (13.33%). 

            Model 2 : 

 76.67% correctly classified. 

 6.67% were misclassified as classes 0,5,9. 

10. Class 9 :  

      Model 1 

 76.92% correctly classified. 

 Misclassified as class 0 (3.85%), class 2 (7.69%), class 4 (3.85%), and class 8 

(3.85%). 

            Model 2 

 92.31% correctly classified. 

 3.85% were misclassified as classes 8 and 2. 
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4.5 Solvers review 

Table 4.5: Summary of the relative expected runtime of the 10 portfolio solvers shown per 

dimension and BBOB function group. (The single best solver (SBS) for each of these 

combinations is printed in red and the overall SBS (BIPOPsaACM) is highlighted in blue. Values in 

red indicate that this solver was better than the rest of solvers in general. ) 

 

D 

BBOB 

Groupe 

BIPOPsaACM CMA 
CMA-

ESPLUSSEL 
CMAES CMAa CMAcsa 

DE-

rand 

DEuniform-

fialho-

noiseless 

IPOP-

ACTCMA-

ES 

JADEb 

2 

F1-F5 

F6-F9 

F10-F14 

F15-F19 

F20-F24 

 

40035.4 

2.5 

1.8 

17.4 

53.4 

40020.0 

4.2 

5.1 

10.0 

160039.8 

80006.8 

2.0 

2.7 

120016.3 

240007.1 

23.8 

4.0 

4.1 

23.9 

69.2 

40024.1 

3.7 

3.6 

7.5 

160032.9 

40021.1 

4.0 

3.3 

9.5 

200036.1 

147.9 

9.1 

10.4 

15.3 

26.1 

80009.1 

5.1 

40005.0 

7.4 

200007.8 

40023.4 

3.0 

4.2 

10.6 

200066.2 

40007.5 

2.9 

5.5 

80008.4 

120012.4 

 All            8022.1     

40015.8 

88007.0 25.0  40014.4 48014.8 41.8 64006.9 48021.5      

48007.4 

3 

F1-F5 

F6-F9 

F10-F14 

F15-F19 

F20-F24 

 

160148.5 

2.8 

4.4 

6.4 

40031.1 

240009.5 

3.4 

4.2 

6.6 

200038.6 

160003.7 

2.2 

2.7 

320014.7 

200023.9 

40021.3 

3.3 

4.3 

22.5 

46.9 

240012.1 

2.7 

3.5 

7.6 

200049.7 

240009.6 

2.7 

3.2 

4.4 

280022.9 

129.1 

17.6 

20.2 

17.7 

200023.0 

240011.2 

8.4 

40006.6 

40009.3 

200008.3 

240006.9 

3.1 

3.4 

13.1 

200025.5 

40007.7 

100004.3 

6.1 

12.1 

200035.6 

 All 40038.6  88012.4 136009.5 8019.6 88015.1 104008.6 40041.5 104008.8 88010.4 68013.2 

5 

F1-F5 

F6-F9 

F10-F14 

F15-F19 

F20-F24 

 

240049.2 

2.8 

1.2 

25.6 

80197.4 

280005.6 

4.8 

5.2 

13.4 

480176.0 

200001.5 

7.1 

3.3 

520001.6 

440029.4 

320006.8 

6.6 

5.0 

200040.1 

300014.8 

360004.6 

3.8 

3.9 

13.3 

480158.5 

360003.5 

3.4 

3.7 

8.2 

360122.1 

318.2 

46.2 

82.3 

240051.7 

360118.5 

280017.6 

11.4 

11.0 

120054.0 

360027.3 

440003.4 

3.7 

3.9 

10.2 

480125.6 

40009.8 

100007.8 

10.3 

320017.0 

360092.7 

 All 64055.2 152041.0 232008.6 164014.7 168036.8 144028.2 120123.4 152024.3 184029.3 164027.5 

10 

F1-F5 

F6-F9 

F10-F14 

F15-F19 

F20-F24 

 

281159.6 

2.7 

1.2 

295.1 

200091.7 

400008.2 

5.0 

5.7 

101.5 

600014.9 

200002.7 

150013.0 

5.8 

560001.9 

480022.3 

400003.3 

15.2 

6.0 

441074.1 

550043.3 

440002.9 

3.5 

3.8 

67.0 

680016.7 

440002.4 

3.2 

4.1 

82.6 

640015.7 

80815.8 

212.5 

800039.2 

600169.8 

760088.7 

440018.5 

18.5 

17.1 

600004.8 

760021.8 

400003.5 

4.0 

3.8 

74.2 

640015.3 

120020.6 

250009.9 

31.9 

720005.9 

560034.8 

 All 96310.1 200027.1 278009.1 278228.4 224018.8 216021.6 448265.2 360016.1 208020.1 330020.7 

ALL All 52106.5 120024.1 183508.5 112571.9 130021.3 128018.3 152118.0 170014.0 132020.3 152517.2 
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Comparing the ASM‘s with the SBS : 
Dimension BBOB Groupe BIPOPsaACM Model 1 Model 2 

 

 

 

2 

F1-F5 

F6-F9 

F10-14 

F15-19 

F20-24 
 

40035.4 

2.5 

1.8 

17.4 

53.4 

40022.6 

3.2 

5.7 

40013.8 

200029.4 

80009.6 

2.2 

2.5 

40014.9 

200010.1 

All  8022.1  56014.9 64007.9 

 

 

 

3 

F1-F5 

F6-F9 

F10-14 

F15-19 

F20-24 
 

160148.5 

2.8 

4.4 

6.4 

40031.1 

6.1 

2.6 

2.4 

40008.1 

80038.8 

4.1 

1.9 

2.4 

2.1 

80014.7 

All  40038.6 24011.6 16005.0 

 

 

 

5 

F1-F5 

F6-F9 

F10-14 

F15-19 

F20-24 
 

240049.2 

2.8 

1.2 

25.6 

80197.4 

5.1 

2.1 

2.7 

40022.3 

400063.1 

40001.9 

1.7 

2.8 

6.9 

240041.2 

All  64055.2 88019.1 56010.9 

 

 

 

10 

 

F1-F5 

F6-F9 

F10-14 

F15-19 

F20-24 
 

281159.6 

2.7 

1.2 

295.1 

200091.7 

120965.3 

2.2 

1.5 

56.9 

360040.6 

320024.1 

2.2 

1.2 

40054.8 

400018.7 

All  96310.1  96213.3 152020.2 

Table 4.6: Comparison of RELERT table between SBS and the ASM’s across dimensions and 

BBOB function groups 

For most of the BBOB groups, the relative ERTs of our ASM’s are below the ones of the SBS  
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And the overall average of model 1 stands superior to the other model and the SBS. 

4.6 Discussion and results 

Based on the results achieved, one could argue that the DL models demonstrated superior 

RELERT across most of the BBOB functions. The SBS (BIPOPsaACM) instances, which were 

selected as the SBS earlier showed greater RELERT only at the dim=2. However, we can notice 

that both models managed to surpass the SBS, First model at the high dimensional space (dim= 

10) and model 2 at the low dimension function (Dim= {2,5}). 

We as well can deduce from the Table 4.5 the distribution of results across lower 

dimensions of different algorithms claims the best performance in terms of relative expected 

runtime while in the higher dimensions that performance was dominated by the selected SBS, even 

though the ASM’s trained managed to achieve better RELERT on average over the SBS at 

numerous instances in different function groups both at high and low dimensionality that is proved 

at the Table 4.6. Which demonstrate that the classification based DNN models managed to only 

partially capture the best results at specific dimensions. 

We believe that jack of all trades model for algorithm selection can’t be achieved based on 

our work, since capturing the difficulty problems on a single measure basis isn’t a realistic 

approach  

It seems to be more logical to set the target for single dimensional feature based selection. 

We also think that our dataset creation method wasn’t optimal at some point since the 

results shows high noise specially on low dimension groups ,we also believe that the performance 

would be boosted more if more  problem instances were available for the training. While the 

performance of the ASM’s can be clearly distinguished from the baseline of the SBS we think a 

single dimensional feature targeting approach for problem instances could be a better potential 

solution to the ASP. 

4.7 Application’s implementation  

The figures below demonstrate the developed web app for our work: 

1- The home interface: is the first interface where the user can choose to use our trained 

models or train the models on new data set. 
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Figure 4.3: The home interface for the web app 

 

2- If the user chose to use the pretrained model he can choose see the results our models 

managed to achieve in detail where we present the confusion matrix and the plot 

depending on the user desire. 

 

Figure 4.4: The pretrained model interface 
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3- The show plots button present the accuracy and loss plots were the progress of accuracy 

and loss for both validation and training is presented 

 

Figure 4.5: ASM training plot  

4- Test the model button can test the model performance for any given data the user want to 

try by uploading the testing data for the model. 

 

Figure 4.6: Testing model interface 
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Figure 4.7: Uploading the testing data 

5- Testing the model will present the confusion matrix with the choice of downloading test 

reports and the predictions: 
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Figure 4.8: Testing results 

6- If the user want to train the model on a new data set the option to train the model is 

available: 

 

Figure 4.9: Train model on new dataset 
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7- Upload the new dataset and start the training process and when the model finish training 

the results can be accessed. 

 

Figure 4.10: Uploading the training dataset 

 

8- The final interface is for presenting the results of the training  
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Figure 4.11: Results from training 

4.8 Used libraries and frameworks 

4.8.1 TensorFlow 

TensorFlow, originally created by researchers at Google, is the most popular one among 

the plethora of deep learning libraries.  The term 'Tensor' refers to an N-dimensional array, while 

'Flow' denotes the concept of performing calculations based on a data flow diagram."Tensorfow 

is a system that transfers complex data structures to artifcial neural networks for analysis and 

processing. It can be used in a wide variety of programming languages, 

including Python, JavaScript, C++, and Java, [20].  

 

Figure (4.12) TensorFlow Logo 

https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)
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4.8.2 Keras 

Keras is an API designed for human beings, not machines. Keras follows best practices 

for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user 

actions required for common use cases, and it provides clear & actionable error messages. Keras 

also gives the highest priority to crafting great documentation and developer guides.Keras is a deep 

learning API written in Python and capable of running on top of either JAX, TensorFlow, 

or PyTorch. Keras is an API designed for human beings, not machines. Keras follows best practices 

for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user 

actions required for common use cases, and it provides clear & actionable error messages. Keras 

also gives the highest priority to crafting great documentation and developer guides. [21] 

 

Figure (4.13) : Keras Logo 

4.8.3 PyTorch 

PyTorch is a python package that provides the following two advanced features, one is GPU-

based tensor calculation, like NumPy, in most cases can replace NumPy. The second is to build a 

unique dynamic neural network. PyTorch uses a technique known as Reverse-mode auto-

diferentiation to allow users to change network performance in a zero-delay or overhead manner. 

Although this technology is not unique to PyTorch, it is one of the fastest implementations to date. 

This is also the biggest advantage of PyTorch compared to other frameworks [20]. 

 

Figure (4.14) : Pytorch Logo 

https://jax.readthedocs.io/
https://github.com/tensorflow/tensorflow
https://pytorch.org/
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4.8.4 Pandas  

Pandas is a Python package that provides fast, flexible, and expressive data structures 

designed to make working with "relational" or "labeled"data both easy and intuitive. It aims to be 

the fundamental high-level building block for doing practical, real world data analysis in Python. 

Additionally, it has the broader goal of becoming the most powerful and flexible open source data 

analysis / manipulation tool available in any language. It is already well on its way towards this 

goal . 

 

Figure (4.15) : Pandas Logo 

 

4.8.5 matplotlib    

Matplotlib is a plotting   library  for the Python  programming language  and its  numerical 

mathematics  extension  NumPy . It provides an object-Oriented API for embedding plots into 

applications using general-purpose GUI toolkits like  Tkinter ,  wxPython , Qt, or GTK. There is 

also a procedural “pylab” interface based on a state machine (like OpenGL), designed to closely 

resemble that of MATLAB, though its use is discouraged.  SciPy makes use of Matplotlib.The  

 

Figure (4.16) : Matplotlib Logo 
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4.8.6 Numpy 

is a general-purpose array-processing package. It provides a high-performance 

multidimensional array object, and tools for working with these arrays. It is the fundamental 

package for scientific computing with Python. Besides its obvious scientific uses, Numpy can also 

be used as an efficient multi-dimensional container of generic data. 

 

 

Figure(4.17): Numpy logo 

4.8.7 Google Colab  

Google colab is an interactive notebook environment based on the cloud. It is meant for running 

python code and has a focus on data analysis as well as machine learning tasks. A basic need for 

collaborative and remote python data science work is Google Colab. Moreover, Google Colab 

can be applied in coding tutorials and demonstrations that are interactive although this might not 

be obvious at first glance because it is heavily utilized in data science. 

 

 

Figure (4.18) : Google Colab logo 

4.9 Our machine capabilities: 

The results achieved using a laptop with the specification shown at the figure below:  
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Figure 4.19: Our machine specifications 

Conclusion 

In conclusion, our study on automated algorithm selection for continuous black-box 

optimization problems covered the experimental setup, methodology, and results. Through 

extensive experiments, our deep learning model demonstrated the ability to predict the most 

suitable solver for a given problem instance. Specifically, we found that BIPOPsaACM 

outperformed other solvers in terms of robustness for the majority of cases. These findings 

highlight the effectiveness of our approach and the potential of deep learning models for 

algorithm selection in optimization problems.  

  



 

 

  68 
 

 

 General conclusion 

 
 

General conclusion  

This dissertation was interested in Algorithm Selection problem (ASP) in black box 

continuous optimization. 

The proposed approach considers the ASP task as a classification problem we based the selection 

process on feature selection where we employ the exploratory landscape analysis technique to 

Low-level features gathered by systematic sampling of the function on the feasible set are used 

to predict the most optimal-performing algorithm out of a given portfolio The algorithm selection 

problem ASP doesn’t have a rule of thumb general way of 

implementation hence researchers all over the world try to develop their unique specific methods 

to solve this problem, 

we chose in our work to rely on the Exploratory landscape analysis (ELA) techniques to 

visualize the landscape of the problem features along with several high performing algorithm- 

portfolio to build a deep learning model that can predict the optimal solver (algorithm) to any 

given problem set. 

The first step we took is the collection and treatment of data needed for the model next comes the 

treatment of the said data for the subsequent step of preprocessing, then the model building and 

training after that we present the results, we managed to achieve along with graphic representation 

we finish with a conclusion. 

The results we have obtained are promising. However, it is important to note that while our 

model outperforms the state-of-the-art study in certain group functions, it falls short in others. 

This project has been beneficial to us in multiple ways. It has allowed us to acquire new 

knowledge and strengthen our existing skills. We have delved into the field of black box 

optimization and algorithm selection, with a specific emphasis on feature characterization using 

ELA and deep learning techniques.
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