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Abstract

Network security risks have significantly increased in recent years due to the rapid growth of
digital technology, leading to the emergence of new and advanced threats. To keep pace with
these developments, experts are compelled to adopt artificial intelligence (Al)-based solutions
to ensure robust defense systems, thereby enhancing their ability to protect networks from
escalating cyber threats.

This project leverages Machine Learning (ML) and Deep Learning (DL) techniques to
enhance Intrusion Detection Systems (IDS), which are considered the frontline defense
against cyber threats. Our primary objective was to develop and evaluate the performance of
the trained ML/DL models using well-known metrics. As a foundation, we began with a
descriptive and comparative analysis of various IDS-related datasets. Based on this analysis,
we selected the CIC-IDS2017 dataset for our study. We then implemented a robust data
preprocessing methodology, inspired by best practices established in related works.

The CIC-IDS2017 dataset was used to train our ML/DL models, achieving robust
performance across most evaluation metrics on the test set. However, a critical challenge in
IDS design is ensuring model resilience against unseen traffic. To address this, we extended
our evaluation by validating our trained models on the CIC-IDS2018 dataset, which contains
different attack vectors and network configurations. The models demonstrated strong
generalization capabilities, maintaining high performance on this unseen data.

The results of our study demonstrated the significant potential of ML/DL techniques in

enhancing network security.

Keywords: Intrusion detection systems, Machine Learning, Deep Learning, Pre-processing of

network flows, IDS-Related datasets.
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Résumé

Les risques liés a la securité des réseaux ont considérablement augmenté ces derniéres années
en raison de la croissance rapide de la technologie numérique, entrainant I’émergence de
nouvelles menaces avancées. Pour suivre ces évolutions, les experts ont été contraints
d’adopter des solutions basées sur I’intelligence artificielle (IA) afin de garantir des systémes
de défense robustes, renforcant ainsi leur capacité a protéger les réseaux contre les menaces
cybernétiques croissantes.

Ce projet utilise des techniques d’apprentissage automatique (Machine Learning ou ML) et
d’apprentissage profond (Deep Learning ou DL) pour améliorer les systémes de détection
d’intrusion (IDS), qui sont considérés comme la premicre ligne de défense contre les menaces
cybernétiques. Notre objectif principal était de développer et d’évaluer la performance des
modéles ML/DL entrainés en utilisant des métriques standard. Comme base, nous avons
commencé par une analyse descriptive et comparative de divers ensembles de donnees liés
aux IDS. Sur la base de cette analyse, nous avons sélectionné I’ensemble de données CIC-
IDS2017 pour notre étude. Nous avons ensuite mis en ceuvre une méthodologie de
prétraitement des donnees robuste, inspirée des meilleures pratiques établies dans les travaux
connexes.

L’ensemble de données CIC-IDS2017 a été utilisé pour entrainer nos modeéles ML/DL,
obtenant des performances solides sur la plupart des métriques d’évaluation sur le jeu de test.
Cependant, un défi crucial dans la conception des IDS est d’assurer la résilience du modele
face a un trafic inconnu. Pour résoudre ce probléeme, nous avons élargi notre évaluation en
validant nos mod¢les entrainés sur 1’ensemble de données CIC-1DS2018, qui contient
différents types d’attaques et configurations réseau. Les modéles ont démontré de fortes
capacités de généralisation, maintenant une haute performance sur ces données inconnues.

Les résultats de notre étude ont démontré le potentiel significatif des techniques ML/DL pour

renforcer la sécurité des réseaux.

Mots-clés : Systémes de détection d'intrusions, Apprentissage automatique, Apprentissage

profond, Prétraitement des flux réseau, Ensembles de données liés aux IDS.
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GENERAL INTRODUCTION

With the rapid development of digital technology, cyber threats have appeared, making the
privacy of individuals and networks more sensitive due to the high flow of data and the fast-
growing communication between electronic devices, increasing the risk of cyberattacks.
Although traditional Intrusion Detection Systems (IDS) such as anti-virus systems, firewalls,
and other security procedures are effective, they have difficulty keeping up with the
complexities of modern and constantly evolving cyber threats.

IDSs play a major role in cybersecurity through their ability to monitor network traffic and
system activities to identify malicious behaviors and policy violations. However, the
traditional version of these systems faces big challenges, such as high false-positive rates and
the inability to deal with advanced and unknown attacks. Therefore, experts are turning to
Artificial Intelligence (Al) technologies to increase protection capabilities and improve
response to new threats [4,5].

Al encompasses various learning techniques, including Machine Learning (ML) and Deep
Learning (DL). These approaches are broadly categorized into three main types: supervised
learning, which uses labeled data to predict outcomes; unsupervised learning, which identifies
hidden patterns in unlabeled data; and reinforcement learning, which optimizes decision-
making through reward-based feedback. Al enhances the management and security of
networks by improving traffic analysis, automating threat detection, optimizing network
performance, predicting potential issues, and enabling real-time decision-making to ensure
network integrity [54].

In the context of enhancing network security, our study focuses on improving the efficiency
of IDS through the application of supervised learning techniques for both ML and DL, since
IDS-related datasets are typically labeled. This approach leverages the pre-classified nature of
the data to develop more accurate and efficient detection models.

ML provides effective solutions to improve IDS by analyzing data patterns and learning how
to differentiate between usual and unusual activities. Most research and experiments have
shown that ML has provided more precise results and better flexibility and adaptability
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to threats compared to traditional methods. These models are trained using datasets to detect
known threats and pre-defined attack patterns. They also demonstrate the ability to generalize
learning to similar patterns, which may help in improving the detection of certain deviations
from normal network behavior [18].

DL models have gained significant attention in recent years due to their exceptional ability to
process large volumes of data and automatically extract key features. The strength of DL
models lies in their capacity to detect complex patterns in data and adapt to the evolving
landscape of security threats. These properties significantly contribute to improving the
effectiveness of IDS, leading to reduced false alarm rates and enhancing the immediate
response to potential threats [55].

The application of ML and DL techniques to IDS is a major leap and advancement in the field
of cybersecurity. This is because it improves the perfection of defense systems while
expanding their range, which enhances their ability and efficiency in protecting networks
from increasingly complex cyber threats.

This project leverages ML and DL techniques to improve IDS. To showcase the different
steps of our research, we have organized this document into three main chapters as follows:

e The first chapter provides a comprehensive analysis of IDS, explaining their various
types, working mechanisms, and role in enhancing cybersecurity. The chapter also
reviews the importance of Al in supporting and advancing these systems to achieve a
higher level of security.

e Chapter two presents a descriptive and comparative study of five IDS-related datasets.
Several factors are highlighted, including strengths and limitations, the diversity of
attack patterns, the balance of the data distribution, noise levels, the importance of
features, and the extent to which these datasets accurately reflect modern network
traffic.

e Chapter three addresses the practical aspect of our research in the field of IDS using
ML/DL techniques, starting with data preprocessing, followed by training and
evaluating six different models, along with an analysis of the results.
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CHAPTER 1: Security and Intrusion Detection Systems

1.1 Introduction

With the rapid pace of technological advancement and the diversification of
communication channels, coupled with the widespread adoption of digital systems and data
transfer across networks, the risk of unauthorized access and data manipulation by malicious
actors or competitors is increasing. Consequently, ensuring information security through
advanced protection technologies and access control mechanisms has become essential for
building a secure infrastructure capable of mitigating these vulnerabilities.

In this context, the implementation of IDS stands out as a critical defense mechanism. These
systems provide continuous monitoring and surveillance of network activities, detecting any
attempts to breach security policies or unauthorized intrusions [5].

This chapter examines the foundational concepts of IDS and discusses the challenges and
limitations these systems encounter. Additionally, it presents proposed solutions to mitigate
these challenges. Finally, the pivotal role of Al in enhancing cybersecurity is highlighted,
particularly through its ability to autonomously detect and respond to threats by analyzing
vast amounts of data and identifying abnormal patterns. Al also plays a crucial role in
assessing risks, identifying vulnerabilities before they can be exploited, and improving the

efficiency of threat detection and response mechanisms.

1.2 IDS

To gain a deeper understanding of IDS, it is essential to explore their definition,
classifications, the types of security threats they address, their components and architecture, as
well as the categories of attacks, challenges, and limitations that affect their effectiveness:

1.2.1 Definition

An IDS acts as a real-time anomaly detection mechanism. It continuously monitors
network traffic and system activities, comparing them to predefined rules or behavioral
patterns. When the system identifies deviations that indicate potential malicious activity, it
generates an alert for further investigation. This enables the prompt implementation of
appropriate countermeasures to mitigate security threats and protect the network infrastructure
[4,5].
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1.2.2 Types of Security Threats and Categories of Attacks

Understanding the diversity and evolution of security risks, as well as their categories, is
crucial for developing and implementing effective defense mechanisms. Initially, based on the
comprehension of the role of IDS, various types of security threats will be explored, followed
by a detailed of the categories of attack methods.

1.2.2.1 Types of Security Threats

In the first step, we will provide a breakdown of some common security threats and discuss
how IDS can help mitigate them:

+ Malware

It's including a variety of security threats, such as viruses, Trojans, ransomware, and
spyware. These programs can steal sensitive data, corrupt files, disrupt processes, and
compromise systems. To block these threats, signature-based IDS can detect known malware
based on predefined patterns. Additionally, anomaly-based IDS can identify unusual behavior
patterns that may indicate the presence of malware [6].

4+ Phishing Attacks

Phishing emails or messages deceive users into clicking malicious links, downloading
infected attachments, compromising personal information, or granting unauthorized access to
systems. Although IDS cannot specifically stop phishing attempts targeting individual users,
it can help identify suspicious network activity associated with phishing campaigns, such as
attempts to access known phishing sites [6].

4+ Denial-of-Service (DoS) Attacks

DoS attacks overwhelm a system with excessive traffic, rendering it unavailable to
legitimate users. This can disrupt critical services and lead to financial losses. By monitoring
traffic patterns, IDS can identify anomalies indicative of DoS attacks, such as sudden spikes
in traffic volume or attempts to exploit known DoS vulnerabilities. Early detection enables the
implementation of mitigation measures [6].

4+ Man-in-the-Middle (MitM) Attacks

It's a type of cyberattack where an attacker secretly intercepts and relays communications
between two parties, enabling them to eavesdrop, modify, or inject malicious data into the
communication channel. The attacker positions themselves in the middle of the conversation,
acting as a proxy without the parties' knowledge. This allows the attacker to monitor, capture,
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and potentially manipulate exchanged data, compromising the confidentiality and integrity of
the communication [6].

4+ Social Engineering Attacks

It represents a sophisticated form of manipulation that exploits human psychology to
deceive individuals into divulging sensitive information or granting unauthorized access to
systems. These attacks often involve phishing emails, phone calls, or the impersonation of
legitimate entities. While IDS may not be able to directly block social engineering attacks,
they can provide a secondary layer of defense by detecting suspicious activities that may arise
from a successful attack, such as attempts at unauthorized access or data exfiltration [6].

4 Insider Threats

These threats result from malicious or negligent actions by authorized users within an
organization. Such individuals may have access to sensitive data and systems, posing a
significant security risk. This is why anomaly-based IDS can be useful in identifying unusual
activity from authorized users, which may indicate malicious intent. For example, this
includes attempts to access unauthorized files or unusual data transfer activities [6].

1.2.2.2 Categories of Attacks in the Security Domain
In the next step, as shown in Table 1.1, we will present several illustrative examples of
security attack categories to enhance understanding of the different types of threats:

Table 1.1: Examples of categories of attacks in the security domain [22].

Category of Attack Description Example
Reconnaissance Gather information about a target system | Ping Sweeps, Port Scans, Social
Attacks or network. Engineering
Denial-of-Service Overwhelm a system or network with SYN Floods, Distributed DoS (DDoS)
(DoS) Attacks traffic. Attacks, Smurf Attacks

Privilege Escalation
Attacks

Gain higher privileges on a system.

Exploiting software vulnerabilities,
Password Spraying, Pass-the-Hash Attacks

Malware Attacks

Infect a system with malicious software.

Viruses, Worms, Trojans, Ransomware

Man-in-the-Middle
(MitM) Attacks

Eavesdrop on communication and
potentially alter data.

ARP Spoofing, SSL Stripping, Public Wi-
Fi Eavesdropping

SQL Injection Attacks

Inject malicious SQL code to manipulate
a database.

Tricking a login form into stealing user
data.

Phishing Attacks

Trick users into revealing sensitive
information.

Phishing emails impersonating legitimate
entities.

Watering Hole Attacks

Compromise websites or resources to
infect devices.

Hacking a website popular among gamers
to inject malware.

[6]
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1.2.3 Classification of IDS

IDS can be classified based on the techniques used to detect intrusions into a computer
system. Here are the three main classifications:

+ Signature — based 1DS

Signature-based IDS rely on a predetermined set of signatures, which are patterns
identifying known attacks (see Figure 1.1). These signatures may be based on data packets,
system calls, or other activities. When the IDS detects a match between a signature and
ongoing activity, it raises an alarm.

The IDS continuously monitors all incoming and outgoing network traffic, analyzing it
against a comprehensive database of known cyber threats and attack patterns. If any activity is
detected that matches the signatures or behaviors stored this knowledge base, the IDS
immediately makes an alert, notifying security personnel about the potential threat [1,8].

Data Collection System Admin

Traffic
Dataset

Maintain
knowledge

Known Attack
Signatures

Al Signature based

IDS

Attack Signature
Database

A

Matched Signatures

A

Alarm Generation Report -

Figure 1.1: Signature-based IDS [2].

4+ Anomaly — based IDS

Anomaly-based IDS monitors system activity for deviations from a baseline of normal
behavior. This baseline can be confirmed by learning the patterns of network traffic, system
calls, or other activity over time. When the IDS detects an anomaly, it raises an alarm. An
Anomaly-based IDS keeps the system in constant adaptation to the network flow which is by
nature constantly changing. It learns the normal traffic and flags any unusual activity for
security personnel to examine. In this way it ensures its effectiveness over time [1,8]. Figure
1.2 helps to better understand:
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Figure 1.2: Anomaly — based IDS [2].

4 Hybrid IDS

Hybrid IDS combine signature-based and anomaly-based detection techniques. This

approach can provide the benefits of both techniques, while reducing some of the drawbacks

[8]. For example, a hybrid IDS can use signature-based detection to identify known attacks,

and anomaly-based detection to identify zero-day attacks [1], as shown in Figure 1.3:
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Figure 1.3: Hybrid IDS [2].
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In Figure 1.4, a more comprehensive illustration of the main types of IDS is shown:

Intrusion Detection System

E r

Intruder Type Detection Approaches System Types
Internal Intruders Anomaly based —+ Network Based
Detection
External Intruders | Signature based — Host Based
Detection
— Hybrid

Figure 1.4: Types of IDS [10].

4+ Advantages & Disadvantages of IDS techniques

The following Table 1.2 summarizes the advantages and disadvantages of different IDS
techniques with a simple comparison between them to guide cyber security passionate in
selecting the most suitable approach for their needs.

Table 1.2: Advantages & Disadvantages of IDS Techniques.

IDS Techniques Advantages & Disadvantages
Highly accurate for detecting known attacks.

Requires regular updates to the signature database.
Relatively quick and efficient.

Signature IDS

Cannot detect zero-day attacks (attacks that are unknown).

May be more responsive to false positives than signature-based IDS.

May require more processing power to monitor system activity.

Anomaly IDS Can detect zero-day attacks.
More flexible than signature-based IDS.
Can be more complex to configure and maintain than signature-based or
) anomaly-based IDS.
Hybrid IDS

May still be responsive to false positives.
Provides comprehensive protection against a wider range of attacks.
Can be more precise than signature-based or anomaly-based IDS alone.
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1.2.4 IDS Components and Architecture

An IDS works by continuously monitoring doubtful activity and making alerts when it
detects potential threats. The following provides an overview of its key components and
architectures, as shown in Figure 1.5:

P —

£ \\!_I.i'-_'-J.|'\ 1

action i
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- -
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Data
Sources
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event
Sensors 4’ Analyzers

alert
Security
Managers

Figure 1.5: Components & Basic Architecture of an IDS.

«» Sensors: These are the eyes and ears of the IDS, deployed strategically to collect data
from various sources. They can be:

v" Network Traffic Sensors (Network-based 1DS): Monitor network traffic for
suspicious activity, such as port scans, unauthorized access attempts, or
malware signatures.

v File System Sensors (Host-based IDS): Monitor system activity on individual
devices, including file access, system calls, and application logs, to detect
malware or unauthorized modifications.

v' Agent-based Sensors: Lightweight software agents installed on devices that
collect and report system activity data to a central IDS manager.

% Analyzers: These are the brains of the IDS, responsible for analyzing the data
collected by the sensors. They use various techniques like signature matching,
anomaly detection, and behavioral analysis to identify potential threats [9].

% Consoles: These are the user interfaces, which use security personnel to monitor the

IDS activity, view alerts, investigate potential threats, and configure the system.
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1.2.5 Challenges and Limitations of IDS

IDS are valuable security tools, but they are not without their challenges and limitations.
Here's a breakdown of some key issues to consider:

1.2.5.1 False Alert and False Detection

o False Alert (false positive): These happens when the IDS raises an alert for
harmless activity that mistakenly resembles a known attack signature or anomaly.
False alert waste time and resources for security personnel investigating them, as
mentioned in [11,12].

o False Detection (false negative): These happens when the IDS fails to detect a real
security threat. This can happen due to limitations in signature coverage (missing
signatures for new attacks) or the inability to identify subtle anomalies indicative of an
attack [11,12].

1.2.5.2 Factors Contributing to False Alert and False Detection

At this point, the four main factors contributing to this problem have been highlighted:

e Imperfect Signature Matching: Signatures may not be specific enough, leading to
false positives for benign activity with some similarities to malicious patterns.

e Overly Sensitive Anomaly Detection: Anomaly thresholds might be set too low,
causing alerts for minor variations in normal activity.

e Rapidly Evolving Threats: Attackers constantly develop new techniques, and
signature updates might not always keep pace, leading to false negatives.

e Limited Visibility: Network-based IDS might miss attacks happening within

individual devices (host-based IDS can help address this).

1.2.5.3 Scalability and Performance Issues

The three primary factors contributing to this issue have been identified:

e Large Data Volumes: Modern networks generate massive amounts of data.
Analyzing all this data for anomalies can be computationally expensive and resource-
intensive, impacting system performance.

e Large-Scale Deployments: Deploying IDS across a vast network infrastructure can

be challenging to manage and scale effectively, as mentioned in [13].
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e Alert Fatigue: A high volume of alerts, even with a low false positive rate, can
overwhelm security personnel, leading to alert fatigue and potentially missed critical
threats [14].

1.2.5.4 Evasion Techniques by Attackers
Attackers use various evasion techniques to get around IDS in order not to be detected:
e Polymorphism: Attackers can modify malware code partially to avoid signature
matching.
e Encryption: Encrypting malicious traffic can render it invisible to signature-based
detection on network traffic.
e Low and Slow Attacks: Spreading out an attack over time and using minimal
resources can avoid triggering anomaly detection.
o Zero-day Attacks: By definition, these new attacks lack corresponding signatures,
making them undetectable by signature-based IDS [15].

Here are some proposed solutions to address these challenges and limitations of IDS:

o Fine-Tuning IDS Configuration: Proper configuration of signature matching
criteria, anomaly thresholds, and filtering rules can help reduce false positives.

o Security Awareness Training: Educating users about social engineering tactics
and phishing attempts can help prevent them from falling victim to attacks.

o Layered Security Approach: IDS is just one piece of the security puzzle.
Combining it with firewalls, vulnerability management, and data encryption provides a
more comprehensive defense.

o Staying Informed about Threats: Security teams need to stay updated on the latest

attack methods and adjust their IDS configurations accordingly.

By acknowledging these limitations and implementing appropriate mitigation strategies,
organizations can maximize the effectiveness of their IDS and enhance their overall security
posture.

1.2.5.5 IDS Evaluation and Selection Criteria

Choosing the most suitable IDS requires careful evaluation. Here are key factors to consider:

4+ Threat Detection Capabilities

IDS supports advanced threat detection capabilities to identify and mitigate cyber threats.

[12]
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When evaluating a security solution, it is essential to understand its detection methods. Does
it rely on signatures for known threats, anomaly-based detection for unusual activity, or a
combination of both? More importantly, how well does it address the specific threats an
organization faces? Additionally, the ability to integrate with threat intelligence feeds for real-
time updates is essential to staying ahead of evolving threats, as mentioned in [16]. On the
deployment side, considering the existing infrastructure is key. Does the solution support
network-based, host-based, or cloud-based deployment, or maybe even a combination?
Finally, easy integration with the current setup is necessary for efficient operation.

Evaluating a security solution requires considering several key factors, especially when it
comes to scalability and performance, which are critical. It's important to assess whether the
solution can handle the volume of data a network generates without impacting performance
and if it's scalable to accommodate future growth. Management and usability are also
important considerations. The interface should be examined to determine if it's easy to use for
configuration, monitoring, and alert management, and if it offers reporting capabilities to
analyze security trends. Finally, cost and support must be measured, taking into account
licensing fees, maintenance costs, and training requirements for commercial solutions.

4+ Commercial Vs Open-Source IDS

When selecting an IDS, organizations typically choose between commercial and open-
source solutions. Commercial IDS often offer comprehensive, pre-configured features such as
signature databases, and come with dedicated vendor support, making them easier to deploy
and maintain, especially for users with limited cybersecurity expertise. However, they can be
costly, particularly for large-scale environments. Open-source IDS, on the other hand, are
freely available and offer high levels of customization, enabling users to tailor the system to
specific needs. These systems usually require more advanced technical knowledge but benefit
from active community support, which drives their continuous development. IDS have been
successfully implemented across various sectors, such as financial institutions to detect fraud,
healthcare providers to secure sensitive patient data, and government agencies to protect
critical infrastructure from cyberattacks [17].

1.2.5.6 The Future of IDS (Emerging Technologies and Evolving
Strategies)

The world of cybersecurity is constantly evolving, and IDS are keeping pace by leveraging
new technologies and refining their approaches. Here's a brief look into what the future holds
for IDS:
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4+ Machine Learning (ML)

ML algorithms are being progressively integrated into IDS for anomaly detection. ML can

analyze vast amounts of data to identify perfect patterns that might signify attacks, improving
the accuracy of anomaly-based detection and significantly reducing false positives and false
negatives [18].

4+ Big Data Analytics

The ability to analyze massive datasets in real-time is crucial for effective security. IDS
are integrating big data analytics tools to handle the ever-growing volume of network traffic
and system activity data, enabling them to detect emerging threats more quickly [19].

4 User and Entity Behavior Analytics (UEBA)

UEBA goes beyond traditional network traffic analysis. It focuses on user and entity
behavior patterns, including login attempts, file access, and application usage. This allows
IDS to identify suspicious activity that might indicate compromised accounts or insider
threats [20].

1.2.5.7 How IDS are Progressing to Address New Challenges

Emerging trends in IDS include a focus on deception and active defense mechanisms to
attract and disrupt attacks, deeper integration with the other systems for a large security
context, and cloud-based IDS solutions to secure cloud environments and workloads.
Additionally, adapting IDS for 10T (Internet of Things) device security needs and the
explosion of data from connected devices will be crucial. However, the future of IDS depends
on collaborative efforts—sharing threat intelligence, best practices, and continuous
innovation—Dbetween security vendors, researchers, and the wider cybersecurity community
to stay ahead of promoting threats [21].

1.3 The Importance of Al in Security

Al is rapidly transforming the security field, offering significant advantages over
traditional methods. Here are some key reasons, why Al is becoming increasingly important
in security:

[14]
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1.3.1 Al-Powered Anomaly Detection: Unmasking Hidden Threats in
Real-Time

The threat environment demands security solutions that are not only comprehensive but
also adaptable. Traditional signature-based detection methods struggle to keep up with the
ingenuity of attackers. This is where Al comes in, revolutionizing the way we identify and
respond to security threats [23].

1.3.1.1 The Power of Al in Anomaly Detection

Al algorithms excel at processing large datasets to uncover hidden patterns, making them
well-suited for security anomaly detection. By analyzing network traffic, logs, and user
activity, Al can identify deviations that may indicate zero-day attacks, phishing scams
through anomalous emails, or insider threats exhibiting suspicious behavior. This pattern
recognition capability allows Al to detect threats without relying solely on predefined
signatures [23].

1.3.1.2 Benefits of Al-Powered Anomaly Detection

Al enables proactive threat detection by identifying anomalies in real-time, preventing
attacks quickly. It reduces false alarms by distinguishing true abnormalities from benign
variations. This broader detection of threats, including zero-day threats, strengthens the
security position. Additionally, Al's continuous learning provides enhanced threat
intelligence, offering insights into attacker behaviors and emerging threats to inform security
strategies [23].

1.3.1.3 The Future of 1A in Security

While Al plays a crucial role in threat detection, human expertise remains irreplaceable.
Security professionals need to interpret Al-generated alerts, investigate potential threats, and
make informed decisions about mitigation strategies. The future of security lies in a
collaborative approach where Al empowers human analysts to make faster and more accurate
security decisions.

1.3.2 Automated Security Tasks and Improved Efficiency

Al can automate repetitive tasks like log analysis, incident response, and vulnerability
scanning. This frees up security professionals to focus on more strategic tasks, such as
investigation and threat hunting.

[15]
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It also reinforces cybersecurity operations through automated log analysis to identify
anomalies, enabling analysts to focus on investigating threats. It streamlines incident response
by handling initial containment, evidence collection, and triage. Al-powered vulnerability
scanners automate identifying system vulnerabilities to prioritize patching. Additionally, Al
automates installing security patches, ensuring timely updates to reduce vulnerability
windows while minimizing manual workloads [23].

1.4 Conclusion

In conclusion, this chapter has demonstrated the critical role of IDS in securing modern

networks by covering key concepts, classifications, components, and the security threats they
address. Despite their effectiveness, IDS continue to face challenges, including false positives,
scalability issues, and sophisticated evasion techniques. However, the growing integration of
Al is expected to significantly enhance IDS capabilities, particularly in anomaly detection and
automation. As Al technologies advance, they are poised to play a pivotal role in improving
the precision, scalability, and adaptability of IDS in the future.
In upcoming studies, special attention will be given to the datasets used to enhance IDS
capabilities. The next chapter, titled "Descriptive and Comparative Study of IDS-related
Datasets,” will explore the sources, structures, and application domains of these datasets. By
comparing their strengths and limitations, this analysis will provide a robust foundation for
future research aimed at further advancing IDS performance.
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2.1 Introduction

When talking about a dataset in general, it is not reduced to simple information; rather, it

represents a compilation of interconnected data points. Data includes anything that can be
recorded and stored electronically, such as numbers, text, images, videos, audio recordings,
and so on. Talking about the dataset in the field of cybersecurity, which largely revolves
around the development of effective IDS, the dataset concerns network traffic, which can be
either normal or various scenarios of attack, and we mentioned some of these scenarios
specifically in the first chapter. This data is used to train ML and DL models to detect and
respond to various threats.
The next chapter presents a descriptive and comparative study of IDS-related Datasets, taking
into account several factors, including strengths, limitations, attack diversity, data balance,
noise levels, the importance of features, and the representativeness of modern network traffic.
There is a wide range of datasets in this area; it is impractical to work with all of them.
Therefore, five datasets (KDD Cup 99, NSL-KDD, UNSW-NB15, CIC-IDS2017, and CIC-
IDS2018) are analyzed due to their importance, the novelty of some of them, and their ability
to capture a wide range of network traffic patterns. Furthermore, numerous studies have been
conducted on these datasets.

2.2 Datasets for Cybersecurity

The data set in cybersecurity includes packets or flow records captured from network
traffic such as Wireshark and tcpdump over a specific period of time, which are collected
through several methods, most notably package capture tools (Packet Sniffers). System logs
such as login logs, application logs, operating system logs, and firewall logs are also
collected, as they may contain useful information about suspicious activity. Virtual network
environments are created to simulate network traffic and various attacks in a secure and
controlled manner. Also, in some cases, data is collected from real business networks. Figure
2.1 shows the timeline of a network traffic-based dataset.

Observed phenomena such as packet sizes, port numbers, and used protocols are called
"features” and are individual measurable characteristics that are stored in NetFlow logs. The
data is labeled indicating whether the traffic is normal or malicious, and often identifies the
type of attack. Therefore, the more recent and diverse the attack collection in a dataset, the
more important it becomes.

Imbalanced datasets are a challenge for ML and DL models. This means that the number of
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records in both the normal and malicious categories must be close to or proportional to each
other because the models tend to be biased towards the more representative category. Noise in
the data, whether caused by errors in data collection, missing or incomplete data, or irrelevant
features, is another challenge as it leads to training models on inaccurate data [24].

— Updates available
[ Studied dataset
I Other Dataset

CIC DoS
CIC-DS2017

DEFCON-8 KYOTO CIC-IDS2018

1998 1999 2000 2006 2008 2009 2012 2013 2015 2017 2018

Figure 2.1: Timeline of network traffic-based dataset.

2.3 The KDD Cup 99 Dataset

Considered one of the first datasets in security, it was prepared in 1999 by Stolfo et al

[25]. The tcpdump data served as the basis for creating this set, which was captured from the
DARPA IDS program in 1998 within a simulated Local Area Network (LAN) by
Massachusetts Institute of Technology (MIT) Lincoln Labs for about nine weeks. The dataset
contains 42 features and five types of traffic that are classified as normal or attack-type (as
shown in Table 2.1). There are more than 5 million connection records, and each record
contains about 100 bytes of data. During the period of release of this dataset, many researches
and studies were conducted on it, but with the speed of progress, defects were found in it,
which made work on it almost non-existent in the current period.
The features in the KDD dataset are divided into four categories. Basic features that define the
basic context for understanding a connection, such as the type of protocol and service used.
We also find content-based features that identify attacks that exploit weaknesses in data
formats or protocols. As well as time-based traffic features such as duration and number of
bytes transferred. Finally, host-based traffic features, where the number of failed logins
attempts from the host may also indicate an attack [26].
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Table 2.1: Different types of traffic in the KDD Cup 99 dataset.

Traffic Types Number of Instances
Back 2203
Land 21
Neptune 1072017
DOS Pod 264 3883370
Smurf 2807886
Teardrop 979
Ipsweep 12481
Nmap 2316
Probe Portsweep 10413 41102
Satan 15892
Attacks Buffer_overflow 30 3925650
U2R Loadmodule 9 59
Perl 3
Rootkit 10
Ftp_write 8
Guess_passwd 53
Imap 12
Multihop 7
R2L Phi 1 1126
Spy 2
Warezclient 1020
Warezmaster 20
Normal 972781
Total 4898431

2.4 The NSL-KDD Dataset

To stay on the same side of the development and modernization wheel, in 2009, Tavallaee

et al. [27,28]. from the University of New Brunswick, the Canadian Institute for
Cybersecurity (CIC), and others attempted to solve some of the limitations in the KDD Cup
99 dataset, and the result was the NSL-KDD dataset. This new dataset consists of two primary
components: a training set and a test set. It also contains the same features and attack types
found in the old dataset. Table 2.2 provides a detailed overview of the various types of traffic,
including both normal and attack types, found in the NSL-KDD dataset.
There were improvements in the NSL-KDD dataset. Notably, there are no redundant or
duplicate records in the training set. This dataset also implements a more balanced selection
strategy compared the KDD Cup 99 dataset, prioritizing the inclusion of records from
underrepresented difficult attack categories. Finally, the dataset maintains a reasonable size
for both training and testing sets, enabling researchers to perform comprehensive experiments
on the entire dataset without the need to randomly select a small portion [29].
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Table 2.2: Different types of traffic in the NSL-KDD dataset.

. Number of Instances
Traffic Types Train Test
Back 956 359
Land 18 7
Neptune 41214 4657
Pod 201 41
Smurf 2646 665
DOS Teardrop 892 45927 12 7460
Mailbomb 0 293
Apache? 0 737
Udpstorm 0 2
Processtable 0 685
Worm 0 2
Ipsweep 3599 141
Nmap 1493 73
Portsweep 2931 157
Probe Satan 3633 11656 735 2421
Saint 0 319
Mscan 0 996
Buffer_overflow 30 20
Loadmodule 9 2
Attacks Perl 3 58630 2 12833
U2R Rootkit 10 52 13 67
Xterm 0 13
Ps 0 15
Sqlattack 0 2
Ftp_write 8 3
Guess_passwd 53 1231
Imap 11 1
Multihop 7 18
Phf 4 2
Spy 2 0
Warezclient 890 0
R2L Warezmaster 20 995 944 2885
Sendmail 0 14
Named 0 17
Snmpgetattack 0 178
Snmpguess 0 331
Xlock 0 9
Xsnoop 0 4
Httptunnel 0 133
Normal 67343 9711
Total 125973 22544

2.5 The UNSW-NB15 Dataset

In order to create a dataset that represents modern attack scenarios, which KDD lacks, the
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Australian Center for Cyber Security (ACCS) took the lead and worked with other researchers
around the world to build the UNSW-NB15 dataset in 2015. To achieve this goal, ACCS's
IXI1A PerfectStorm tool was used in the Cyber Range Lab to create a hybrid of real modern
normal behaviors and synthetic attack activities. The dataset consists of 49 features extracted
using tools such as Argus and bro-IDS. In addition, twelve algorithms written in C# were used
to capture various aspects of the behavior of network packets. This dataset contains the attack
subcategory within nine types of attacks (as shown in Table 2.3).

This dataset uses both packet-based features, flow-based features, and general-purpose
features. Packet-based features provide detailed analysis of individual network packets, while
flow-based features analyze connected sequences within a network flow. The dataset also
includes general-purpose features, which are broader characteristics that do not fit neatly into
the packet or flow categories. These may encompass overall network statistics, temporal
patterns, or features that aggregate information from multiple sources. Some features are
engineered to analyze sequences of multiple connection records, enabling the detection of
advanced threats, such as slow scanning techniques used by attackers [30].

Table 2.3: Different types of traffic in the UNSW-NB15 dataset.

Traffic Types Attack subcategory NB of Instances
FTP, HTTP, RIP, SMB, Syslog, PPTP, FTP, DCERPC, OSPF, TFTP,
Fuzzers DCERPC, OSPF, BGP. 24246
Telnet, SNMP, SunRPC Portmapper (TCP) UDP Service, SUnRPC
. Portmapper (TCP) TCP Service, SUnRPC Portmapper (UDP) UDP Service,
Reconnaissance NetBIOS, DNS, HTTP, SUunRPC Portmapper (UDP), ICMP, SCTP, 13987
MSSQL, SMTP, Telnet, SunRPC Portmapper (UDP) TCP Service.
FreeBSD, HP-UX, NetBSD, AlX, SCO Unix, Linux, Decoders, IRIX,
Shellcode OpenBSD, Mac OS X, BSD, Windows, BSDi, Multiple OS, Solaris. 1511
Analysis HTML, Port Scanner, Spam. 2677
Backdoors / 2329

Ethernet, Microsoft Office, VNC, IRC, RDP, TCP, FTP, LDAP, Oracle,
TFTP, DCERPC, XINETD, SNMP, ISAKMP, NTP, Telnet, CUPS,

Attacks DoS Hypervisor, ICMP, SunRPC, IMAP, Asterisk, Browser, Cisco Skinny, SIP, | 16353 321283
SMTP, SSL, DNS, 1IS Web Server, Miscellaneous, RTSP, Common Unix
Print System (CUPS), IGMP, HTTP, NetBIOS/SMB, Windows Explorer.
Evasions, SCCP, SSL, VNC, Backup Appliance, Browser, Clientside
Microsoft Office, Interbase, Miscellaneous Batch, SOCKS, TCP, Apache,
IMAP, Microsoft IS, Clientside, Clientside Microsoft Paint, IDS, SSH,
. ICMP, DCERPC, FTP, RADIUS, WINS, Clientside Microsoft, POP3,
Exploits Unix r Service, Cisco 10S, Clientside Microsoft Media Player , Damewar, 44525
LPD, MSSQL,Office Document, RTSP, SCADA, Webserver, All, LDAP,
NNTP, IGMP, Oracle, RDesktop, Telnet, PHP, SMB, SunRPC, Web
Application, DNS, SMTP, Browser FTP, Miscellaneous, PPTP, SIP, TFTP.
Generic All, SIP, HTTP, SMTP, IXIA, TFTP, Superflow. 215481
Worms / 174
Normal 2218761
Total 2540044

[22]



CHAPTER 2: Descriptive and Comparative Study of IDS-related Datasets

2.6 The CIC-IDS2017 Dataset

The CIC returned to present the best in collaboration with the University of New
Brunswick by creating the CIC-1DS2017 dataset, which is considered to be very recent, the
most popular, and readily available to the public. It is worth noting that it not only contains
the most updated attack scenarios but also meets all the criteria for real-world attacks. Where
the Bprofile system was used in them. One of the key strengths of this dataset is its
incorporation of various network traffic patterns generated by protocols such as HTTP,
HTTPS, FTP, SSH, and email in order to use them to infer the abstract behaviors of 25 users.
In addition, network flows between the source and the destination are considered
bidirectional. It involved benign data and 14 different types of attacks, which were collected
over five consecutive days and stored in eight separate files (as shown in Table 2.4). The set
also contains 79 features. Many new models and algorithms have been analyzed and
developed due to the attraction of this dataset for researchers [27,31].

Table 2.4: Different types of traffic in the CIC-1DS2017 dataset.

Name of CSV Files Day Activity Traffic Types NB of Instances
Friday-WorkingHours-Afternoon- . BENIGN 97718
Frida 225745
DDos.pcap_ISCX y DDoS 128027
Friday-WorkingHours-Afternoon- . BENIGN 127537
PortScan.pcap_ISCX Friday PortScan 158930 286467
Friday-WorkingHours-Morning.pcap_ISCX Friday BE[B\I(!?N 1?3227 191033
Monday-WorkingHours.pcap_ISCX Monday BENIGN 529918 | 529918
Thursday-WorkingHours-Afternoon- BENIGN 288566
Infilteration.pcap_ISCX Thursday Infiltration 36 288602
BENIGN 168186
Thursday-WorkingHours-Morning- Thursday Web Attack-XSS 652 170366

WebAttacks.pcap_ISCX Web Attack-Brute Force | 1507

Web Attack-Sql Injection 21

BENIGN 432074
Tuesday-WorkingHours.pcap_ISCX Tuesday FTP-Patator 7938 | 445909
SSH-Patator 5897
BENIGN 440031
DoS Hulk 231073
. DoS Slowloris 5796
Wednesday-workingHours.pcap_ISCX Wednesday DoS Slowhttptest 5499 692703
Heartbleed 11
DoS GoldenEye 10293
Total 15 2830743
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2.6.1  Descriptions of Dataset

The CIC-IDS2017 traffic was created by a testbed architecture consisting of a victim
network with four machines and an attacker network with fifteen machines during work hours
from Monday to Friday. It can be seen from Table 2.4 that Monday was free of attacks, but
during the remaining four days, a variety of attacks were conducted. The data from Tuesday,
Wednesday, and Thursday mornings are dominated by a primary attack type each day but
include multiple subtypes like "FTP-Patator" and "SSH-Patator" attacks, which are two
variations of Patator attacks. Wednesday highlights different "DoS" attacks like Hulk and
Slowloris, along with the "Heartbleed" attack. Thursday morning involves three types of web
attacks: "XSS," "Brute Force," and "SQL Injection.” This variation within a single attack
category makes these days ideal for developing multi-class classification detection models. In
contrast, the data from Thursday afternoon and Friday afternoon is more suited for binary
classification. Thursday afternoon includes "BENIGN" traffic versus the "Infiltration™ attack,
while Friday afternoon presents "BENIGN™" traffic with either a "DDoS" or "PortScan" attack
[31,32].

Distribution of instances in figures 2.2 and 2.3 can help better understand, since we note that
the "BENIGN™" category has the highest number of instances, which is normal for traffic. For
the attack scenarios: "DDoS," "DDoS Hulk,” and "PortScan" have the largest number of
instances where such high numbers reflect the prevalence of such attacks. In addition,
"PortScan” is a common reconnaissance activity performed by attackers to search for
vulnerabilities and penetration opportunities in networks. While the incidence of specific web
attacks, such as "XSS," "Brute Force," and "SQL Injection,” are relatively low.

Dataset suffers from a high imbalance, which is one of the shortcomings as clearly illustrated
in Figures 2.2 and 2.4, where benign traffic contains 80.30% compared to attacks accounting
for 19.70%. This leads to a great possibility that instances of a particular attack label, such as
"Heartbleed" or "Web Attack-Sql Injection” may not be found in the training set, as well as
the tendency of models towards the benign category. An important shortcoming is also its
enormous size, which spans eight files and makes working with a large and fragmented data
set stressful.

The "Heartbleed" attack type has only 11 recorded instances, which may indicate either the
rarity of such attacks or the presence of incorrect or incomplete data, raising concerns about
its reliability and accuracy [31].
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Figure 2.2: Number of instances for traffic types in the CIC-IDS2017 dataset.
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Figure 2.3: Number of instances for attack type in the CIC-1DS2017 dataset.
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Figure 2.4: The CIC-IDS2017 dataset's distribution of benign and attack instances.
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2.7 The CIC-1DS2018 Dataset

As part of the ongoing efforts to provide the research community with reliable and up-to-

date data sources, we return to talking about CIC, which is known internationally for its

distinguished datasets, as it added a new dataset to its series of releases in 2018 in cooperation
with the Communications Security Foundation (CSE) using the AWS (Amazon Web

Services) platform. The dataset, known as CIC-1DS2018, surpasses its predecessor "CIC-

IDS2017" by providing a more complex and diverse network environment. Incorporates 84

features extracted using the CICFlowMeter-V3 tool, where these features are calculated

separately for both the forward and backward directions. Recorded 14 different attack types in

addition to benign traffic. This dataset is distributed across 10 separate files, as displayed in

Table 2.5. Finally, it was released in both raw PCAP format, which enables the extraction of

new features, and a pre-processed and ready-to-use CSV format [33,34].

Table 2.5: Different types of traffic in the CIC-1DS2018 dataset.

Name of CSV Files Day Activity Traffic Types NB of Instances
Friday-02-03- Friday-02-03- Benign 762384 1048575
2018 TrafficForML_CICFlowMeter.csv 2018 Bot 286191
. . Benign 446772
2018 TrafﬁcEg;ﬁ{lg;gzﬁowlweter.csv F“d%llg'oz' DoS attacks-SlowHT TPTest | 139890 | 1048574
- - DoS attacks-Hulk 461912
Benign 1048009
Friday-23-02- Friday-23-02- Brute Force -Web 362 1048575
2018_TrafficForML_CICFlowMeter.csv 2018 Brute Force -XSS 151
SQL Injection 53
Thuesday-20-02-2018 _ Thuesday-20- Benign 7372557 2048748
TrafficForML_CICFlowMeter.csv 02-2018 DDosS attacks-LOIC-HTTP | 576191
Thursday-01-03- Thursday-01- Benign 236632 329266
2018 TrafficForML_CICFlowMeter.csv 03-2018 Infilteration 92634
Benign 996077
Thursday-15-02- Thursday-15- 5 o tacks-GoldenEye | 41508 | 1048575
2018 TrafficForML_CICFlowMeter.csv 02-2018 DoS attacks-Slowl orii 10990
Benign 1048213
Thursday-22-02-2018 Thursday-22- Brute Force -Web 249 1048575
TraffickorML_CICFlowMeter.csv 02-2018 Brute Force -XSS 79
SQL Injection 34
Benign 667626
— SSH-Bruteforce 187589
Benign 360833
e 20 | el | Socs smcsoic | oo | 1ot
— DDOS attack-LOIC-UDP 1730
Wednesday-28-02-2018 Wednesday- Benign 540568 609030
TraffickorML_CICFlowMeter.csv 28-02-2018 Infilteration 68462
Total 15 16227068
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2.7.1  Descriptions of Dataset

The data was created using a realistic network environment within 10 days, from
Wednesday 14/2/2018 to Friday 2/3/2018. Were used 50 attack and 420 victim machines
along with 30 servers [33].

The dataset is characterized by a very low number of duplicates or uncertain data, and a large
variety of attack traffic scenarios, as shown in Figures 2.5 and 2.6. However, it is important to
note, as illustrated in Figure 2.7, that the dataset is imbalanced, as the number of instances for
Benign is 83.07% and Attack is 16.93% [33,35].

Based on Tables 2.4 and 2.5, a substantial increase of two million attack types and eleven
million traffic benign was recorded compared to the CIC-IDS2017 dataset.

The dataset from Figure 2.6 a significant variation in the number of instances across different
attack types. We find certain types of attacks with high number of instances, such as "DDOS
attack-HOIC," "DoS attacks-Hulk,” and "DDoS attacks-LOIC-HTTP." Conversely, attack
types like "Boot," "DoS attacks-SIowHTTPTest,” "Infiltration,” "FTP-BruteForce,” and
"SSH-Bruteforce"” exhibited a moderate number of instances. As for the rest, they are small or
almost non-existent. Where "SQL Injection™ took the smallest value of 87 instance, which is
negligible. This substantial variation underscores the diversity of this dataset.
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Figure 2.5: Number of instances for traffic types in the CIC-1DS2018 dataset.
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Figure 2.6: Number of instances for attack type in the CIC-1DS2018 dataset.
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Figure 2.7: The CIC-1DS2018 dataset's distribution of benign and attack instances.
2.8 Comparison of Datasets

When selecting a dataset for cybersecurity research and development, several crucial
factors must be considered. Foremost, the dataset should accurately reflect the current cyber
threat environment, encompassing a comprehensive range of attack scenarios and realistic
network traffic patterns. It is essential that the dataset maintain a balanced representation of
both normal and malicious network activities. Data quality and reliability are paramount
considerations, as are the dataset's accessibility and usability.

Based on the analysis in Table 2.6, which presents a comparison between the five datasets
mentioned earlier, and figure 2.8 showing the number of benign and attack instances in each
dataset. Both the NSL-KDD and KDD Cup 99 datasets, which were created over two decades
ago, have revealed significant limitations that render them unsuitable for modern IDS
research. Some key issues include imbalanced traffic type distributions, incomplete training
sets that fail to capture the full diversity of attacks, this means the model may not learn to
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recognize new or uncommon attack types not represented in the training data, a lack of

thorough validation procedures, questionable data generation methods, and unrealistically low

data rates, as real-world networks and systems typically generate and process large volumes
of data at very high speeds [36]. These shortcomings have highlighted the need for more
contemporary and representative datasets. The UNSW-NB15 dataset was developed to

address these limitations, but evaluations have revealed its own set of challenges. Specifically,

some features in the dataset introduce significant noise, yet their contribution to IDS

performance is very low, In addition to class imbalances [36]. To overcome these limitations,
researchers have turned to more recent datasets, such as CIC-1DS2017 and CIC-1DS2018,

which have gained widespread recognition and adoption within the cybersecurity research

community. These datasets are considered high-quality and reliable resources, accurately

representing real-world network traffic and covering a broad range of modern cyberattacks.

Furthermore, the features are exclusive and matchless in comparison with other datasets and

are freely available for everyone to use [35]. However, it is important to point out that both

datasets exhibit class imbalance, a common challenge in cybersecurity research.

Table 2.6: Comparison between IDS-related datasets.

Representativeness

of modern traffic

representative
than KDD Cup 99

modern traffic

representative of
modern traffic

Name KDD cup 99 NSL-KDD UNSW-NB15 | CIC-IDS2017 | CIC-1DS2018
year 1999 2009 2015 2017 2018
Separate train/test No Yes No No No
. Based on KDD . Realistic Realistic
Based On Simulated Cup 99 Realistic Network Network Network
Features 42 42 49 79 84
Balance of Classes Unbalanced More balanced Unbalanced Unbalanced Unbalanced
. 9 weeks of Same as KDD
Time Span network traffic Cup 99 1 month 5 days 10 days
. Train (125973)
NB of instances 4898431 Test (22544) 2540044 2830743 16227068
. High level of Redundancies More realistic Very high Very high
Data Quality redundancy removed and diverse quality quality
CIC and CICand
Source DARPA 1998 University of ACCS University of CIC and CSE
IDS . .
New Brunswick New Brunswick
NB Traffic 5 5 10 15 15
Not representative Slightly more Represents Highly Highly

representative of
modern traffic

Noise Level

High (contains
errors and
inconsistencies)

Lower noise than
KDD Cup 99

High

Very low

Very low

Common Uses

ML/DL-Based IDS research
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Figure 2.8: Number of benign and attack instances in each dataset.

2.9 Conclusion

In conclusion, selecting an appropriate dataset is a critical step for effective cybersecurity
research and for developing robust IDS. Throughout this chapter, we have analyzed and
compared several prominent datasets, including KDD Cup 99, NSL-KDD, UNSW-NB15,
CIC-1DS2017, and CIC-1DS2018. While earlier datasets like KDD Cup 99 and NSL-KDD
laid the foundation for network IDS research, they have become increasingly outdated and fail
to represent modern network traffic patterns and attack scenarios accurately. The UNSW-
NB15 dataset aimed to address these limitations but introduced its own set of challenges, such
as noisy features and class imbalances. In recent years, the CIC-1DS2017 and CIC-1DS2018
datasets have emerged as the most comprehensive and representative resources for
cybersecurity research. That is why we have chosen to focus our study in the next chapter on
these two datasets, due to their strengths, while not neglecting their weaknesses, which
require preprocessing to mitigate. Indeed, these datasets offer a strong foundation for
leveraging advanced ML/DL algorithms in intrusion detection and network security analysis.
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3.1 Introduction

This chapter covers the practical side of our research in the field of IDS using ML and DL
techniques. Here we will review the steps we followed in training and evaluating different
models, starting from data preprocessing to the result analysis.

We start by preprocessing the CIC-1DS2017 dataset, followed by a detailed explanation of six
models’ development and training processes. The top five results for each model are
highlighted based on validation metrics for both the training set and the CIC-1DS2018 dataset,
the latter being a new dataset used for evaluating the trained models. The same preprocessing
steps were applied to the CIC-1DS2018 dataset to ensure consistency in the processing across
all datasets, enabling a fair and reliable comparison of results.

The main objective is to clarify the practical aspects of applying Al techniques in the field of
cyber security and to provide insights into the effectiveness of these techniques in improving
IDS.

3.2 Software and tools

This research was conducted using the Python programming language, optimally for
ML/DL applications due to its extensive ecosystem of libraries such as TensorFlow, Keras,
and Scikit-learn, which offer comprehensive support [53,54]. The development and execution
of code were facilitated through diverse programming environments, including Jupyter
Notebook, Google Colab, and Visual Studio Code, ensuring flexibility, ease of use, and
seamless collaboration. Computational tasks were executed on two different machines: the
first, labeled DESKTOP-9BM9213, runs on Windows 10 Professional, with 8 GB of RAM
and an Intel(R) Core (TM) i5-4200M processor clocked at 2.50 GHz. The second machine,
DESKTOP-MAQMSA4, also operates on Windows 10 Professional, equipped with 8 GB of
RAM and an Intel(R) Core (TM) i5-6300U processor running at 2.40 GHz. These
configurations provided sufficient computational power to efficiently perform all necessary
calculations and model training.

3.3 Data Pre-processing

The data preprocessing phase represents the beginning of our research journey, and due to
its importance, we spent more than 60% of our time in this phase, which took around two
months, based on the principle of "Garbage in, Garbage out (GIGO)," a concept that focuses
on the importance of the quality of the inputs. More precisely, inputting inaccurate, incorrect,
or invalid data (GI) will certainly lead to results that are not reliable, incorrect, invalid, or
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useless (GO). The data preprocessing includes the following steps:

¢

Data Cleaning.

o
A5

¢

Handling Imbalanced Data.

o
A5

X/
*

% Data Transformation.
«» Feature Selection.
% Splitting the Dataset.

3.3.1 Data Cleaning

The data cleansing process is done by:

» Handle infinite values by deleting them or converting them to Nan (Not a Number)
values to handle them in the same way as Nan values later.

» Dealing with Nan values can be done in many ways, including removing them (by
removing columns or rows) or replacing Nan values with a constant value,
calculating the sum of all values and dividing it by the total number of values in
the column (Mean), sorting all values in ascending order in the column and
selecting the middle value (Median), or the most frequent value in the column
(Mode). Also, it's possible to use ML techniques to predict Nan values.

» Dealing with duplicate rows by removing them.

» In our feature analysis, we observed that certain features, such as Duration,
Protocol, Type, Service, Flag, and others, must have positive values given their
nature. To handle instances where negative values are present, we can consider the
following approaches: replacing negative values with zero or one, as they are the
closest positive values; using the Mode method to substitute each negative value
with the most frequently occurring positive value within the feature; or removing
the affected rows or columns altogether.

We tried to follow most of the previous research by deleting rows with Nan and infinite
values. The number of Nan and infinite rows was 5734, as we noticed that they are very few
and do not exceed 5% of the total data (2,830,743 samples). Therefore, deleting them does not
affect data’s interpretation, and it also gives credibility to the data, as some methods may
provide values that may be incorrect. After that, we deleted the duplicate rows, which were
307,078 samples.

During the feature analysis, we identified 13 features containing negative values, accounting
for a total of 2,130,167 entries. Given that these represent a significant portion of the dataset,
removing them was not a viable option. Initially, we considered eliminating two specific
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features: "Init_Win_bytes forward" (with 911,012 entries) and "Init_Win_bytes_backward"
(with 1,215,625 entries); this led to the removal of 99.8% of negative values. However,
recognizing their importance for model training [37], we opted for an alternative solution.
Instead of deletion, we decided to convert the negative values to their absolute values for all
affected features. This decision was based on our assumption that these entries hold
meaningful information. For instance, in cases like time differences (e.g., 2-5 = -3), the
absolute value accurately reflects the magnitude without altering the underlying significance.
This approach ensures that the model can leverage important quantitative information without
being adversely affected by the sign of the value.

By preserving these features in absolute form, we maintain the integrity of the dataset while
addressing the issue of negative values. The forthcoming performance results of our models
will serve to validate this hypothesis, demonstrating whether this method effectively retains
the relevant information for accurate predictions.

3.3.2  Handling Imbalanced Data

Secondly, we noticed that one of the categories significantly surpasses the other in terms
of number, and to address this imbalance there are many methods, of which we will mention
some of them:

4+ Oversampling:

A common method for balancing the dataset is the Oversampling technique, which aims to
increase the number of cases belonging to the underrepresented class (as shown in Figures
3.1), which is done in two main ways:

v Doubling existing samples.
v Creating new artificial data points.

This can be done using techniques like SMOTE (Synthetic Minority Oversampling
Technique), random sampling, Adaptive Synthetic Sampling (ADASYN), et cetera [38].
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Copies of the minority class

Original dataset Balanced dataset

Figure 3.1: Balancing data using Oversampling technique.

<+ Undersampling:

When dealing with a large dataset, researchers use undersampling. It is a technique based
on the strategy of reducing the number of most representative samples, ensuring that the
original data is accurately represented in the underrepresented group (as shown in Figure 3.2).
This can be done using several techniques. One approach is the RandomUnderSampler
technique, which reduces in a random way. Additionally, there are several more selective
methods, such as Tomek Links, Edited Nearest Neighbors (ENN), Cluster-based
Undersampling, et cetera [39].

- Attack
- Benign

Samples of majority class

Original dataset Balanced dataset

Figure 3.2: Balancing data using Undersampling technigue.

Following an extensive review of relevant literature and a thorough analysis of the dataset
[40], we decided to complete our study by balancing the data, where we first consolidated
similar attack types (such as "DoS Hulk," "DoS GoldenEye," "DoS Slowloris,” and "DoS
Slowhttptest™) under a single category (*DoS"). This step aimed to reduce the complexity of
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the classification task. Next, we applied a threshold-based selection criterion, retaining only
those classes with more than 10,000 instances (as seen in Figure 3.3).

The traffic type detection process was implemented in two scenarios: first, binary
classification, where data was categorized as either attack or benign, and second, multi-class
classification, where data was initially classified as benign or attack. The detected attacks
were then further classified into three different attack families ("DoS," "DDoS," and
"PortScan"). Data imbalance was addressed differently for each scenario, tailored to the
specific classification approach used.
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Figure 3.3: Renamed and selected classes.
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+ Data Balancing in Binary Classification:

First scenario, we calculated the sum of the attack instance. After that, we noticed that the
number of "Benign" instances is more than the number of the "Attack" instances, so we used
the RandomUnderSampler algorithm to reduce the number of benign instances from
2,095,075 to 401,840 until it equals the sum of the attack. Figure 3.4 helps to better
understand:
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Figure 3.4: Distribution of Binary classification dataset.

+ Data Balancing in Multi-Class Classification:

In the second scenario, we also used RandomUnderSampler algorithm to reduce the
number of benign instances to 200,000 while keeping the number of instances of attack types
the same, as represented in figure 3.5:
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Figure 3.5: Distribution of Multi-Class Classification dataset.

3.3.3 Data Transformation

Since the data contains a huge variety of formats, we moved to the 3rd step, where we encode
and normalize the data. At this step, we focus on:
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3331 Categorical Data Encoding

It is a technique used to convert categorical data into numbers. In this process, each unique
class is assigned a unique number. This transformation makes the textual data suitable for ML
and DL algorithms that require numeric inputs [41]. Table 3.1 gives an overview of
LabelEncoder and OneHotEncoder.

In the context of binary classification, we assigned a value of O for benign traffic and 1 for
attack traffic. For multi-class classification, we employed both OneHotEncoding and
LabelEncoding methods, applying them to different types of models.

OneHotEncoding was utilized for DL models because it effectively handles unordered
categories, particularly when dealing with a limited number of classes (in this case, 4). This
method creates a binary column for each category, which aligns well with the input
requirements of neural networks, allowing them to interpret each category as a distinct entity.

On the other hand, LabelEncoding was applied because it efficiently converted categorical
values into numerical form. This method is particularly advantageous for ML models, such as
tree-based algorithms, as it simplifies the data representation and facilitates easier processing

and interpretation by the models.

By employing both methods, we aimed to leverage their respective strengths and assess their
performance in our specific context, ensuring that we selected the most effective approach for
our multi-class classification tasks.

Table 3.1: Comparison between LabelEncoder and OneHotEncoder.

Feature/Technique | LabelEncoder OneHotEncoder

Description Assigns a unique integer to each Converts each unique category to binary columns. For
different category in a single each entry, it puts 1 in the column corresponding to its
column. category, while filling the remaining columns with 0.

Dim Input Type 1 dimensional array-like structure. | 1-dimensional array-like structure.

Dim Output Type | 1 dimensional integer array. 2-dimensional binary array.

Example BENIGN >> 0 BENIGN >> [0, 0, 1]

Encoding Type DoS >> 1 DoS >> [0, 1, 0]
DDoS >> 2 DDoS >> [1, 0, 0]

Use case Particularly useful for ordinal data | Useful for nominal data where the categories do not
where the order of categories have an intrinsic order (e.g., types of attacks).
matters (e.g., low, medium, high).

Advantages -Simple and efficient for ordinal | -1t prevents the model from making any category
data. ordering.
-Does not increase dimensionality.
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3.3.3.2 Data Normalization
The model training process faces difficulties when using features with varying measures.
This can lead to complex and very time-consuming training, with the potential for model
failure. To address this issue, researchers use standardization techniques that aim for a
uniform data format [40,42]. Here are some of the common data normalization methods:

+ Min-Max Normalization:

Linear normalization is one of the most flexible and simple normalization techniques. It
consists of creating a new reference rule for each data point, which ranges from 0 to 1 [43].

Here’s the formula for linear normalization:
X - Xmin

X red =
normalized
Xmax - Xmin

Where X4, and X, are the minimum and maximum values of the feature X.

4+ Z-Score Normalization (Standardization):

This method scales the data so that its mean (p) is 0 and its standard deviation (o) is 1, by
subtracting the mean from each data point and then dividing by the standard deviation. The

formula is:

X—pu

X = —
scaled o

We opted for the Min-Max Normalization method to standardize the data range, which
enhances model performance and ensures consistent scaling across all features.

3.3.4  Feature Selection

Our efforts continue to prepare the data to reach the pre-final step. Through our series of
experiments, we considered feature selection as one of the most important steps due to its role
in increasing accuracy, reducing overfitting, speeding up training, and avoiding noise. This
process aims to identify the most important features in the dataset by removing duplicate,
irrelevant, or redundant ones, etc. A variety of methods can be used to select appropriate
features, including classification models in both ML and DL [44].

By removing highly correlated and constant features, we reduced the number of features to
41. Although these features performed well in the training phase, we faced challenges in

generalizing the model to new data.

Therefore, we resorted to a different approach using the Random Forest technique, with
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random_state on 42 and n_estimators on 1,000 [45]. The model was trained on binary
classification, and then we set four different thresholds (0.02, the mean, 0.01, and 0.005)
where the number of features selected (16, 23, 28, and 40, respectively per threshold). Using
only 16 features shown in Figure 3.6, we achieved satisfactory results in model performance
with binary classification. We continued to work with the same methodology and the same
threshold, but this time on a trained model of multiple classification where the number of
features selected (20, 30, 33, and 46, respectively per threshold). In the multi-classification
process, we relied on the 30 features shown in Figure 3.7 because they also provided the best
results, while the feature 'Fwd Header Length.1' was deleted due to its absence in the CIC-
IDS2018 datasets. Table 3.2 helps for a better understanding:

Table 3.2: Selected features using random forest in both classifications.

thresholds 0.02 mean 0.01 0.005
Number of features selected in the binary classification 16 23 28 40
Number of features selected in the multi-class classification 20 30 33 46

Average Packet Size
Packet Length Std

Bwd Packet Length Std
Max Packet Length
Packet Length Variance
Bwd Packet Length Mean
Destination Port

Bwd Packet Length Max
Avg Bwd Segment Size
Packet Length Mean
Init_Win_bytes_backward
Fwd Packet Length Max
Avg Fwd Segment Size
Subflow Fwd Bytes

Fwd Packet Length Mean

Total Length of Fwd Packets

T T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Feature Importance

Figure 3.6: The 16 selected features using the random forest of binary classification.
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Bwd Packet Length Std
Fwd Packet Length Mean
Average Packet Size
Packet Length Std

Avg Bwd Segment Size
Bwd Packet Length Mean
Packet Length Mean
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Packet Length Variance
Max Packet Length
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Bwd Packet Length Max
Fwd Packet Length Std
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act_data_pkt fwd
Destination Port

Fwd Header Length.1
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Total Fwd Packets

Bwd Header Length
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Subflow Fwd Packets
Init_Win_bytes_forward
Fwd Header Length

PSH Flag Count
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Figure 3.7: The 30 selected features using the random forest of multi-class Classification.

3.3.5  Splitting the Dataset

We finish the preprocessing of data by splitting the available dataset into two different
sets, either training and validation and testing, or training and testing only, resulting in:

v’ Training set: Used to train the model.
v Validation set: Helps adjust the model.
v’ Test set: ensure that the model's performance is accurately evaluated on data on which it

has not been trained [46].

Table 3.3 presents some common methods to split the dataset:

Table 3.3: Some known methods of data splitting.

Name Method of splitting

Random splitting Splitting data randomly

Stratified Splitting Ensures equal distribution of classes with an unbalanced dataset.

Time Series Splitting | Dividing dataset while keeping the chronological order.

Shuffle Split Splitting the database several times randomly, enabling different groups to be formed each time.
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Most recent research relies on splitting the data into training, validation, and testing, such as
(80%, 10%, 10%) or (75%, 10%, 15%), etc. As for our methodology, we adopted the
stratification method suitable for the nature of our dataset, where we split the dataset to 70%

for training, 10% for validation, and 20% for testing, which was adopted in the article [47].

34 Classification Models

After successfully completing the data processing, we are now on the threshold of a new
stage. In this stage, we will analyze six different models: three in the ML field and three in the
DL field. To enhance the credibility and effectiveness of these models, we generalize them to
the CIC-1DS2018 dataset, taking into consideration binary and multi-class classification.

The term "prediction set” is used to refer to the dataset (CIC-1DS2018) used for evaluating
our trained models. While a test set is typically a portion of the original dataset (CIC-
IDS2017) held out during training, our prediction set is an entirely separate dataset.

To evaluate trained models, we applied various packet selection methodologies from the
prediction set. Upon analyzing the comparative Table 3.4 between the test and prediction sets,
we noticed that similar packets in the attack category belong to "DoS" types. Based on this
observation, we used in the multi-class classification on 196,568 instances of "DoS" attacks
and 200,000 instances of benign for the prediction set.

For binary classification, we expanded the test to cover both "DoS" and "DDoS" attacks,
aiming to distinguish between benign and attacks for the prediction set, even when the model
hasn't been extensively trained on specific attack types. To achieve this, we used a balanced
sample of 159,397 instances each for benign and attack cases for the prediction set. This
comprehensive approach to model testing aims to evaluate their performance under a variety
of conditions, providing deeper insight into each model's capabilities in handling unseen
traffic types and security threats.

Table 3.4: Traffic types used in both test set and prediction set.

Dataset CIC-1DS2017 CICIDS2018
'‘BENIGN' '‘BENIGN'
Traffic 'DoS Hulk', 'DoS GoldenEye', 'DoS attacks-Hulk', 'DoS attacks-GoldenEye', 'DoS
Types | 'DoS slowloris', 'DoS Slowhttptest’ attacks-Slowloris', 'DoS attacks-SIowHTTPTest'
'DDoS' 'DDOS attack-HOIC', 'DDOS attack-LOIC-UDP'
'PortScan’ /
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3.4.1 Validation Metrics of ML & DL

To understand model forces, identify weaknesses, optimize, and compare, we use
confusion matrices and performance evaluation measures. In this section, we will explain
these measures and how to use them in a simple way.

3.4.1.1 Confusion matrix

In the context of Al models evaluation, a confusion matrix in tabular form is used as a
metric to evaluate the classification accuracy. It allows monitoring the performance of the
model and provides a summary of the model's predictions compared to the actual results [33].
The confusion matrix in Table 3.5 consists of four elements for binary classification:

= TP (True Positives): Correctly predicted positive instances.

= TN (True Negatives): Correctly predicted negative instances.

= FP (False Positives): When the classifier identifies the true negative label as positive.

= FN (False Negatives): When the classifier identifies the true positive label as
negative.

There is a well-known understanding in IDS research that a correct classification of an attack
event is defined as TP, while a correct classification of a benign event is defined as TN. Errors
can occur in the classification process. When a benign event is classified as an attack, it is
called FP. Conversely, if an attack event is classified as benign, it is called FN [48].

Table 3.5: Confusion Matrix.

Predicted Class

+ -
+ TP FN
- FP TN

3.4.1.2 Performance Evaluation Metrics

This part focuses on explaining the model performance evaluation metrics listed below, which
are defined based on TP, TN, FP, and FN.
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a. Accuracy is a metric that expresses the sum of correct predictions (TP & TN) made by
the model over the total number of predictions. It is worth noting that this metric is
most effective when the data is balanced and biased in the case of unbalanced data.

TP+TN
TP+TN +FP+FN

Accuracy =

b. Precision is a metric that determines the division of the number of TP predictions by
the sum of the positive predicted values. Where the precision takes a low value if the
number of FP is large.

TP

p ., . -
recision TP + FP

c. Recall, Sensitivity, or TPR (True Positive Rate) is a metric that gauges the model's
ability to identify all TP cases. Divide the TP by the sum of both TP and FN
predictions to calculate recall. If the result is low, this indicates a large number of FN.

TP

Recall = TP+—FN

d. F1-Score or F-Measure is a metric that provides a good balance of precision and recall
by calculating the harmonic mean between them, which makes it valuable in many

classification tasks.

2 X Recall X Precision

F1=5core = Recall + Precision

3.4.2 ML Classification Models

ML models are extremely effective in IDS due to their ability to analyze large amounts of
network data in a short time and automatically detect potential security threats. These models
can detect known attacks much faster than traditional systems. making them a powerful tool
in enhancing cybersecurity.

3.4.2.1 Extreme Gradient Boosting Model

Extreme Gradient Boosting (XGBoost) is an algorithm that is highly flexible and efficient
at processing large datasets. It combines the power of Decision Trees (DT) with the
effectiveness of incremental boosting, making it highly scalable. The main advantage of
XGBoost is its unique ability to optimize the objective function. It does this through a
systematic process of loss minimization, with an exclusive focus on using decision trees as the
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basis for classification. This combination of techniques gives XGBoost superior performance

on a wide range of ML tasks.

The following Tables 3.6 and 3.7 show the main hyperparameters used in XGBoost models:

Table 3.6: Model settings used in XGBoost binary classification.

learning_rate | n_estimators | max depth | scale pos weight | reg alpha | reg lambda
Test 1 0.009 900 7 9 0.1 0.0
Test 2 0.009 900 6 9 0.0 0.0
Test 3 0.009 1000 5 7 0.0 0.0
Test 4 0.009 800 5 7 0.0 0.0
Test 5 0,008 800 5 7 0.0 0.0

Table 3.7: Model settings used in XGBoost multi-class classification.

learning_rate | n_estimators | max_depth | min_child weight | subsample | scale pos weight
Test 6 0.006 200 7 9 0.5 7
Test 7 0.008 260 7 22 0.5 7
Test 8 0.005 300 7 25 0.5 7
Test 9 0.006 250 7 9 0.2 7
Test 10 0.002 220 8 30 / 7

4+ XGBoost testing results:

Tables 3.8 and 3.9 illustrate the XGBoost algorithm'’s effectiveness in both classification tasks

for the test and prediction sets, complemented by confusion matrices displayed in Figures 3.8

to 3.11 for both classifications for test set.

Table 3.8: Results of XGBoost models in binary classification.

Dataset CIC-1DS2017 CIC-1DS2018
Metrics Accuracy | Loss | Precision | Recall Fl Accuracy | Precision | Recall F1
Score Score
BENIGN 0.9995 | 0.9882 | 0.9939 0.9778 | 0.9757 | 0.9768
Test_1 Attack 99.3890 | 0.0224 0.9884 | 0.9995 | 0.9939 97.6798 0.9758 |0.9779 | 0.9768
BENIGN 0.9995 | 0.9876 | 0.9935 0.9784 | 0.9757 | 0.9771
Test 2 Attack 99.3551 | 0.0236 0.9877 | 0.9995 | 0.9936 97.7114 0.9758 |0.9785| 0.9771
BENIGN 0.9995 | 0.9862 | 0.9928 0.9985 | 0.9756 | 0.9869
Test 3 Attack 99.2866 | 0.0245 0.9864 | 0.9995 | 0.9929 98.7063 0.9762 | 0.9985 | 0.9872
BENIGN 0.9995 |0.9848 | 0.9921 0.9986 | 0.9651 | 0.9815
Test_4 Attack 99.2151 | 0.02¢7 0.9850 | 0.9995 | 0.9922 98.1857 0.9662 | 0.9987 | 0.9822
BENIGN 0.9993 | 0.9847 | 0.9920 0.9941 | 0.9651 | 0.9794
Test5 Attack 99.2042 | 0.0296 0.9850 | 0.9993 | 0.9921 97.9679 0.9660 | 0.9943 | 0.9800
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Table 3.9: Results of XGBoost models in multi-class classification.

True

Dataset CIC-I1DS2017 CIC-1DS2018
} .. F1 .. F1
Metrics Accuracy | Loss | Precision | Recall Score Accuracy | Precision | Recall Score
BENIGN 0.9981 | 0.9973 | 0.9977 0.9976 | 0.9296 | 0.9624
DDoS 0.9998 | 0.9986 | 0.9992 / / /
Test_6 DoS 99.8375 | 0.3447 0.9979 | 0.9991 | 0.9985 95.7805 0.9328 | 0.9865 | 0.9589
PortScan 0.9980 | 0.9987 | 0.9984 / / /
BENIGN 0.9980 | 0.9973 | 0.9976 0.9967 | 0.9247 | 0.9594
DDoS 0.9996 | 0.9986 | 0.9991 / / /
Test_7 DoS 99.8343 | 0.1428 0.9980 | 0.9990 | 0.9985 954177 0.9285 | 0.9854 | 0.9561
PortScan 0.9980 | 0.9987 | 0.9983 / / /
BENIGN 0.9981 | 0.9972 | 0.9976 0.9980 | 0.9244 | 0.9598
DDoS 0.9992 | 0.9986 | 0.9989 / / /
Test_8 DoS 99.8212 ) 0.2544 0.9978 | 0.9991 | 0.9985 95.5251 0.9283 | 0.9866 | 0.9566
PortScan 0.9980 | 0.9979 | 0.9979 / / /
BENIGN 0.9981 | 0.9971 | 0.9976 0.9980 | 0.9246 | 0.9599
DDoS 0.9991 | 0.9986 | 0.9989 / / /
Test 9 DoS 99.8196 | 0.2544 0.9978 | 0.9992 | 0.9985 95.5347 0.9284 | 0.9866 | 0.9566
PortScan 0.9980 | 0.9979 | 0.9979 / / /
BENIGN 0.9973 | 0.9973 | 0.9973 0.9978 | 0.8711 | 0.9302
DDoS 0.9993 | 0.9981 | 0.9987 / / /
Test_10 DoS 99.8033 | 0.7909 0.9976 | 0.9987 | 0.9982 92.8484 0.8836 | 0.9868 | 0.9324
PortScan 0.9988 | 0.9980 | 0.9984 / / /
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Figure 3.8: Confusion matrix for XGBoost Test_1.
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Figure 3.10: Confusion matrix for XGBoost Test_6. Figure 3.11: Confusion matrix for XGBoost Test_10.

3.4.2.2 Decision Tree Model

DT is a ML model that uses specific rules to make decisions. This makes it suitable for
tackling a wide range of real-world problems. This technique excels in classification and
regression tasks, and is considered one of the most reliable tools in the field of Al, as it is
characterized by its ability to provide easily interpretable results, while requiring relatively
limited resources for training and implementation.

Primary hyperparameters for DT models are displayed in the Tables 3.10 and 3.11:
Table 3.10: Model settings used in DT binary classification.

criterion | splitter max_depth min_samples split min_samples_leaf
Test 1 48 28 3
Test 2 60 25 5
Test 3 | entropy | random 120 90 7
Test 4 50 45 4
Test 5 120 120 9

Table 3.11: Model settings used in DT multi-class classification.

criterion | splitter max_depth min_samples_split min_samples_leaf
Test 6 75 20 7
Test 7 55 49 5
Test 8 | entropy best 50 45 4
Test 9 56 47 4
Test 10 40 35 7
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4+ DT testing results:
Tables 3.12 and 3.13 showcase the results achieved by the DT algorithm in tackling both

classification tasks for test and prediction sets, while Figures 3.12 to 3.15 provide additional

details, which contain confusion matrices for test set.

Table 3.12: Results of DT models in binary classification.

Dataset CIC-1DS2017 CIC-1DS2018

; .. F1 .. F1

Metrics Accuracy | Loss | Precision | Recall Score Accuracy | Precision | Recall Score
BENIGN 0.9981 | 0.9913 | 0.9947 0.9806 | 0.9482 | 0.9641
Test_1 Attack 99.4709 | 0.0264 0.9913 |[0.9982 | 0.9947 96.4693 0.9498 | 0.9812 | 0.9653
BENIGN 0.9979 | 0.9913 | 0.9946 0.9806 | 0.9656 | 0.9731
Test_2 Attack 99.4624 ) 0.0282 0.9914 | 0.9979 | 0.9946 97.3276 0.9662 | 0.9809 | 0.9735
BENIGN 0.9979 | 0.9910 | 0.9944 0.9940 | 0.9664 | 0.9800
Test_3 Attack 99.4442 1 0.0253 0.9910 | 0.9979 | 0.9945 98.0316 0.9673 | 0.9942 | 0.9806
BENIGN 0.9979 | 0.9908 | 0.9943 0.9936 | 0.9460 | 0.9693
Test_4 Attack 99.4357 | 0.0279 0.9909 | 0.9979 | 0.9944 96.9988 0.9485 | 0.9939 | 0.9707
BENIGN 0.9980 | 0.9905 | 0.9942 0.9841 | 0.9362 | 0.9595
Test_5 Attack 99.4254 | 0.0248 0.9905 | 0.9980 | 0.9943 96.0508 0.9391 |0.9848 | 0.9614

Table 3.13: Results of DT models in multi-class classification.
Dataset CIC-1DS2017 CIC-1DS2018

Metrics Accuracy | Loss | Precision | Recall Fl Accuracy | Precision | Recall F1
Score Score
BENIGN 0.9996 | 0.9990 | 0.9993 0.9850 | 0.9344 | 0.9590

DDoS 0.9997 | 0.9998 | 0.9998 / / /
Test 6 DoS 99.9445 1 0.0113 0.9994 | 0.9996 | 0.9995 95.9480 0.9383 | 0.9850 | 0.9611
PortScan 0.9988 | 0.9997 | 0.9993 / / /
BENIGN 0.9994 | 0.9990 | 0.9992 0.9855 | 0.9676 | 0.9765

DDoS 0.9999 | 0.9998 | 0.9999 / / /
Test_7 DoS 99.9420 1 0.0101 0.9994 | 0.9995 | 0.9995 97.6213 0.9698 | 0.9850 | 0.9774
PortScan 0.9987 | 0.9996 | 0.9991 / / /
BENIGN 0.9994 | 0.9990 | 0.9992 0.9855 | 0.9675|0.9764

DDoS 0.9999 | 0.9998 | 0.9999 / / /
Test 8 DoS 99.9412 1 0.0103 0.9994 | 0.9995 | 0.9994 97.6186 0.9697 | 0.9850 | 0.9773
PortScan 0.9987 | 0.9996 | 0.9992 / / /
BENIGN 0.9994 | 0.9990 | 0.9992 0.9855 | 0.9675 | 0.9764

DDoS 0.9999 | 0.9998 | 0.9999 / / /
Test 9 DoS 99.9404 1 0.0101 0.9994 | 0.9995 | 0.9994 97.6186 0.9697 | 0.9850 | 0.9773
PortScan 0.9987 | 0.9996 | 0.9991 / / /
BENIGN 0.9994 | 0.9990 | 0.9992 0.9850 |0.9341 | 0.9589

DDoS 0.9997 | 0.9998 | 0.9998 / / /
Test_10 DoS 99.9380 | 0.0105 0.9994 | 0.9994 | 0.9994 95.9318 0.9383 | 0.9850 | 0.9611
PortScan 0.9987 | 0.9996 | 0.9992 / / /
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Figure 3.14: Confusion matrix for DT Test_6.
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Figure 3.13: Confusion matrix for DT Test_5.
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Figure 3.15: Confusion matrix for DT Test_10.

Categorical Boosting (CatBoost) is an advanced gradient boosting algorithm developed by
Yandex, specifically designed to efficiently process categorical features. This makes it an
ideal tool for a variety of ML tasks, outperforming traditional methods. CatBoost shares with
XGBoost and LightGBM the use of ensemble learning, where it combines predictions from

several simple models to form a powerful predictive model.

The Tables 3.14 and 3.15 below provide detailed information on the key hyperparameters
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employed in the development of CatBoost models:

Table 3.14: Model settings used in CatBoost binary classification.

iterations | learning rate | depth | 12 leaf reg | border count | bagging temperature
Test 1 265 0.05 6 5 / /
Test 2 265 0.03 7 14 128 /
Test 3 175 0.09 7 28 150
Test 4 350 0.01 9 28 64 0,2
Test 5 250 0.01 9 34 64 /

Table 3.15: Model settings used in CatBoost multi-class classification.

iterations | learning_rate | depth | 12 leaf reg | early stopping_rounds | border count
Test 6 222 0.05 7 14 50 128
Test 7 175 0.09 7 28 50 150
Test 8 235 0.03 7 14 50 128
Test 9 265 0.03 6 3 50 128
Test_10 250 0.02 7 14 50 64

4+ CatBoost testing results:

The performance of the CatBoost algorithm on the two classification tasks can be seen in

Tables 3.16 and 3.17 for the test and prediction sets, while Figures 3.16 to 3.19 present

confusion matrices for Test_1, Test_5, Test 6, and Test_10 for test set.

Table 3.16: Results of CatBoost models in binary classification.

Dataset CIC-1DS2017 CIC-1DS2018
Metrics Accuracy | Loss | Precision | Recall Fl Accuracy | Precision | Recall F1
Score Score
BENIGN 0.9987 | 0.9915 | 0.9951 0.9925 | 0.9758 | 0.9840
Test_1 Attack 99.5084 | 0.0151 0.9916 | 0.9987 | 0.9951 98.4184 0.9762 | 0.9926 | 0.9843
BENIGN 0.9985 | 0.9914 | 0.9950 0.9807 | 0.9766 | 0.9786
Test 2 Attack 99.4987 | 0.0159 0.9915 | 0.9985 | 0.9950 97.8660 0.9767 | 0.9808 | 0.9787
BENIGN 0.9981 | 0.9912 | 0.9946 0.9941 | 0.9707 | 0.9823
Test 3 Attack 99.4656 | 0.0178 0.9912 | 0.9981 | 0.9947 98.2473 0.9714 | 0.9942 | 0.9827
BENIGN 0.9979 | 0.9910 | 0.9944 0.9935 | 0.9749 | 0.9842
Test_4 Attack 99.4448 | 0.0184 0.9911 | 0.9979 | 0.9945 98.4301 0.9754 | 0.9937 | 0.9844
BENIGN 0.9978 | 0.9902 | 0.9940 0.9935 | 0.9722 | 0.9828
Test_5 Attack 99.4018 | 0.0209 0.9903 | 0.9978 | 0.9940 98.2943 0.9728 | 0.9937 | 0.9831
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Table 3.17: Results of CatBoost models in multi-class classification.

Dataset CIC-I1DS2017 CIC-1DS2018
} .. F1 .. F1
Metrics Accuracy | Loss | Precision | Recall Score Accuracy | Precision | Recall Score
BENIGN 0.9992 | 0.9980 | 0.9986 0.8802 | 0.9699 | 0.9229
DDoS 0.9997 | 0.9993 | 0.9995 / / /
Test_6 DoS 99.8922 | 0.0066 0.9982 | 0.9996 | 0.9989 91.8241 0.9658 | 0.8657 | 0.9130
PortScan 0.9987 | 0.9988 | 0.9988 / / /
BENIGN 0.9992 | 0.9977 | 0.9985 0.9707 | 0.9645 | 0.9676
DDoS 0.9998 | 0.9993 | 0.9996 / / /
Test_7 DoS 99.8849 | 0.0060 0.9979 | 0.9997 | 0.9988 96.7400 0.9641 | 0.9704 | 0.9672
PortScan 0.9987 | 0.9989 | 0.9988 / / /
BENIGN 0.9988 | 0.9972 | 0.9980 0.9994 | 0.9309 | 0.9639
DDoS 0.9991 | 0.9990 | 0.9991 / / /
Test_8 DoS 99.8359 | 0.0111 0.9975 | 0.9995 | 0.9985 96.4833 0.9344 | 0.9994 | 0.9658
PortScan 0.9981 | 0.9976 | 0.9978 / / /
BENIGN 0.9982 | 0.9966 | 0.9974 0.9992 | 0.9312 | 0.9640
DDoS 0.9995 | 0.9988 | 0.9992 / / /
Test 9 DoS 99.8122 | 0.0109 0.9972 | 0.9991 | 0.9981 96.4913 0.9347 | 0.9992 | 0.9659
PortScan 0.9979 | 0.9985 | 0.9982 / / /
BENIGN 0.9981 | 0.9959 | 0.9970 0.9995 | 0.9264 | 0.9616
DDoS 0.9989 | 0.9986 | 0.9988 / / /
Test_10 DoS 99.7681 | 0.0201 0.9963 | 0.9989 | 0.9976 96.2644 0.9305 | 0.9996 | 0.9638
PortScan 0.9980 | 0.9975 | 0.9978 / / /
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+ Binary classification

This This comparative analysis explores a comprehensive evaluation study of the
effectiveness of CatBoost, XGBoost, and DT models for binary classification on the test and
prediction sets. Table 3.16 shows that CatBoost achieved high accuracy in the test and
prediction sets, indicating its ability to reduce false positives and correctly identify the attack
vector, as depicted by the confusion matrixes presented in Figures 3.16 and 3.17. As for
XGBoost, it also gave us a good result, especially in terms of accuracy shown in Table 3.8,
where there was more variability than CatBoost, especially on the prediction set. As for
XGBoost's confusion matrix, it revealed few false negatives compared to CatBoost, especially
in determining the attack vector represented in Figures 3.8 and 3.16. We achieved strong
performance in the DT on the test set illustrated in Table 3.12, as it showed competitive
performance on the test set and somewhat divergent results with the prediction set. This was
confirmed by its confusion matrices, shown in Figures 3.12 and 3.13. These matrices showed
a higher number of false negatives, especially in detecting attacks, indicating that the model is
less reliable in more complex scenarios.

Overall, while all models perform well in binary classification, CatBoost consistently
achieves the best balance between precision and recall, followed by XGBoost and DT.

[52]

Figure 3.19: Confusion matrix for CatBoost Test_10.
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£ Multi-Class Classification:

For multi-class classification, comparing the three models (CatBoost, XGBoost, and DT)
revealed consistently high performance, with all models achieving excellent accuracy (more
than 99%) on the test set. Classification performance was strong across traffic types on the
test and prediction sets with some minor differences, with the DT model on the test set
achieving the highest accuracy at 99.94%, slightly outperforming the CatBoost model
accuracy at 99.89%, and the XGBoost model accuracy at 99.83% (as shown in Tables 3.9,
3.13, and 3.17). On the prediction set, CatBoost and DT outperformed XGBoost, in which
CatBoost and DT achieved 96% and 97% accuracy, respectively. In return, XGBoost
achieved an accuracy of 95%. Based on the confusion matrices in Figures 3.10 and 3.11 for
XGBoost, Figures 3.14 and 3.15 for DT, and Figures 3.18 and 3.19 for CatBoost, we can see
high positive rates with all models showing excellent accuracy, with the vast majority of
predictions falling on the diagonal (correct classifications). The "BENIGN" class predictions
were consistently accurate across all models. Additionally, the models achieved high accuracy
in detecting attacks ("DDoS," "DoS," and "PortScan™), with minimal false predictions
observed.

3.4.3 DL Classification Models

IDS uses DL models because of their exceptional ability to process vast amounts of data
and automatically extract important features. These models excel at identifying complex
patterns and adapting to changing threats, resulting in fewer false alarms and enhanced real-
time detection capabilities. However, the long training time is a major challenge in using
these models. To address this problem, optimization algorithms are used to improve the
performance and accelerate the process, such as Momentum, RMSprop (Root Mean Square
Propagation), and the Adam (Adaptive Moment Estimation) optimizer which combines
Momentum and RMSprop algorithms, it become the preferred choice due to its high
efficiency in most applications. As a result, we chose Adam in all our DL experiments. The
key hyperparameters that distinguish Adam are the learning rate o (alpha) as well as the
exponential decay rates i and B2 (betal and beta2). These parameters help to dynamically
adapt the learning rate for each parameter in the model. o is usually set to a small value (such
as 0.001), while B: and P2 are set to values close to 1 (such as 0.9 and 0.999, respectively) for
optimal performance. Despite our attempts to change these hyperparameters, we noticed a
decline in performance. Therefore, we focused on making changes in the model structure, the
number of epochs, and the batch size for each test, keeping Adam's hyperparameters the

Same.
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When training DL models to handle different types of classification tasks, we used the
sigmoid activation function for binary classification, as it outputs a probability score between
0 and 1 (like 0.25 and 0.75). Meanwhile, for multi-class classification, we employed the
softmax activation function, which outputs a probability distribution across multiple classes
(like 0.25, 0.25, 0.3, and 0.2), allowing the model to assign probabilities to each class.

3.4.3.1 Convolutional Neural Network

Convolutional Neural Networks (CNN) are DL models designed to emulate the human
visual processing system. The architecture of a CNN consists of alternating layers of
convolution and pooling. Where the convolutional layers are responsible for feature
extraction, while pooling layers enhance the generalizability of these features. As for the
flattening layer and the fully connected layers, the first transforms the data into a one-
dimensional (1D) matrix, and the second connects all neurons for final learning and
classification, as shown in Figure 3.20, CNNs operate on two-dimensional (2D) data,
necessitating the transformation of input data into matrices [49].

Input layer Output layer

e

| Convolutional layer I Pooling layer lConvolutionallayerl Pooling layer | Fully connected layer |

Figure 3.20: The structure of a CNN [49].

In this study, we implemented top five distinct CNN models to address the specified
classification task: cnn_1, cnn_2, cnn_3, cnn_4, and LeNet5. The detailed structures of each
model are presented in Tables 3.18 to 3.22, which show the type of each layer and the shape
of its output. The first four models exhibit structural diversity, while the fifth model
represents an implementation of the classic LeNet [50] architecture. This variety of structures
allows for a comprehensive comparison and highlights the impact of different structural
components on the accuracy of the classification and the efficiency of the model.

We used the same basic structures for both multi-class and binary classification, with only one
modification in the last layer. In the case of binary classification, the last layer was changed to
contain (None, 1).
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Tables 3.23 and 3.24 show the details of the different tests, with each table displaying the
structure used in each test, along with the specific values for the number of epochs and batch
size used in the training process.

Table 3.18: Structure cnn_1. Table 3.19: Structure cnn_2. Table 3.20: Structure cnn_3
Layer Output Shape Layer Output Shape Layer Output Shape
Dense (None, 81) Dense (None, 81) Dense (None, 81)

Reshape (None, 9,9, 1) Reshape (None, 9,9, 1) Reshape (None, 9, 9, 1)

Conv2D (None, 9, 9, 64) Conv2D (Nong, 9, 9, 128) Conv2D (None, 9, 9, 128)
MaxPooling2D (None, 4, 4, 64) BatchNormalization | (None, 9, 9, 128) BatchNormalization | (None, 9, 9, 128)
Conv2D (None, 4, 4, 128) MaxPooling2D (None, 4, 4,128) MaxPooling2D (None, 4, 4, 128)
MaxPooling2D | (None, 2, 2, 128) Conv2D (None, 4, 4,128) Conv2D (None, 2, 2, 128)
Conv2D (None, 2, 2, 256) BatchNormalization | (None, 4, 4, 128) BatchNormalization | (None, 2, 2, 128)
MaxPooling2D | (None, 1, 1, 256) MaxPooling2D (None, 2, 2,128) MaxPooling2D (None, 1, 1, 128)

Flatten (None, 256) Conv2D (None, 2,2, 32) G|0ba|Average

Dropout (0.5) (None, 256) MaxPooling2D (None, 1,1, 32) Pooling2D (None, 128)
Dense (None, 256) Flatten (None, 32) Dropout (0.2) (None, 128)
Dense (None, 4) Dropout (0.2) (None, 32) Dense (None, 64)
Dense (None, 128) Dense (None, 4)
Dense (None, 4)
Table 3.21: Structure cnn_4. Table 3.22: Structure LeNet5.
Layer Output Shape Layer Output Shape
Dense (None, 81) Dense (None, 1024)
Reshape (None, 9,9, 1) Reshape (None, 32, 32, 1)
Conv2D (None, 7, 7, 128) Conv2D (None, 32, 32, 6)
BatchNormalization | (None, 7, 7, 128) AveragePooling2D | (None, 16, 16, 6)
MaxPooling2D (None, 3, 3, 128) Conv2D (None, 12, 12, 16)
Flatten (None, 1152) AveragePooling2D | (None, 6, 6, 16)
Dense (None, 32) Flatten (None, 576)
Dense (None, 32) Dense (None, 120)
Dense (None, 4) Dense (None, 84)
Dense (None, 4)

Table 3.23: Model settings used in CNN binary classification.

Test 1 Test 2 Test_3 Test 4 Test 5

Models cnn_1 cnn_2 cnn_3 cnn_4 LeNet5
epochs 60 60 60 60 30
batch_size 64 64 64 128 128

Table 3.24: Model settings used in CNN multi-class classification.

Test_6 Test 7 Test_8 Test 9 Test_10

Models cnn_1 cnn_2 cnn_3 cnn_4 LeNet5
epochs 60 30 30 30 30
batch_size 64 512 64 32 32
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4+ CNN testing results:

The CNN model demonstrates through Tables 3.25 and 3.26 robust performance on the test
set while facing some generalization challenges on the prediction set. These challenges are
particularly evident in Test_5 and Test_9. Nevertheless, other results range from acceptable to
good, indicating satisfactory overall model performance. Confusion matrices for the test set
shown in Figures 3.21 to 3.24 reveal relatively few misclassifications between the "BENIGN"
and "Attack" categories in binary classification. For multi-class classification, tests showcase
excellent performance in categorizing the four classes, with minimal misclassifications
between "BENIGN" and "PortScan.” Accuracy and loss curves indicate rapid learning and
good results on training data (as shown in Figures 3.25 to 3.28). However, fluctuations in
validation curves indicate variations in model performance and require further investigation.

Table 3.25: Results of CNN models in binary classification.

Dataset CIC-1DS2017 CIC-1DS2018
Metrics Accuracy | Loss | Precision | Recall Fl Accuracy | Precision | Recall F1
Score Score
BENIGN 0.9939 | 0.9827 | 0.9883 0.9793 | 0.8089 | 0.8860
Test_1 Attack 98.8350 | 0.0284 0.9829 | 0.9940 | 0.9884 89.5905 0.8372 | 0.9829 | 0.9042
BENIGN 0.9959 | 0.9850 | 0.9904 0.9626 | 0.8591 | 0.9079
Test_2 Attack 99.0472 1 0.0256 0.9852 | 0.9959 | 0.9905 91.2863 0.8728 | 0.9666 | 0.9173
BENIGN 0.9955 | 0.9879 | 0.9917 0.9797 | 0.8826 | 0.9286
Test 3 Attack 99.1726 | 0.0255 0.9880 | 0.9956 | 0.9918 93.2140 0.8932 | 0.9817 | 0.9353
BENIGN 0.9944 | 0.9846 | 0.9895 0.9762 | 0.8049 | 0.8823
Test 4 Attack 98.9520 | 0.0275 0.9847 | 0.9945 | 0.9896 89.2652 0.8340 | 0.9804 | 0.9013
BENIGN 0.9970 | 0.9884 | 0.9927 0.6313 | 0.9748 | 0.7663
Test 5 Attack 99.2733 1 0.0219 0.9885 | 0.9970 | 0.9928 70.2782 0.9447 | 0.4308 | 0.5917
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Table 3.26: Results of CNN models in multi-class classification.

Dataset CIC-1DS2017 CIC-1DS2018
] . F1 .. F1
Metrics Accuracy | Loss | Precision | Recall Score Accuracy | Precision | Recall Score
BENIGN 0.9992 | 0.9764 | 0.9877 0.7820 | 0.9558 | 0.8602
DDoS 0.9993 | 0.9995 | 0.9994 / / /
Test 6 =5 g 991771 | 0.0315 55526 10.0991 [ 0.9964 | 2+2°*! 06479 [0.7273 | 0.8231
PortScan 0.9623 | 0.9989 | 0.9803 / / /
BENIGN 0.9995 | 0.9701 | 0.9846 0.9949 | 0.8904 | 0.9397
DDoS 0.9979 | 0.9989 | 0.9984 / / /
Test_7 DoS 98.9746 | 0.0357 0.9884 | 0.9994 | 0.9939 94.2151 0.9077 | 0.9949 | 0.9493
PortScan 0.9622 | 0.9989 | 0.9802 / / /
BENIGN 0.9990 | 0.9697 | 0.9841 0.9060 | 0.9089 | 0.9074
DDoS 0.9968 | 0.9990 | 0.9979 / / /
Test_8 DoS 98.9493 | 0.0380 0.9884 | 0.9994 | 0.9939 90.6227 0.9127 | 0.9035 | 0.9081
PortScan 0.9622 | 0.9987 | 0.9801 / / /
BENIGN 0.9993 | 0.9759 | 0.9875 0.9743 | 0.9309 | 0.9521
DDoS 0.9993 | 0.9993 | 0.9993 / / /
Test 9 DoS 99.1624  0.0333 0.9930 | 0.9993 | 0.9961 79.5608 0.9130 | 0.6579 | 0.7648
PortScan 0.9624 | 0.9989 | 0.9803 / / /
BENIGN 0.9990 | 0.9768 | 0.9877 0.9491 | 0.9212 | 0.9349
DDoS 0.9971 | 0.9993 | 0.9982 / / /
Test_10 DoS 99.1795 | 0.0304 0.9948 | 0.9990 | 0.9969 93.4167 0.9373 | 0.9473 | 0.9423
PortScan 0.9635 | 0.9989 | 0.9809 / / /

True

Confusion Matrix Confusion Matrix

BENIGN BENIGN

True

Attack Attack

KN * RS *
& ‘\\0 ?,é_'a“ é” ‘_\\(, ?‘épo

Predicted

Figure 3.21: Confusion matrix for CNN Test_3.
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Figure 3.22: Confusion matrix for CNN Test_5.
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Figure 3.23: Confusion matrix for CNN Test_7. Figure 3.24: Confusion matrix for CNN Test_10.
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Figure 3.26: CNN Test_5 performance.
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Figure 3.27: CNN Test_7 performance.
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Figure 3.28: CNN Test_10 performance.

3.4.3.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) is an advanced type of Recurrent Neural Network
(RNN) that excels at classification, analysis, and prediction of time-series data, particularly
those with long-term dependencies. The core of LSTM is its unique cell structure, which
utilizes three specialized gates to selectively process information (as shown in Figure 3.30).
The forget gate removes unnecessary data from the network's memory, the input gate receives
new data, and the output gate determines the current memory by combining short-term
memory and long-term memory [34].
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Figure 3.29: The structure of a LSTM [51].

For the LSTM tests, we employed top nine distinct structures in both classification tasks, as
detailed in Tables 3.27 to 3.35. These structures incorporated different configurations LSTM
layers, with some models utilizing Bidirectional layers and Dropout mechanisms to fine-tune
generalization. Each experiment was associated with a specific structure, with the number of
epochs and batch size for each test detailed in the Tables 3.36 and 3.37.

Table 3.27: Structure Lstm_1.

Layer | Output Shape
LSTM | (None, 1, 50)
LSTM (None, 50)
Dense (None, 1)

Table 3.31: Structure Lstm_5.

Table 3.28: Structure

Table 3.29: Structure Lstm_3.

Table 3.30: Structure Lstm_4.

Lstm_2.

Layer Output Shape Layer Output Shape
Layer | Output Shape Bidirectional | (None, 1, 100) Bidirectional | (None, 1, 200)
LSTM | (None, 1, 100) Bidirectional | (None, 100) Bidirectional | (None, 1, 150)
LSTM | (None, 1, 50) Dense (None, 1) Bidirectional | (None, 1, 100)
LSTM (None, 50) Bidirectional | (None, 1, 50)
Dense (None, 1) Bidirectional | (None, 100)

Dense (None, 1)

Table 3.32: Structure Lstm_6.

Table 3.33: Structure Lstm_7.

Layer | Output Shape Layer Output Shape Layer Output Shape

LSTM (None, 50) LSTM (None, 1, 100) LSTM (None, 1, 150)

Dense (None, 4) LSTM (None, 100) LSTM (None, 150)
Dense (None, 4) Dense (None, 4)

Table 3.35: Structure Lstm_9.

Layer Output Shape
Bidirectional (None, 1, 100)
Bidirectional (None, 100)

Dense (None, 4)

[60]

Table 3.34: Structure Lstm_8.

Layer Output Shape
Bidirectional (None, 1, 200)
Dropout (0.5) (None, 1, 200)
Bidirectional (None, 200)
Dropout (0.5) (None, 200)

Dense (None, 4)
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Table 3.36: Model settings used in LSTM binary classification.

Test 1 Test 2 Test 3 Test 4 Test 5

Models Lstm 1 Lstm 1 Lstm 2 Lstm 3 Lstm 4
epochs 30 60 50 50 50
batch_size 32 64 32 32 32

Table 3.37: Model settings used in LSTM multi-class classification.

Test 6 Test 7 Test 8 Test 9 Test 10

Models Lstm 5 Lstm 6 Lstm 7 Lstm 8 Lstm 9
epochs 100 30 50 50 60
batch_size 32 32 128 32 128

4+ LSTM testing results:

Tables 3.38 and 3.39 analyses show exceptional classification performance for the LSTM

model, achieving high accuracy in both binary and multi-class tasks across test and prediction

sets. Confusion matrices for the test set confirm the model's effectiveness, showcasing its

ability to accurately distinguish between different classes with minimal misclassifications (as

shown in Figures 3.30 to 3.33). Training curves provide additional insights into the model's

learning process, indicating rapid and stable learning progression. The strong alignment

between training and validation performance further reflects the model's robust generalization

capabilities (as shown in Figures 3.34 to 3.37).

Table 3.38: Results of LSTM models in binary classification.

Dataset CIC-1DS2017 CIC-1DS2018
Metrics Accuracy | Loss | Precision | Recall Fl Accuracy | Precision | Recall F1
Score Score
BENIGN 0.9945 | 0.9862 | 0.9903 0.9782 | 0.8655 | 0.9184
Test 1 Attack 99.0363 | 0.0267 0.9863 | 0.9945 | 0.9904 92.3091 0.8794 | 0.9807 | 0.9273
BENIGN 0.9944 | 0.9878 | 0.9911 0.9786 | 0.8775 | 0.9253
Test 2 Attack 99.1120 1 0.0245 0.9879 |0.9944 | 0.9911 92,9183 0.8890 | 0.9808 | 0.9327
BENIGN 0.9974 | 0.9900 | 0.9937 0.9606 | 0.9394 | 0.9499
Test 3 Attack 99.3690 | 0.0192 0.9900 | 0.9974 | 0.9937 95.0439 0.9407 | 0.9615 | 0.9510
BENIGN 0.9962 | 0.9895 | 0.9928 0.9796 | 0.9049 | 0.9408
Test_4 Attack 99.2854 1 0.0206 0.9896 | 0.9962 | 0.9929 94.3020 0.9116 |0.9812 | 0.9451
BENIGN 0.9985 | 0.9912 | 0.9948 0.9290 |0.9767 | 0.9523
Test.s Attack 99.4866 | 0.0155 0.9913 | 0.9985 | 0.9949 95.1023 0.9755 | 0.9253 | 0.9497

[61]




True

CHAPTER 3: Evaluating the Performance of ML and DL Models for IDS

Table 3.39: Results of LSTM models in multi-class classification.

Dataset CIC-1DS2017 CIC-1DS2018
. . F1 » F1
Metrics Accuracy | Loss | Precision | Recall Score Accuracy | Precision | Recall Score
BENIGN 0.9988 | 0.9695 | 0.9840 0.9686 | 0.9127 | 0.9398
DDoS 0.9927 | 0.9989 | 0.9958 / / /
Test 6 5o | 98:9403 1 0.0372 = rae09 T0.9988 | 0.9938 | 2*%%%% [0.9420 |0.9684 | 0.9550
PortScan 0.9673 | 0.9988 | 0.9828 / / /
BENIGN 0.9987 | 0.9810 | 0.9897 0.9223 | 0.9418 | 0.9320
DDoS 0.9995 | 0.9990 | 0.9992 / / /
Test7 mpog | 998159 1 0.0299 = ra0ceT0.9990 [ 0.9972 | 22849% 09457 [0.9148 [ 0.9300
PortScan 0.9688 | 0.9989 | 0.9836 / / /
BENIGN 0.9989 | 0.9802 | 0.9895 0.9764 | 0.8898 | 0.9311
DDoS 0.9996 | 0.9988 | 0.9992 / / /
Test 8 g | 992922 | 0.0269 =3 5039T0 9901 [ 0.0965 | 2>2°%° 09014 [0.9780 | 0.9381
PortScan 0.9690 | 0.9990 | 0.9838 / / /
BENIGN 0.9988 | 0.9722 | 0.9853 0.9999 | 0.8904 | 0.9420
DDoS 0.9970 | 0.9988 | 0.9979 / / /
Testd mpog | 990212 1 0.0362 —a00eT0.9901 | 0.9948 | 2**°%% [0.9116 |0.9995 | 0.9535
PortScan 0.9624 | 0.9985 | 0.9801 / / /
BENIGN 0.9973 | 0.9764 | 0.9867 0.9970 | 0.9033 | 0.9479
DDoS 0.9988 | 0.9978 | 0.9983 / / /
Test 10 =5 7g 1 991142 10.0340 5000810 9083 [0.0945 | °+°'% ["0.9140 |0.9969 | 0.9536
PortScan 0.9690 | 0.9989 | 0.9837 / / /
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Figure 3.30: Confusion matrix for LSTM Test_3. Figure 3.31: Confusion matrix for LSTM Test_5.
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Figure 3.32: Confusion matrix for LSTM Test_7. Figure 3.33: Confusion matrix for LSTM Test_10.
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Figure 3.34: LSTM Test_3 performance.
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Figure 3.35: LSTM Test_5 performance.
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Figure 3.36: LSTM Test_7 performance.
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Figure 3.37: LSTM Test_10 performance.

3.4.3.3 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is an alternative to the LSTM architecture, proposed in

2014 as a way to simplify the complex LSTM structure while maintaining its ability to model

sequential data effectively. The key simplification in GRUs is the merging of the forget gate

and input gate into a single update gate. GRUs have two main gates: the reset gate, which

determines how much of the previous hidden state should be forgotten or 'reset,’ and the

update gate, which controls how much of the new input should be used to update the hidden

state (as shown in Figure 3.39). This streamlined gating mechanism allows GRUs to capture

long-term dependencies in data while requiring fewer parameters than traditional LSTMs

[52].
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Figure 3.38: The structure of a GRU [51].

Given the results achieved using LSTM, we extended our tests to include GRU structures,
which represent a recent advancement in RNN. At this stage, we implemented top 10 distinct
GRU-based structures while maintaining consistency with our LSTM approach in using
Bidirectional and Dropout layers (as noted in Tables 3.40 to 3.49). The structures were
applied to various parameters, also outlined in Tables 3.50 and 3.51.

This GRU test not only complements our LSTM research but also offers valuable insights into

the comparative strengths of these two prominent RNN types in the context of our
classification tasks.

Table 3.40: Structure gru_1. Table 3.41: Structure gru_2. Table 3.42: Structure gru_3. Table 3.43: Structure gru_4.
Layer | Output Shape Layer Output Shape Layer | Output Shape Layer Output Shape
GRU | (None, 1, 100) GRU (None, 1, 200) GRU | (None, 1, 100) Bidirectional | (None, 1, 100)
GRU (None, 100) Dropout (0.5) | (None, 1, 200) GRU | (None, 1, 100) Bidirectional | (None, 100)
Dense (None, 1) GRU (None, 200) GRU (None, 100) Dense (None, 1)

Dropout (0.2) | (None, 200) Dense (None, 1)
Dense (None, 1)

Table 3.44: Structure gru_5. Table 3.45: Structure gru_6.  Table 3.46: Structure gru_7.  Table 3.47: Structure gru_8.

Layer Output Shape Layer | Output Shape Layer | Output Shape Layer | Output Shape
Bidirectional | (None, 1, 200) GRU (None, 100) GRU | (None, 1, 100) GRU (Noneg, 1, 25)
Bidirectional | (None, 1, 100) Dense (None, 4) GRU (None, 50) GRU (None, 25)
Bidirectional (None, 100) Dense (None, 4) Dense (Noneg, 4)

Dense (None, 1)
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Table 3.48: Structure gru_9. Table 3.49: Structure gru_10.
Layer Output Shape Layer Output Shape
Bidirectional | (None, 1, 140) Bidirectional | (None, 1, 200)
Bidirectional (None, 100) Dropout (None, 1, 200)
Dense (None, 4) Bidirectional (None, 200)
Dropout (None, 200)
Dense (None, 4)

Table 3.50: Model settings used in GRU binary classification.

Test 1 Test 2 Test 3 Test 4 Test 5

Models gru 1 gru_2 gru_3 gru_4 gru 5
epochs 60 60 60 70 60
batch_size 32 32 128 128 512

Table 3.51: Model settings used in GRU multi-class classification.

Test 6 Test 7 Test 8 Test 9 Test 10

Models gru_6 gru_7 gru_8 gru_9 gru_10
epochs 100 30 30 30 30
batch_size 32 32 32 64 64

4+ GRU testing results:

The GRU model achieves satisfactory results in classification tasks on test and prediction
sets (as shown in Tables 3.52 and 3.53), demonstrating efficient and remarkably fast learning
capabilities. Confusion matrices for the test set reveal high accuracy in classification, as
indicated by Figures 3.39 to 3.42, confirming the model's effectiveness in distinguishing
between different categories. Learning curves exhibit significant stability across several
experiments described in Figures 3.43 to 3.46, indicating good generalization capability and a
low likelihood of overfitting. This stability enhances confidence in the model's performance
and its applicability to diverse network traffic classification scenarios.
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Table 3.52: Results of GRU models in binary classification.

Dataset CIC-IDS2017 CIC-1DS2018
] .. F1 .. F1
Metrics Accuracy | Loss | Precision | Recall Score Accuracy | Precision | Recall Score
BENIGN 0.9973 | 0.9891 | 0.9932 0.9568 | 0.9117 | 0.9337
Test_1 Attack 99.3211 1 0.0210 0.9892 | 0.9973 | 0.9932 93.5266 0.9156 | 0.9589 | 0.9368
BENIGN 0.9973 | 0.9884 | 0.9928 0.8296 | 0.9501 | 0.8858
Test 2 = nttack | 292836 | 0.0218 I oege 109973 [0.9920 | &774%0 ["0.9417 [0.8048 | 0.8679
BENIGN 0.9970 | 0.9906 | 0.9938 0.9657 | 0.9012 | 0.9323
Test.3 [~ attack | 293811 | 0.0184 0057 T0.9970 [ 0.9938 | 224091 [0.9074 [0.9680 | 0.9367
BENIGN 0.9960 | 0.9908 | 0.9934 0.9626 | 0.8871 | 0.9233
Test_4 Attack 99.3430 1 0.0200 0.9909 | 0.9960 | 0.9934 926326 0.8953 | 0.9656 | 0.9291
BENIGN 0.9941 | 0.9880 | 0.9910 0.9707 | 0.8612 | 0.9127
Test_5 Attack 99.1066 | 0.0256 0.9880 | 0.9942 | 0.9911 91.7609 0.8753 | 0.9740 | 0.9220
Table 3.53: Results of GRU models in multi-class classification.
Dataset CIC-1DS2017 CIC-1DS2018
] .. F1 .. F1
Metrics Accuracy | Loss | Precision | Recall Score Accuracy | Precision | Recall Score
BENIGN 0.9979 | 0.9781 | 0.9879 0.8945 | 0.9336 | 0.9137
DDoS 0.9977 | 0.9988 | 0.9983 / / /
Test_6 DoS 99.1950 | 0.0247 0.9931 | 0.9984 | 0.9957 91.0532 0.9490 | 0.8870 | 0.9170
PortScan 0.9695 | 0.9988 | 0.9840 / / /
BENIGN 0.9954 | 0.9787 | 0.9870 0.8946 | 0.9033 | 0.8989
DDoS 0.9993 | 0.9988 | 0.9990 / / /
Test 7 DoS 99.1322 | 0.0318 0.9953 | 0.9959 | 0.9956 89.7152 0.9290 | 0.8909 | 0.9095
PortScan 0.9637 | 0.9989 | 0.9810 / / /
BENIGN 0.9987 | 0.9750 | 0.9867 0.9912 | 0.9176 | 0.9530
DDoS 0.9980 | 0.9990 | 0.9985 / / /
Test 8 DoS 99.1191 1 0.0338 0.9900 | 0.9991 | 0.9946 95.4103 0.9375 | 0.9912 | 0.9636
PortScan 0.9687 | 0.9989 | 0.9836 / / /
BENIGN 0.9987 | 0.9786 | 0.9886 0.9572 | 0.8951 | 0.9251
DDoS 0.9996 | 0.9989 | 0.9992 / / /
Test_9 DoS 99.2424 1 0.0322 0.9929 | 0.9989 | 0.9959 92.4772 0.9155 | 0.9550 | 0.9349
PortScan 0.9686 | 0.9989 | 0.9835 / / /
BENIGN 0.9989 | 0.9738 | 0.9862 0.9970 | 0.8901 | 0.9406
DDoS 0.9979 | 0.9984 | 0.9981 / / /
Test_10 DoS 99.0775 |0.0353 0.9889 | 0.9996 | 0.9942 94.3026 0.9052 | 0.9968 | 0.9488
PortScan 0.9680 | 0.9983 | 0.9829 / / /
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Figure 3.39: Confusion matrix for GRU Test_1.
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Figure 3.41: Confusion matrix for GRU Test_8.
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Figure 3.43: GRU Test_1 performance.
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Figure 3.46: GRU Test_9 performance.

3.4.4 Comparison between ML and DL

Through comparative analysis Based on our study and the results obtained between ML

and DL models, we can say that data preprocessing including cleaning, balancing, and feature

selection allow any model to reach its full potential in training because it plays a crucial role

in achieving an optimal and strong performance. This ultimately leads to higher accuracy and

more credible predictions across different datasets and scenarios.

Furthermore, DL techniques may offer an additional advantage in handling complex and

large-scale data. However, ML models can be more efficient and interpretable in certain
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scenarios. It is also important to consider the training time for both types of models.
Generally, ML models have shorter training times, making them more suitable for quick
iterations and rapid prototyping, whereas DL models often require longer training periods due
to their complex architectures and the need to optimize a large number of parameters.

Figures 3.47 and 3.48 present the best results obtained for the ML and DL models using
accuracy metrics across binary and multi-class classification tasks. Overall, all models
performed well on the test and prediction sets. This indicates that the models effectively
handled both binary and multi-class classification problems for IDS.
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Figure 3.47: Best results in ML and DL models for binary classification.
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Figure 3.48: Best results in ML and DL models multi-class classification.
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3.5 Conclusion

In conclusion, this chapter provided a comprehensive explanation of the practical
implementation of ML and DL techniques in the field of IDS. By reviewing various models
and evaluating their effectiveness, our study has proven their ability to achieve excellent
results, reflecting the great potential of these techniques in enhancing the performance of IDS
and providing more efficient solutions to confront cyber threats.
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At the conclusion of this study, we can draw several key insights and recommendations
regarding the use of ML/DL models to enhance IDS. In this project, we conducted a
systematic analysis of prominent IDS datasets and evaluated the performance of six different
models. Through an in-depth examination of the training set and attentive evaluation of these
models across the test set and the prediction set, our research highlights the significant
potential of Al in enhancing the capabilities of detecting cyber threats.

The developed ML/DL models exhibited satisfactory performance across various evaluation
metrics in both binary and multi-class classification tasks within the test set. In the context of
binary classification, accuracy was selected as the primary metric due to the balanced nature
of the dataset, where the distribution of attack and benign cases was equal at 50%. Under such
balanced conditions, accuracy reliably reflects the model's performance without bias toward
any specific class, since the models achieved high performance with an accuracy rate
exceeding 99%. Besides, the confusion matrix analysis demonstrated the models' high
efficiency in distinguishing between benign and attack cases, with only a few
misclassifications recorded.

In multi-class classification, a broader range of metrics was used to evaluate model
performance in order to ensure a fair assessment across all classes and account for variations
in class sizes. While accuracy remained high and exceeded 99%, both the F1 score and recall
also achieved satisfactory results, surpassing 99% for all classes. Additionally, the confusion
matrix demonstrated the models' effective performance in distinguishing between different
classes, with minimal misclassifications recorded.

Across both classification types, the models demonstrated an ability to distinguish between
benign and attack types in the prediction set, achieving results greater than 90% across

various metrics. This confirms the models' ability to generalize to unseen data.

Despite the promising results, it is essential to recognize that the field of cybersecurity is
continuously evolving. We therefore recommend continued research and development,
focusing on improving model adaptability to emerging and unknown threats. This includes
employing anomaly detection techniques to identify abnormal behaviors that may indicate
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new attacks. Furthermore, exploring semi-supervised techniques can help make better use of
limited labeled data, enhancing detection accuracy in real-world scenarios. A promising
avenue for future research could focus on the application of data augmentation techniques to
artificially increase the size and diversity of IDS datasets. These techniques could help
address issues such as data imbalance and improve the generalization capabilities of ML/DL
models. Developing mechanisms to explain model decisions will also increase trust in their
deployment in sensitive environments, while combining various ML/DL techniques could
further improve performance.

Finally, we hope that this study contributes to advancing research and innovation in the field
of IDS and enhances our ability to address future security challenges more efficiently and
effectively.
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Table 1: List of features in the CIC-1DS2017 datasets.

NB Feature Name NB Feature Name

1 Destination Port 41 Packet Length Mean
2 Flow Duration 42 Packet Length Std

3 Total Fwd Packets 43 Packet Length Variance
4 Total Backward Packets 44 FIN Flag Count

5 Total Length of Fwd Packets 45 SYN Flag Count

6 Total Length of Bwd Packets 46 RST Flag Count

7 Fwd Packet Length Max 47 PSH Flag Count

8 Fwd Packet Length Min 48 ACK Flag Count

9 Fwd Packet Length Mean 49 URG Flag Count
10 Fwd Packet Length Std 50 CWE Flag Count
11 Bwd Packet Length Max 51 ECE Flag Count

12 Bwd Packet Length Min 52 Down/Up Ratio

13 Bwd Packet Length Mean 53 Average Packet Size
14 Bwd Packet Length Std 54 Avg Fwd Segment Size
15 Flow Bytes/s 55 Avg Bwd Segment Size
16 Flow Packets/s 56 Fwd Header Length
17 Flow IAT Mean 57 Fwd Avg Bytes/Bulk
18 Flow IAT Std 58 Fwd Avg Packets/Bulk
19 Flow IAT Max 59 Fwd Avg Bulk Rate
20 Flow IAT Min 60 Bwd Avg Bytes/Bulk
21 Fwd IAT Total 61 Bwd Avg Packets/Bulk
22 Fwd IAT Mean 62 Bwd Avg Bulk Rate
23 Fwd IAT Std 63 Subflow Fwd Packets
24 Fwd IAT Max 64 Subflow Fwd Bytes
25 Fwd IAT Min 65 Subflow Bwd Packets
26 Bwd IAT Total 66 Subflow Bwd Bytes
27 Bwd IAT Mean 67 Init_Win_bytes_forward
28 Bwd IAT Std 68 Init. Win_bytes backward
29 Bwd IAT Max 69 act_data_pkt_fwd
30 Bwd IAT Min 70 min_seg_size forward
31 Fwd PSH Flags 71 Active Mean

32 Bwd PSH Flags 72 Active Std

33 Fwd URG Flags 73 Active Max

34 Bwd URG Flags 74 Active Min

35 Fwd Header Length 75 Idle Mean

36 Bwd Header Length 76 Idle Std

37 Fwd Packets/s 77 Idle Max

38 Bwd Packets/s 78 Idle Min

39 Min Packet Length 79 Label

40 Max Packet Length




Table 2: List of features in the CIC-1DS2018 datasets.

NB Feature Name NB Feature Name

1 Destination Port 43 Fwd Pkts/s

2 Protocol 44 Bwd Pkts/s

3 Timestamp 45 Pkt Len Min

4 Flow 1D 46 Pkt Len Max

5 Src IP 47 Pkt Len Mean

6 Dst IP 48 Pkt Len Std

7 Src Port 49 Pkt Len Var

8 Flow Duration 50 FIN Flag Cnt

9 Tot Fwd Pkts 51 SYN Flag Cnt
10 Tot Bwd Pkts 52 RST Flag Cnt
11 TotLen Fwd Pkts 53 PSH Flag Cnt
12 TotLen Bwd Pkts 54 ACK Flag Cnt
13 Fwd Pkt Len Max 55 URG Flag Cnt
14 Fwd Pkt Len Min 56 CWE Flag Count
15 Fwd Pkt Len Mean 57 ECE Flag Cnt
16 Fwd Pkt Len Std 58 Down/Up Ratio
17 Bwd Pkt Len Max 59 Pkt Size Avg
18 Bwd Pkt Len Min 60 Fwd Seg Size Avg.1
19 Bwd Pkt Len Mean 61 Bwd Seg Size Avg
20 Bwd Pkt Len Std 62 Fwd Byts/b Avg
21 Flow Byts/s 63 Fwd Pkts/b Avg
22 Flow Pkts/s 64 Fwd Blk Rate Avg
23 Flow IAT Mean 65 Bwd Byts/b Avg
24 Flow IAT Std 66 Bwd Pkts/b Avg
25 Flow IAT Max 67 Bwd Blk Rate Avg
26 Flow IAT Min 68 Subflow Fwd Pkts
27 Fwd IAT Tot 69 Subflow Fwd Byts
28 Fwd IAT Mean 70 Subflow Bwd Pkts
29 Fwd IAT Std 71 Subflow Bwd Byts
30 Fwd IAT Max 72 Init Fwd Win Byts
31 Fwd IAT Min 73 Init Bwd Win Byts
32 Bwd IAT Tot 74 Fwd Act Data Pkts
33 Bwd IAT Mean 75 Fwd Seg Size Min
34 Bwd IAT Std 76 Active Mean
35 Bwd IAT Max 77 Active Std

36 Bwd IAT Min 78 Active Max

37 Fwd PSH Flags 79 Active Min

38 Bwd PSH Flags 80 Idle Mean

39 Fwd URG Flags 81 Idle Std

40 Bwd URG Flags 82 Idle Max

41 Fwd Header Len 83 Idle Min

42 Bwd Header Len 84 Label
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