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 إهداء
 

ي قطعتها، فالحمد لله الذي 
ا بالتسهيلات، لكنن 

ً
ة ولا الطريق محفوف ت يسر البدايالم تكن الرحلة قصير

 وبلغنا النهايات بفضله وكرمه. 

ئ نوره..  ي والسراج الذي لا ينطف  ي إلى النور الذي أنار درب  إلى من  بكل حب أهدي ثمرة نجاحي وتخرح 

لطالما عاهدته بهذا النجاح ها أنا وفيت وعدي وأهديته إليك والدي العزيز  بكل فخر..  اسمهأحمل 

ي  . يح 

ي الأخلاق قبل الح
ي أزالتإلى من علمتن 

ي إلى الجنة.. إلى اليد الخفية الن  عن  روف إلى الجسر الصاعد ب 

ي عند 
ي الأشواك.. ومن تحملت كل لحظة ألم مررت بها وساندتن 

. طريف  ي
ي بذلت جهد ضعف 

. إلى الن 

ي الحبيبة 
ي بوعدي لكي والدب 

ي يوم من الأيام مهندسة.. ها أنا أف 
 . فاطمةأنفاسها من أجل أن أصبح ف 

ي الغ
ي إلى أخوب   على قلن 

ي  الليث عابد وابنها  ريان وإلىوأطفالها  هاجراليير 
ي  الدين تاج وأح 

. . يثمهوأح 

 .  مصدر الفخر والإلهام بالنسبة لىي
ً
 أنتم دائما

ي الحبيبة وأمي الثانية.. 
ي إلى جدب 

..   الن  ي
ء طريف  ي

اسًا يض   كانت حنانها ودعاءها ني 

ي وتعامرإلى روح جدي  ي قلن 
ي لتحقيق المزيد من النجاح.. .. الذي ستظل ذكراه تعيش ف 

 دفعن 

ا.. أهدي  بنجاح.  وانتهت وعزيمةابتدأت بطموح  الطموحة.. إذ هذا النجاح لنفسي  وأخير

 .لكم جميعًا.. أهدي ثمرة هذا الجهد.. 

 

شيماءال  
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هداءإ  
 إلى ما أن

ُ
ا الحمد لله الذي بنعمته تتم الصالحات، وبفضله تكتمل الغايات. فلولا توفيقه، لما وصلت

ي العلمية والحياتية
ي رحلن 

 
ا ف

ً
ا وعون

ً
 .عليه اليوم. أهدي هذا النجاح المتواضع لكل من كان سند

يإلى والدي العزيز  ّ قيم العلم والمعرفة. إلى من سأظل أعل  ي
 
ي الصي  والإصرار، وغرس ف

حمل ، الذي علمن 

 يُحتذى به هلقب
ً
 ومثالا

ً
 لىي قدوة

َ
از ما حييت، دمت  .بفخر واعي  

ي 
: "الجنة تحت أقدام الأمهات." أهديكِ بريزةالحبيبة  إليكِ والدب   ، يا من قال عنكِ الحبيب المصطف 

ي هي ثمرة
ي عمركِ لأهديكِ المزيد من النجاحات الن 

 
 هذا التخرج بكل فخر، راجيًا من الله أن يطيل ف

، ودعاؤكِ هو  ي
. أنتِ نبض حياب  بيتكِ وتضحياتكِ، وسهركِ وتعبكِ، وكل ما قدمتِه لأجلىي

ح سر كل نجا لي 

 .أحققه

ي 
ي أنيس، وهشام، هارونإلى إخوب 

ينةو نبيلة، وأخواب  . لا صبر  ، أنتم نبع الدعم والقوة ووقود نجاحي

 .أملك إلا أن أقول لكم: شكرًا من القلب

ي الأعزاء 
ي مختلف مراح رحيمعبد الو ،أسامة، زكرياء، عبديالناصرإلى أصدقابئ

ي ف 
ي الذين رافقوب 

ل حياب 

 .وشاركوا معي التحديات والنجاحات. كان دعمكم وتشجيعكم حافزًا لىي للاستمرار

يإلى أستاذي الفاضل   
، أقول لك: بارك الله فيك، ورفع الشيخيخالديزغوان  ّ ، الذي له فضل كبير علىي

 .مقامك، ونصرك

ي ح
ي وكل من كان له دور ف  ا، إلى كل أقارب 

ً ، أهديكم هذا العمل المتواضع، راجيًا من اللهوأخير ي
 أن ياب 

 .يكون بداية لمزيد من النجاح والتقدم

، وصلِّ اللهم على " ، والحمد لله رب العالمير  سبحان ربك رب العزة عما يصفون وسلام على المرسلير 

 ".حبيبنا ونبينا محمد، عليه أفضل الصلاة والتسليم

 

 محمد لمين
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Abstract 
 

Network security risks have significantly increased in recent years due to the rapid growth of 

digital technology, leading to the emergence of new and advanced threats. To keep pace with 

these developments, experts are compelled to adopt artificial intelligence (AI)-based solutions 

to ensure robust defense systems, thereby enhancing their ability to protect networks from 

escalating cyber threats. 

This project leverages Machine Learning (ML) and Deep Learning (DL) techniques to 

enhance Intrusion Detection Systems (IDS), which are considered the frontline defense 

against cyber threats. Our primary objective was to develop and evaluate the performance of 

the trained ML/DL models using well-known metrics. As a foundation, we began with a 

descriptive and comparative analysis of various IDS-related datasets. Based on this analysis, 

we selected the CIC-IDS2017 dataset for our study. We then implemented a robust data 

preprocessing methodology, inspired by best practices established in related works. 

The CIC-IDS2017 dataset was used to train our ML/DL models, achieving robust 

performance across most evaluation metrics on the test set. However, a critical challenge in 

IDS design is ensuring model resilience against unseen traffic. To address this, we extended 

our evaluation by validating our trained models on the CIC-IDS2018 dataset, which contains 

different attack vectors and network configurations. The models demonstrated strong 

generalization capabilities, maintaining high performance on this unseen data. 

The results of our study demonstrated the significant potential of ML/DL techniques in 

enhancing network security. 

 

Keywords: Intrusion detection systems, Machine Learning, Deep Learning, Pre-processing of 

network flows, IDS-Related datasets. 
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Résumé 

 
Les risques liés à la sécurité des réseaux ont considérablement augmenté ces dernières années 

en raison de la croissance rapide de la technologie numérique, entraînant l’émergence de 

nouvelles menaces avancées. Pour suivre ces évolutions, les experts ont été contraints 

d’adopter des solutions basées sur l’intelligence artificielle (IA) afin de garantir des systèmes 

de défense robustes, renforçant ainsi leur capacité à protéger les réseaux contre les menaces 

cybernétiques croissantes. 

Ce projet utilise des techniques d’apprentissage automatique (Machine Learning ou ML) et 

d’apprentissage profond (Deep Learning ou DL) pour améliorer les systèmes de détection 

d’intrusion (IDS), qui sont considérés comme la première ligne de défense contre les menaces 

cybernétiques. Notre objectif principal était de développer et d’évaluer la performance des 

modèles ML/DL entraînés en utilisant des métriques standard. Comme base, nous avons 

commencé par une analyse descriptive et comparative de divers ensembles de données liés 

aux IDS. Sur la base de cette analyse, nous avons sélectionné l’ensemble de données CIC-

IDS2017 pour notre étude. Nous avons ensuite mis en œuvre une méthodologie de 

prétraitement des données robuste, inspirée des meilleures pratiques établies dans les travaux 

connexes. 

L’ensemble de données CIC-IDS2017 a été utilisé pour entraîner nos modèles ML/DL, 

obtenant des performances solides sur la plupart des métriques d’évaluation sur le jeu de test. 

Cependant, un défi crucial dans la conception des IDS est d’assurer la résilience du modèle 

face à un trafic inconnu. Pour résoudre ce problème, nous avons élargi notre évaluation en 

validant nos modèles entraînés sur l’ensemble de données CIC-IDS2018, qui contient 

différents types d’attaques et configurations réseau. Les modèles ont démontré de fortes 

capacités de généralisation, maintenant une haute performance sur ces données inconnues. 

Les résultats de notre étude ont démontré le potentiel significatif des techniques ML/DL pour 

renforcer la sécurité des réseaux. 

 

Mots-clés : Systèmes de détection d'intrusions, Apprentissage automatique, Apprentissage 

profond, Prétraitement des flux réseau, Ensembles de données liés aux IDS. 
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 الملخص

 
أدى إلى  ية، ماالرقمازدادت مخاطر أمن الشبكات بشكل كبير في السنوات الأخيرة نتيجة للنمو السريع في التكنولوجيا 

لذكاء على ا ظهور تهديدات سيبرانية جديدة ومتطورة. ولمواكبة هذه التطورات، يضطر الخبراء إلى تبني حلول قائمة

 دة.لمتصاعالاصطناعي لضمان أنظمة دفاع قوية، مما يحسن قدرتهم على حماية الشبكات من التهديدات السيبرانية ا

والتي  ،(IDS) التسللأنظمة كشف  لتحسين (DL) العميق والتعلم (ML) الآلييعتمد هذا المشروع على تقنيات التعلم 

العميق  ي والتعلمم الآلتعتبر من خطوط الدفاع الأولى ضد التهديدات السيبرانية. يتمثل هدفنا الرئيسي في تطوير نماذج لتعل

تسلل. مة كشف الة بأنظ. بدأنا بتحليل وصفي ومقارن لمجموعات بيانات مختلفة متعلقوتقييم أدائها باستخدام مقاييس معيارية

 ية لمعالجة البيانات،" لدراستنا. ثم قمنا بتنفيذ منهجية قوCIC-IDS2017بناءً على هذا التحليل، اخترنا مجموعة بيانات "

 المجال.مستندة إلى أفضل المنهجيات المتبعة في الدراسات السابقة في هذا 

راستنا، حيث د" لتدريب نماذج التعلم الآلي والتعلم العميق المعتمدة في CIC-IDS2017تم استخدام مجموعة بيانات "

شف كميم نظام في تص حققت هذه النماذج أداءً قوياً عبر معظم مقاييس التقييم على مجموعة الاختبار. لكن التحدي الرئيسي

ن خلال متقييمنا  مسبقاً. لمعالجة هذا، وسعناغير المعروفة حركة المرور  تجاهدرب التسلل هو ضمان مرونة النموذج الم

 هيئاتتو"، والتي تحتوي على أنماط هجوم CIC-IDS2018التحقق من صحة نماذجنا المدربة على مجموعة بيانات "

 الجديدة. هذه البياناتلمختلفة. أظهرت النماذج قدرات تعميم قوية، محافظة على أداء عالٍ  الشبكة

 ات.أظهرت نتائج دراستنا الإمكانات الكبيرة لتقنيات التعلم الآلي والتعلم العميق في تعزيز أمن الشبك

 

مجموعات  الشبكة، تدفقاتالمعالجة المسبقة ل ،التعلم العميق ،التعلم الآلي ،أنظمة كشف التسلل :مفتاحيةالكلمات ال

 .البيانات المتعلقة بأنظمة كشف التسلل
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With the rapid development of digital technology, cyber threats have appeared, making the 

privacy of individuals and networks more sensitive due to the high flow of data and the fast-

growing communication between electronic devices, increasing the risk of cyberattacks. 

Although traditional Intrusion Detection Systems (IDS) such as anti-virus systems, firewalls, 

and other security procedures are effective, they have difficulty keeping up with the 

complexities of modern and constantly evolving cyber threats. 

IDSs play a major role in cybersecurity through their ability to monitor network traffic and 

system activities to identify malicious behaviors and policy violations. However, the 

traditional version of these systems faces big challenges, such as high false-positive rates and 

the inability to deal with advanced and unknown attacks. Therefore, experts are turning to 

Artificial Intelligence (AI) technologies to increase protection capabilities and improve 

response to new threats [4,5]. 

AI encompasses various learning techniques, including Machine Learning (ML) and Deep 

Learning (DL). These approaches are broadly categorized into three main types: supervised 

learning, which uses labeled data to predict outcomes; unsupervised learning, which identifies 

hidden patterns in unlabeled data; and reinforcement learning, which optimizes decision-

making through reward-based feedback. AI enhances the management and security of 

networks by improving traffic analysis, automating threat detection, optimizing network 

performance, predicting potential issues, and enabling real-time decision-making to ensure 

network integrity [54]. 

In the context of enhancing network security, our study focuses on improving the efficiency 

of IDS through the application of supervised learning techniques for both ML and DL, since 

IDS-related datasets are typically labeled. This approach leverages the pre-classified nature of 

the data to develop more accurate and efficient detection models. 

ML provides effective solutions to improve IDS by analyzing data patterns and learning how 

to differentiate between usual and unusual activities. Most research and experiments have 

shown that ML has provided more precise results and better flexibility and adaptability 
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to threats compared to traditional methods. These models are trained using datasets to detect 

known threats and pre-defined attack patterns. They also demonstrate the ability to generalize 

learning to similar patterns, which may help in improving the detection of certain deviations 

from normal network behavior [18]. 

DL models have gained significant attention in recent years due to their exceptional ability to 

process large volumes of data and automatically extract key features. The strength of DL 

models lies in their capacity to detect complex patterns in data and adapt to the evolving 

landscape of security threats. These properties significantly contribute to improving the 

effectiveness of IDS, leading to reduced false alarm rates and enhancing the immediate 

response to potential threats [55]. 

The application of ML and DL techniques to IDS is a major leap and advancement in the field 

of cybersecurity. This is because it improves the perfection of defense systems while 

expanding their range, which enhances their ability and efficiency in protecting networks 

from increasingly complex cyber threats. 

This project leverages ML and DL techniques to improve IDS. To showcase the different 

steps of our research, we have organized this document into three main chapters as follows: 

 The first chapter provides a comprehensive analysis of IDS, explaining their various 

types, working mechanisms, and role in enhancing cybersecurity. The chapter also 

reviews the importance of AI in supporting and advancing these systems to achieve a 

higher level of security. 

 Chapter two presents a descriptive and comparative study of five IDS-related datasets. 

Several factors are highlighted, including strengths and limitations, the diversity of 

attack patterns, the balance of the data distribution, noise levels, the importance of 

features, and the extent to which these datasets accurately reflect modern network 

traffic. 

 Chapter three addresses the practical aspect of our research in the field of IDS using 

ML/DL techniques, starting with data preprocessing, followed by training and 

evaluating six different models, along with an analysis of the results. 
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1.1 Introduction 

With the rapid pace of technological advancement and the diversification of 

communication channels, coupled with the widespread adoption of digital systems and data 

transfer across networks, the risk of unauthorized access and data manipulation by malicious 

actors or competitors is increasing. Consequently, ensuring information security through 

advanced protection technologies and access control mechanisms has become essential for 

building a secure infrastructure capable of mitigating these vulnerabilities. 

In this context, the implementation of IDS stands out as a critical defense mechanism. These 

systems provide continuous monitoring and surveillance of network activities, detecting any 

attempts to breach security policies or unauthorized intrusions [5]. 

This chapter examines the foundational concepts of IDS and discusses the challenges and 

limitations these systems encounter. Additionally, it presents proposed solutions to mitigate 

these challenges. Finally, the pivotal role of AI in enhancing cybersecurity is highlighted, 

particularly through its ability to autonomously detect and respond to threats by analyzing 

vast amounts of data and identifying abnormal patterns. AI also plays a crucial role in 

assessing risks, identifying vulnerabilities before they can be exploited, and improving the 

efficiency of threat detection and response mechanisms. 

1.2 IDS 

To gain a deeper understanding of IDS, it is essential to explore their definition, 

classifications, the types of security threats they address, their components and architecture, as 

well as the categories of attacks, challenges, and limitations that affect their effectiveness: 

1.2.1 Definition 

An IDS acts as a real-time anomaly detection mechanism. It continuously monitors 

network traffic and system activities, comparing them to predefined rules or behavioral 

patterns. When the system identifies deviations that indicate potential malicious activity, it 

generates an alert for further investigation. This enables the prompt implementation of 

appropriate countermeasures to mitigate security threats and protect the network infrastructure 

[4,5]. 
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1.2.2 Types of Security Threats and Categories of Attacks 

Understanding the diversity and evolution of security risks, as well as their categories, is 

crucial for developing and implementing effective defense mechanisms. Initially, based on the 

comprehension of the role of IDS, various types of security threats will be explored, followed 

by a detailed of the categories of attack methods. 

1.2.2.1 Types of Security Threats 

In the first step, we will provide a breakdown of some common security threats and discuss 

how IDS can help mitigate them: 

 Malware 

It's including a variety of security threats, such as viruses, Trojans, ransomware, and 

spyware. These programs can steal sensitive data, corrupt files, disrupt processes, and 

compromise systems. To block these threats, signature-based IDS can detect known malware 

based on predefined patterns. Additionally, anomaly-based IDS can identify unusual behavior 

patterns that may indicate the presence of malware [6]. 

 Phishing Attacks 

Phishing emails or messages deceive users into clicking malicious links, downloading 

infected attachments, compromising personal information, or granting unauthorized access to 

systems. Although IDS cannot specifically stop phishing attempts targeting individual users, 

it can help identify suspicious network activity associated with phishing campaigns, such as 

attempts to access known phishing sites [6]. 

 Denial-of-Service (DoS) Attacks 

DoS attacks overwhelm a system with excessive traffic, rendering it unavailable to 

legitimate users. This can disrupt critical services and lead to financial losses. By monitoring 

traffic patterns, IDS can identify anomalies indicative of DoS attacks, such as sudden spikes 

in traffic volume or attempts to exploit known DoS vulnerabilities. Early detection enables the 

implementation of mitigation measures [6]. 

 Man-in-the-Middle (MitM) Attacks 

It's a type of cyberattack where an attacker secretly intercepts and relays communications 

between two parties, enabling them to eavesdrop, modify, or inject malicious data into the 

communication channel. The attacker positions themselves in the middle of the conversation, 

acting as a proxy without the parties' knowledge. This allows the attacker to monitor, capture, 
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and potentially manipulate exchanged data, compromising the confidentiality and integrity of 

the communication [6]. 

 Social Engineering Attacks 

It represents a sophisticated form of manipulation that exploits human psychology to 

deceive individuals into divulging sensitive information or granting unauthorized access to 

systems. These attacks often involve phishing emails, phone calls, or the impersonation of 

legitimate entities. While IDS may not be able to directly block social engineering attacks, 

they can provide a secondary layer of defense by detecting suspicious activities that may arise 

from a successful attack, such as attempts at unauthorized access or data exfiltration [6]. 

 Insider Threats 

These threats result from malicious or negligent actions by authorized users within an 

organization. Such individuals may have access to sensitive data and systems, posing a 

significant security risk. This is why anomaly-based IDS can be useful in identifying unusual 

activity from authorized users, which may indicate malicious intent. For example, this 

includes attempts to access unauthorized files or unusual data transfer activities [6]. 

 

1.2.2.2 Categories of Attacks in the Security Domain 

In the next step, as shown in Table 1.1, we will present several illustrative examples of 

security attack categories to enhance understanding of the different types of threats: 

Table 1.1: Examples of categories of attacks in the security domain [22]. 

Category of Attack Description Example 

Reconnaissance 

Attacks 

Gather information about a target system 

or network. 

Ping Sweeps, Port Scans, Social 

Engineering 

Denial-of-Service 

(DoS) Attacks 

Overwhelm a system or network with 

traffic. 

SYN Floods, Distributed DoS (DDoS) 

Attacks, Smurf Attacks 

Privilege Escalation 

Attacks 

Gain higher privileges on a system. Exploiting software vulnerabilities, 

Password Spraying, Pass-the-Hash Attacks 

Malware Attacks Infect a system with malicious software. Viruses, Worms, Trojans, Ransomware 

Man-in-the-Middle 

(MitM) Attacks 

Eavesdrop on communication and 

potentially alter data. 

ARP Spoofing, SSL Stripping, Public Wi-

Fi Eavesdropping 

SQL Injection Attacks Inject malicious SQL code to manipulate 

a database. 

Tricking a login form into stealing user 

data. 

Phishing Attacks Trick users into revealing sensitive 

information. 

Phishing emails impersonating legitimate 

entities. 

Watering Hole Attacks Compromise websites or resources to 

infect devices. 

Hacking a website popular among gamers 

to inject malware. 
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1.2.3 Classification of IDS 

IDS can be classified based on the techniques used to detect intrusions into a computer 

system. Here are the three main classifications: 

 Signature – based IDS 

Signature-based IDS rely on a predetermined set of signatures, which are patterns 

identifying known attacks (see Figure 1.1). These signatures may be based on data packets, 

system calls, or other activities. When the IDS detects a match between a signature and 

ongoing activity, it raises an alarm. 

The IDS continuously monitors all incoming and outgoing network traffic, analyzing it 

against a comprehensive database of known cyber threats and attack patterns. If any activity is 

detected that matches the signatures or behaviors stored this knowledge base, the IDS 

immediately makes an alert, notifying security personnel about the potential threat [1,8]. 

 

Figure 1.1: Signature-based IDS [2]. 

 Anomaly – based IDS 

Anomaly-based IDS monitors system activity for deviations from a baseline of normal 

behavior. This baseline can be confirmed by learning the patterns of network traffic, system 

calls, or other activity over time. When the IDS detects an anomaly, it raises an alarm. An 

Anomaly-based IDS keeps the system in constant adaptation to the network flow which is by 

nature constantly changing. It learns the normal traffic and flags any unusual activity for 

security personnel to examine. In this way it ensures its effectiveness over time [1,8]. Figure 

1.2 helps to better understand: 
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Figure 1.2: Anomaly – based IDS [2]. 

 Hybrid IDS 

Hybrid IDS combine signature-based and anomaly-based detection techniques. This 

approach can provide the benefits of both techniques, while reducing some of the drawbacks 

[8]. For example, a hybrid IDS can use signature-based detection to identify known attacks, 

and anomaly-based detection to identify zero-day attacks [1], as shown in Figure 1.3: 

 

Figure 1.3: Hybrid IDS [2]. 
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In Figure 1.4, a more comprehensive illustration of the main types of IDS is shown: 

 
Figure 1.4: Types of IDS [10]. 

 Advantages & Disadvantages of IDS techniques 

The following Table 1.2 summarizes the advantages and disadvantages of different IDS 

techniques with a simple comparison between them to guide cyber security passionate in 

selecting the most suitable approach for their needs. 

Table 1.2: Advantages & Disadvantages of IDS Techniques. 

IDS Techniques Advantages & Disadvantages 

 

 

Signature IDS 

Highly accurate for detecting known attacks. 

Requires regular updates to the signature database. 

Relatively quick and efficient. 

Cannot detect zero-day attacks (attacks that are unknown). 

 

 

Anomaly IDS 

May be more responsive to false positives than signature-based IDS. 

May require more processing power to monitor system activity. 

Can detect zero-day attacks. 

More flexible than signature-based IDS. 

 

 

Hybrid IDS 

Can be more complex to configure and maintain than signature-based or 

anomaly-based IDS. 

May still be responsive to false positives. 

Provides comprehensive protection against a wider range of attacks. 

Can be more precise than signature-based or anomaly-based IDS alone. 
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1.2.4 IDS Components and Architecture 

An IDS works by continuously monitoring doubtful activity and making alerts when it 

detects potential threats. The following provides an overview of its key components and 

architectures, as shown in Figure 1.5: 

 

Figure 1.5: Components & Basic Architecture of an IDS. 

 Sensors: These are the eyes and ears of the IDS, deployed strategically to collect data 

from various sources. They can be: 

 Network Traffic Sensors (Network-based IDS): Monitor network traffic for 

suspicious activity, such as port scans, unauthorized access attempts, or 

malware signatures. 

 File System Sensors (Host-based IDS): Monitor system activity on individual 

devices, including file access, system calls, and application logs, to detect 

malware or unauthorized modifications. 

 Agent-based Sensors: Lightweight software agents installed on devices that 

collect and report system activity data to a central IDS manager. 

 Analyzers: These are the brains of the IDS, responsible for analyzing the data 

collected by the sensors. They use various techniques like signature matching, 

anomaly detection, and behavioral analysis to identify potential threats [9]. 

 Consoles: These are the user interfaces, which use security personnel to monitor the 

IDS activity, view alerts, investigate potential threats, and configure the system. 
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1.2.5 Challenges and Limitations of IDS 

IDS are valuable security tools, but they are not without their challenges and limitations. 

Here's a breakdown of some key issues to consider: 

1.2.5.1 False Alert and False Detection 

 False Alert (false positive): These happens when the IDS raises an alert for 

harmless activity that mistakenly resembles a known attack signature or anomaly. 

False alert waste time and resources for security personnel investigating them, as 

mentioned in [11,12]. 

 False Detection (false negative): These happens when the IDS fails to detect a real 

security threat. This can happen due to limitations in signature coverage (missing 

signatures for new attacks) or the inability to identify subtle anomalies indicative of an 

attack [11,12]. 

 

1.2.5.2 Factors Contributing to False Alert and False Detection 

At this point, the four main factors contributing to this problem have been highlighted: 

 Imperfect Signature Matching: Signatures may not be specific enough, leading to 

false positives for benign activity with some similarities to malicious patterns. 

 Overly Sensitive Anomaly Detection: Anomaly thresholds might be set too low, 

causing alerts for minor variations in normal activity. 

 Rapidly Evolving Threats: Attackers constantly develop new techniques, and 

signature updates might not always keep pace, leading to false negatives. 

 Limited Visibility: Network-based IDS might miss attacks happening within 

individual devices (host-based IDS can help address this). 

 

1.2.5.3 Scalability and Performance Issues 

The three primary factors contributing to this issue have been identified: 

 Large Data Volumes: Modern networks generate massive amounts of data. 

Analyzing all this data for anomalies can be computationally expensive and resource-

intensive, impacting system performance. 

 Large-Scale Deployments: Deploying IDS across a vast network infrastructure can 

be challenging to manage and scale effectively, as mentioned in [13]. 
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 Alert Fatigue: A high volume of alerts, even with a low false positive rate, can 

overwhelm security personnel, leading to alert fatigue and potentially missed critical 

threats [14]. 

 

1.2.5.4 Evasion Techniques by Attackers 

Attackers use various evasion techniques to get around IDS in order not to be detected: 

 Polymorphism: Attackers can modify malware code partially to avoid signature 

matching. 

 Encryption: Encrypting malicious traffic can render it invisible to signature-based 

detection on network traffic. 

 Low and Slow Attacks: Spreading out an attack over time and using minimal 

resources can avoid triggering anomaly detection. 

 Zero-day Attacks: By definition, these new attacks lack corresponding signatures, 

making them undetectable by signature-based IDS [15]. 

Here are some proposed solutions to address these challenges and limitations of IDS: 

o Fine-Tuning IDS Configuration: Proper configuration of signature matching 

criteria, anomaly thresholds, and filtering rules can help reduce false positives. 

o  Security Awareness Training: Educating users about social engineering tactics 

and phishing attempts can help prevent them from falling victim to attacks. 

o Layered Security Approach: IDS is just one piece of the security puzzle. 

Combining it with firewalls, vulnerability management, and data encryption provides a 

more comprehensive defense. 

o Staying Informed about Threats: Security teams need to stay updated on the latest 

attack methods and adjust their IDS configurations accordingly. 

By acknowledging these limitations and implementing appropriate mitigation strategies, 

organizations can maximize the effectiveness of their IDS and enhance their overall security 

posture. 

1.2.5.5 IDS Evaluation and Selection Criteria 

Choosing the most suitable IDS requires careful evaluation. Here are key factors to consider: 

 Threat Detection Capabilities 

IDS supports advanced threat detection capabilities to identify and mitigate cyber threats. 
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When evaluating a security solution, it is essential to understand its detection methods. Does 

it rely on signatures for known threats, anomaly-based detection for unusual activity, or a 

combination of both? More importantly, how well does it address the specific threats an 

organization faces? Additionally, the ability to integrate with threat intelligence feeds for real-

time updates is essential to staying ahead of evolving threats, as mentioned in [16]. On the 

deployment side, considering the existing infrastructure is key. Does the solution support 

network-based, host-based, or cloud-based deployment, or maybe even a combination? 

Finally, easy integration with the current setup is necessary for efficient operation. 

Evaluating a security solution requires considering several key factors, especially when it 

comes to scalability and performance, which are critical. It's important to assess whether the 

solution can handle the volume of data a network generates without impacting performance 

and if it's scalable to accommodate future growth. Management and usability are also 

important considerations. The interface should be examined to determine if it's easy to use for 

configuration, monitoring, and alert management, and if it offers reporting capabilities to 

analyze security trends. Finally, cost and support must be measured, taking into account 

licensing fees, maintenance costs, and training requirements for commercial solutions. 

 

 Commercial Vs Open-Source IDS 

When selecting an IDS, organizations typically choose between commercial and open-

source solutions. Commercial IDS often offer comprehensive, pre-configured features such as 

signature databases, and come with dedicated vendor support, making them easier to deploy 

and maintain, especially for users with limited cybersecurity expertise. However, they can be 

costly, particularly for large-scale environments. Open-source IDS, on the other hand, are 

freely available and offer high levels of customization, enabling users to tailor the system to 

specific needs. These systems usually require more advanced technical knowledge but benefit 

from active community support, which drives their continuous development. IDS have been 

successfully implemented across various sectors, such as financial institutions to detect fraud, 

healthcare providers to secure sensitive patient data, and government agencies to protect 

critical infrastructure from cyberattacks [17]. 

1.2.5.6 The Future of IDS (Emerging Technologies and Evolving 

Strategies) 

The world of cybersecurity is constantly evolving, and IDS are keeping pace by leveraging 

new technologies and refining their approaches. Here's a brief look into what the future holds 

for IDS: 
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 Machine Learning (ML) 

ML algorithms are being progressively integrated into IDS for anomaly detection. ML can 

analyze vast amounts of data to identify perfect patterns that might signify attacks, improving 

the accuracy of anomaly-based detection and significantly reducing false positives and false 

negatives [18]. 

 

 Big Data Analytics 

The ability to analyze massive datasets in real-time is crucial for effective security. IDS 

are integrating big data analytics tools to handle the ever-growing volume of network traffic 

and system activity data, enabling them to detect emerging threats more quickly [19]. 

 

 User and Entity Behavior Analytics (UEBA) 

UEBA goes beyond traditional network traffic analysis. It focuses on user and entity 

behavior patterns, including login attempts, file access, and application usage. This allows 

IDS to identify suspicious activity that might indicate compromised accounts or insider 

threats [20]. 

1.2.5.7 How IDS are Progressing to Address New Challenges 

Emerging trends in IDS include a focus on deception and active defense mechanisms to 

attract and disrupt attacks, deeper integration with the other systems for a large security 

context, and cloud-based IDS solutions to secure cloud environments and workloads. 

Additionally, adapting IDS for IoT (Internet of Things) device security needs and the 

explosion of data from connected devices will be crucial. However, the future of IDS depends 

on collaborative efforts—sharing threat intelligence, best practices, and continuous 

innovation—between security vendors, researchers, and the wider cybersecurity community 

to stay ahead of promoting threats [21]. 

 

1.3 The Importance of AI in Security 

AI is rapidly transforming the security field, offering significant advantages over 

traditional methods. Here are some key reasons, why AI is becoming increasingly important 

in security: 
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1.3.1 AI-Powered Anomaly Detection: Unmasking Hidden Threats in 

Real-Time 

The threat environment demands security solutions that are not only comprehensive but 

also adaptable. Traditional signature-based detection methods struggle to keep up with the 

ingenuity of attackers. This is where AI comes in, revolutionizing the way we identify and 

respond to security threats [23]. 

1.3.1.1 The Power of AI in Anomaly Detection 

AI algorithms excel at processing large datasets to uncover hidden patterns, making them 

well-suited for security anomaly detection. By analyzing network traffic, logs, and user 

activity, AI can identify deviations that may indicate zero-day attacks, phishing scams 

through anomalous emails, or insider threats exhibiting suspicious behavior. This pattern 

recognition capability allows AI to detect threats without relying solely on predefined 

signatures [23]. 

1.3.1.2 Benefits of AI-Powered Anomaly Detection 

AI enables proactive threat detection by identifying anomalies in real-time, preventing 

attacks quickly. It reduces false alarms by distinguishing true abnormalities from benign 

variations. This broader detection of threats, including zero-day threats, strengthens the 

security position. Additionally, AI's continuous learning provides enhanced threat 

intelligence, offering insights into attacker behaviors and emerging threats to inform security 

strategies [23]. 

1.3.1.3 The Future of IA in Security 

While AI plays a crucial role in threat detection, human expertise remains irreplaceable. 

Security professionals need to interpret AI-generated alerts, investigate potential threats, and 

make informed decisions about mitigation strategies. The future of security lies in a 

collaborative approach where AI empowers human analysts to make faster and more accurate 

security decisions. 

1.3.2 Automated Security Tasks and Improved Efficiency 

AI can automate repetitive tasks like log analysis, incident response, and vulnerability 

scanning. This frees up security professionals to focus on more strategic tasks, such as 

investigation and threat hunting. 
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It also reinforces cybersecurity operations through automated log analysis to identify 

anomalies, enabling analysts to focus on investigating threats. It streamlines incident response 

by handling initial containment, evidence collection, and triage. AI-powered vulnerability 

scanners automate identifying system vulnerabilities to prioritize patching. Additionally, AI 

automates installing security patches, ensuring timely updates to reduce vulnerability 

windows while minimizing manual workloads [23]. 

 

1.4 Conclusion 

In conclusion, this chapter has demonstrated the critical role of IDS in securing modern 

networks by covering key concepts, classifications, components, and the security threats they 

address. Despite their effectiveness, IDS continue to face challenges, including false positives, 

scalability issues, and sophisticated evasion techniques. However, the growing integration of 

AI is expected to significantly enhance IDS capabilities, particularly in anomaly detection and 

automation. As AI technologies advance, they are poised to play a pivotal role in improving 

the precision, scalability, and adaptability of IDS in the future. 

In upcoming studies, special attention will be given to the datasets used to enhance IDS 

capabilities. The next chapter, titled "Descriptive and Comparative Study of IDS-related 

Datasets," will explore the sources, structures, and application domains of these datasets. By 

comparing their strengths and limitations, this analysis will provide a robust foundation for 

future research aimed at further advancing IDS performance. 
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2.1 Introduction 

When talking about a dataset in general, it is not reduced to simple information; rather, it 

represents a compilation of interconnected data points. Data includes anything that can be 

recorded and stored electronically, such as numbers, text, images, videos, audio recordings, 

and so on. Talking about the dataset in the field of cybersecurity, which largely revolves 

around the development of effective IDS, the dataset concerns network traffic, which can be 

either normal or various scenarios of attack, and we mentioned some of these scenarios 

specifically in the first chapter. This data is used to train ML and DL models to detect and 

respond to various threats. 

The next chapter presents a descriptive and comparative study of IDS-related Datasets, taking 

into account several factors, including strengths, limitations, attack diversity, data balance, 

noise levels, the importance of features, and the representativeness of modern network traffic. 

There is a wide range of datasets in this area; it is impractical to work with all of them. 

Therefore, five datasets (KDD Cup 99, NSL-KDD, UNSW-NB15, CIC-IDS2017, and CIC-

IDS2018) are analyzed due to their importance, the novelty of some of them, and their ability 

to capture a wide range of network traffic patterns. Furthermore, numerous studies have been 

conducted on these datasets. 

 

2.2 Datasets for Cybersecurity 

The data set in cybersecurity includes packets or flow records captured from network 

traffic such as Wireshark and tcpdump over a specific period of time, which are collected 

through several methods, most notably package capture tools (Packet Sniffers). System logs 

such as login logs, application logs, operating system logs, and firewall logs are also 

collected, as they may contain useful information about suspicious activity. Virtual network 

environments are created to simulate network traffic and various attacks in a secure and 

controlled manner. Also, in some cases, data is collected from real business networks. Figure 

2.1 shows the timeline of a network traffic-based dataset. 

Observed phenomena such as packet sizes, port numbers, and used protocols are called 

"features" and are individual measurable characteristics that are stored in NetFlow logs. The 

data is labeled indicating whether the traffic is normal or malicious, and often identifies the 

type of attack. Therefore, the more recent and diverse the attack collection in a dataset, the 

more important it becomes. 

Imbalanced datasets are a challenge for ML and DL models. This means that the number of 
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records in both the normal and malicious categories must be close to or proportional to each 

other because the models tend to be biased towards the more representative category. Noise in 

the data, whether caused by errors in data collection, missing or incomplete data, or irrelevant 

features, is another challenge as it leads to training models on inaccurate data [24]. 

 

Figure 2.1: Timeline of network traffic-based dataset. 

 

2.3 The KDD Cup 99 Dataset 

Considered one of the first datasets in security, it was prepared in 1999 by Stolfo et al 

[25]. The tcpdump data served as the basis for creating this set, which was captured from the 

DARPA IDS program in 1998 within a simulated Local Area Network (LAN) by 

Massachusetts Institute of Technology (MIT) Lincoln Labs for about nine weeks. The dataset 

contains 42 features and five types of traffic that are classified as normal or attack-type (as 

shown in Table 2.1). There are more than 5 million connection records, and each record 

contains about 100 bytes of data. During the period of release of this dataset, many researches 

and studies were conducted on it, but with the speed of progress, defects were found in it, 

which made work on it almost non-existent in the current period. 

The features in the KDD dataset are divided into four categories. Basic features that define the 

basic context for understanding a connection, such as the type of protocol and service used. 

We also find content-based features that identify attacks that exploit weaknesses in data 

formats or protocols. As well as time-based traffic features such as duration and number of 

bytes transferred. Finally, host-based traffic features, where the number of failed logins 

attempts from the host may also indicate an attack [26]. 
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Table 2.1: Different types of traffic in the KDD Cup 99 dataset. 

Traffic Types Number of Instances 

Attacks 

DOS 

Back 2203 

3883370 

3925650 

Land 21 

Neptune 1072017 

Pod 264 

Smurf 2807886 

Teardrop 979 

Probe 

Ipsweep 12481 

41102 
Nmap 2316 

Portsweep 10413 

Satan 15892 

U2R 

Buffer_overflow 30 

52 
Loadmodule 9 

Perl 3 

Rootkit 10 

R2L 

Ftp_write 8 

1126 

Guess_passwd 53 

Imap 12 

Multihop 7 

Phf 4 

Spy 2 

Warezclient 1020 

Warezmaster 20 

Normal 972781 

Total 4898431 

 

2.4 The NSL-KDD Dataset 

To stay on the same side of the development and modernization wheel, in 2009, Tavallaee 

et al. [27,28]. from the University of New Brunswick, the Canadian Institute for 

Cybersecurity (CIC), and others attempted to solve some of the limitations in the KDD Cup 

99 dataset, and the result was the NSL-KDD dataset. This new dataset consists of two primary 

components: a training set and a test set. It also contains the same features and attack types 

found in the old dataset. Table 2.2 provides a detailed overview of the various types of traffic, 

including both normal and attack types, found in the NSL-KDD dataset. 

There were improvements in the NSL-KDD dataset. Notably, there are no redundant or 

duplicate records in the training set. This dataset also implements a more balanced selection 

strategy compared the KDD Cup 99 dataset, prioritizing the inclusion of records from 

underrepresented difficult attack categories. Finally, the dataset maintains a reasonable size 

for both training and testing sets, enabling researchers to perform comprehensive experiments 

on the entire dataset without the need to randomly select a small portion [29]. 
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Table 2.2: Different types of traffic in the NSL-KDD dataset. 

Traffic Types 
Number of Instances 

Train Test 

Attacks 

DOS 

Back 956 

45927 

58630 

359 

7460 

12833 

Land 18 7 

Neptune 41214 4657 

Pod 201 41 

Smurf 2646 665 

Teardrop 892 12 

Mailbomb 0 293 

Apache2 0 737 

Udpstorm 0 2 

Processtable 0 685 

Worm 0 2 

Probe 

Ipsweep 3599 

11656 

141 

2421 

Nmap 1493 73 

Portsweep 2931 157 

Satan 3633 735 

Saint 0 319 

Mscan 0 996 

U2R 

Buffer_overflow 30 

52 

20 

67 

Loadmodule 9 2 

Perl 3 2 

Rootkit 10 13 

Xterm 0 13 

Ps 0 15 

Sqlattack 0 2 

R2L 

Ftp_write 8 

995 

3 

2885 

Guess_passwd 53 1231 

Imap 11 1 

Multihop 7 18 

Phf 4 2 

Spy 2 0 

Warezclient 890 0 

Warezmaster 20 944 

Sendmail 0 14 

Named 0 17 

Snmpgetattack 0 178 

Snmpguess 0 331 

Xlock 0 9 

Xsnoop 0 4 

Httptunnel 0 133 

Normal 67343 9711 

Total 125973 22544 

 

2.5 The UNSW-NB15 Dataset 

 In order to create a dataset that represents modern attack scenarios, which KDD lacks, the 
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Australian Center for Cyber Security (ACCS) took the lead and worked with other researchers 

around the world to build the UNSW-NB15 dataset in 2015. To achieve this goal, ACCS's 

IXIA PerfectStorm tool was used in the Cyber Range Lab to create a hybrid of real modern 

normal behaviors and synthetic attack activities. The dataset consists of 49 features extracted 

using tools such as Argus and bro-IDS. In addition, twelve algorithms written in C# were used 

to capture various aspects of the behavior of network packets. This dataset contains the attack 

subcategory within nine types of attacks (as shown in Table 2.3). 

This dataset uses both packet-based features, flow-based features, and general-purpose 

features. Packet-based features provide detailed analysis of individual network packets, while 

flow-based features analyze connected sequences within a network flow. The dataset also 

includes general-purpose features, which are broader characteristics that do not fit neatly into 

the packet or flow categories. These may encompass overall network statistics, temporal 

patterns, or features that aggregate information from multiple sources. Some features are 

engineered to analyze sequences of multiple connection records, enabling the detection of 

advanced threats, such as slow scanning techniques used by attackers [30]. 

Table 2.3: Different types of traffic in the UNSW-NB15 dataset. 

Traffic Types Attack subcategory NB of Instances 

Attacks 

Fuzzers 
FTP, HTTP, RIP, SMB, Syslog, PPTP, FTP, DCERPC, OSPF, TFTP, 

DCERPC, OSPF, BGP. 
24246 

321283 

 

Reconnaissance 

Telnet, SNMP, SunRPC Portmapper (TCP) UDP Service, SunRPC 

Portmapper (TCP) TCP Service, SunRPC Portmapper (UDP) UDP Service, 

NetBIOS, DNS, HTTP, SunRPC Portmapper (UDP), ICMP, SCTP, 

MSSQL, SMTP, Telnet, SunRPC Portmapper (UDP) TCP Service. 

13987 

   

 Shellcode 
FreeBSD, HP-UX, NetBSD, AIX, SCO Unix, Linux, Decoders, IRIX, 

OpenBSD, Mac OS X, BSD, Windows, BSDi, Multiple OS, Solaris. 
1511  

 Analysis HTML, Port Scanner, Spam. 2677 
 

Backdoors / 2329 
 

DoS 

Ethernet, Microsoft Office, VNC, IRC, RDP, TCP, FTP, LDAP, Oracle, 

TFTP, DCERPC, XINETD, SNMP, ISAKMP, NTP, Telnet, CUPS, 

Hypervisor, ICMP, SunRPC, IMAP, Asterisk, Browser, Cisco Skinny, SIP, 

SMTP, SSL, DNS, IIS Web Server, Miscellaneous, RTSP, Common Unix 

Print System (CUPS), IGMP, HTTP, NetBIOS/SMB, Windows Explorer. 

16353 

    

 

Exploits 

Evasions, SCCP, SSL, VNC, Backup Appliance, Browser, Clientside 

Microsoft Office, Interbase, Miscellaneous Batch, SOCKS, TCP, Apache, 

IMAP, Microsoft IIS, Clientside, Clientside Microsoft Paint, IDS, SSH, 

ICMP, DCERPC, FTP, RADIUS, WINS, Clientside Microsoft, POP3,  

Unix r Service, Cisco IOS, Clientside Microsoft Media Player , Damewar, 
LPD, MSSQL,Office Document, RTSP, SCADA, Webserver, All, LDAP, 

NNTP, IGMP, Oracle, RDesktop, Telnet, PHP, SMB, SunRPC, Web 

Application, DNS, SMTP, Browser FTP, Miscellaneous, PPTP, SIP, TFTP. 

44525 

       

 Generic All, SIP, HTTP, SMTP, IXIA, TFTP, Superflow. 215481 
 

Worms / 174 
 

Normal 2218761 
 

Total 2540044 
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2.6 The CIC-IDS2017 Dataset 

The CIC returned to present the best in collaboration with the University of New 

Brunswick by creating the CIC-IDS2017 dataset, which is considered to be very recent, the 

most popular, and readily available to the public. It is worth noting that it not only contains 

the most updated attack scenarios but also meets all the criteria for real-world attacks. Where 

the Bprofile system was used in them. One of the key strengths of this dataset is its 

incorporation of various network traffic patterns generated by protocols such as HTTP, 

HTTPS, FTP, SSH, and email in order to use them to infer the abstract behaviors of 25 users. 

In addition, network flows between the source and the destination are considered 

bidirectional. It involved benign data and 14 different types of attacks, which were collected 

over five consecutive days and stored in eight separate files (as shown in Table 2.4). The set 

also contains 79 features. Many new models and algorithms have been analyzed and 

developed due to the attraction of this dataset for researchers [27,31]. 

Table 2.4: Different types of traffic in the CIC-IDS2017 dataset. 

Name of CSV Files Day Activity Traffic Types NB of Instances 

Friday-WorkingHours-Afternoon-

DDos.pcap_ISCX 
Friday 

BENIGN 97718 
225745 

DDoS 128027 

Friday-WorkingHours-Afternoon-

PortScan.pcap_ISCX 
Friday 

BENIGN 127537 
286467 

PortScan 158930 

Friday-WorkingHours-Morning.pcap_ISCX Friday 
BENIGN 189067 

191033 
Bot 1966 

Monday-WorkingHours.pcap_ISCX Monday BENIGN 529918 529918 

Thursday-WorkingHours-Afternoon-

Infilteration.pcap_ISCX 
Thursday 

BENIGN 288566 
288602 

Infiltration 36 

Thursday-WorkingHours-Morning- 

WebAttacks.pcap_ISCX 
Thursday 

BENIGN 168186 

170366 
Web Attack-XSS 652 

Web Attack-Brute Force 1507 

Web Attack-Sql Injection 21 

Tuesday-WorkingHours.pcap_ISCX Tuesday 

BENIGN 432074 

445909 FTP-Patator 7938 

SSH-Patator 5897 

Wednesday-workingHours.pcap_ISCX Wednesday 

BENIGN 440031 

692703 

DoS Hulk 231073 

DoS Slowloris 5796 

DoS Slowhttptest 5499 

Heartbleed 11 

DoS GoldenEye 10293 

Total 15 2830743 
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2.6.1 Descriptions of Dataset 

The CIC-IDS2017 traffic was created by a testbed architecture consisting of a victim 

network with four machines and an attacker network with fifteen machines during work hours 

from Monday to Friday. It can be seen from Table 2.4 that Monday was free of attacks, but 

during the remaining four days, a variety of attacks were conducted. The data from Tuesday, 

Wednesday, and Thursday mornings are dominated by a primary attack type each day but 

include multiple subtypes like "FTP-Patator" and "SSH-Patator" attacks, which are two 

variations of Patator attacks. Wednesday highlights different "DoS" attacks like Hulk and 

Slowloris, along with the "Heartbleed" attack. Thursday morning involves three types of web 

attacks: "XSS," "Brute Force," and "SQL Injection." This variation within a single attack 

category makes these days ideal for developing multi-class classification detection models. In 

contrast, the data from Thursday afternoon and Friday afternoon is more suited for binary 

classification. Thursday afternoon includes "BENIGN" traffic versus the "Infiltration" attack, 

while Friday afternoon presents "BENIGN" traffic with either a "DDoS" or "PortScan" attack 

[31,32]. 

Distribution of instances in figures 2.2 and 2.3 can help better understand, since we note that 

the "BENIGN" category has the highest number of instances, which is normal for traffic. For 

the attack scenarios: "DDoS," "DDoS Hulk," and "PortScan" have the largest number of 

instances where such high numbers reflect the prevalence of such attacks. In addition, 

"PortScan" is a common reconnaissance activity performed by attackers to search for 

vulnerabilities and penetration opportunities in networks. While the incidence of specific web 

attacks, such as "XSS," "Brute Force," and "SQL Injection," are relatively low. 

Dataset suffers from a high imbalance, which is one of the shortcomings as clearly illustrated 

in Figures 2.2 and 2.4, where benign traffic contains 80.30% compared to attacks accounting 

for 19.70%. This leads to a great possibility that instances of a particular attack label, such as 

"Heartbleed" or "Web Attack-Sql Injection" may not be found in the training set, as well as 

the tendency of models towards the benign category. An important shortcoming is also its 

enormous size, which spans eight files and makes working with a large and fragmented data 

set stressful. 

The "Heartbleed" attack type has only 11 recorded instances, which may indicate either the 

rarity of such attacks or the presence of incorrect or incomplete data, raising concerns about 

its reliability and accuracy [31]. 
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Figure 2.2: Number of instances for traffic types in the CIC-IDS2017 dataset. 

 

 

Figure 2.3: Number of instances for attack type in the CIC-IDS2017 dataset. 

 

Figure 2.4: The CIC-IDS2017 dataset's distribution of benign and attack instances. 
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2.7 The CIC-IDS2018 Dataset 

As part of the ongoing efforts to provide the research community with reliable and up-to-

date data sources, we return to talking about CIC, which is known internationally for its 

distinguished datasets, as it added a new dataset to its series of releases in 2018 in cooperation 

with the Communications Security Foundation (CSE) using the AWS (Amazon Web 

Services) platform. The dataset, known as CIC-IDS2018, surpasses its predecessor "CIC-

IDS2017" by providing a more complex and diverse network environment. Incorporates 84 

features extracted using the CICFlowMeter-V3 tool, where these features are calculated 

separately for both the forward and backward directions. Recorded 14 different attack types in 

addition to benign traffic. This dataset is distributed across 10 separate files, as displayed in 

Table 2.5. Finally, it was released in both raw PCAP format, which enables the extraction of 

new features, and a pre-processed and ready-to-use CSV format [33,34]. 

Table 2.5: Different types of traffic in the CIC-IDS2018 dataset. 

Name of CSV Files Day Activity Traffic Types NB of Instances 

Friday-02-03-

2018_TrafficForML_CICFlowMeter.csv 

Friday-02-03-

2018 

Benign 762384 
1048575 

Bot 286191 

Friday-16-02-

2018_TrafficForML_CICFlowMeter.csv 

Friday-16-02-

2018 

Benign 446772 

1048574 DoS attacks-SlowHTTPTest 139890 

DoS attacks-Hulk 461912 

Friday-23-02-

2018_TrafficForML_CICFlowMeter.csv 

Friday-23-02-

2018 

Benign 1048009 

1048575 
Brute Force -Web 362 

Brute Force -XSS 151 

SQL Injection 53 

Thuesday-20-02-2018_ 

TrafficForML_CICFlowMeter.csv 

Thuesday-20-

02-2018 

Benign 7372557 
7948748 

DDoS attacks-LOIC-HTTP 576191 

Thursday-01-03-

2018_TrafficForML_CICFlowMeter.csv 

Thursday-01-

03-2018 

Benign 236632 
329266 

Infilteration 92634 

Thursday-15-02-

2018_TrafficForML_CICFlowMeter.csv 

Thursday-15-

02-2018 

Benign 996077 

1048575 DoS attacks-GoldenEye 41508 

DoS attacks-Slowloris 10990 

Thursday-22-02-2018_ 

TrafficForML_CICFlowMeter.csv 

Thursday-22-

02-2018 

Benign 1048213 

1048575 
Brute Force -Web 249 

Brute Force -XSS 79 

SQL Injection 34 

Wednesday-14-02-2018_ 

TrafficForML_CICFlowMeter.csv 

Wednesday-

14-02-2018 

Benign 667626 

1048575 FTP-BruteForce 193360 

SSH-Bruteforce 187589 

Wednesday-21-02-2018_ 

TrafficForML_CICFlowMeter.csv 

Wednesday-

21-02-2018 

Benign 360833 

1048575 DDOS attack-HOIC 686012 

DDOS attack-LOIC-UDP 1730 

Wednesday-28-02-2018_ 

TrafficForML_CICFlowMeter.csv 

Wednesday-

28-02-2018 

Benign 540568 
609030 

Infilteration 68462 

Total 15 16227068 
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2.7.1 Descriptions of Dataset 

The data was created using a realistic network environment within 10 days, from 

Wednesday 14/2/2018 to Friday 2/3/2018. Were used 50 attack and 420 victim machines 

along with 30 servers [33]. 

The dataset is characterized by a very low number of duplicates or uncertain data, and a large 

variety of attack traffic scenarios, as shown in Figures 2.5 and 2.6. However, it is important to 

note, as illustrated in Figure 2.7, that the dataset is imbalanced, as the number of instances for 

Benign is 83.07% and Attack is 16.93% [33,35]. 

Based on Tables 2.4 and 2.5, a substantial increase of two million attack types and eleven 

million traffic benign was recorded compared to the CIC-IDS2017 dataset. 

The dataset from Figure 2.6 a significant variation in the number of instances across different 

attack types. We find certain types of attacks with high number of instances, such as "DDOS 

attack-HOIC," "DoS attacks-Hulk," and "DDoS attacks-LOIC-HTTP." Conversely, attack 

types like "Boot," "DoS attacks-SlowHTTPTest," "Infiltration," "FTP-BruteForce," and 

"SSH-Bruteforce" exhibited a moderate number of instances. As for the rest, they are small or 

almost non-existent. Where "SQL Injection" took the smallest value of 87 instance, which is 

negligible. This substantial variation underscores the diversity of this dataset. 

 

Figure 2.5: Number of instances for traffic types in the CIC-IDS2018 dataset. 
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Figure 2.6: Number of instances for attack type in the CIC-IDS2018 dataset. 

 

Figure 2.7: The CIC-IDS2018 dataset's distribution of benign and attack instances. 
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threat environment, encompassing a comprehensive range of attack scenarios and realistic 
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both normal and malicious network activities. Data quality and reliability are paramount 

considerations, as are the dataset's accessibility and usability. 

Based on the analysis in Table 2.6, which presents a comparison between the five datasets 

mentioned earlier, and figure 2.8 showing the number of benign and attack instances in each 

dataset. Both the NSL-KDD and KDD Cup 99 datasets, which were created over two decades 

ago, have revealed significant limitations that render them unsuitable for modern IDS 
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recognize new or uncommon attack types not represented in the training data, a lack of 

thorough validation procedures, questionable data generation methods, and unrealistically low 

data rates, as real-world networks and systems typically generate and process large volumes 

of data at very high speeds [36]. These shortcomings have highlighted the need for more 

contemporary and representative datasets. The UNSW-NB15 dataset was developed to 

address these limitations, but evaluations have revealed its own set of challenges. Specifically, 

some features in the dataset introduce significant noise, yet their contribution to IDS 

performance is very low, In addition to class imbalances [36]. To overcome these limitations, 

researchers have turned to more recent datasets, such as CIC-IDS2017 and CIC-IDS2018, 

which have gained widespread recognition and adoption within the cybersecurity research 

community. These datasets are considered high-quality and reliable resources, accurately 

representing real-world network traffic and covering a broad range of modern cyberattacks. 

Furthermore, the features are exclusive and matchless in comparison with other datasets and 

are freely available for everyone to use [35]. However, it is important to point out that both 

datasets exhibit class imbalance, a common challenge in cybersecurity research. 

Table 2.6: Comparison between IDS-related datasets. 

Name KDD cup 99 NSL-KDD UNSW-NB15 CIC-IDS2017 CIC-IDS2018 

 year 1999 2009 2015 2017 2018 
 

Separate train/test  No Yes No No No 
 

Based On Simulated 
Based on KDD 

Cup 99 
Realistic Network 

Realistic 

Network 

Realistic 

Network  
Features 42 42 49 79 84 

 
Balance of Classes Unbalanced More balanced Unbalanced Unbalanced Unbalanced 

 
Time Span 

9 weeks of  
network traffic 

Same as KDD 
Cup 99 

1 month 5 days 10 days  

 
NB of instances 4898431 

Train (125973) 

Test (22544) 
2540044 2830743 16227068  

 
Data Quality 

High level of 
 redundancy 

Redundancies  
removed 

More realistic  
and diverse 

Very high 
quality 

Very high 
quality 

 

 
Source 

DARPA 1998 

IDS 

CIC and 

University of 
New Brunswick 

ACCS 

CIC and 

University of 
New Brunswick 

CIC and CSE 
 
 

 
NB Traffic  5 5 10 15 15  

 
  

Representativeness 
Not representative  
of modern traffic 

Slightly more  

representative  

than KDD Cup 99 

Represents 
modern traffic 

Highly 

representative of 

modern traffic 

Highly 

representative of 

modern traffic 

 
 
 
 
 
 

Noise Level 
High (contains 

errors and 
inconsistencies) 

Lower noise than  

KDD Cup 99 
High Very low Very low 

 
 

 Common Uses ML/DL-Based IDS research 
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Figure 2.8: Number of benign and attack instances in each dataset. 
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cybersecurity research. That is why we have chosen to focus our study in the next chapter on 

these two datasets, due to their strengths, while not neglecting their weaknesses, which 

require preprocessing to mitigate. Indeed, these datasets offer a strong foundation for 

leveraging advanced ML/DL algorithms in intrusion detection and network security analysis. 
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3.1 Introduction 

This chapter covers the practical side of our research in the field of IDS using ML and DL 

techniques. Here we will review the steps we followed in training and evaluating different 

models, starting from data preprocessing to the result analysis. 

We start by preprocessing the CIC-IDS2017 dataset, followed by a detailed explanation of six 

models’ development and training processes. The top five results for each model are 

highlighted based on validation metrics for both the training set and the CIC-IDS2018 dataset, 

the latter being a new dataset used for evaluating the trained models. The same preprocessing 

steps were applied to the CIC-IDS2018 dataset to ensure consistency in the processing across 

all datasets, enabling a fair and reliable comparison of results. 

The main objective is to clarify the practical aspects of applying AI techniques in the field of 

cyber security and to provide insights into the effectiveness of these techniques in improving 

IDS. 

3.2 Software and tools 

This research was conducted using the Python programming language, optimally for 

ML/DL applications due to its extensive ecosystem of libraries such as TensorFlow, Keras, 

and Scikit-learn, which offer comprehensive support [53,54]. The development and execution 

of code were facilitated through diverse programming environments, including Jupyter 

Notebook, Google Colab, and Visual Studio Code, ensuring flexibility, ease of use, and 

seamless collaboration. Computational tasks were executed on two different machines: the 

first, labeled DESKTOP-9BM92I3, runs on Windows 10 Professional, with 8 GB of RAM 

and an Intel(R) Core (TM) i5-4200M processor clocked at 2.50 GHz. The second machine, 

DESKTOP-MAQMSA4, also operates on Windows 10 Professional, equipped with 8 GB of 

RAM and an Intel(R) Core (TM) i5-6300U processor running at 2.40 GHz. These 

configurations provided sufficient computational power to efficiently perform all necessary 

calculations and model training. 

3.3 Data Pre-processing 

The data preprocessing phase represents the beginning of our research journey, and due to 

its importance, we spent more than 60% of our time in this phase, which took around two 

months, based on the principle of "Garbage in, Garbage out (GIGO)," a concept that focuses 

on the importance of the quality of the inputs. More precisely, inputting inaccurate, incorrect, 

or invalid data (GI) will certainly lead to results that are not reliable, incorrect, invalid, or 
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useless (GO). The data preprocessing includes the following steps: 

 Data Cleaning. 

 Handling Imbalanced Data. 

 Data Transformation. 

 Feature Selection. 

 Splitting the Dataset. 

 

3.3.1 Data Cleaning 

The data cleansing process is done by: 

 Handle infinite values by deleting them or converting them to Nan (Not a Number) 

values to handle them in the same way as Nan values later. 

 Dealing with Nan values can be done in many ways, including removing them (by 

removing columns or rows) or replacing Nan values with a constant value, 

calculating the sum of all values and dividing it by the total number of values in 

the column (Mean), sorting all values in ascending order in the column and 

selecting the middle value (Median), or the most frequent value in the column 

(Mode). Also, it's possible to use ML techniques to predict Nan values. 

 Dealing with duplicate rows by removing them.  

  In our feature analysis, we observed that certain features, such as Duration, 

Protocol, Type, Service, Flag, and others, must have positive values given their 

nature. To handle instances where negative values are present, we can consider the 

following approaches: replacing negative values with zero or one, as they are the 

closest positive values; using the Mode method to substitute each negative value 

with the most frequently occurring positive value within the feature; or removing 

the affected rows or columns altogether.  

We tried to follow most of the previous research by deleting rows with Nan and infinite 

values. The number of Nan and infinite rows was 5734, as we noticed that they are very few 

and do not exceed 5% of the total data (2,830,743 samples). Therefore, deleting them does not 

affect data’s interpretation, and it also gives credibility to the data, as some methods may 

provide values that may be incorrect. After that, we deleted the duplicate rows, which were 

307,078 samples. 

During the feature analysis, we identified 13 features containing negative values, accounting 

for a total of 2,130,167 entries. Given that these represent a significant portion of the dataset, 

removing them was not a viable option. Initially, we considered eliminating two specific 
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features: "Init_Win_bytes_forward" (with 911,012 entries) and "Init_Win_bytes_backward" 

(with 1,215,625 entries); this led to the removal of 99.8% of negative values. However, 

recognizing their importance for model training [37], we opted for an alternative solution. 

Instead of deletion, we decided to convert the negative values to their absolute values for all 

affected features. This decision was based on our assumption that these entries hold 

meaningful information. For instance, in cases like time differences (e.g., 2-5 = -3), the 

absolute value accurately reflects the magnitude without altering the underlying significance. 

This approach ensures that the model can leverage important quantitative information without 

being adversely affected by the sign of the value. 

By preserving these features in absolute form, we maintain the integrity of the dataset while 

addressing the issue of negative values. The forthcoming performance results of our models 

will serve to validate this hypothesis, demonstrating whether this method effectively retains 

the relevant information for accurate predictions. 

 

3.3.2 Handling Imbalanced Data 

Secondly, we noticed that one of the categories significantly surpasses the other in terms 

of number, and to address this imbalance there are many methods, of which we will mention 

some of them: 

 Oversampling: 

A common method for balancing the dataset is the Oversampling technique, which aims to 

increase the number of cases belonging to the underrepresented class (as shown in Figures 

3.1), which is done in two main ways: 

 Doubling existing samples. 

 Creating new artificial data points. 

This can be done using techniques like SMOTE (Synthetic Minority Oversampling 

Technique), random sampling, Adaptive Synthetic Sampling (ADASYN), et cetera [38]. 
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Figure 3.1: Balancing data using Oversampling technique. 

 

 Undersampling: 

When dealing with a large dataset, researchers use undersampling. It is a technique based 

on the strategy of reducing the number of most representative samples, ensuring that the 

original data is accurately represented in the underrepresented group (as shown in Figure 3.2). 

This can be done using several techniques. One approach is the RandomUnderSampler 

technique, which reduces in a random way. Additionally, there are several more selective 

methods, such as Tomek Links, Edited Nearest Neighbors (ENN), Cluster-based 

Undersampling, et cetera [39]. 

 

Figure 3.2: Balancing data using Undersampling technique. 

 

Following an extensive review of relevant literature and a thorough analysis of the dataset 

[40], we decided to complete our study by balancing the data, where we first consolidated 

similar attack types (such as "DoS Hulk," "DoS GoldenEye," "DoS Slowloris," and "DoS 

Slowhttptest") under a single category ("DoS"). This step aimed to reduce the complexity of 
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the classification task. Next, we applied a threshold-based selection criterion, retaining only 

those classes with more than 10,000 instances (as seen in Figure 3.3). 

The traffic type detection process was implemented in two scenarios: first, binary 

classification, where data was categorized as either attack or benign, and second, multi-class 

classification, where data was initially classified as benign or attack. The detected attacks 

were then further classified into three different attack families ("DoS," "DDoS," and 

"PortScan"). Data imbalance was addressed differently for each scenario, tailored to the 

specific classification approach used. 

 

Figure 3.3: Renamed and selected classes. 
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 Data Balancing in Binary Classification: 

First scenario, we calculated the sum of the attack instance. After that, we noticed that the 

number of "Benign" instances is more than the number of the "Attack" instances, so we used 

the RandomUnderSampler algorithm to reduce the number of benign instances from 

2,095,075 to 401,840 until it equals the sum of the attack. Figure 3.4 helps to better 

understand: 

 

Figure 3.4: Distribution of Binary classification dataset. 

 Data Balancing in Multi-Class Classification: 

In the second scenario, we also used RandomUnderSampler algorithm to reduce the 

number of benign instances to 200,000 while keeping the number of instances of attack types 

the same, as represented in figure 3.5: 

 

Figure 3.5: Distribution of Multi-Class Classification dataset. 

 

3.3.3 Data Transformation 

Since the data contains a huge variety of formats, we moved to the 3rd step, where we encode 

and normalize the data. At this step, we focus on: 
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3.3.3.1 Categorical Data Encoding 

It is a technique used to convert categorical data into numbers. In this process, each unique 

class is assigned a unique number. This transformation makes the textual data suitable for ML 

and DL algorithms that require numeric inputs [41]. Table 3.1 gives an overview of 

LabelEncoder and OneHotEncoder. 

In the context of binary classification, we assigned a value of 0 for benign traffic and 1 for 

attack traffic. For multi-class classification, we employed both OneHotEncoding and 

LabelEncoding methods, applying them to different types of models. 

OneHotEncoding was utilized for DL models because it effectively handles unordered 

categories, particularly when dealing with a limited number of classes (in this case, 4). This 

method creates a binary column for each category, which aligns well with the input 

requirements of neural networks, allowing them to interpret each category as a distinct entity. 

On the other hand, LabelEncoding was applied because it efficiently converted categorical 

values into numerical form. This method is particularly advantageous for ML models, such as 

tree-based algorithms, as it simplifies the data representation and facilitates easier processing 

and interpretation by the models. 

By employing both methods, we aimed to leverage their respective strengths and assess their 

performance in our specific context, ensuring that we selected the most effective approach for 

our multi-class classification tasks. 

Table 3.1: Comparison between LabelEncoder and OneHotEncoder. 

Feature/Technique LabelEncoder OneHotEncoder 

Description Assigns a unique integer to each 
different category in a single 

column. 

Converts each unique category to binary columns. For 
each entry, it puts 1 in the column corresponding to its 

category, while filling the remaining columns with 0. 

Dim Input Type 1 dimensional array-like structure. 1-dimensional array-like structure. 

Dim Output Type 1 dimensional integer array. 2-dimensional binary array. 

Example 

Encoding Type 

BENIGN >> 0 

DoS >> 1 

DDoS >> 2 

BENIGN >> [0, 0, 1] 
DoS >> [0, 1, 0] 

DDoS >> [1, 0, 0] 

Use case Particularly useful for ordinal data 

where the order of categories 

matters (e.g., low, medium, high). 

Useful for nominal data where the categories do not 

have an intrinsic order (e.g., types of attacks). 

Advantages -Simple and efficient for ordinal 
data. 

-Does not increase dimensionality. 

-It prevents the model from making any category 
ordering. 
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3.3.3.2 Data Normalization 

The model training process faces difficulties when using features with varying measures. 

This can lead to complex and very time-consuming training, with the potential for model 

failure. To address this issue, researchers use standardization techniques that aim for a 

uniform data format [40,42]. Here are some of the common data normalization methods: 

 

 Min-Max Normalization:  

Linear normalization is one of the most flexible and simple normalization techniques. It 

consists of creating a new reference rule for each data point, which ranges from 0 to 1 [43]. 

Here’s the formula for linear normalization: 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

Where 𝑋𝑚𝑎𝑥 and  𝑋𝑚𝑖𝑛 are the minimum and maximum values of the feature 𝑋. 

 Z-Score Normalization (Standardization): 

This method scales the data so that its mean (μ) is 0 and its standard deviation (σ) is 1, by 

subtracting the mean from each data point and then dividing by the standard deviation. The 

formula is: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝜇

𝜎
 

We opted for the Min-Max Normalization method to standardize the data range, which 

enhances model performance and ensures consistent scaling across all features. 

 

3.3.4 Feature Selection 

Our efforts continue to prepare the data to reach the pre-final step. Through our series of 

experiments, we considered feature selection as one of the most important steps due to its role 

in increasing accuracy, reducing overfitting, speeding up training, and avoiding noise. This 

process aims to identify the most important features in the dataset by removing duplicate, 

irrelevant, or redundant ones, etc. A variety of methods can be used to select appropriate 

features, including classification models in both ML and DL [44]. 

By removing highly correlated and constant features, we reduced the number of features to 

41. Although these features performed well in the training phase, we faced challenges in 

generalizing the model to new data. 

Therefore, we resorted to a different approach using the Random Forest technique, with 
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random_state on 42 and n_estimators on 1,000 [45]. The model was trained on binary 

classification, and then we set four different thresholds (0.02, the mean, 0.01, and 0.005) 

where the number of features selected (16, 23, 28, and 40, respectively per threshold). Using 

only 16 features shown in Figure 3.6, we achieved satisfactory results in model performance 

with binary classification. We continued to work with the same methodology and the same 

threshold, but this time on a trained model of multiple classification where the number of 

features selected (20, 30, 33, and 46, respectively per threshold). In the multi-classification 

process, we relied on the 30 features shown in Figure 3.7 because they also provided the best 

results, while the feature 'Fwd Header Length.1' was deleted due to its absence in the CIC-

IDS2018 datasets. Table 3.2 helps for a better understanding: 

Table 3.2: Selected features using random forest in both classifications. 

thresholds 0.02 mean 0.01 0.005 

Number of features selected in the binary classification 16 23 28 40 

Number of features selected in the multi-class classification 20 30 33 46 

 

 

Figure 3.6: The 16 selected features using the random forest of binary classification. 
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Figure 3.7: The 30 selected features using the random forest of multi-class Classification. 

3.3.5 Splitting the Dataset 

We finish the preprocessing of data by splitting the available dataset into two different 

sets, either training and validation and testing, or training and testing only, resulting in: 

 Training set: Used to train the model. 

 Validation set: Helps adjust the model. 

 Test set: ensure that the model's performance is accurately evaluated on data on which it 

has not been trained [46]. 

Table 3.3 presents some common methods to split the dataset: 

Table 3.3: Some known methods of data splitting. 

Name Method of splitting  

Random splitting Splitting data randomly 

Stratified Splitting Ensures equal distribution of classes with an unbalanced dataset. 

Time Series Splitting Dividing dataset while keeping the chronological order.   

Shuffle Split Splitting the database several times randomly, enabling different groups to be formed each time. 
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Most recent research relies on splitting the data into training, validation, and testing, such as 

(80%, 10%, 10%) or (75%, 10%, 15%), etc. As for our methodology, we adopted the 

stratification method suitable for the nature of our dataset, where we split the dataset to 70% 

for training, 10% for validation, and 20% for testing, which was adopted in the article [47]. 

3.4 Classification Models 

After successfully completing the data processing, we are now on the threshold of a new 

stage. In this stage, we will analyze six different models: three in the ML field and three in the 

DL field. To enhance the credibility and effectiveness of these models, we generalize them to 

the CIC-IDS2018 dataset, taking into consideration binary and multi-class classification. 

The term "prediction set" is used to refer to the dataset (CIC-IDS2018) used for evaluating 

our trained models. While a test set is typically a portion of the original dataset (CIC-

IDS2017) held out during training, our prediction set is an entirely separate dataset. 

To evaluate trained models, we applied various packet selection methodologies from the 

prediction set. Upon analyzing the comparative Table 3.4 between the test and prediction sets, 

we noticed that similar packets in the attack category belong to "DoS" types. Based on this 

observation, we used in the multi-class classification on 196,568 instances of "DoS" attacks 

and 200,000 instances of benign for the prediction set. 

For binary classification, we expanded the test to cover both "DoS" and "DDoS" attacks, 

aiming to distinguish between benign and attacks for the prediction set, even when the model 

hasn't been extensively trained on specific attack types. To achieve this, we used a balanced 

sample of 159,397 instances each for benign and attack cases for the prediction set. This 

comprehensive approach to model testing aims to evaluate their performance under a variety 

of conditions, providing deeper insight into each model's capabilities in handling unseen 

traffic types and security threats. 

Table 3.4: Traffic types used in both test set and prediction set. 

Dataset CIC-IDS2017 CICIDS2018 

 'BENIGN' 'BENIGN' 

Traffic  

Types  

'DoS Hulk', 'DoS GoldenEye', 

'DoS slowloris', 'DoS Slowhttptest' 

'DoS attacks-Hulk', 'DoS attacks-GoldenEye', 'DoS 

attacks-Slowloris', 'DoS attacks-SlowHTTPTest'  

 'DDoS' 'DDOS attack-HOIC', 'DDOS attack-LOIC-UDP'  

 'PortScan' / 
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3.4.1 Validation Metrics of ML & DL 

To understand model forces, identify weaknesses, optimize, and compare, we use 

confusion matrices and performance evaluation measures. In this section, we will explain 

these measures and how to use them in a simple way. 

3.4.1.1 Confusion matrix 

In the context of AI models evaluation, a confusion matrix in tabular form is used as a 

metric to evaluate the classification accuracy. It allows monitoring the performance of the 

model and provides a summary of the model's predictions compared to the actual results [33]. 

The confusion matrix in Table 3.5 consists of four elements for binary classification: 

 TP (True Positives): Correctly predicted positive instances. 

 TN (True Negatives): Correctly predicted negative instances. 

 FP (False Positives): When the classifier identifies the true negative label as positive. 

 FN (False Negatives): When the classifier identifies the true positive label as 

negative. 

There is a well-known understanding in IDS research that a correct classification of an attack 

event is defined as TP, while a correct classification of a benign event is defined as TN. Errors 

can occur in the classification process. When a benign event is classified as an attack, it is 

called FP. Conversely, if an attack event is classified as benign, it is called FN [48]. 

Table 3.5: Confusion Matrix. 

  

Predicted Class 

  

+ - 

C
la

ss
 + TP FN 

- FP TN 

 

 

3.4.1.2 Performance Evaluation Metrics 

This part focuses on explaining the model performance evaluation metrics listed below, which 

are defined based on TP, TN, FP, and FN. 
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a. Accuracy is a metric that expresses the sum of correct predictions (TP & TN) made by 

the model over the total number of predictions. It is worth noting that this metric is 

most effective when the data is balanced and biased in the case of unbalanced data. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

b. Precision is a metric that determines the division of the number of TP predictions by 

the sum of the positive predicted values. Where the precision takes a low value if the 

number of FP is large. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

c. Recall, Sensitivity, or TPR (True Positive Rate) is a metric that gauges the model's 

ability to identify all TP cases. Divide the TP by the sum of both TP and FN 

predictions to calculate recall. If the result is low, this indicates a large number of FN. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

d. F1-Score or F-Measure is a metric that provides a good balance of precision and recall 

by calculating the harmonic mean between them, which makes it valuable in many 

classification tasks. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

3.4.2 ML Classification Models 

ML models are extremely effective in IDS due to their ability to analyze large amounts of 

network data in a short time and automatically detect potential security threats. These models 

can detect known attacks much faster than traditional systems. making them a powerful tool 

in enhancing cybersecurity. 

 

3.4.2.1 Extreme Gradient Boosting Model 

Extreme Gradient Boosting (XGBoost) is an algorithm that is highly flexible and efficient 

at processing large datasets. It combines the power of Decision Trees (DT) with the 

effectiveness of incremental boosting, making it highly scalable. The main advantage of 

XGBoost is its unique ability to optimize the objective function. It does this through a 

systematic process of loss minimization, with an exclusive focus on using decision trees as the 
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basis for classification. This combination of techniques gives XGBoost superior performance 

on a wide range of ML tasks. 

The following Tables 3.6 and 3.7 show the main hyperparameters used in XGBoost models: 
 

Table 3.6: Model settings used in XGBoost binary classification. 

 

learning_rate n_estimators max_depth scale_pos_weight reg_alpha reg_lambda 

Test_1 0.009 900 7 9 0.1 0.0 

Test_2 0.009 900 6 9 0.0 0.0 

Test_3 0.009 1000 5 7 0.0 0.0 

Test_4 0.009 800 5 7 0.0 0.0 

Test_5 0,008 800 5 7 0.0 0.0 
 

 

Table 3.7: Model settings used in XGBoost multi-class classification. 

  learning_rate n_estimators max_depth min_child_weight subsample scale_pos_weight 

Test_6 0.006 200 7 9 0.5 7 

Test_7 0.008 260 7 22 0.5 7 

Test_8 0.005 300 7 25 0.5 7 

Test_9 0.006 250 7 9 0.2 7 

Test_10 0.002 220 8 30 / 7 
 

 

 XGBoost testing results: 

Tables 3.8 and 3.9 illustrate the XGBoost algorithm's effectiveness in both classification tasks 

for the test and prediction sets, complemented by confusion matrices displayed in Figures 3.8 

to 3.11 for both classifications for test set. 

Table 3.8: Results of XGBoost models in binary classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_1 
BENIGN 

99.3890 0.0224 
0.9995 0.9882 0.9939 

97.6798 
0.9778 0.9757 0.9768 

Attack 0.9884 0.9995 0.9939 0.9758 0.9779 0.9768 

Test_2 
BENIGN 

99.3551 0.0236 
 0.9995 0.9876 0.9935 

97.7114 
0.9784 0.9757 0.9771 

Attack 0.9877 0.9995 0.9936 0.9758 0.9785     0.9771 

Test_3 
BENIGN 

99.2866 0.0245 
0.9995 0.9862     0.9928 

98.7063 
0.9985 0.9756 0.9869  

Attack 0.9864 0.9995 0.9929 0.9762 0.9985 0.9872  

Test_4 
BENIGN 

99.2151 0.0277 
0.9995 0.9848 0.9921 

98.1857 
0.9986  0.9651 0.9815 

Attack 0.9850 0.9995 0.9922  0.9662 0.9987     0.9822 

Test_5 
BENIGN 

99.2042 0.0296 
0.9993 0.9847 0.9920 

97.9679 
 0.9941  0.9651 0.9794 

Attack 0.9850  0.9993 0.9921 0.9660 0.9943 0.9800  
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Table 3.9: Results of XGBoost models in multi-class classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_6 

BENIGN 

99.8375 0.3447 

0.9981 0.9973 0.9977 

95.7805 

0.9976  0.9296  0.9624 

DDoS 0.9998 0.9986 0.9992 / / / 

DoS 0.9979 0.9991 0.9985 0.9328 0.9865 0.9589 

PortScan 0.9980 0.9987 0.9984 / / / 

Test_7 

BENIGN 

99.8343 0.1428 

0.9980 0.9973 0.9976 

95.4777 

 0.9967 0.9247 0.9594 

DDoS 0.9996 0.9986 0.9991 / / / 

DoS 0.9980 0.9990 0.9985 0.9285 0.9854 0.9561 

PortScan 0.9980 0.9987 0.9983 / / / 

Test_8 

BENIGN 

99.8212 0.2544 

 0.9981 0.9972 0.9976 

95.5251 

0.9980 0.9244  0.9598 

DDoS  0.9992 0.9986 0.9989 / / / 

DoS  0.9978 0.9991 0.9985 0.9283 0.9866 0.9566 

PortScan  0.9980 0.9979 0.9979 / / / 

Test_9 

BENIGN 

99.8196 0.2544 

0.9981  0.9971  0.9976 

95.5347 

0.9980 0.9246 0.9599 

DDoS 0.9991  0.9986 0.9989 / / / 

DoS 0.9978 0.9992 0.9985 0.9284 0.9866 0.9566  

PortScan 0.9980 0.9979 0.9979 / / / 

Test_10 

BENIGN 

99.8033 0.7909 

0.9973 0.9973 0.9973 

92.8484 

0.9978 0.8711 0.9302 

DDoS 0.9993 0.9981 0.9987 / / / 

DoS 0.9976 0.9987 0.9982 0.8836 0.9868 0.9324 

PortScan 0.9988 0.9980 0.9984 / / / 

 

 
Figure 3.8: Confusion matrix for XGBoost Test_1. 

 
Figure 3.9: Confusion matrix for XGBoost Test_5. 
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Figure 3.10: Confusion matrix for XGBoost Test_6. 

 
Figure 3.11: Confusion matrix for XGBoost Test_10. 

 

3.4.2.2 Decision Tree Model 

DT is a ML model that uses specific rules to make decisions. This makes it suitable for 

tackling a wide range of real-world problems. This technique excels in classification and 

regression tasks, and is considered one of the most reliable tools in the field of AI, as it is 

characterized by its ability to provide easily interpretable results, while requiring relatively 

limited resources for training and implementation. 

Primary hyperparameters for DT models are displayed in the Tables 3.10 and 3.11: 

Table 3.10: Model settings used in DT binary classification. 

  criterion splitter max_depth min_samples_split min_samples_leaf 

Test_1 

entropy random 

48 28 3 

Test_2 60 25 5 

Test_3 120 90 7 

Test_4 50 45 4 

Test_5 120 120 9 
 

 

Table 3.11: Model settings used in DT multi-class classification. 

  criterion splitter max_depth min_samples_split min_samples_leaf 

Test_6 

entropy best 

75 20 7 

Test_7 55 49 5 

Test_8 50 45 4 

Test_9 56 47 4 

Test_10 40 35 7 
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 DT testing results: 
Tables 3.12 and 3.13 showcase the results achieved by the DT algorithm in tackling both 

classification tasks for test and prediction sets, while Figures 3.12 to 3.15 provide additional 

details, which contain confusion matrices for test set. 

 

Table 3.12: Results of DT models in binary classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_1 
BENIGN 

99.4709 0.0264 
0.9981 0.9913  0.9947 

96.4693 
0.9806 0.9482 0.9641 

Attack 0.9913 0.9982 0.9947  0.9498 0.9812 0.9653  

Test_2 
BENIGN 

99.4624 0.0282 
0.9979  0.9913 0.9946 

97.3276 
0.9806 0.9656 0.9731 

Attack 0.9914 0.9979  0.9946  0.9662 0.9809 0.9735 

Test_3 
BENIGN 

99.4442 0.0253 
0.9979 0.9910  0.9944 

98.0316 
0.9940 0.9664 0.9800  

Attack 0.9910  0.9979 0.9945 0.9673 0.9942 0.9806 

Test_4 
BENIGN 

99.4357 0.0279 
0.9979 0.9908 0.9943 

96.9988 
0.9936 0.9460  0.9693 

Attack 0.9909 0.9979  0.9944 0.9485  0.9939  0.9707 

Test_5 
BENIGN 

99.4254 0.0248 
0.9980 0.9905 0.9942 

96.0508 
0.9841  0.9362  0.9595 

Attack 0.9905 0.9980 0.9943 0.9391  0.9848  0.9614 
 

 

Table 3.13: Results of DT models in multi-class classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_6 

BENIGN 

99.9445 0.0113 

0.9996 0.9990 0.9993 

95.9480 

0.9850 0.9344 0.9590  

DDoS 0.9997 0.9998 0.9998 / / / 

DoS 0.9994 0.9996 0.9995 0.9383  0.9850 0.9611 

PortScan 0.9988 0.9997 0.9993 / / / 

Test_7 

BENIGN 

99.9420 0.0101 

0.9994 0.9990 0.9992 

97.6213 

0.9855 0.9676 0.9765 

DDoS 0.9999 0.9998 0.9999 / / / 

DoS 0.9994 0.9995 0.9995 0.9698 0.9850 0.9774 

PortScan 0.9987 0.9996 0.9991 / / / 

Test_8 

BENIGN 

99.9412 0.0103 

0.9994 0.9990 0.9992 

97.6186 

0.9855 0.9675 0.9764 

DDoS 0.9999 0.9998 0.9999 / / / 

DoS 0.9994 0.9995 0.9994 0.9697 0.9850 0.9773 

PortScan 0.9987 0.9996 0.9992 / / / 

Test_9 

BENIGN 

99.9404 0.0101 

0.9994 0.9990 0.9992 

97.6186 

 0.9855 0.9675 0.9764 

DDoS 0.9999 0.9998 0.9999 / / / 

DoS 0.9994 0.9995 0.9994 0.9697 0.9850  0.9773 

PortScan 0.9987 0.9996 0.9991 / / / 

Test_10 

BENIGN 

99.9380 0.0105 

0.9994 0.9990 0.9992 

95.9318 

0.9850 0.9341 0.9589 

DDoS 0.9997 0.9998 0.9998 / / / 

DoS 0.9994 0.9994 0.9994 0.9383 0.9850 0.9611 

PortScan 0.9987 0.9996 0.9992 / / / 
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Figure 3.12: Confusion matrix for DT Test_1. 

 
Figure 3.13: Confusion matrix for DT Test_5. 

 

 
Figure 3.14: Confusion matrix for DT Test_6. 

 
Figure 3.15: Confusion matrix for DT Test_10. 

 

3.4.2.3 Categorical Boosting Model 

Categorical Boosting (CatBoost) is an advanced gradient boosting algorithm developed by 

Yandex, specifically designed to efficiently process categorical features. This makes it an 

ideal tool for a variety of ML tasks, outperforming traditional methods. CatBoost shares with 

XGBoost and LightGBM the use of ensemble learning, where it combines predictions from 

several simple models to form a powerful predictive model. 

The Tables 3.14 and 3.15 below provide detailed information on the key hyperparameters 
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employed in the development of CatBoost models: 

Table 3.14: Model settings used in CatBoost binary classification. 

  iterations learning_rate depth l2_leaf_reg border_count bagging_temperature 

Test_1 265 0.05 6 5 / / 

Test_2 265 0.03 7 14 128 / 

Test_3 175 0.09 7 28 150   

Test_4 350 0.01 9 28 64 0,2 

Test_5 250 0.01 9 34 64 / 
 

 

Table 3.15: Model settings used in CatBoost multi-class classification. 

  iterations learning_rate depth l2_leaf_reg early_stopping_rounds border_count 

Test_6 222 0.05 7 14 50 128 

Test_7 175 0.09 7 28 50 150 

Test_8 235 0.03 7 14 50 128 

Test_9 265 0.03 6 3 50 128 

Test_10 250 0.02 7 14 50 64 
 

 

 CatBoost testing results: 

The performance of the CatBoost algorithm on the two classification tasks can be seen in 

Tables 3.16 and 3.17 for the test and prediction sets, while Figures 3.16 to 3.19 present 

confusion matrices for Test_1, Test_5, Test_6, and Test_10 for test set. 

Table 3.16: Results of CatBoost models in binary classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_1 
BENIGN 

99.5084 0.0151 
0.9987 0.9915 0.9951 

98.4184 
0.9925 0.9758 0.9840 

Attack 0.9916 0.9987 0.9951 0.9762 0.9926 0.9843 

Test_2 
BENIGN 

99.4987 0.0159 
0.9985 0.9914  0.9950 

97.8660 
0.9807 0.9766 0.9786 

Attack 0.9915 0.9985 0.9950 0.9767 0.9808 0.9787  

Test_3 
BENIGN 

99.4636 0.0178 
0.9981 0.9912 0.9946 

98.2473 
0.9941 0.9707 0.9823 

Attack 0.9912 0.9981  0.9947 0.9714 0.9942 0.9827 

Test_4 
BENIGN 

99.4448 0.0184 
0.9979 0.9910 0.9944 

98.4301 
0.9935 0.9749 0.9842 

Attack 0.9911 0.9979 0.9945 0.9754 0.9937 0.9844 

Test_5 
BENIGN 

99.4018 0.0209 
0.9978 0.9902 0.9940 

98.2943 
0.9935 0.9722 0.9828 

Attack 0.9903 0.9978 0.9940 0.9728 0.9937 0.9831 
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Figure 3.16: Confusion matrix for CatBoost Test_1. 

 
Figure 3.17: Confusion matrix for CatBoost Test_5. 

 

Table 3.17: Results of CatBoost models in multi-class classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_6 

BENIGN 

99.8922 0.0066 

0.9992 0.9980 0.9986 

91.8241 

0.8802   0.9699  0.9229 

DDoS 0.9997 0.9993 0.9995 / / / 

DoS 0.9982 0.9996 0.9989 0.9658 0.8657  0.9130 

PortScan 0.9987 0.9988 0.9988 / / / 

Test_7 

BENIGN 

99.8849 0.0060 

0.9992 0.9977 0.9985 

96.7400 

0.9707 0.9645 0.9676 

DDoS 0.9998 0.9993 0.9996 / / / 

DoS 0.9979 0.9997 0.9988 0.9641  0.9704  0.9672 

PortScan 0.9987 0.9989 0.9988 / / / 

Test_8 

BENIGN 

99.8359 0.0111 

0.9988 0.9972 0.9980 

96.4833 

0.9994 0.9309 0.9639 

DDoS 0.9991 0.9990 0.9991 / / / 

DoS 0.9975  0.9995 0.9985 0.9344 0.9994 0.9658 

PortScan 0.9981 0.9976 0.9978 / / / 

Test_9 

BENIGN 

99.8122 0.0109 

0.9982 0.9966 0.9974 

96.4919 

0.9992 0.9312 0.9640 

DDoS 0.9995 0.9988 0.9992 / / / 

DoS 0.9972 0.9991  0.9981  0.9347 0.9992 0.9659 

PortScan 0.9979 0.9985 0.9982 / / / 

Test_10 

BENIGN 

99.7681 0.0201 

0.9981 0.9959 0.9970 

96.2644 

0.9995  0.9264  0.9616 

DDoS 0.9989 0.9986 0.9988 / / / 

DoS 0.9963 0.9989 0.9976 0.9305 0.9996  0.9638  

PortScan 0.9980 0.9975 0.9978 / / / 
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Figure 3.18: Confusion matrix for CatBoost Test_6. 

 
Figure 3.19: Confusion matrix for CatBoost Test_10. 

 

 Binary classification 

This This comparative analysis explores a comprehensive evaluation study of the 

effectiveness of CatBoost, XGBoost, and DT models for binary classification on the test and 

prediction sets. Table 3.16 shows that CatBoost achieved high accuracy in the test and 

prediction sets, indicating its ability to reduce false positives and correctly identify the attack 

vector, as depicted by the confusion matrixes presented in Figures 3.16 and 3.17. As for 

XGBoost, it also gave us a good result, especially in terms of accuracy shown in Table 3.8, 

where there was more variability than CatBoost, especially on the prediction set. As for 

XGBoost's confusion matrix, it revealed few false negatives compared to CatBoost, especially 

in determining the attack vector represented in Figures 3.8 and 3.16. We achieved strong 

performance in the DT on the test set illustrated in Table 3.12, as it showed competitive 

performance on the test set and somewhat divergent results with the prediction set. This was 

confirmed by its confusion matrices, shown in Figures 3.12 and 3.13. These matrices showed 

a higher number of false negatives, especially in detecting attacks, indicating that the model is 

less reliable in more complex scenarios. 

Overall, while all models perform well in binary classification, CatBoost consistently 

achieves the best balance between precision and recall, followed by XGBoost and DT. 
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 Multi-Class Classification: 

For multi-class classification, comparing the three models (CatBoost, XGBoost, and DT) 

revealed consistently high performance, with all models achieving excellent accuracy (more 

than 99%) on the test set. Classification performance was strong across traffic types on the 

test and prediction sets with some minor differences, with the DT model on the test set 

achieving the highest accuracy at 99.94%, slightly outperforming the CatBoost model 

accuracy at 99.89%, and the XGBoost model accuracy at 99.83% (as shown in Tables 3.9, 

3.13, and 3.17). On the prediction set, CatBoost and DT outperformed XGBoost, in which 

CatBoost and DT achieved 96% and 97% accuracy, respectively. In return, XGBoost 

achieved an accuracy of 95%. Based on the confusion matrices in Figures 3.10 and 3.11 for 

XGBoost, Figures 3.14 and 3.15 for DT, and Figures 3.18 and 3.19 for CatBoost, we can see 

high positive rates with all models showing excellent accuracy, with the vast majority of 

predictions falling on the diagonal (correct classifications). The "BENIGN" class predictions 

were consistently accurate across all models. Additionally, the models achieved high accuracy 

in detecting attacks ("DDoS," "DoS," and "PortScan"), with minimal false predictions 

observed. 

3.4.3 DL Classification Models 

IDS uses DL models because of their exceptional ability to process vast amounts of data 

and automatically extract important features. These models excel at identifying complex 

patterns and adapting to changing threats, resulting in fewer false alarms and enhanced real-

time detection capabilities. However, the long training time is a major challenge in using 

these models. To address this problem, optimization algorithms are used to improve the 

performance and accelerate the process, such as Momentum, RMSprop (Root Mean Square 

Propagation), and the Adam (Adaptive Moment Estimation) optimizer which combines 

Momentum and RMSprop algorithms, it become the preferred choice due to its high 

efficiency in most applications. As a result, we chose Adam in all our DL experiments. The 

key hyperparameters that distinguish Adam are the learning rate α (alpha) as well as the 

exponential decay rates β₁ and β₂ (beta1 and beta2). These parameters help to dynamically 

adapt the learning rate for each parameter in the model. α is usually set to a small value (such 

as 0.001), while β₁ and β₂ are set to values close to 1 (such as 0.9 and 0.999, respectively) for 

optimal performance. Despite our attempts to change these hyperparameters, we noticed a 

decline in performance. Therefore, we focused on making changes in the model structure, the 

number of epochs, and the batch size for each test, keeping Adam's hyperparameters the 

same. 
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When training DL models to handle different types of classification tasks, we used the 

sigmoid activation function for binary classification, as it outputs a probability score between 

0 and 1 (like 0.25 and 0.75). Meanwhile, for multi-class classification, we employed the 

softmax activation function, which outputs a probability distribution across multiple classes 

(like 0.25, 0.25, 0.3, and 0.2), allowing the model to assign probabilities to each class. 

 

3.4.3.1 Convolutional Neural Network 

Convolutional Neural Networks (CNN) are DL models designed to emulate the human 

visual processing system. The architecture of a CNN consists of alternating layers of 

convolution and pooling. Where the convolutional layers are responsible for feature 

extraction, while pooling layers enhance the generalizability of these features. As for the 

flattening layer and the fully connected layers, the first transforms the data into a one-

dimensional (1D) matrix, and the second connects all neurons for final learning and 

classification, as shown in Figure 3.20, CNNs operate on two-dimensional (2D) data, 

necessitating the transformation of input data into matrices [49]. 

 

Figure 3.20: The structure of a CNN [49]. 

 

In this study, we implemented top five distinct CNN models to address the specified 

classification task: cnn_1, cnn_2, cnn_3, cnn_4, and LeNet5. The detailed structures of each 

model are presented in Tables 3.18 to 3.22, which show the type of each layer and the shape 

of its output. The first four models exhibit structural diversity, while the fifth model 

represents an implementation of the classic LeNet [50] architecture. This variety of structures 

allows for a comprehensive comparison and highlights the impact of different structural 

components on the accuracy of the classification and the efficiency of the model. 

We used the same basic structures for both multi-class and binary classification, with only one 

modification in the last layer. In the case of binary classification, the last layer was changed to 

contain (None, 1). 
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Tables 3.23 and 3.24 show the details of the different tests, with each table displaying the 

structure used in each test, along with the specific values for the number of epochs and batch 

size used in the training process. 

Table 3.18: Structure cnn_1. 

Layer Output Shape 

Dense (None, 81)  

Reshape (None, 9, 9, 1)  

Conv2D (None, 9, 9, 64) 

MaxPooling2D (None, 4, 4, 64) 

Conv2D (None, 4, 4, 128) 

MaxPooling2D (None, 2, 2, 128) 

Conv2D  (None, 2, 2, 256) 

MaxPooling2D (None, 1, 1, 256) 

Flatten (None, 256) 

Dropout (0.5) (None, 256) 

Dense (None, 256) 

Dense (None, 4) 

    

    
 

Table 3.19: Structure cnn_2. 

Layer Output Shape 

Dense (None, 81) 

Reshape (None, 9, 9, 1)  

Conv2D (None, 9, 9, 128) 

BatchNormalization (None, 9, 9, 128) 

MaxPooling2D (None, 4, 4, 128) 

Conv2D (None, 4, 4, 128) 

BatchNormalization (None, 4, 4, 128) 

MaxPooling2D (None, 2, 2, 128) 

Conv2D (None, 2, 2, 32) 

MaxPooling2D (None, 1, 1, 32) 

Flatten (None, 32) 

Dropout (0.2) (None, 32) 

Dense (None, 128)  

Dense (None, 4) 
 

Table 3.20: Structure cnn_3 

Layer Output Shape 

Dense (None, 81) 

Reshape (None, 9, 9, 1)  

Conv2D (None, 9, 9, 128) 

BatchNormalization (None, 9, 9, 128) 

MaxPooling2D (None, 4, 4, 128) 

Conv2D (None, 2, 2, 128) 

BatchNormalization (None, 2, 2, 128) 

MaxPooling2D (None, 1, 1, 128) 

GlobalAverage 

Pooling2D 
(None, 128) 

Dropout (0.2) (None, 128) 

Dense (None, 64) 

Dense (None, 4) 

    
 

 

 

 

Table 3.23: Model settings used in CNN binary classification. 

  Test_1 Test_2 Test_3 Test_4 Test_5 

Models cnn_1 cnn_2 cnn_3 cnn_4 LeNet5 

epochs 60 60 60 60 30 

batch_size 64 64 64 128 128 
 

 

Table 3.24: Model settings used in CNN multi-class classification. 

  Test_6 Test_7 Test_8 Test_9 Test_10 

Models cnn_1 cnn_2 cnn_3 cnn_4 LeNet5 

epochs 60 30 30 30 30 

batch_size 64 512 64 32 32 
 

Table 3.21: Structure cnn_4. 

Layer Output Shape 

Dense (None, 81) 

Reshape (None, 9, 9, 1)  

Conv2D (None, 7, 7, 128) 

BatchNormalization (None, 7, 7, 128) 

MaxPooling2D (None, 3, 3, 128) 

Flatten (None, 1152) 

Dense (None, 32) 

Dense (None, 32) 

Dense (None, 4) 

    
 

Table 3.22: Structure LeNet5. 

Layer Output Shape 

Dense (None, 1024) 

Reshape (None, 32, 32, 1) 

Conv2D (None, 32, 32, 6)  

AveragePooling2D (None, 16, 16, 6) 

Conv2D (None, 12, 12, 16) 

AveragePooling2D (None, 6, 6, 16)  

Flatten (None, 576) 

Dense (None, 120) 

Dense (None, 84) 

Dense (None, 4) 
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 CNN testing results: 

The CNN model demonstrates through Tables 3.25 and 3.26 robust performance on the test 

set while facing some generalization challenges on the prediction set. These challenges are 

particularly evident in Test_5 and Test_9. Nevertheless, other results range from acceptable to 

good, indicating satisfactory overall model performance. Confusion matrices for the test set 

shown in Figures 3.21 to 3.24 reveal relatively few misclassifications between the "BENIGN" 

and "Attack" categories in binary classification. For multi-class classification, tests showcase 

excellent performance in categorizing the four classes, with minimal misclassifications 

between "BENIGN" and "PortScan." Accuracy and loss curves indicate rapid learning and 

good results on training data (as shown in Figures 3.25 to 3.28). However, fluctuations in 

validation curves indicate variations in model performance and require further investigation. 

Table 3.25: Results of CNN models in binary classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_1 
BENIGN 

98.8350 0.0284 
0.9939 0.9827 0.9883 

89.5905 
0.9793 0.8089 0.8860 

Attack 0.9829 0.9940 0.9884 0.8372 0.9829 0.9042 

Test_2 
BENIGN 

99.0472 0.0256 
0.9959 0.9850 0.9904 

91.2863 
0.9626 0.8591 0.9079 

Attack 0.9852 0.9959 0.9905 0.8728 0.9666 0.9173 

Test_3 
BENIGN 

99.1726 0.0255 
0.9955 0.9879 0.9917 

93.2140 
0.9797 0.8826 0.9286 

Attack 0.9880 0.9956 0.9918 0.8932 0.9817 0.9353 

Test_4 
BENIGN 

98.9520 0.0275 
0.9944 0.9846 0.9895 

89.2652 
0.9762 0.8049 0.8823 

Attack 0.9847 0.9945 0.9896 0.8340 0.9804 0.9013 

Test_5 
BENIGN 

99.2733 0.0219 
0.9970 0.9884 0.9927 

70.2782 
0.6313 0.9748 0.7663 

Attack 0.9885 0.9970 0.9928 0.9447 0.4308 0.5917 
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Table 3.26: Results of CNN models in multi-class classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_6 

BENIGN 

99.1771 0.0315 

0.9992 0.9764 0.9877 

84.2541 

0.7820 0.9558 0.8602 

DDoS 0.9993 0.9995 0.9994 / / / 

DoS 0.9936 0.9991 0.9964 0.9479 0.7273 0.8231 

PortScan 0.9623 0.9989 0.9803 / / / 

Test_7 

BENIGN 

98.9746 0.0357 

0.9995 0.9701 0.9846 

94.2151 

0.9949 0.8904 0.9397 

DDoS 0.9979 0.9989 0.9984 / / / 

DoS 0.9884 0.9994 0.9939 0.9077 0.9949 0.9493 

PortScan 0.9622 0.9989 0.9802 / / / 

Test_8 

BENIGN 

98.9493 0.0380 

0.9990 0.9697 0.9841 

90.6227 

0.9060 0.9089 0.9074 

DDoS 0.9968 0.9990 0.9979 / / / 

DoS 0.9884 0.9994 0.9939 0.9127 0.9035 0.9081 

PortScan 0.9622 0.9987 0.9801 / / / 

Test_9 

BENIGN 

99.1624 0.0333 

0.9993 0.9759 0.9875 

79.5608 

0.9743 0.9309 0.9521 

DDoS 0.9993 0.9993 0.9993 / / / 

DoS 0.9930 0.9993 0.9961 0.9130 0.6579 0.7648 

PortScan 0.9624 0.9989 0.9803 / / / 

Test_10 

BENIGN 

99.1795 0.0304 

0.9990 0.9768 0.9877 

93.4167 

0.9491 0.9212 0.9349 

DDoS 0.9971 0.9993 0.9982 / / / 

DoS 0.9948 0.9990 0.9969 0.9373 0.9473 0.9423 

PortScan 0.9635 0.9989 0.9809 / / / 

 

 
Figure 3.21: Confusion matrix for CNN Test_3. 

 
Figure 3.22: Confusion matrix for CNN Test_5. 
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Figure 3.23: Confusion matrix for CNN Test_7. 

 
Figure 3.24: Confusion matrix for CNN Test_10. 

 

  
Figure 3.25: CNN Test_3 performance. 

 

  
Figure 3.26: CNN Test_5 performance. 
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Figure 3.27: CNN Test_7 performance. 

 

  
Figure 3.28: CNN Test_10 performance. 

 

 

3.4.3.2 Long Short-Term Memory 

Long Short-Term Memory (LSTM) is an advanced type of Recurrent Neural Network 

(RNN) that excels at classification, analysis, and prediction of time-series data, particularly 

those with long-term dependencies. The core of LSTM is its unique cell structure, which 

utilizes three specialized gates to selectively process information (as shown in Figure 3.30). 

The forget gate removes unnecessary data from the network's memory, the input gate receives 

new data, and the output gate determines the current memory by combining short-term 

memory and long-term memory [34]. 
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Figure 3.29: The structure of a LSTM [51]. 

For the LSTM tests, we employed top nine distinct structures in both classification tasks, as 

detailed in Tables 3.27 to 3.35. These structures incorporated different configurations LSTM 

layers, with some models utilizing Bidirectional layers and Dropout mechanisms to fine-tune 

generalization. Each experiment was associated with a specific structure, with the number of 

epochs and batch size for each test detailed in the Tables 3.36 and 3.37. 

 

Table 3.27: Structure Lstm_1. 

Layer Output Shape 

LSTM (None, 1, 50) 

LSTM (None, 50) 

Dense (None, 1) 

    

    

    
 

Table 3.28: Structure 

Lstm_2. 

Layer Output Shape 

LSTM (None, 1, 100) 

LSTM (None, 1, 50) 

LSTM (None, 50) 

Dense (None, 1) 

    

    
 

Table 3.29: Structure Lstm_3. 

Layer Output Shape 

Bidirectional (None, 1, 100) 

Bidirectional (None, 100) 

Dense (None, 1) 

    

    

    
 

Table 3.30: Structure Lstm_4. 

Layer Output Shape 

Bidirectional (None, 1, 200) 

Bidirectional (None, 1, 150) 

Bidirectional (None, 1, 100) 

Bidirectional (None, 1, 50) 

Bidirectional (None, 100) 

Dense (None, 1) 
 

 

Table 3.31: Structure Lstm_5. 

Layer Output Shape 

LSTM (None, 50) 

Dense (None, 4) 

    

    

    
 

Table 3.32: Structure Lstm_6. 

Layer Output Shape 

LSTM (None, 1, 100) 

LSTM (None, 100) 

Dense (None, 4) 

    

    
 

Table 3.33: Structure Lstm_7. 

Layer Output Shape 

LSTM (None, 1, 150) 

LSTM (None, 150)  

Dense (None, 4) 

    

    
 

Table 3.34: Structure Lstm_8. 

Layer Output Shape 

Bidirectional (None, 1, 200) 

Dropout (0.5) (None, 1, 200) 

Bidirectional (None, 200) 

Dropout (0.5) (None, 200) 

Dense (None, 4) 
 

Table 3.35: Structure Lstm_9. 

Layer Output Shape 

Bidirectional (None, 1, 100) 

Bidirectional (None, 100) 

Dense (None, 4) 
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Table 3.36: Model settings used in LSTM binary classification. 

  Test_1 Test_2 Test_3 Test_4 Test_5 

Models Lstm_1 Lstm_1 Lstm_2 Lstm_3 Lstm_4 

epochs 30 60 50 50 50 

batch_size 32 64 32 32 32 
 

 

Table 3.37: Model settings used in LSTM multi-class classification. 

  Test_6 Test_7 Test_8 Test_9 Test_10 

Models Lstm_5 Lstm_6 Lstm_7 Lstm_8 Lstm_9 

epochs 100 30 50 50 60 

batch_size 32 32 128 32 128 
 

 

 

 LSTM testing results: 

Tables 3.38 and 3.39 analyses show exceptional classification performance for the LSTM 

model, achieving high accuracy in both binary and multi-class tasks across test and prediction 

sets. Confusion matrices for the test set confirm the model's effectiveness, showcasing its 

ability to accurately distinguish between different classes with minimal misclassifications (as 

shown in Figures 3.30 to 3.33). Training curves provide additional insights into the model's 

learning process, indicating rapid and stable learning progression. The strong alignment 

between training and validation performance further reflects the model's robust generalization 

capabilities (as shown in Figures 3.34 to 3.37). 

Table 3.38: Results of LSTM models in binary classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_1 
BENIGN 

99.0363 0.0267 
0.9945 0.9862 0.9903 

92.3091 
0.9782 0.8655 0.9184 

Attack 0.9863 0.9945 0.9904 0.8794 0.9807 0.9273 

Test_2 
BENIGN 

99.1120 0.0245 
0.9944 0.9878 0.9911 

92.9183 
0.9786 0.8775 0.9253 

Attack 0.9879 0.9944 0.9911 0.8890 0.9808 0.9327 

Test_3 
BENIGN 

99.3690 0.0192 
0.9974 0.9900 0.9937 

95.0439 
0.9606 0.9394 0.9499 

Attack 0.9900 0.9974 0.9937 0.9407 0.9615 0.9510 

Test_4 
BENIGN 

99.2854 0.0206 
0.9962 0.9895 0.9928 

94.3020 
0.9796 0.9049 0.9408 

Attack 0.9896 0.9962 0.9929 0.9116 0.9812 0.9451 

Test_5 
BENIGN 

99.4866 0.0155 
0.9985 0.9912 0.9948 

95.1023 
0.9290 0.9767 0.9523 

Attack 0.9913 0.9985 0.9949 0.9755 0.9253 0.9497 
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Figure 3.30: Confusion matrix for LSTM Test_3. 

 
Figure 3.31: Confusion matrix for LSTM Test_5. 

 

Table 3.39: Results of LSTM models in multi-class classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_6 

BENIGN 

98.9403 0.0372 

0.9988 0.9695 0.9840 

94.0292 

0.9686 0.9127 0.9398 

DDoS 0.9927 0.9989 0.9958 / / / 

DoS 0.9889 0.9988 0.9938 0.9420 0.9684 0.9550 

PortScan 0.9673 0.9988 0.9828 / / / 

Test_7 

BENIGN 

99.3159 0.0299 

0.9987 0.9810 0.9897 

92.8403 

0.9223 0.9418 0.9320 

DDoS 0.9995 0.9990 0.9992 / / / 

DoS 0.9953 0.9990 0.9972 0.9457 0.9148 0.9300 

PortScan 0.9688 0.9989 0.9836 / / / 

Test_8 

BENIGN 

99.2922 0.0269 

0.9989 0.9802 0.9895 

93.3509 

0.9764 0.8898 0.9311 

DDoS 0.9996 0.9988 0.9992 / / / 

DoS 0.9939 0.9991 0.9965 0.9014 0.9780 0.9381 

PortScan 0.9690 0.9990 0.9838 / / / 

Test_9 

BENIGN 

99.0212 0.0362 

0.9988 0.9722 0.9853 

94.4503 

0.9999 0.8904 0.9420 

DDoS 0.9970 0.9988 0.9979 / / / 

DoS 0.9906 0.9991 0.9948 0.9116 0.9995 0.9535 

PortScan 0.9624 0.9985 0.9801 / / / 

Test_10 

BENIGN 

99.1142 0.0340 

0.9973 0.9764 0.9867 

94.9705 

0.9970 0.9033 0.9479 

DDoS 0.9988 0.9978 0.9983 / / / 

DoS 0.9908 0.9983 0.9945 0.9140 0.9969 0.9536 

PortScan 0.9690 0.9989 0.9837 / / / 
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Figure 3.32: Confusion matrix for LSTM Test_7. 

 
Figure 3.33: Confusion matrix for LSTM Test_10. 

 

  
Figure 3.34: LSTM Test_3 performance. 

 

  
Figure 3.35: LSTM Test_5 performance. 
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Figure 3.36: LSTM Test_7 performance. 

  
Figure 3.37: LSTM Test_10 performance. 

 

3.4.3.3 Gated Recurrent Unit 

The Gated Recurrent Unit (GRU) is an alternative to the LSTM architecture, proposed in 

2014 as a way to simplify the complex LSTM structure while maintaining its ability to model 

sequential data effectively. The key simplification in GRUs is the merging of the forget gate 

and input gate into a single update gate. GRUs have two main gates: the reset gate, which 

determines how much of the previous hidden state should be forgotten or 'reset,' and the 

update gate, which controls how much of the new input should be used to update the hidden 

state (as shown in Figure 3.39). This streamlined gating mechanism allows GRUs to capture 

long-term dependencies in data while requiring fewer parameters than traditional LSTMs 

[52]. 
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Figure 3.38: The structure of a GRU [51]. 

 

Given the results achieved using LSTM, we extended our tests to include GRU structures, 

which represent a recent advancement in RNN. At this stage, we implemented top 10 distinct 

GRU-based structures while maintaining consistency with our LSTM approach in using 

Bidirectional and Dropout layers (as noted in Tables 3.40 to 3.49). The structures were 

applied to various parameters, also outlined in Tables 3.50 and 3.51. 

This GRU test not only complements our LSTM research but also offers valuable insights into 

the comparative strengths of these two prominent RNN types in the context of our 

classification tasks. 

Table 3.40: Structure gru_1. 

Layer Output Shape 

GRU (None, 1, 100) 

GRU (None, 100) 

Dense (None, 1) 

    

    
 

Table 3.41: Structure gru_2. 

Layer Output Shape 

GRU (None, 1, 200) 

Dropout (0.5) (None, 1, 200)  

GRU (None, 200) 

Dropout (0.2) (None, 200) 

Dense (None, 1) 
 

Table 3.42: Structure gru_3. 

Layer Output Shape 

GRU (None, 1, 100) 

GRU (None, 1, 100) 

GRU (None, 100) 

Dense (None, 1) 

    
 

Table 3.43: Structure gru_4. 

Layer Output Shape 

Bidirectional (None, 1, 100)  

Bidirectional (None, 100) 

Dense (None, 1) 

    

    
 

 

Table 3.44: Structure gru_5. 

Layer Output Shape 

Bidirectional (None, 1, 200) 

Bidirectional (None, 1, 100) 

Bidirectional (None, 100) 

Dense (None, 1) 
 

Table 3.45: Structure gru_6. 

Layer Output Shape 

GRU (None, 100) 

Dense (None, 4) 

    

    
 

Table 3.46: Structure gru_7. 

Layer Output Shape 

GRU (None, 1, 100)  

GRU (None, 50) 

Dense (None, 4) 

    
 

Table 3.47: Structure gru_8. 

Layer Output Shape 

GRU (None, 1, 25) 

GRU (None, 25) 

Dense (None, 4) 
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Table 3.48: Structure gru_9. 

Layer Output Shape 

Bidirectional (None, 1, 140) 

Bidirectional (None, 100) 

Dense (None, 4) 

    

    
 

Table 3.49: Structure gru_10. 

Layer Output Shape 

Bidirectional (None, 1, 200) 

Dropout (None, 1, 200) 

Bidirectional (None, 200) 

Dropout (None, 200) 

Dense (None, 4) 
 

 

Table 3.50: Model settings used in GRU binary classification. 

  Test_1 Test_2 Test_3 Test_4 Test_5 

Models gru_1 gru_2 gru_3 gru_4 gru_5 

epochs 60 60 60 70 60 

batch_size 32 32 128 128 512 
 

 

Table 3.51: Model settings used in GRU multi-class classification. 

  Test_6 Test_7 Test_8 Test_9 Test_10 

Models gru_6 gru_7 gru_8 gru_9 gru_10 

epochs 100 30 30 30 30 

batch_size 32 32 32 64 64 
 

 

 

 GRU testing results: 

The GRU model achieves satisfactory results in classification tasks on test and prediction 

sets (as shown in Tables 3.52 and 3.53), demonstrating efficient and remarkably fast learning 

capabilities. Confusion matrices for the test set reveal high accuracy in classification, as 

indicated by Figures 3.39 to 3.42, confirming the model's effectiveness in distinguishing 

between different categories. Learning curves exhibit significant stability across several 

experiments described in Figures 3.43 to 3.46, indicating good generalization capability and a 

low likelihood of overfitting. This stability enhances confidence in the model's performance 

and its applicability to diverse network traffic classification scenarios. 
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Table 3.52: Results of GRU models in binary classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_1 
BENIGN 

99.3211 0.0210 
0.9973 0.9891 0.9932 

93.5266 
0.9568 0.9117 0.9337 

Attack 0.9892 0.9973 0.9932 0.9156 0.9589 0.9368 

Test_2 
BENIGN 

99.2836 0.0218 
0.9973 0.9884 0.9928 

87.7496 
0.8296 0.9501 0.8858 

Attack 0.9885 0.9973 0.9929 0.9417 0.8048 0.8679 

Test_3 
BENIGN 

99.3811 0.0184 
0.9970 0.9906 0.9938 

93.4601 
0.9657 0.9012 0.9323 

Attack 0.9907 0.9970 0.9938 0.9074 0.9680 0.9367 

Test_4 
BENIGN 

99.3430 0.0200 
0.9960 0.9908 0.9934 

92.6326 
0.9626 0.8871 0.9233 

Attack 0.9909 0.9960 0.9934 0.8953 0.9656 0.9291 

Test_5 
BENIGN 

99.1066 0.0256 
0.9941 0.9880 0.9910 

91.7609 
0.9707 0.8612 0.9127 

Attack 0.9880 0.9942 0.9911 0.8753 0.9740 0.9220 
 

 

Table 3.53: Results of GRU models in multi-class classification. 

Dataset CIC-IDS2017 CIC-IDS2018 

Metrics Accuracy Loss Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Test_6 

BENIGN 

99.1950 0.0247 

0.9979 0.9781 0.9879 

91.0532 

0.8945 0.9336 0.9137 

DDoS 0.9977 0.9988 0.9983 / / / 

DoS 0.9931 0.9984 0.9957 0.9490 0.8870 0.9170 

PortScan 0.9695 0.9988 0.9840 / / / 

Test_7 

BENIGN 

99.1322 0.0318 

0.9954 0.9787 0.9870 

89.7152 

0.8946 0.9033 0.8989 

DDoS 0.9993 0.9988 0.9990 / / / 

DoS 0.9953 0.9959 0.9956 0.9290 0.8909 0.9095 

PortScan 0.9637 0.9989 0.9810 / / / 

Test_8 

BENIGN 

99.1191 0.0338 

0.9987 0.9750 0.9867 

95.4103 

0.9912 0.9176 0.9530 

DDoS 0.9980 0.9990 0.9985 / / / 

DoS 0.9900 0.9991 0.9946 0.9375 0.9912 0.9636 

PortScan 0.9687 0.9989 0.9836 / / / 

Test_9 

BENIGN 

99.2424 0.0322 

0.9987 0.9786 0.9886 

92.4772 

0.9572 0.8951 0.9251 

DDoS 0.9996 0.9989 0.9992 / / / 

DoS 0.9929 0.9989 0.9959 0.9155 0.9550 0.9349 

PortScan 0.9686 0.9989 0.9835 / / / 

Test_10 

BENIGN 

99.0775 0.0353 

0.9989 0.9738 0.9862 

94.3026 

0.9970 0.8901 0.9406 

DDoS 0.9979 0.9984 0.9981 / / / 

DoS 0.9889 0.9996 0.9942 0.9052 0.9968 0.9488 

PortScan 0.9680 0.9983 0.9829 / / / 
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Figure 3.39: Confusion matrix for GRU Test_1. 

 
Figure 3.40: Confusion matrix for GRU Test_3. 

 

 
Figure 3.41: Confusion matrix for GRU Test_8. 

 
Figure 3.42: Confusion matrix for GRU Test_9. 

 

 

  
Figure 3.43: GRU Test_1 performance. 
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Figure 3.44: GRU Test_3 performance. 

 

  
Figure 3.45: GRU Test_8 performance. 

 

  
Figure 3.46: GRU Test_9 performance. 

 

3.4.4 Comparison between ML and DL 

Through comparative analysis Based on our study and the results obtained between ML 

and DL models, we can say that data preprocessing including cleaning, balancing, and feature 

selection allow any model to reach its full potential in training because it plays a crucial role 

in achieving an optimal and strong performance. This ultimately leads to higher accuracy and 

more credible predictions across different datasets and scenarios. 

Furthermore, DL techniques may offer an additional advantage in handling complex and 

large-scale data. However, ML models can be more efficient and interpretable in certain 
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scenarios. It is also important to consider the training time for both types of models. 

Generally, ML models have shorter training times, making them more suitable for quick 

iterations and rapid prototyping, whereas DL models often require longer training periods due 

to their complex architectures and the need to optimize a large number of parameters. 

Figures 3.47 and 3.48 present the best results obtained for the ML and DL models using 

accuracy metrics across binary and multi-class classification tasks. Overall, all models 

performed well on the test and prediction sets. This indicates that the models effectively 

handled both binary and multi-class classification problems for IDS. 

 

 

Figure 3.47: Best results in ML and DL models for binary classification. 

 

 
Figure 3.48: Best results in ML and DL models multi-class classification. 
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3.5 Conclusion 

In conclusion, this chapter provided a comprehensive explanation of the practical 

implementation of ML and DL techniques in the field of IDS. By reviewing various models 

and evaluating their effectiveness, our study has proven their ability to achieve excellent 

results, reflecting the great potential of these techniques in enhancing the performance of IDS 

and providing more efficient solutions to confront cyber threats. 
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At the conclusion of this study, we can draw several key insights and recommendations 

regarding the use of ML/DL models to enhance IDS. In this project, we conducted a 

systematic analysis of prominent IDS datasets and evaluated the performance of six different 

models. Through an in-depth examination of the training set and attentive evaluation of these 

models across the test set and the prediction set, our research highlights the significant 

potential of AI in enhancing the capabilities of detecting cyber threats. 

The developed ML/DL models exhibited satisfactory performance across various evaluation 

metrics in both binary and multi-class classification tasks within the test set. In the context of 

binary classification, accuracy was selected as the primary metric due to the balanced nature 

of the dataset, where the distribution of attack and benign cases was equal at 50%. Under such 

balanced conditions, accuracy reliably reflects the model's performance without bias toward 

any specific class, since the models achieved high performance with an accuracy rate 

exceeding 99%. Besides, the confusion matrix analysis demonstrated the models' high 

efficiency in distinguishing between benign and attack cases, with only a few 

misclassifications recorded. 

In multi-class classification, a broader range of metrics was used to evaluate model 

performance in order to ensure a fair assessment across all classes and account for variations 

in class sizes. While accuracy remained high and exceeded 99%, both the F1 score and recall 

also achieved satisfactory results, surpassing 99% for all classes. Additionally, the confusion 

matrix demonstrated the models' effective performance in distinguishing between different 

classes, with minimal misclassifications recorded.  

Across both classification types, the models demonstrated an ability to distinguish between 

benign and attack types in the prediction set, achieving results greater than 90% across 

various metrics. This confirms the models' ability to generalize to unseen data. 

Despite the promising results, it is essential to recognize that the field of cybersecurity is 

continuously evolving. We therefore recommend continued research and development, 

focusing on improving model adaptability to emerging and unknown threats. This includes 

employing anomaly detection techniques to identify abnormal behaviors that may indicate 
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new attacks. Furthermore, exploring semi-supervised techniques can help make better use of 

limited labeled data, enhancing detection accuracy in real-world scenarios. A promising 

avenue for future research could focus on the application of data augmentation techniques to 

artificially increase the size and diversity of IDS datasets. These techniques could help 

address issues such as data imbalance and improve the generalization capabilities of ML/DL 

models. Developing mechanisms to explain model decisions will also increase trust in their 

deployment in sensitive environments, while combining various ML/DL techniques could 

further improve performance. 

Finally, we hope that this study contributes to advancing research and innovation in the field 

of IDS and enhances our ability to address future security challenges more efficiently and 

effectively. 
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Table 1: List of features in the CIC-IDS2017 datasets. 

NB Feature Name NB Feature Name 

1 Destination Port 41 Packet Length Mean 

2 Flow Duration 42 Packet Length Std 

3 Total Fwd Packets 43 Packet Length Variance 

4 Total Backward Packets 44 FIN Flag Count 

5 Total Length of Fwd Packets 45 SYN Flag Count 

6 Total Length of Bwd Packets 46 RST Flag Count 

7 Fwd Packet Length Max 47 PSH Flag Count 

8 Fwd Packet Length Min 48 ACK Flag Count 

9 Fwd Packet Length Mean 49 URG Flag Count 

10 Fwd Packet Length Std 50 CWE Flag Count 

11 Bwd Packet Length Max 51 ECE Flag Count 

12 Bwd Packet Length Min 52 Down/Up Ratio 

13 Bwd Packet Length Mean 53 Average Packet Size 

14 Bwd Packet Length Std 54 Avg Fwd Segment Size 

15 Flow Bytes/s 55 Avg Bwd Segment Size 

16 Flow Packets/s 56 Fwd Header Length 

17 Flow IAT Mean 57 Fwd Avg Bytes/Bulk 

18 Flow IAT Std 58 Fwd Avg Packets/Bulk 

19 Flow IAT Max 59 Fwd Avg Bulk Rate 

20 Flow IAT Min 60 Bwd Avg Bytes/Bulk 

21 Fwd IAT Total 61 Bwd Avg Packets/Bulk 

22 Fwd IAT Mean 62 Bwd Avg Bulk Rate 

23 Fwd IAT Std 63 Subflow Fwd Packets 

24 Fwd IAT Max 64 Subflow Fwd Bytes 

25 Fwd IAT Min 65 Subflow Bwd Packets 

26 Bwd IAT Total 66 Subflow Bwd Bytes 

27 Bwd IAT Mean 67 Init_Win_bytes_forward 

28 Bwd IAT Std 68 Init_Win_bytes_backward 

29 Bwd IAT Max 69 act_data_pkt_fwd 

30 Bwd IAT Min 70 min_seg_size_forward 

31 Fwd PSH Flags 71 Active Mean 

32 Bwd PSH Flags 72 Active Std 

33 Fwd URG Flags 73 Active Max 

34 Bwd URG Flags 74 Active Min 

35 Fwd Header Length 75 Idle Mean 

36 Bwd Header Length 76 Idle Std 

37 Fwd Packets/s 77 Idle Max 

38 Bwd Packets/s 78 Idle Min 

39 Min Packet Length 79 Label 

40 Max Packet Length     
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Table 2: List of features in the CIC-IDS2018 datasets. 

NB Feature Name NB Feature Name 

1 Destination Port 43 Fwd Pkts/s 

2 Protocol 44 Bwd Pkts/s 

3 Timestamp 45 Pkt Len Min 

4 Flow ID 46 Pkt Len Max 

5 Src IP 47 Pkt Len Mean 

6 Dst IP 48 Pkt Len Std 

7 Src Port 49 Pkt Len Var 

8 Flow Duration 50 FIN Flag Cnt 

9 Tot Fwd Pkts 51 SYN Flag Cnt 

10 Tot Bwd Pkts 52 RST Flag Cnt 

11 TotLen Fwd Pkts 53 PSH Flag Cnt 

12 TotLen Bwd Pkts 54 ACK Flag Cnt 

13 Fwd Pkt Len Max 55 URG Flag Cnt 

14 Fwd Pkt Len Min 56 CWE Flag Count 

15 Fwd Pkt Len Mean 57 ECE Flag Cnt 

16 Fwd Pkt Len Std 58 Down/Up Ratio 

17 Bwd Pkt Len Max 59 Pkt Size Avg 

18 Bwd Pkt Len Min 60 Fwd Seg Size Avg.1 

19 Bwd Pkt Len Mean 61 Bwd Seg Size Avg 

20 Bwd Pkt Len Std 62 Fwd Byts/b Avg 

21 Flow Byts/s 63 Fwd Pkts/b Avg 

22 Flow Pkts/s 64 Fwd Blk Rate Avg 

23 Flow IAT Mean 65 Bwd Byts/b Avg 

24 Flow IAT Std 66 Bwd Pkts/b Avg 

25 Flow IAT Max 67 Bwd Blk Rate Avg 

26 Flow IAT Min 68 Subflow Fwd Pkts 

27 Fwd IAT Tot 69 Subflow Fwd Byts 

28 Fwd IAT Mean 70 Subflow Bwd Pkts 

29 Fwd IAT Std 71 Subflow Bwd Byts 

30 Fwd IAT Max 72 Init Fwd Win Byts 

31 Fwd IAT Min 73 Init Bwd Win Byts 

32 Bwd IAT Tot 74 Fwd Act Data Pkts 

33 Bwd IAT Mean 75 Fwd Seg Size Min 

34 Bwd IAT Std 76 Active Mean 

35 Bwd IAT Max 77 Active Std 

36 Bwd IAT Min 78 Active Max 

37 Fwd PSH Flags 79 Active Min 

38 Bwd PSH Flags 80 Idle Mean 

39 Fwd URG Flags 81 Idle Std 

40 Bwd URG Flags 82 Idle Max 

41 Fwd Header Len 83 Idle Min 

42 Bwd Header Len 84 Label 
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