[©]
2
;
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Y
Y
2
2
2
0

Al Al Ranal) 4 501 501 4y sgand)
République Algérienne Démocratique et Populaire
alad) Gl g Aadl anlatl) 3) 3

Ministere de L’Enseignement Supérieur et de la Recherche Scientifique

Centre Universitaire de MILA

Centre Universitaire Abdelhafid BOUSSOUF- Mila
Institut des Sciences et de la Technologie

Département de Mathématiques et Informatique

Mémoire préparé en vue de I’obtention du diplome de

Master

En : Informatique
Spécialité : Sciences et Technologies de I’Information et de la

Communication (STIC)
Théme :

Drones Use in Disaster Management

Prépare par :

> Bennacer Nihad
» Amimour Nadjat

Soutenue devant le jury

Encadré par Dr. Aissa Boulmerka Grade : Maitre de conférences A
Président Dr. Souheila Khalfi Grade : Maitre de conférences B
Examinateur Mr. Dib Abderrahim Grade : Maitre assistant A

e e e e e e e e e e e T e e e e =
AAPAS

VORI
AAAAAAAK

Année Universitaire : 2022/2023

|‘|
[

[y

A A AL A AA A A A A A A A S A A A A A A A A A A A A A A AL A A A A A A AS

Abstract

This thesis explores the effective assessment of damages following natural disas-
ters, such as floods, through the utilization of drone imagery. Deep learning tech-
niques, particularly Artificial Neural Networks, have been extensively explored for
tasks such as semantic image segmentation and object detection. The primary ob-
jective of this research is to identify and classify various types of damages resulting
from disasters. The thesis evaluates several architectures of Artificial Neural Net-
works, including Unet + Resnet34 and Unet + VGG, in addition to implementing
Deeplabv3 using the Floodnet dataset in the context of semantic image segmenta-
tion. As for the detection and classification of different types of damages, object
detection techniques like YOLOv8n are applied using the Rescuenet dataset.

key words: deep learning, Convolutional neural networks, Semantic segmenta-
tion, Object detection, Unet, Deeplab, YOLOv8n.

o>l

acdall &yl g8 e Aen Ll) Y Jladll eodidl A gy Wi ols CadSiui
Oledl BLaSiwl @3 A gl jaall Jdod aladdiwl IS e Oblaall e
Jin plgad el g Glad Slo dclidla oY) Liuaall OISLY dols o (Gioall @latdl
90 Gl 1AD (yo e N Buglly SISI BLAGSS) g AN By guall A5 jond
Aall A g ;bW @uET & ¢S e Aaa Ll I oW 61 93] alisne Caial g i
Unet + g Unet + Resnet34d &=33 2 Loy (Al douaall OISEY o
@ Floodnet OLiLed! 4e gone 31_\;-..1“\.3 Deeplabvd Gudad I 22ls¥L VGG
(0 daline £1gd1 adual g BLUSL 3lak Lo g AdY gl 45 5T Bliw
de gome plusviwls YOLOVED e OLSISH cadss OLaad Guodad @lo ol oYl
Rescuenet obleds

(e M At OIS GAdY U8 W5 3 (Gand! alaid) - diuedd o1 SLelSTS
.YOLOv8n Deeplabv (Unet (LSS (dlLiiss)

Résumé

Cette thése explore I'évaluation efficace des dommages aprés des catastrophes
naturelles, telles que les inondations, grace a l'utilisation d’images de drones. Les
techniques d’apprentissage profond, en particulier les réseaux neuronaux artificiels,
ont été largement explorées pour des taches telles que la segmentation sémantique
d’images et la détection d’objets. L’objectif principal de cette recherche est d’iden-
tifier et de classifier divers types de dommages résultant de catastrophes. La thése
évalue plusieurs architectures de réseaux neuronaux artificiels, notamment Unet +
Resnet34 et Unet + VGG, ainsi que la mise en ceuvre de Deeplabv3 en utilisant
I’ensemble de données Floodnet dans le contexte de la segmentation sémantique
d’images. En ce qui concerne la détection et la classification des différents types de
dommages, des techniques de détection d’objets comme YOLOv8n sont appliquées
en utilisant I’ensemble de données Rescuenet.

Mots-clés - apprentissage en profondeur, réseaux neuronaux convolutionnels,
segmentation sémantique, détection d’objets, Unet, Deeplab, YOLOvS8n.

Acknowledgement

First and foremost, I would like to express my gratitude to Allah for giving me
the strength and determination to pursue my dreams despite facing numerous chal-
lenges in the past.

I am also thankful to Dr. Aissa Boulmerka for his valuable guidance, support,
and expertise that enabled me to engage in a field that is of great interest to me. In
addition, I am very grateful to my parents for their unwavering support, sacrifices,
and prayers, as well as to my siblings and friends for being there for me throughout
my journey.

I must also extend my sincere thanks to my colleague, Amimour Nadjat, who
was my companion through all research struggles and sleepless nights. Finally, I am
grateful to everyone who supported me, whether they were close relatives, teachers,
or colleagues from the university staff.

Bennacer Nihad

I have always dreamed of conducting this humble work. I dedicate this achieve-
ment to my role model and support in life, my dear father, and to that great woman
who raised and worked tirelessly, my loving mother. Also, to those who supported
me and were a pillar for me, especially my husband and all members of my family,
and especially my brothers who stood by my side throughout my journey.

I am grateful to Dr. Aissa Boulmerka for his valuable guidance, support, and
expertise that allowed me to pursue a field that I am passionate about.

I would like to express my heartfelt gratitude to my colleague, Bennacer Nihad,
who went through the same research challenges and long nights with me. Lastly, I
am appreciative of all those who supported me, whether they were my close family
members, mentors, or colleagues from the university.

Amimour Nadjat

Contents

[Abstractl

[Acknowledgement|

Contents

[List of Figures|

[List of Tables|
st of Abbreviations

[General Introductionl

(1 Drones Use in Disaster Management|

(1.5 Reasons for using drones in disaster management|
(1.6 Examples of disaster management drone applications|
[1.6.1 Damage assessment|

[1.6.2 Search and rescuel

(I.7 Component of drone,,

[1.7.5 Camera and other payloads|
(1.7.6 Battery|
(1.7.7 Communication system|.
(1.8 Aerial photography factors|

11

12

14

CONTENTS

(1.8.1 Image resolution| 24
[1.8.2 Image size and aspect ratio] 24
(1.8.3 Image format| L. 24
[1.8.4 Image stabilization| 24
[1.8.5 Field of view and lens quality] 24

(1.9 UAV challenges, 24
[1.9.1 Security concerns| 25
(1.9.2 Safety concerns| 25
[1.9.3 Privacy concerns| 25
[1.9.4 Scalability issues| Lo 25
.95 Limited Resources 26

(1.10 Comparison of Satellite, Aircraft, and UAV|. 26
[LI0.1 Satellitel 26
(L10.2 Aijrcraftl 26
(1.10.3 Unmanned Aerial Vehiclel 27

[1.11 Analyzing drone-captured images for surveillance| 27
(1.11.1 Semantics segmentation| 27
(1.11.2 Image Classification|. 27
(1.11.3 Object Detectionl 28
(1.11.4 Visual Question Answering|. 28

2 Deep Learning] 30
2.1 Deep Learning|. 30
2.2 Artificial neural networksl.o 31
2.3 Perceptrons 31
2.4 Multilayer Feed-Forward Networks 32
2.5 Activation functionsl o oo 33
[2.5.1 Sigmoids|. 33
52 Tanhl oo 34
53 ReLUl 34
254 Softmaxl 34

2.6 Batch normalization| 0oL 35
[2.6.1 Regression losses| 35
2.6.2 Classification lossesl oL 36

2.7 Loss functions| oo 36
[2.8 Hyperparameters| L. 37
[2.8.1 Gradient descent algorithms| 37
282 DBatchsizel oo 38
[2.8.3 Epochs|. 38
[2.8.4 Learning rate] 38
[2.8.5 Steps perepoch| Lo 39

[2.9 Feedtorward and backpropagation| 39
2.9.1 Feedforward| oo 39
[2.9.2 Backpropagation| 40

[2.10 Data augmentation| oo 40
2.11 Convolutional neural networks 41
2.12 Common convolutional neural network architectures/ 41
2121 LelNet-dl o 42

CONTENTS

2122 AlexNetl 43
2.12.3 Visual Geometry Group (VGG 16,VGG19)[. 44
2124 ResNetl. 45
[2.12.5 GoogleNet|o o 46
2126 MobileNetl oo oo 48

[3 Semantic Segmentation and Object Detection| 51
[3.1 semantic segmentation| 51
[3.2 Techniques and Approaches for Semantic Segmentation in Deep Learn- |
..................................... 52
B.2.1 U-Net|. 52
3.2.2 Attention U-Netl. o000 54
[3.2.3 Attention Residual U-Net] 55
[3.2.4 Deeplabl 55

[3.3 Performance Metrics for Semantic Segmentation| Y4
3.3.1 [ntersection-Over-Unionl 57
[3.3.2 Accuracy|. o7
B.B.B_Erﬂ;iijml 57
B34 Recallo 58
13.3.5 F-Measure (F1 Score)| 58
[3.3.6 Jaccard similarity coefficient| 58

[3.4 Object Detection| 58
[3.5 Techniques and Approaches for Object Detection in Deep Learningl . 59
[3.5.1 You Only Look Oncel 59
[3.5.2 Region-based Convolutional Neural Networks| 61
[3.5.3 Single Shot Detector| 63

[3.6 Performance Metrics for Object detectionl. 64
[3.6.1 Average Precision| 64
[3.6.2 Mean Average Precision| 64
[3.6.3 Intersection over Unionl. 64
3.6.4 Precision-Recall Curvel 64
3.6.5 FT1 Scorel 65
[3.6.6 Mean Average Precision at different loU thresholds| 65

[4 Experiments and results| 66
4.1 Problem definition|o o 66
4.2 Experiments on semantic segmentation| 66
421 Datasetl 67
4211 FloodNetl 67

422 DBackbonelo 68
[4.2.3 Evaluation and comparison| 69
424 Visualresults oo 73

4.3 Experiments on the object detection| 74
431 Datasetl 74
4311 RescueNet|. 74

432 Bvaluation| o 75
433 Visualresults L 7

4.4 Hardware used in deep learning 78
[4.4.1 Central processing units| 78

CONTENTS

[4.4.2 Graphics processing units| L. 79
[4.4.3 Tensor processing units|. 79

4.5 Deep learning Sottware and tools| 80
[4.5.1 Python programming language] 80
4.5.2 Google Colaboratoryl 80
[4.5.3 Open Source Computer Vision Library| 80
4.54 TensorFlow| 81
EES Keras oo 81
4.0.6 Roboflow]o 82
[4.5.7 Ultralytics| 82
lGeneral Conclusion| 83

List of Figures

(1.1 An image of an earthquake that occurred in Turkey,|. 17
(1.2 Close-up images of forest fires captured by drones.|. 18
(1.3 Close-up images of floods captured by drones. |. 18
(.4 Drone over a disaster areal 20
[I.5o 'T'he essential components of drones| 22
[1.6 Sementic segmentation of flooded aerialf. 28
(1.7 Image Classification|. 28
(1.8 An Example of Object Detection| 29
[2.1 An illustration ot the position of deep learning.| 31
[2.2 Artificial neurons inspired by biological neurons.| 31
[2.3 Single-layer perceptron|o 32
2.4 'Topology of a multilayer neural networkl 33
[2.5 'The softmax tunction transforms the imnput.| 34
[2.6 Batch normalization first step| 35
[2.7 Benefits of v and 5 parameters| 36
2.8 3D Gradient Descent.o 37
[2.9 Model Performance Across Epochs| 38
[2.10 The Impact of Learning Rate on Loss during Training [44].| 39
[2.11 Feedtorward and Backpropagation Neural Network architecture.| . . . 40
[2.12 Architecture of convolutional neural networks [49]. 41
[2.13 Legend used for the various architectures| 42
2.14 LeNet architecturel L. 42
2.15 AlexNet architecturel Lo 43

13- itecturel L 45
2.17 ResNet-50 architecturel 45
[2.18 ResNet identity blockl o0 46
2.19 GoogleNet architecture (Inception VI)[. 47
2.20 MobileNet architecturelo oo 49
3.1 U-Net architecturel 53
3.2 Attention U-Net architecture from [64] 54
3.3 _Attention Residual U-Net architecturel 55
[3.4 The DeepLab modelf 56
3.5 The DeepLabv3+ model from [68] 56
3.6 architecture of YOLO |74]|. 60
B.7 R-CNN architecturel 61
3.8 Fast CNN architecture [31].| 62
3.9 Faster CNN architecture [31]| 63

LIST OF FIGURES

13.10 architecture SSD [83].|. o oo 63
4.1 Some representative images from thekFloodNet dataset.| 68
[4.2 Evolution of the values of the performance metric in Unet-+Resnet34] 70
[4.3 Evolution of the values of the performance metric in Unet+VGG1Y| . 71
4.4 Evolution of the values of the performance metric in DeepLab.| 72
[4.5 Visula results for the semantic segmentation using Unet-+Resnet34 |

model) 73
[4.6 Visula results for the semantic segmentation using Unet-+VGG19 model.| 74
4.7 Some representative images from the RescueNet dataset.| 75
4.8 Information about the manual labeling of objects in RescueNet dataset.| 76
4.9 Graphs Performance Metrics Curves tor Object Detection Modell . . . 77
.10 Examples of object detection results.| 78
[4.11 Python logo|l 80
.12 Google Colaboratory logo| 80
.13 OpenCV logol 81
[4.14 Tensorklow logo|. oo 81
[M.15 Keras logo|l 82
.16 Roboflow logo| 82
[4.17 Ultralytics logo| 82

10

List of Tables

2.1 TeNet structural detaild 43
2.2 AlexNet structural detaild 44
2.3 VGG-16 structural detaild 45
2.4 ResNet structural details] 46
[2.50 GoogleNet structural details.|. 48
2.6 MobileNet structural details] 49
4.1 Class Definitions - FLOODNET Dataset) 67
4.2 Results of the performance metrics for each model for semantic seg- |
[mentation| 69
[4.3 Damage detection results using 8 batches and 25 epochs.| 76

11

List of Abbreviations

Adaboost Adaptive Boosting

Al Artificial intelligence

ASPP Atrous Spatial Pyramid Pooling

ASIC Application-Specific Integrated Circuits
Bn Batch normalization

CNN Convolutional Neural Network

CPU Central Processing Units

DNN Deep Neural Network

DL Deep Learning

DPM Deformable Parts Model

EMA Exponential Moving Average

FC fully connected

FCN fully convolutional neural networks

FL Focal Loss

IoU Intersection-Over-Union

ILSVRC ImageNet Large Scale Visual Recognition Challenge
GPU Graphics Processing Units

LiDAR Light Detection and Ranging

LR Learning rate

MLP multi-layer perceptrons

ReLLU Rectified Linear Unit

R-CNN Region-based Convolutional Neural Networks
RPAS Remotely Piloted Aircraft Systems
RPN Region Proposal Network

RPV Remotely Piloted Vehicles

SSD Single Shot Detector

SVM Support Vector Machine

12

List of Abbreviations

Tanh
TPU
UAS
UAV
VGG
YOLO

The Hyperbolic Tan
Tensor Processing Units
Unmanned Aerial Systems
Unmanned Aerial Vehicle
Visual Geometry Group
You Only Look Once

13

(zeneral introduction

Disasters pose significant challenges in terms of damage assessment and timely
response. Using Unmanned Aerial Vehicles (UAV), or drones, has emerged as a
rapid and effective solution to support disaster management efforts. These aerial
platforms can assist in capturing high-resolution images and gathering critical data
from inaccessible or hazardous areas.

Deep learning techniques, including object detection and semantic segmentation,
play a vital role in enhancing drones’ disaster management capabilities. Object de-
tection algorithms enable drones to identify and locate specific objects or structures
of interest, such as damaged buildings or infrastructure. This information helps in
prioritizing response efforts and allocating resources efficiently.

This thesis explores essential concepts and methodologies for implementing im-
age semantic segmentation and object detection. The utilization of these models
significantly enhances the accuracy and efficiency of disaster management opera-
tions. UNet, DeepLab, and YOLOv8n have demonstrated remarkable capabilities
in accurately identifying and classifying objects in drone imagery, which is crucial
for effective disaster response and recovery efforts. The following is a summary of
the main topics covered in this master’s thesis:

In the first chapter, we explore the definition of a disaster and provide exam-
ples of various types, including earthquakes, floods, and forest fires. Additionally,
we delve into the concept of Disaster Management, defining its purpose and signif-
icance. We also examine the definition of drones and discuss the reasons for their
utilization in Disaster Management. Furthermore, we present examples of Disaster
Management Drone applications and discuss the components of a drone. The chal-
lenges faced by UAVs are also addressed. Moreover, we compare the capabilities of
satellites, aircraft, and UAVs. Lastly, we explore the analysis of drone-captured im-
ages for surveillance purposes, including techniques such as semantic segmentation,
image classification, object detection, and Visual Question Answering.

We begin the second chapter by presenting an overview of DL concepts, start-
ing with fundamental principles of artificial neural networks, such as perceptrons,
multilayer perceptrons, activation functions, cost functions, gradient descent, learn-
ing rate, and the important processes of forward propagation and backpropagation.
Additionally, the chapter explores widely used deep neural network architectures in
computer vision, specifically focusing on CNNs. It discusses notable CNN architec-
tures, including LeNet5, AlexNet, VGG16, GooglLeNet, and ResNet.

14

General introduction

In the third chapter, our focus will be on two significant tasks within com-
puter vision: semantic segmentation and object detection. We will delve into these
tasks and explore a range of techniques and approaches employed to tackle these
challenges using deep learning methods. Throughout the chapter, we will discuss
and analyze popular architectures such as UNet and its variants, DeepLab, YOLO,
RCNN, and SSD. By examining these architectures, we will uncover their respective
strengths and weaknesses.

In the final chapter, we focus on the application of semantic segmentation
and object detection techniques to drone images. We start by defining the problem
we aim to solve in this context. Next, we provide a detailed description of the
dataset we will use and how it will be augmented. We next go to the network design
details employed to solve the problem and how they were trained. After that, we
conclude by describing our experiments, tests, and results. The obtained results are
reported in tables and evolution curves of the metrics of each model. Finally, we will
describe some of the most popular deep learning hardware and frameworks/tools,
including the Python programming language, Google Colaboratory, TensorFlow,
Keras, OpenCV, Roboflow, and ultralytics.

15

Chapter 1

Drones Use in Disaster Management

Introduction

A disaster is a major disturbance of a community or society’s ability to operate that
causes broad consequences on people, property, the economy, or the environment
and which surpasses the capacity of the afflicted community or society to deal with
using its resources |1]. Tracking disasters is important for mitigating their impact
and damage on the environment and population. This can be made easier by using
Unmanned Aerial Vehicles (UAVs) with cameras to take images of interesting places.
The proliferation of UAVs in several fields has stimulated research into their potential
benefits in disaster management. Drones create a communication network between
victims, survivors, and designated rescue teams. This chapter will cover disasters in
general, give some examples, and go into deeper detail about drones.

1.1 Definition of disasters

Disaster can be defined as a natural or artificial event that may cause it or result from
a deliberate act by man. These occurrences can include forest fires, earthquakes,
flooding, and explosions. Disasters can also have long-term impacts on communi-
ties and the environment, leading to loss of life, displacement, economic and social
disruption, and psychological trauma [2].

People, communities, and governments must be proactive to prepare for disas-
ters. This includes developing emergency plans and stockpiling resources like food,
water, and medical equipment. Governments can also spend money on early warning
systems and disaster-proof infrastructure to mitigate the effects of disasters. Also,
it is essential to move quickly to restore critical infrastructure, such as water and
electrical services, to support communities in recuperating and returning to normal.
To mitigate their impacts and help affected people, coping with catastrophes is gen-
erally challenging and requires cooperation and coordination between individuals,
groups, and governmental entities.

16

Chapter 1 — Drones Use in Disaster Management

1.2 Some examples of disasters

1.2.1 Earthquakes

An earthquake is a typical disaster that breaks out suddenly without any warning,
causing serious damage to buildings and killing many people. The chances of sur-
vival for someone trapped in a collapsed building depend largely on the damage to
the affected building. Therefore, it is essential to quickly map the affected areas to
assess the damage and, more importantly, optimize the sharing of rescue resources

3]

Rescue operations should be prioritized according to the extent of the damage
and the likelihood of finding survivors. In some circumstances, it might be necessary
to concentrate on saving those who are seriously hurt or in danger, whereas, in others,
it might be more beneficial to concentrate on removing debris to open up access to
areas where survivors are more likely to be found.

Figure 1.1: An image of an earthquake that occurred in Turkey.

1.2.2 Forest fires

In forests, wildfires represent a prevalent danger. There exist three stages of fire
management: before the fire, during the fire, and following the fire. Historical fire
detection techniques relied on manual labor. Satellite-linked monitoring methods
are the go-to tool for spotting forest fires. However, their applicability is limited to
substantial areas. Detection of fires frequently occurs too late, resulting in forest
loss. As a consequence, current methods could be more successful. Research shows
that nearly 80 percent of forest damage can be attributed to this issue [4].

Various studies have suggested solutions for monitoring forests after a fire, uti-
lizing different tools such as drone images. UAVs have numerous advantages, such
as their efficiency and ability to produce high-resolution images with great temporal
and spatial accuracy, making them an effective remote sensing system. With the
support of ground stations and technological advancements utilizing big data and

17

Chapter 1 — Drones Use in Disaster Management

artificial intelligence, Post-processing of UAV-collected data is possible in almost
real-time, providing significant benefits as a monitoring system .

Figure 1.2: Close-up images of forest fires captured by drones.

1.2.3 Floods

Flooding is a common natural disaster that disproportionately impacts low-income
nations [6]. This is caused by several factors, including (i) the lack of infrastructure
and resources for preparing for and responding to flooding, (ii) higher population
densities, (iii) and a greater reliance on farming and other activities that are sus-
ceptible to flooding. A cycle of poverty and ongoing vulnerability results when low-
income countries frequently lack the financial resources to repair the harm caused
by floods. Flooding’s effects on low-income countries must be addressed holistically,
with investments made in infrastructure, early warning systems, and the develop-
ment of resilient communities.

Drones can be a very beneficial tool for managing floods. With their ability to
capture high-resolution images and videos, drones can deliver in-the-moment infor-
mation in depth about the scope and severity of flooding. This can be invaluable for
emergency response teams, who need to quickly assess the situation and make in-
formed decisions about where to allocate resources. They are a valuable tool in flood
management, providing critical information that can help emergency respondents to
make informed decisions and optimize their resources [7].

Figure 1.3: Close-up images of floods captured by drones.

18

Chapter 1 — Drones Use in Disaster Management

1.3 Disaster management

Disaster management is a planned process of preparing for, dealing with, and recov-
ering from natural and man-made disasters [§].

Disaster management aims to ensure that affected communities can promptly
recover and rebuild after a disaster and lessen the harmful effects of disasters on
people and the environment. Based on the risk assessment, emergency planners
develop disaster preparedness plans and strategies, including training and drills,
emergency response protocols, and communication systems, to ensure that informa-
tion can be quickly shared with relevant stakeholders.

Regarding rapid disaster response and recovery, drones are considered one of the
most effective solutions.

UAVs can make surveillance and monitoring tasks easier by performing tasks
like object detection, activity recognition, and search and rescue operations. With
the help of advanced machine learning and artificial intelligence algorithms, drones
can access previously inaccessible areas and provide more comprehensive coverage.
Compared to traditional aerial data collection methods like helicopter surveys and
flyovers, using UAVs for data collection is more cost-effective and requires fewer
resources. Moreover, drones can capture high-resolution video sequences and still
images from locations that are challenging to reach for helicopters and humans [9].

1.4 Definition of a drone

Drones, which are also known as Unmanned Aerial Vehicles (UAVs), can be referred
to by a variety of names, including Unmanned Aerial Systems (UAS), Remotely
Piloted Vehicles (RPV), and Remotely Piloted Aircraft Systems (RPAS). While
"drone" is more widely recognized, other terms such as UAVs, RPA, RPAS, and
UAS are official names that describe this technology depending on the jurisdiction
[10].

UAVs equipped with camera sensors can provide valuable insights and observa-
tions in remote or inaccessible areas, making them useful tools for emergency and
disaster management applications [11].

In the case of natural disasters such as floods, forest fires, traffic incidents, or
earthquakes, By utilizing UAVs, it is possible to conduct rapid assessments of the
damage caused by a disaster and promptly identify areas that require urgent atten-
tion. They can also be used to search for survivors or assess the safety of structures
that may be unstable or at risk of collapse.

Drones have become an effective way to provide high-resolution images, especially
for capturing images in areas that are difficult to access or where satellite and closed-
circuit television cameras are ineffective [11].

19

Chapter 1 — Drones Use in Disaster Management

Figure 1.4: Drone over a disaster area.

1.5 Reasons for using drones in disaster manage-
ment

e Drones have become essential for disaster management and search and rescue
operations.

e Drones can be deployed quickly in areas that are too dangerous for humans,
providing valuable assistance and information to first responders.

e Drones equipped with augmented reality technology can provide real-time in-
formation and guidance to rescuers, allowing them to navigate through haz-
ardous terrain or identify potential dangers.

e Drones with sensors such as infrared cameras can detect heat signatures, al-
lowing rescuers to locate individuals who may be trapped or lost.

e In addition to their agility and accessibility, drones are much more cost-
effective than traditional methods such as helicopters.

e Drones can cover large areas quickly and efficiently, providing valuable infor-
mation to emergency responders without breaking the bank.

Drones have proven valuable tools for disaster management, search and rescue
operations, and many other applications. As technology advances, we expect to see
more capabilities and features added to these versatile machines [12].

1.6 Examples of disaster management drone appli-
cations

These examples demonstrate some of the many ways in which drones can be utilized
in disaster management:

20

Chapter 1 — Drones Use in Disaster Management

1.6.1 Damage assessment

Drones can be utilized for rapid surveys and to assess the extent of damage caused
by a disaster, such as a flood, earthquake, or hurricane. This helps emergency
responders to plan their response and allocate resources efficiently [13].

1.6.2 Search and rescue

Drones can be employed to search for survivors in areas that are hazardous or inac-
cessible for humans, such as collapsed buildings, flooded areas, or forested regions
[14]. Drones equipped with high-resolution cameras and thermal imaging sensors
can search for survivors in areas that may be too dangerous for humans to access.
They can quickly cover large areas and provide real-time footage to aid search and
rescue efforts. Additionally, drones can be equipped with speakers or microphones
to communicate with survivors or to broadcast messages to a larger area. This can
help locate and rescue survivors more quickly, ultimately increasing the chances of
survival.

1.6.3 Mapping and monitoring

Drones can be equipped with video cameras, thermal cameras, laser scanners,
and other sensors to capture high-resolution images and data from disaster-affected
areas and carry out the search and rescue mission [15|. This information can be
used to create 3D models, topographical maps, and other visualizations that help
emergency responders plan their operations and prioritize their efforts. On the
other hand, they are typically used to observe ongoing disasters and provide real-
time updates to response teams. For example, drones can track the spread of a
forest fire and identify areas where the fire is particularly intense. This information
can guide firefighting efforts and help protect nearby communities.

1.6.4 Communication

Drones could be key in building communication networks in disaster areas. Tra-
ditional communications infrastructure is often damaged or destroyed in the after-
math of disasters, leaving responders and survivors without reliable communication.
This is where drones equipped with communications equipment can help. They can
quickly and easily establish temporary communications networks in disaster areas,
allowing rescue and recovery teams to coordinate their efforts and help those in need.
In other words, drones can help bridge the communications gap in disaster-stricken
areas where traditional networks have failed. Therefore, a reliable emergency com-
munication system after a disaster is essential, and drones can be an invaluable tool
in building and maintaining such a system [16].

1.6.5 Delivery of aid and supplies

Drones have the potential to transport essential aid and provisions, such as nour-
ishment, clean water, and medical resources, to regions impacted by disasters that
are challenging to reach through alternative methods.

21

Chapter 1 — Drones Use in Disaster Management

1.6.6 Risk assessment

UAVs can assist in evaluating the extent of damage caused by disasters using various
techniques, including structural health monitoring and video inspection conducted
by UAVs [17].

1.7 Component of drone

A drone that is designed for disaster management purposes is usually comprised of
several distinct components.

S
\i‘\"
~ S
—

Frame Motors and Propellers

e

Camera
g/ Satellite

S

uav

&=\
e

Flooding

(([)
Radio signal

Figure 1.5: The essential components of drones for effective emergency management.

These components are essential for the drone to function effectively and efficiently
in emergencies:

1.7.1 Frame

The frame provides the structure and support for the drone’s other components. It
must be lightweight, durable, and able to accommodate the payload. The frame
of a drone for disaster management can be made of different materials, including
aluminum or carbon fiber. Aluminum frames are commonly used because they are
lightweight and durable, making them suitable for rugged environments. On the
other hand, carbon fiber frames are even lighter than aluminum and provide greater
rigidity and strength, but they can be more expensive. The choice of material will
depend on the specific requirements of the drone and the budget available for the

22

Chapter 1 — Drones Use in Disaster Management

project [18].

The classification of drone frame construction is often based on the number of
arms, as the number of arms typically determines the drone’s stability, maneuver-
ability, and payload capacity.

1.7.2 Motors and propellers

The motors and propellers provide the necessary lift and propulsion for the drone
to fly. They must be powerful and reliable to withstand adverse weather conditions
and carry the payload.

1.7.3 UAYV controller

Effective control technology design and analysis are crucial for managing drone dis-
asters, as drones are inherently unstable and pose significant risks when not ade-
quately controlled. To reduce the potential hazards related to drones, it is essential
to comprehend stability concerns and apply a rigorous approach to control technol-
ogy design. A comprehensive treatment of UAV control and related technologies is
essential to address the challenges of controlling drones in emergencies and avoiding
disasters [19].

1.7.4 Sensors

Sensors and sensing strategies are essential for an unmanned aircraft to perceive and
comprehend the environment around it, allowing it to function intelligently without
a human pilot onboard. These technologies enable drones to "sense," "see," "hear,"
and "understand" their surroundings in unknown and cluttered environments. In
essence, sensors and sensing strategies are crucial for unmanned aircraft operating
as if a human pilot were onboard [19].

1.7.5 Camera and other payloads

Cameras and other payloads, such as thermal cameras, multispectral cameras, gas
sensors, and lidar, are crucial in providing situational awareness and gathering im-
portant data during disaster management operations.

1.7.6 Battery

The battery is the power source for the drone and provides the energy needed to
operate in the air. Longer battery life is especially important for drones used in
disaster management operations as they need to remain in the air for extended
periods.

1.7.7 Communication system

The communication system is a crucial link between the drone and the ground
station, enabling the operator to control the drone and receive real-time data. Var-
ious communication systems are commonly used in the aviation industry for air-to-

23

Chapter 1 — Drones Use in Disaster Management

ground communication, including Voice Communication, Satellite Communication,
the internet, and the cloud.

1.8 Aerial photography factors

When it comes to aerial photography with a drone, several factors can affect the
quality and usefulness of the captured images. Here are some important ones:

1.8.1 Image resolution

A higher resolution image means more detail and clarity, which can be important
for certain applications such as surveying or inspection. Choosing a drone with a
camera with the appropriate resolution for the intended use is important.

1.8.2 TImage size and aspect ratio

Depending on the intended use of the images, it may be necessary to consider the
size and aspect ratio of the images. For example, if the images will be used for
marketing or advertising purposes, they may need to conform to certain size or
aspect ratio standards.

1.8.3 Image format

The format of the image can affect its usability and compatibility with different
software programs. Common formats for aerial images include JPEG, TIFF, and

RAW.

1.8.4 Image stabilization

A drone with image stabilization technology can help reduce the impact of wind or
other disturbances on the image quality, resulting in sharper and clearer images.

1.8.5 Field of view and lens quality

The field of view of the camera lens can impact how much of the scene is captured
in the image. Additionally, the lens’s quality can affect the image’s sharpness and
clarity.

1.9 UAV challenges

Despite UAVs occupying a significant portion of the market by 2025, numerous
obstacles remain to overcome in their development and control. This section will
explore the various research challenges that scientists and renowned researchers face
[20].

24

Chapter 1 — Drones Use in Disaster Management

1.9.1 Security concerns

Security concerns in disaster management with UAVs are also significant. One of
the primary concerns is protecting sensitive data collected by UAVs during disaster
response operations, such as personal information or images of damaged infrastruc-
ture. This data can be used maliciously if it falls into the wrong hands for identity
theft or to gain access to critical infrastructure.

Another security concern is the potential use of UAVs to disrupt disaster re-
sponse operations. For example, someone could fly a drone in the area where first
responders are working, potentially causing accidents or interfering with the opera-
tion of other UAVs or equipment.

In addition to security concerns related to data and operations, cyber attacks
on UAV control systems are also risky. A cyber attack on a UAV’s control system
could cause the vehicle to malfunction or crash, potentially causing harm to people
or property [21].

To address these security concerns, developing and implementing appropriate
security protocols and guidelines for using UAVs in disaster response operations is
essential. This may include measures such as encryption of data, securing control
systems, and implementing no-fly zones around disaster response operations.

1.9.2 Safety concerns

The incidents involving UAVs have highlighted several safety concerns, which can be
broadly categorized into four areas. These include UAV design issues, operational
standards, technological requirements for their safe operation, the risk of signal
interference or hijacking, and the necessity of government regulations and public
awareness to ensure their secure usage [20].

1.9.3 Privacy concerns

UAVs can collect vast amounts of data through images, videos, and mapping coordi-
nates, typically transmitted to users through a network. However, the transmission
and storage of this data can give rise to privacy concerns and issues. For instance,
there is a risk of location privacy breaches, linking attacks, man-in-the-middle at-
tacks, eavesdropping attacks, and other privacy violations [20].

1.9.4 Scalability issues

Scalability is a critical issue when using UAVs in a large-scale operation or deploy-
ment. As the quantity of UAVs grows, managing and controlling them effectively
becomes challenging. This problem is known as the scalability issue and is a signif-
icant challenge for researchers and scientists.

One of the primary scalability issues is the ability to maintain control and com-
munication with large numbers of UAVs simultaneously. As the quantity of UAVs
grows, it is essential for communication and control systems to keep up with the

25

Chapter 1 — Drones Use in Disaster Management

increased traffic and maintain dependable connections.

As UAV swarms continue to grow, even new developments like the blockchain
platform may not be suitable for achieving scalable communication. While some
platforms have been developed that use consensus algorithms to improve trans-
mission speed, they may not be suitable for UAV swarms, which are becoming
increasingly common in smart cities. Therefore, there is a need to develop new
communication platforms that can support the growing number of UAVs in swarms
and ensure reliable, fast communication between them [20].

1.9.5 Limited Resources

The limited resources problem in drones can cause various challenges and limita-
tions. For example, drones with limited energy reserves may have a shorter op-
erational time, which reduces their effectiveness in completing tasks that require
extended flights.

In addition limited storage capacity may restrict the amount of data that can be
captured, analyzed, and transmitted, affecting the drone’s ability to provide accurate
and timely information. Limited computational power can also be an issue when
performing complex data analysis tasks, which may require higher processing speeds
and more energy [20|. These limitations can hinder the ability of drones to perform
critical tasks in industries such as disaster management, where real-time data and
support are crucial.

1.10 Comparison of Satellite, Aircraft, and UAV

1.10.1 Satellite

Satellites capture images of the Earth’s surface using sensors and cameras mounted
on board. These sensors are sensitive to different wavelengths of light, allowing
satellites to capture images in different spectral bands 22|, such as visible, infrared,
and microwave. Satellites orbit the Earth at fixed positions, and as the Earth
rotates, the satellite captures images of different areas. Satellites can capture large
areas of the Earth’s surface in a single pass, and the images are typical of high
spatial resolution, making them useful for various applications, such as land cover
mapping, disaster monitoring, and environmental monitoring.

1.10.2 Aircraft

Aircraft, such as airplanes and helicopters, are equipped with sensors and cameras to
take pictures of the surface of the Earth. Aircraft fly at different altitudes and speeds
depending on the type of sensor being used and the application. For example, if
high spatial resolution imagery is needed, the aircraft will fly at a lower altitude and
slower speed. Aircraft are useful for capturing smaller areas compared to satellites,
but they are more flexible in flying to specific locations and capturing imagery on
demand.

26

Chapter 1 — Drones Use in Disaster Management

1.10.3 Unmanned Aerial Vehicle

UAVs are small aircraft utilized remotely or autonomously without a human pilot
on board. UAVs have cameras and sensors to capture high-resolution imagery of the
Earth’s surface. Like aircraft, These sensors can include digital cameras, multispec-
tral cameras, and LiDAR (Light Detection and Ranging) sensors, among others [23].

UAVs can fly at lower altitudes and slower speeds than satellites, providing a
more detailed and closer view of the Earth’s surface. UAVs are also more flexible
than satellites, as they can be launched and flown on demand, making them suitable
for applications that require timely responses, like disaster management.

1.11 Analyzing drone-captured images for surveil-
lance

One issue with using image drones is the sheer volume of data they can capture
quickly. This can pose a challenge for humans tasked with analyzing and extracting
pertinent information from the data, particularly in time-sensitive situations such as
disaster response. The timely and accurate data analysis is crucial in such applica-
tions, making it imperative to develop efficient and effective methods for processing
large amounts of data captured by image drones.

Here are some ways that segmentation, classification, Visual Question Answering,
and object detection can help address these challenges:

1.11.1 Semantics segmentation

Image segmentation, particularly semantic segmentation, is vital in computer vi-
sion. It involves dividing an image into distinct segments or regions based on color,
texture, or shape criteria. In semantic segmentation, each pixel in the image is
assigned a specific label or class, providing a detailed understanding of the image’s
content. This process allows for precise object recognition, scene understanding, and
accurate delineation of different regions within the image. Semantic segmentation
finds applications in numerous fields, including medical image analysis, autonomous
vehicles, video surveillance, and augmented reality [24].

1.11.2 Image Classification

A classification method is employed to classify a given data point into a specific
category or group. It involves combining relevant features to represent the object
and comparing it with a pre-trained model. In visual recognition, classification
is essential for distinguishing the target object from other objects, resulting in a
more meaningful and descriptive representation of the object. Popular classification
methods include SVM, DPM, and AdaBoost [25].

27

Chapter 1 — Drones Use in Disaster Management

Flooded-trees,
(a) (b)

Figure 1.6: Sementic segmentation of flooded aerial,(a)Image Original,(b)Image Segmen-
tation

Building Flooded Building Flooded

Classification Classification+Localisation

Figure 1.7: Image Classification

1.11.3 Object Detection

Object detection is the process of identifying and localizing objects within an image
or video. It involves detecting the presence of objects in an image or video and
accurately localizing them by drawing bounding boxes around them. Object detec-
tion aims to automatically and accurately identify the location and type of objects
present in an image or video, which is a crucial task in many applications, such as
autonomous driving, surveillance, and robotics.

The evolution of object detection techniques, from traditional methods based
on handcrafted features to the more recent deep learning-based approaches, has
significantly improved the accuracy and efficiency of object detection [26].

1.11.4 Visual Question Answering

Visual Question Answering (VQA) is a field of artificial intelligence that involves
training a model to answer questions about visual content, such as images or videos,
using textual responses. It combines computer vision and natural language process-
ing techniques to enable machines to understand and generate answers to questions
about visual content.

28

Chapter 1 — Drones Use in Disaster Management

Figure 1.8: An Example of Object Detection

Conclusion

This chapter focused on the potential of drones for disaster management, covering
their ability to assist in damage assessment, search and rescue operations, and supply
delivery. The following chapter will explore the most common deep learning concepts
and their various applications in this field.

29

Chapter 2

Deep Learning

Introduction

The foundational principles of deep learning (DL) have been shaped by the struc-
ture of the human brain, aiming to replicate human-like learning. Consequently,
several fundamental terms in DL can be traced back to neurology. This chapter
introduces the concepts of DL. The chapter discusses general concepts of artificial
neural networks, such as perceptrons, multilayer perceptrons, activation functions,
cost functions, gradient descent, learning rate, forward propagation, and backprop-
agation. Furthermore, the chapter explores the commonly used deep neural network
architectures in the computer vision field, such as convolutional neural networks and
Common convolutional neural network architectures.

2.1 Deep Learning

Deep neural networks originated from modeling biological vision and brain informa-
tion processing [27]. DL is a branch of machine learning and artificial intelligence
[28]. DL is a subfield of machine learning that utilizes neural networks with
multiple layers to learn and extract features from data. This approach has proven
to be highly effective compared to traditional machine learning methods [29].

His technology has significantly improved the accuracy of various computer vision
tasks, including image segmentation, object detection, and classification. In image
segmentation, deep learning models use large amounts of annotated image data to
learn how to segment images into smaller regions or segments for analysis. In object
detection, deep learning models use CNNs to identify and locate objects within an
image. Deep learning has also been successful in classification tasks, where it can
accurately classify images or other data into predefined categories.

30

Chapter 2 — Deep Learning

Artificial Intelligence
I::>To incorporate human behavior and
intelligence to machine or systems.

Methods to learn from data or past

|::>experience, which automates

analytical model building.

Machine Leaming

Deep Learning |::>Comput*at‘h:m through multi-layer

neural networks and processing.

Figure 2.1: An illustration of the position of DL, ML and artificial intelligence (AI) \|

2.2 Artificial neural networks

Neural networks are a type of computational model inspired by the structure and
function of the biological brain. They consist of many interconnected processing
units, called neurons, that work together to perform complex computations in par-
allel. The connections between neurons are modeled as numerical weights, deter-
mining the strength of the signal transmitted between them.

The architecture of a neural network is determined by several key factors, in-
cluding the number of neurons, the number of layers, and the types of connections
between layers .

Biological neuron Antificial neuron
Jf Mésuron
Dendrites o> Wl Inpu Meuron
(information coming . @’ Ly K

from other neurons) | 7 e : - ./_\'\
r >] Orutpast

Flowr of
niormaton

Synapses
(information output
to other neurons)

Figure 2.2: Artificial neurons were inspired by biological neurons. Different neurons are
connected by synapses that carry information \\

2.3 Perceptrons

The perceptron is the simplest type of neural network, consisting of a single artificial
neuron. Its function is conceptually similar to that of a biological neuron, which

31

Chapter 2 — Deep Learning

receives electrical signals from its dendrites, modulates the signals, and fires an out-
put signal only when the total strength of the inputs exceeds a certain threshold.

The perceptron carries out two main operations to simulate this behavior in an
artificial neuron. Firstly, it computes the weighted sum of the input values to quan-
tify the overall strength of the input signals. Secondly, it applies a step function
to the result to determine whether to generate an output signal. If the computed
signal surpasses a specific threshold, the output signal will be 1; otherwise, if the
signal does not surpass the threshold, the output signal will be 0 [31].

The perceptron is frequently employed for tasks involving binary classification,
where it learns to distinguish between two classes of data by iteratively adjusting
its weights to reduce the difference between its predicted outputs and the actual
outputs. However, due to its limited capacity to capture intricate relationships
between inputs, the perceptron is a basic building block for more sophisticated
neural network architectures.

nputs Waights
T e— uh
__/

Stap
function

Ta t—h-l “ P,;
Mat input Percepinon

L e classification
),ﬂ output (0, 1)

7]

Threshold

Figure 2.3: Single-layer perceptron
[30].

2.4 Multilayer Feed-Forward Networks

The multilayer feedforward neural network, such as multilayer perceptrons (MLPs),
consists of multiple layers of artificial neurons, including the input, hidden, and out-

put layers, as seen in [2.4]

Each layer contains one or more artificial neurons that resemble the perceptron
model but have a distinct activation function depending on the particular layer’s
function in the network [30].

The input layer receives data from an external source, and the hidden layers ap-
ply transformations to the input data using weighted connections between neurons.
Each hidden neuron applies a unique activation function, such as ReLLU or sigmoid,

32

Chapter 2 — Deep Learning

to the weighted sum of its inputs. The output layer applies the final transformation
to the output of the last hidden layer. The activation function used for this layer is
chosen based on the specific task of the neural network. During training, the net-
work’s weights are adjusted using an optimization method, such as backpropagation,
that minimizes a cost function.

S T

Figure 2.4: Topology of a multilayer neural network

[30].

2.5 Activation functions

An activation function is a crucial element in a neural network, as it transforms an
input signal into an output signal fed to the next layer in the network [32].

Without an activation function, a neural network would be equivalent to a linear
regression model, which performs a linear transformation without the ability to
capture nonlinear patterns. Some popular activation functions include the Sigmoid
function, Tanh, ReLU, and Softmax.

2.5.1 Sigmoids

The sigmoid function is one of the most commonly used activation functions in
neural networks [33]. It is defined as follows:

1
e T

The sigmoid function maps any real-valued number to a value between 0 and 1,
resulting in a continuous range of output values.

33

Chapter 2 — Deep Learning

2.5.2 Tanh

The Hyperbolic Tanh, also called a symmetric sigmoid, is steeper than that of the
sigmoid function, which means that it can produce more pronounced output values.
It is defined as follows:

tanh(x) = 2sigmoid(2x) — 1

Which is:
2

f(z) = tanh(z) = FRpe v 1

2.5.3 RelLU

ReLU is another popular function, and it is preferred over sigmoid in recent networks.
It is defined as follows:
f(z) = max(z,0)

This means that if the input x is less than 0, the output is 0; if it is greater than
0, the output equals the input. The derivative of ReLLU is 1 for x > 0 and 0 for x
<= 0. ReLU avoids very small values and returns either 0 (which can cause some
gradients to vanish) or 1 [34].

2.5.4 Softmax

The softmax function is commonly employed in multi-class classification tasks and
extends the sigmoid function. It ensures that the outputs of a neural network sum
up to 1 and produce probabilities for each class, where each probability value falls
between 0 and 1. The softmax function is commonly used in deep learning problems
where there are multiple classes to predict, and we need to choose the most probable
class among them [31]. It is defined as follows:

xT

e —
(i) o

Output Softmax -
layer activation function Probabilities
1.3] 0.02]
B e 0.90
2.2 | —|0.05

S e
0.1 2 0.01
|11 | 0.02]

Figure 2.5: The softmax function transforms the input.

34

Chapter 2 — Deep Learning

2.6 Batch normalization

Batch normalization (BN) is a popular technique used in deep learning to normalize
the activations of the neurons in intermediate layers of a neural network [35].

Batch normalization is an algorithmic technique that enhances the stability and
expedites the training process of DNN [36]. After BN alters the signal at each hidden
layer, it looks like this:

1) n=-320 @ o==Y(29-p

n-=; n-=-;

. 7@ _ 1) . .
3) zW _Zr-w 4) Z=~x2Z0 4+
() norm m () ,Y norm 6
Using (1) and (2), the BN layer first calculates the mean p and standard de-
viation o of the activation values throughout the batch (2). The activation vector
ZW is then normalized with (3). As a result, the output of each neuron follows

a conventional normal distribution across the batch (For numerical stability, ¢ is
utilized as a constant).

\ N
3 & — —>» 3 AN

t _JA
o

G

Figure 2.6: Batch normalization first step. Example of a 3-neuron hidden layer, with a
batch of size b. Each neuron follows a standard normal distribution from [37].

By applying a linear transformation with two trainable parameters v and £, it
calculates the layer’s output Z{) at the end (4). This phase allows the model to
select the best distribution for each hidden layer by modifying two parameters:
allows to alter the standard deviation; § permits to alter the bias by moving the
curve to the right or left.

The network calculates the mean p and standard deviation o for the current
batch at each iteration. When ~ and 3 are ready, they are trained using gradient

descent and an EMA to provide more weight to recent iterations.

2.6.1 Regression losses

e Mean Square Error/Quadratic Loss/L2 Loss

im1(yi — 9:1)%)

MSE =
n
e Mean Absolute Error/L1 Loss
n

35

Chapter 2 — Deep Learning

VAN
.

L~

u

Figure 2.7: Benefits of v and 3 parameters. Modifying the distribution (on the top) allows
us to use different regimes of the nonlinear functions (on the bottom) from [37].

e Mean Bias Error .

n

2.6.2 Classification losses

e Hinge Loss/Multi class SVM Loss

SVMLOSS = > max(0,s; — syi + 1)

J#Yi
e Cross Entropy Loss/Negative Log Likelihood

CrossEntropyLoss = —(y;log(y;) + (1 — y;)log(1 — 4;))

e Focal Loss
FocalLoss = FL(p;) = —(1 — p)"log(py)

The FL loss function is an extension of the binary cross-entropy loss function
used in binary classification. It introduces a focusing parameter that increases the
penalty for misclassifying difficult samples compared to easier ones [38§].

2.7 Loss functions

Loss functions are used to evaluate the performance of a neural network by measuring
how close its predicted output is to the expected output. The goal is to minimize the
difference between the predicted and expected outputs. This is achieved by finding
the optimal values for the parameters, such as weights and biases, that minimize
the loss function [30]. Different types of loss functions are used based on the type
of problem, such as regression or classification.

36

Chapter 2 — Deep Learning

2.8 Hyperparameters

Hyperparameters in deep learning models refer to the parameters not learned during
training but set by the developer before the training process. These hyperparameters
can significantly impact the model’s performance, and finding the optimal values for
them is crucial to achieving the best results.

2.8.1 Gradient descent algorithms

Gradient descent is a widely used optimization algorithm and a popular choice for
optimizing neural networks [39]. Gradient descent has three variants that differ in
how much data is used to compute the gradient of the objective function.

e Batch gradient descent
0=0—n-VeJ(0)

e Stochastic gradient descent

0=0—n-V(O;z?;y)

e Mini-batch gradient descent

0=0—n-VeJ(b; x(i:iJrn); y(i:iJrn))

Figure 2.8: 3D Gradient Descent.

Although mini-batch gradient descent is a popular optimization algorithm for
deep learning, it has some limitations and may not always guarantee good conver-
gence.

To address these challenges, several optimization algorithms have been devel-
oped and widely used by the DL community, including Momentum [40|, Nesterov
accelerated gradient [41], and others. These algorithms aim to improve the con-
vergence speed and stability of the optimization process, leading to better overall
performance of the deep learning model.

37

Chapter 2 — Deep Learning

2.8.2 Batch size

The batch size is a critical hyperparameter in machine learning that specifies the
number of samples processed in each iteration before updating the model’s internal
parameters. It plays a vital role in ensuring the optimal performance of machine
learning models. [42].

The batch can be considered a loop repeated through one or more examples
and generates predictions. Once the forward algorithm is complete, the error is
calculated by comparing predictions to the expected output. The update algorithm
is used to enhance the model using this error value. The training dataset can be
divided into one or more batches.

2.8.3 Epochs

An "epoch" refers to processing an entire dataset through a neural network once. To
avoid overwhelming the computer, we divide the epoch into smaller batches. Since
one epoch is not enough for weight updates, we use multiple epochs. The more
epochs we use, the more frequently the weights are adjusted, causing the curve to
shift from underfitting to the optimum to overfitting, as shown in . There is no
specific number of epochs to use, but we can assume that the number is proportional
to the diversity of the data.

Values - Values Values R

Figure 2.9: Model Performance Across Epochs: Exploring (a) Underfitting, (b) Optimum
and (c) Overfitting

2.8.4 Learning rate

The learning rate (LR) is typically the most influential of all the hyperparameters.
Its impact can be significant, affecting not only the duration of training a neural
network but also whether the network converges on a local (suboptimal) or global
(optimal) minimum during optimization [43].

The LR determines the step size we take toward the optimal solution during
training. A higher LR value will result in faster convergence but may lead to over-
shooting the optimal solution. In comparison, a lower LR value will result in slower
convergence but may miss the optimal solution entirely. Therefore, finding the op-
timal LR value is crucial for achieving high accuracy and rapid convergence in deep

38

Chapter 2 — Deep Learning

learning models.

Dynamic LRs help to adjust the LR values at various stages of the training pro-
cess, striking a balance between underfitting and overfitting and achieving better
generalization performance.

low learning rate

high learning rate

__—“‘_

good learning rate

L

epoch

Figure 2.10: The Impact of Learning Rate on Loss during Training [44].

2.8.5 Steps per epoch

Steps per epoch refer to the number of times the model’s training loop iterates to
update its parameters. Each iteration involves processing a batch of data using the
gradient descent technique. Typically, the number of steps per epoch is calculated
as the total data points in the training set divided by the batch size. When the
data has been augmented, this calculation may be multiplied by a factor of 2 or 3.
However, if the training has been ongoing for a while, it may be best to stick with
the original calculation method.

2.9 Feedforward and backpropagation

2.9.1 Feedforward

Feedforward, also called forward propagation, is a crucial step in neural networks
where input data is processed through layers of neurons to generate an output. This
process is used for making predictions and training deep learning models, forming a
critical part of the overall neural network architecture.

39

Chapter 2 — Deep Learning

2.9.2 Backpropagation

Backpropagation is a technique used in artificial neural networks to compute the
gradients of the loss function with respect to the weights and biases of the network.
This allows the network to adjust its weights and biases during training to improve
performance. Backpropagation gets its name from the fact that errors in the output
are propagated backward through the layers of the network. It is commonly used
to train deep neural networks and is essential in a wide range of applications [45].

< Backpropagation of errors ‘

x(t-1)

=D (1)

y(e-1)

y(t-d)

Input Layers Hidden Layers Output Layer

[Feedforward of information >

Figure 2.11: Feedforward and Backpropagation Neural Network architecture.

2.10 Data augmentation

Data augmentation is a crucial technique used to impart the desired invariance and
robustness properties to a neural network, especially when there is limited availabil-
ity of training samples [46].

Increased data involves applying a series of shifts to a specific set of training
data to create more diverse and enhanced data. Other modification techniques
include introducing fine requirements for cost function, normalizing the outputs of
different layers, changing the model size and structure, changing the number of
learning parameters or synaptic link pattern, and changing the training procedure.
Accurate learning and tuning transfer can also be used when it is difficult to access
large training data. Another approach is to focus on developing models based on
more effective representations of the characteristics of training data. Increased data
specifically refers to methods that seek to improve performance by changing the
characteristics of the training dataset itself .

40

Chapter 2 — Deep Learning

2.11 Convolutional neural networks

Convolutional Neural Networks (CNN) are a neural network used for processing data
in multiple arrays such as images or audio spectrograms. They utilize several key
ideas such as local connections, shared weights, pooling, and many layers to capture
local patterns and features, learn translation-invariant features, improve computa-
tional efficiency, and learn hierarchical representations of the input data. ConvNets
are highly effective for image classification, object detection, and other tasks and
have revolutionized many fields by their ability to learn features from raw data [48].

When creating a CNN structure, it is important to include four basic layers:
dilution layers, nonlinear layers, pool layers, and fully connected layers (FC).

- I[E T N
_ | [I_— Cutpus
— R - ' _- - - __5_ 5 _ -
Ingut Convolution Pooling Conwalistian Poaling Fully-connected

Figure 2.12: Architecture of convolutional neural networks [49).

A convolutional layer is crucial in extracting features from input images in a
CNN. It achieves this using a filter or kernel to perform a dot product operation
with the input image. The output of this operation is a feature map that is then
passed on to a nonlinear layer, which applies an activation function, such as ReLLU or
Softmax, to the feature map. This enables the network to model nonlinear functions.

After the convolutional layer, it is common to include a pooling layer that re-
duces the size of the feature maps by applying statistical functions, such as mean
or max pooling, to small neighborhoods.

Finally, the output of all previous layers is flattened and fed into a fully connected
(FC) layer, where mathematical functions are applied to generate the final result.
This process is illustrated in figure 2.12

2.12 Common convolutional neural network archi-
tectures

Several commonly used convolutional neural network (CNN) architectures exist in
computer vision, including LeNet-5, AlexNet, VGG-16, GoogLeNet, and ResNet.
These networks have significantly contributed to the field and are often used as
building blocks for many segmentation architectures |50]. in (figure shows an
overview of these architectures.

We will use the following mathematical equation to calculate the output of con-

41

Chapter 2 — Deep Learning

volutional layers:

S

[n+2p—f+11 . [n+2p—f+11
S

Where we consider a n % n image as an input, a f * f filter, a padding p, and a
stride s.

Layers Modules/Blocks R d layers or mc +
) Madules (groups of convolutional, pooling and menge
Convolutional operations, in red aperations), in yellow, green, or orange
The operations that make up these modules will also "
Pooling operalions, in grey
=2
=) e : =
add in purple
Maduls A
I Dense kayer, blue
[e] - =
g-pool
Activation Functions Ml B
T
3o = =
[
® ReLU

Other Functions

. Batch normalisation

@ Sofimax
Figure 2.13: Legend used for the various architectures \\

2.12.1 LeNet-5

LeNet-5 is a pioneering 7-level convolutional network developed by LeCun et al.in
1998 . This architecture was developed to recognize handwritten numbers on
scanned checks with 32x32 pixel grayscale input images, which several banks used.
It is considered one of the most basic architectural designs, consisting of 61K pa-
rameters, two convolutional layers, and three fully connected layers.

This architecture has become the industry standard: convolutions with activa-
tion functions are stacked, layers are pooled, and the network is finished with one or
more completely linked layers. It has the architecture represented in the following
Table, see (Table [2.1)).

B
2mZ b L]

A2u3ga]

Figure 2.14: LeNet architecture from .

42

Chapter 2 — Deep Learning

Layer i/{é:;ure Size | Kernel Size | Stride | Activation | Parameters
Input | Image (Grayscale) 1 32x32 - - - -
1 Convolution 6 28x28 55.6) 1 tanh 156
2 Average Pooling 6 14x14 2x2 2 tanh 0
3 Convolution 16 10x10 55'6) 1 tanh 2416
4 Average Pooling 16 5x5 2x2 2 tanh 0
5 Convolution 120 1x1 5x5 1 tanh 48120
6 FC - 84 - - tanh 10164
Output FC - 10 - - softmax 850
Total number of parameters 61,706

2.12.2 AlexNet

Table 2.1: LeNet structural details

AlexNet was a deep convolutional neural network designed by Alex Krizhevsky, Ilya
Sutskever, and Geoffrey Hinton, and it was submitted to the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) in 2012 [53].

Although the network architecture shared similarities with LeNet, it was con-
siderably more intricate and extensive, with 62 million parameters and a higher
quantity of filters employed in each layer. Furthermore, the network utilized multi-
ple layers of convolutional operations to identify significant features from the input

data.

The network is composed of five convolutional layers, max-pooling layers, Recti-
fied Linear Units (ReLUs) as activation functions, and three fully-connected layers

see (Table [2.2)).

224x224x3

max-pool
3x3

max-pool
3x3

max-pool
3x3

4096

Figure 2.15: AlexNet architecture from .

4096 1000

43

Chapter 2 — Deep Learning

Layer ﬁ:;ure Size Kernel Size | Stride | Activation | Parameters
Input | Image (RGB) 1 227x227x3 - - - -
1 Convolution 96 55x55x96 11x11 4 relu 34944
Max Pooling 96 27x27x96 3x3 2 relu 0
2 Convolution 256 27x27x256 5xH 1 relu 614656
Max Pooling 256 13x13x256 3x3 2 relu 0
3 Convolution 384 13x13x384 3x3 1 relu 885120
4 Convolution 384 13x13x384 3x3 1 relu 1327488
5 Convolution 256 13x13x256 3x3 1 relu 884992
Max Pooling 256 6x6x256 3x3 2 relu 0
6 FC - 4096 - - relu 37752832
7 FC - 4096 - - relu 16781312
Output FC - 1000 - - softmax 4097000
Total number of parameters 62,378,344

Table 2.2: AlexNet structural details

2.12.3 Visual Geometry Group (VGG 16,VGG19)

VGG16 and VGGI19 are convolutional neural network (CNN) architectures that
Karen Simonyan and Andrew Zisserman proposed from the Visual Geometry Group
Lab at Oxford University. These models were introduced paper titled "Very Deep
Convolutional Networks for Large-Scale Image Recognition." Both VGG16 and
VGG19 were developed for large-scale image recognition.

VGG16 achieved remarkable success in the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) in 2014. It secured first and second places in the image
classification and localization categories. This recognition helped solidify the effec-
tiveness of deep convolutional neural networks in computer vision tasks [55].

VGG16, as the name suggests, consists of 16 layers, including 13 convolutional
layers and 3 fully connected layers. It utilizes 3x3 convolutional filters with a stride
of 1 pixel, and after each set of convolutional layers, max-pooling layers with a 2x2
filter and a stride of 2 pixels are applied.

The architecture of VGG19, an extension of VGG16, includes two additional
convolutional layers. Thus, VGG19 comprises 19 layers, with similar layer configu-
rations as VGG16.

Both VGG16 and VGG19 employ the rectified linear unit (ReLU) activation
function after each layer to introduce non-linearity. They also incorporate the con-
cept of deep learning by stacking multiple convolutional and pooling layers to learn
hierarchical representations of visual features.

These VGG models played a significant role in advancing the field of deep learn-
ing and demonstrated the effectiveness of deep CNN architectures for image recog-
nition tasks. They have since been widely used as baselines for benchmarking new
architectures and have influenced subsequent developments in computer vision.

44

Chapter 2 — Deep Learning

Figure 2.16: VGG-16 architecture from .

Layer Fl\;f:;ure Size Kernel Size | Stride | Activation | Parameters
Input | Image (RGB) 1 224x224x3 - - - -
1 2xConvolution 64 224x224x64 3x3 1 relu 38720
Max Pooling 64 112x122x64 2x2 2 relu 0
3 2xConvolution 128 112x122x128 3x3 1 relu 221440
Max Pooling 128 56xH6x128 2x2 2 relu 0
5 3xConvolution 256 56x56x256 3x3 1 relu 1475328
Max Pooling 256 56x56x256 2x2 2 relu 0
7 3xConvolution 512 28x28x512 3x3 1 relu 5899776
Max Pooling 512 14x14x512 2x2 2 relu 0
10 3xConvolution 512 14x14x512 3x3 1 relu 7079424
Max Pooling 912 TX7x512 2x2 2 relu 0
14 FC - 4096 - - relu 102764544
15 FC - 4096 - - relu 16781312
Output FC - 1000 - - softmax 4097000
Total number of parameters 134,264,641

Table 2.3: VGG-16 structural details using padding = 1

2.12.4 ResNet

In the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of 2015, Kaim-
ing He and his colleagues proposed a new deep neural network architecture called
ResNet (short for Residual Network) [56]. The design of ResNet introduced "skip
connections" and significant batch normalization (BN). These connections also re-
ferred to as gated units or gated recurrent units, bear similarities to successful
components of recent RNNs.

- iy - - - - il (5)
: il I }—\%w == .= H%)}@M*l

1000

() () () nﬂ (£) (=) (&) n
Q Q (%) @
(=)

Canv black idertity black

Figure 2.17: ResNet-50 architecture from .

45

Chapter 2 — Deep Learning

max pool _| global
ax3 *| identily avg-pool

%16

l

input

224%224%3

10400

R =5

Identity block
Figure 2.18: ResNet identity block from .

The intuition behind this approach is that by connecting the previous layer’s
output with the unchanged input, the subsequent layer is encouraged to learn new
and distinct information not already encoded in the input. This helps to prevent
redundancy and promotes the discovery of novel features and patterns. Additionally,
these connections can help mitigate the vanishing gradients problem, which refers
to the issue of gradients becoming extremely small as they propagate through deep
neural networks, making it difficult for earlier layers to learn effectively. By providing
direct connections, the gradients have a shorter path to flow through, addressing the
vanishing gradients problem to some extent .

Layer Input size | Output size Filter Parameters
Convolutionl 224x224x3 | 112x122x64 7x7x64, stride = 2 9472
3xConvolution2 3x3 Max pooling, stride = 2 0
(Convolution Block + 2x(Identity block)) 112x122x64 | - 56x56x64 1x1x64
3x3x64 214800
1x1x256
1x1x128
4xConvolution3 .)
1x(Convolution Block) + 3x(Identity block) 56x56x64 | 28x28x128 Fxdx128 1216000
1x1x512
1x1x256
6xConvolutiond
. . 28x28x128 | 14x14x256 3x3x256 7088128
=
1x(Convolution Block) + 5x(Identity block) Lx1x1024
. 1x1x512
3xConvolutionb
. . 14x14x256 7xTx512 3x3xH12 14953472
1x(Convolution Block) + 2x(Identity block) 1x1x2048
FC TxTx512 1x1x1000 | Average pooling, 1000-d FC, Softmax | 2049000
Total number of parameters 25,636,712

Table 2.4: ResNet structural details.

2.12.5 GoogleNet

In 2014, Google researchers introduced GoogleNet, a deep convolutional neural
network with Inception architecture. It achieved remarkable results on the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC) dataset, a commonly
used benchmark for object recognition tasks. Since then, GoogleNet has become
widely recognized and studied in computer vision. Its architecture was first described

46

Chapter 2 — Deep Learning

in a research paper "Going Deeper with Convolutions" published the same year [57].

GooglLeNet uses the Inception module to apply multiple operations on the same
input map simultaneously. This module runs multiple kernels of different sizes in
parallel and concatenates their outputs to produce a single output. By using fil-
ters of different sizes on the same level, the network can become "wider" instead
of "deeper", which was the intention of the module’s creators. The architecture
was designed for computational efficiency and practicality, enabling it to be run on
devices with limited processing power and memory. The network has 22 layers (or
27 layers when including pooling layers) if we only count layers with parameters.

Q (F) (R)

Inception modle

Figure 2.19: GoogleNet architecture (Inception V1) from .

The GoogleNet architecture consists of approximately 100 layers, but the spe-
cific number may vary depending on the machine learning infrastructure used. Un-
like other popular networks like VGGNet and AlexNet, GoogleNet has a different
structure, including a 1x1 Convolution layer at the center of the network and global
average pooling at the end instead of fully connected layers. With around 6.8 million
parameters (excluding auxiliary layers), GoogLeNet has significantly fewer param-
eters than AlexNet (9 times less) and VGG-16 (20 times less), making it a more
efficient network in terms of memory and processing power.

47

Chapter 2 — Deep Learning

Type Patch size / Stride | Output size | Depth | #1x1 Ej()i(sce #3x3 Ejé{jw #5x5 | Pool Proj | Parameters
Convolution TX7/2 112x112x64 1 - - - - - - 2.7K
Max Pooling 3x3/2 56x56x64 0 - - - - - - -
Convolution 3x3/1 56x56x192 2 - 64 192 - - - 112K
Max Pooling 3x3/2 28x28x192 0 - - - - - - -

Inception (3a) - 28x28x256 2 64 96 128 16 32 32 159K
Inception (3b) - 28x28x480 2 128 128 192 32 96 64 380K
Max Pooling 3x3/2 14x14x480 0 - - - - - - -
Inception (4a) - 14x14x512 2 192 96 208 16 48 64 364K
Inception (4b) - 14x14x512 2 160 112 224 24 64 64 437K
Inception (4c) - 14x14x512 2 128 128 256 24 64 64 463K
Inception (4d) - 14x14x528 2 112 144 288 32 64 64 580K
Inception (4e) - 14x14x832 2 256 160 320 32 128 128 840K
Max Pooling 3x3/2 7x7x832 0 - - - - - - -
Inception (5a) - TxTx832 2 256 160 320 32 128 128 1072K
Inception (5b) - 7x7x1024 2 384 192 384 48 128 128 1388K
Average Pooling x7/1 1x1x1024 0 - - - - - - -
Dropout (40%) - 1x1x1024 0 - - - - - - -
Linear - 1x1x1000 1 - - - - - - 1000K
Softmax - 1x1x1000 0 - - - - - - -
Total number of parameters 6,8M

Table 2.5: GoogleNet structural details.

2.12.6 MobileNet

MobileNet is a class of efficient neural network architectures designed for mobile
and embedded vision applications. It was developed by Google researchers in 2017
[58] as a part of the TensorFlow library. MobileNets employ depthwise separable
convolutions, which decompose the standard convolution operation into two separate
steps:

e Depthwise convolution: is a spatial convolution performed independently
on each input channel. The output channels are then concatenated to form
the output feature map. This reduces the number of parameters and compu-
tation required compared to a standard convolution. The computational cost
of depthwise convolution is proportional to the depth of the input feature map

M, the square of the kernel size Dk?, and the square of the output feature map
size D f2.

e Pointwise convolution: Is a 1x1 convolution applied to the output of depth-
wise convolution. It uses a kernel size of 1x1 to perform a linear combination
of the output channels. This further reduces the number of parameters and
computations required. The computational cost of pointwise convolution is
proportional to the number of input and output channels X.

This approach significantly reduces the number of parameters in the network
and leads to lightweight models that can be run on resource-constrained devices.
MobileNets have been widely used in various computer vision tasks, such as image
classification, object detection, and semantic segmentation.

The MobileNet architecture consists of a total of 28 layers, including both depth-
wise and pointwise convolutions. Adjusting the width multiplier hyperparameter can
reduce the parameters in a standard MobileNet to 4.2 million. The input image size
is 224 x 224 x 3. The detailed architecture of a MobileNet is given below:

48

Chapter 2 — Deep Learning

Depthwise Convolution

¥

i

Dy Dy conv[T,

i

Pointwise Convolution

1x1 conv
L)

Figure 2.20: MobileNet architecture from [59].

Layer Input size | Stride Filter Parameters
Convolutionl 224x224x3 2 3x3x3x32 992
Convolution dwl | 112x112x32 1 3x3x32 dw 416
Convolution pwl | 112x112x32 1 1x1x32x64 2304
Convolution dw2 | 112x112x32 2 3x3x64 dw 832
Convolution pw2 56xH6x64 1 1x1x46x128 8704
Convolution dw3 56xH6x128 1 3x3x128 dw 1664
Convolution pw3 56xH6x128 1 1x1x128x128 16896
Convolution dw4 56xH6x128 2 3x3x128 dw 1664
Convolution pw4 56x56x128 1 1x1x128x256 33792
Convolution _dwb 56x56x256 1 3x3x256 dw 3328
Convolution pwb) 56x56x256 1 1x1x256x256 66560
Convolution dw6 56x56x256 2 3x3x256 dw 3328
Convolution pw6 14x14x256 1 1x1x256x512 133120
bxConvolution dw7 | 14x14x512 1 3x3x512 dw 33280
5xConvolution pw7 | 14x14x512 1 1x1x512x512 1320960
Convolution dw8 14x14x512 2 3x3x512 dw 6656
Convolution pw8 Tx7x512 1 1x1x512x1024 528384
Convolution dw9 Tx7x1024 2 3x3x1024 dw 13312
Convolution pw10 Tx7x1024 1 1x1x1024x1024 | 1052672
Average pooling Tx7x1024 1 Tx7x1024 0
FC Tx7x1024 1 1024x1000 1025000
Softmax 1x1x1000 1 - 0
Total number of parameters 4,253,864

Table 2.6: MobileNet structural details.

49

Chapter 2 — Deep Learning

Conclusion

We have covered the most prevalent deep learning concepts in the previous chapter.
In the next chapter, we will delve into deep learning applications in computer vision,
with a particular focus on semantic image segmentation and object detection.

20

Chapter 3

Semantic Segmentation and Object
Detection

Introduction

Computer Vision is one of the most important fields in artificial intelligence and
computer science, which involves teaching computers to interpret and understand
images and videos.

In this chapter, we will specifically cover two important tasks within computer
vision: segmentation and object detection. Additionally, we will explore various
techniques and approaches used to solve these two important computer vision tasks
in the context of deep learning. We will discuss popular architectures such as UNet
and its variants, DeepLab, YOLO, RCNN, and SSD, and examine their respective
strengths and weaknesses. By the end of this chapter, readers should have a clear
understanding of these tasks and the techniques used to solve them in the context
of deep learning in computer vision.

3.1 semantic segmentation

Semantic segmentation is a method used in computer vision to assign a label to
each pixel in an image, with the aim of dividing the image into meaningful and
semantically consistent regions|60].

This involves assigning labels to each pixel that correspond to specific objects
or regions of interest. Unlike object detection or recognition, which focuses on
detecting and classifying objects in an image, semantic segmentation produces a
segmentation map that assigns a label to each pixel in the image. This technique
has various applications, such as in autonomous driving, medical image analysis,
and scene understanding for robotics|61]. To achieve semantic segmentation, deep
learning techniques like convolutional neural networks (CNNs) or fully convolutional
neural networks (FCNs) are used, which learn to perform pixel-wise classification
by predicting the probability distribution over classes for each pixel location [62].

CNNs are ideal for semantic segmentation because they can effectively identify
local features in an image by applying convolutional filters that extract relevant

o1

Chapter 3 — Semantic Segmentation and Object Detection

information at various spatial scales. Meanwhile, FCNs are a specific type of CNNs
tailored for semantic segmentation that incorporate both convolutional and decon-
volutional layers to accurately predict segmentation maps based on input images.

3.2 Techniques and Approaches for Semantic Seg-
mentation in Deep Learning

U-Net and its variations,including Attention U-Net and Residual Attention U-Net,
as well as DeepLab, are examples of deep learning-based semantic segmentation
methods.

3.2.1 U-Net

U-Net is a popular deep learning architecture for image segmentation tasks, particu-
larly in the biomedical field. It was introduced in a 2015 paper by Olaf Ronneberger,
Philipp Fischer, and Thomas Brox [46]. the U-Net architecture relies on data
augmentation to learn more effectively from the available labeled data. The use of
data augmentation techniques, such as rotation, scaling, and flipping of the input
images, helps to increase the diversity of the training data and improve the robust-
ness of the model to variations in the input.

The U-Net architecture is designed for image segmentation tasks, where the goal
is to classify each pixel in an image into one of several categories. It consists of two
paths the first path is called the contracting path or encoder or analysis path, The
second path is called the expansion path or a decoder or synthesis path [63].

The encoder path consists of a series of convolutional and max-pooling layers,
which progressively reduce the spatial dimensions of the input image while increas-
ing the number of channels. This process allows the network to capture high-level
features of the image, such as edges, corners, and textures.

The decoder path uses a series of up-convolutional and concatenation layers
to increase the spatial resolution of the feature maps while reducing the number
of channels. The skip connections between the encoder and decoder paths allow
the network to recover detailed information from earlier layers and improve the
segmentation accuracy.

52

Chapter 3 — Semantic Segmentation and Object Detection

64 64
128 64 64 2
input
: output
image |&/|#» > > q
) segmentation
tile ol ol &l =
@l O off ™ map
NEE | [[
i st Sl & &l B
= = =
N Ofl ©
NI~ ©
[TeRTe] BT3)
'128 128
256 128
il M E
H B E Sl L
N N o~
¥ a6 25 512 256 t
% > > =»conv 3x3, ReLU
= o= 3
= 4 copy and crap
1024 512
{ einem ¥ max pool 2x2
1024 43 B 4 up-conv 2x2
[| S
S S =» conv 1x1

@™ o~

Figure 3.1: U-Net architecture

This describes the basic components of the U-Net architecture for image seg-
mentation:

e Input image tile: the U-Net model takes an input image tile as its input,
which is typically a small region of an image.

e Convolution with 3x3 filter and ReLU activation: this operation applies
a convolutional filter with a size of 3x3 to the input image tile, followed by a
rectified linear unit (ReLU) activation function. This helps to extract features
from the input image.

e Copy and crop: after each convolutional layer in the contracting path, the
feature maps are copied and concatenated with the corresponding feature maps
in the expanding path. Before concatenation, the feature maps in the expand-
ing path are cropped to match the size of the corresponding feature maps in
the contracting path.

e Max pooling with 2x2 filter: this operation reduces the spatial resolution
of the feature maps while preserving their important features. It is used in the
contracting path to downsample the feature maps.

e Up-convolution with 2x2 filter: this operation increases the spatial reso-
lution of the feature maps while reducing their number of channels. It is used
in the expanding path to upsample the feature maps.

e Convolution with 1x1 filter: this operation is used to perform a linear
combination of the channels in the feature maps, reducing their dimensionality
and increasing their representational power.

93

Chapter 3 — Semantic Segmentation and Object Detection

e Output segmentation map: the final output of the U-Net model is a seg-
mentation map, which assigns a label to each pixel in the input image tile
based on its predicted class.

3.2.2 Attention U-Net

Attention U-Net is a variant of the U-Net architecture for image segmentation that
was introduced in a 2018 paper by Ozan Oktay, et al[64],The Attention U-Net archi-
tecture is designed for image segmentation and incorporates an attention mechanism
that allows the model to focus on relevant regions of the input image while ignoring
irrelevant regions. The model takes in an input image and applies a series of oper-
ations including a 3x3 convolution followed by a ReLU activation, upsampling by a
factor of 2, and max pooling. The output is then fed into a skip connection.

F; x Hex Wyx Dy

] (& 'Sa (3¢
59 |5 HEREE
E = HEREE
s2% (& (e o Pxix | x| 8
2|5 |E] (9] |9 Qg Q] iEE| (=) 2
= < >:‘ : f Lxlx X | onxy X x| 2
I BN ESES Cisispls| el (28
S S R DX ox x o
Q o | o < Vol o [o el [
E 3 S S 'R Q Tz o)
o] [[J [t e I e I Bl I (Conv 3x3x3 + ReLU) (x2)
IR (B k] (K i
= = - o D x X < 7 Ll\jlpsamplllpg ((t:)y 22))
| | S []] S | ax-pooling (by
x x E = 0 E { E E Skip Connection
i LY = = H o & [Gating Signal (Query)
> x -7 -
< f * _ Concatenation
E < /) Attention Gate
) (e

Figure 3.2: Attention U-Net architecture from |64]

The attention mechanism in the Attention U-Net is based on a gating mechanism
that assigns weights to different regions of the feature maps. The attention maps
are computed by applying a softmax function to the output of a convolutional layer,
which is used to scale the feature maps. The attention gate requires two inputs: x,
which is obtained from the output of the previous layer, and g, which is obtained
from the next lowest tier of the network and has lower dimensions but better feature
representation.

The vectors x and g are processed and added element-by-element. The resulting
vector is then passed through a ReLU activation layer and a 1x1 convolution layer,

o4

Chapter 3 — Semantic Segmentation and Object Detection

reducing the dimensions to 1x32x32. A sigmoid layer is used to scale the resulting
vector between 0 and 1, producing the attention coefficients or weights. The at-
tention coefficients are upsampled to the original dimensions of the x vector using
trilinear interpolation.

the original x vector is multiplied element-by-element with the attention coeffi-
cients, scaling the vector according to relevance, before being passed along normally
in the skip connection. By incorporating the attention mechanism into the U-Net
architecture, the Attention U-Net can improve the accuracy of image segmentation,
particularly in cases where there are complex structures or background noise in the
input image.

3.2.3 Attention Residual U-Net

Residual Attention U-Net is an extension of the Attention U-Net architecture. It
incorporates standard convolutional blocks that include one or more convolutional
operations followed by ReLLU activation and an optional batch normalization layer.

The output of these blocks is then combined with the input through residual
connections. These residual connections enable the model to learn the residual
information between the input and output during training, resulting in improved
information flow and performance in image segmentation tasks.

£ |9 sig| (5| §
Weihdual consahrssa bk & u | | =
s kit bt gl |E EiE| |E &
= - S
Chutpals alx T |= & £ sigE = B
Ohatpuis Elm | HPUE H =N
=l || B = Lol =W
Cony + RelU R TR gig) |5 % i .
Coav + RelLU -l el g 1 = i Wk + Rel i) i1
= == 1515 Al Upaarmzing [ty 21
< o i eiE . :
Comv + RelLU £ |& |4 o x| £ T
Canv + Rel. 1 a &) SR | Ship Consactian
T / = B B | | g Bl Fhur
it 3| |1 Cirsasnaber
LTI e = = Asantica Gass
o] |

Figure 3.3: Attention Residual U-Net architecture

3.2.4 DeepLab

Chen and colleagues developed two of the most commonly used methods for image
segmentation, DeepLabv1 [65] and DeepLabv2 [66].

The latter method has three key features that set it apart. Firstly, it uses dilated
convolution to address the network’s reduced resolution caused by max-pooling and
striding. Secondly, it incorporates ASPP, which employs Atrous convolution with
varying dilation to capture information about objects at multiple scales. Finally, the
method combines deep CNNs and probabilistic graphical models to improve object
boundary localization.

The researchers subsequently introduced DeepLabv3 [67], which comprises cas-
caded and parallel dilated convolution modules. The ASPP module gathers the

%)

Chapter 3 — Semantic Segmentation and Object Detection

parallel convolution modules, including a 1x1 convolution and batch normalization.
To create the final output with logits for each pixel, all outputs are concatenated
and passed through another 1x1 convolution.

Inp ~ DCNN Aeroplane Coarse

- Score ma
Atrous Convolution ﬁ
E3 . - I

'

Bi-linear Interpolation

Final Output

Q

Figure 3.4: The DeepLab model

Deeplabv3+ was released in 2018 [68],The architecture of this method uses an
encoder-decoder architecture (figure that incorporates atrous separable convo-
lution, which consists of a depthwise convolution (a spatial convolution for each
input channel) and a pointwise convolution (a 1x1 convolution with the depthwise
convolution as input).

The DeepLabv3 framework is used as the encoder, and the model employs a
modified Xception backbone with additional layers, dilated depth-wise separable
convolutions instead of max pooling, and batch normalization (BN) instead of max
pooling.

“Decoder

Upsample
Low-Level p;, P <

Features

‘ !
1x1 Conv| —» ﬁ_.. _,@_, B3 Corv| | Upsargple B

B~

Prediction

Figure 3.5: The DeepLabv3+ model from

26

Chapter 3 — Semantic Segmentation and Object Detection

3.3 Performance Metrics for Semantic Segmenta-
tion

Once a machine learning model has been developed for semantic segmentation, the
next crucial step is to evaluate its predictive performance. To achieve this, it is nec-
essary to partition the data into training and validation sets to compute appropriate
metrics. These metrics include:

3.3.1 Intersection-Over-Union

Commonly used loss functions in DNNs, such as softmax loss, are suitable for tradi-
tional classification problems where accuracy is the primary objective. However, in
the case of image segmentation, the foreground and background classes are highly
imbalanced. Hence, the IoU (Intersection-Over-Union) method is commonly used
to evaluate the performance of image segmentation techniques. This method calcu-
lates the IoU for each semantic class before averaging over all classes and is a typical
semantic image segmentation assessment metric [70].

Mean IoU is a variant of IoU used for semantic segmentation, which computes
the IoU for each semantic class separately before averaging over all classes. It is
defined as the ratio of the true positive predictions to the sum of true positive, false
positive, and false negative predictions for each class.

[oU is defined as follows:

10U — True Positive

(True Positive + False Positive + False Negative)

The predictions are accumulated in a confusion matrix, weighted by a variable, and
the metric is then calculated.

3.3.2 Accuracy

This metric measures the proportion of correct predictions made by the model. It
is calculated by dividing the number of correct predictions by the total number of
predictions. The formal definition of accuracy is as follows:

Number of correct predictions

Accuracy =
4 Total number of predictions

The following formula can be used to calculate accuracy if we had positive and
negative numbers in a binary classification:

True Positives + True Negatives

Accuracy =
4 True Positives + True Negatives + False Positives + False Negatives

3.3.3 Precision

Precision is a measure of the accuracy of positive predictions. It indicates how well
the minority class has been identified. Precision is calculated by dividing the number
of correctly predicted positive cases by the total number of positive cases expected.
The formal definition of Precision is as follows:

True Positives

Precision =
False Positives + True Positives

57

Chapter 3 — Semantic Segmentation and Object Detection

3.3.4 Recall

Recall, also known as sensitivity or true positive rate, measures the proportion of
actual positive samples that are correctly classified as positive. It is calculated by
dividing the number of correctly classified positive samples by the total number
of actual positive samples. Unlike precision, recall takes into account the positive
samples that were missed and gives an indication of how well the model is able to
cover the positive class. The recall score ranges from 0 to 1, with 1 indicating that
all positive samples were correctly classified. The formal definition of Recall is as

follows:

T'rue Positi
Recall — rue Positives

True Positives + False Negatives

3.3.5 F-Measure (F1 Score)

The F-measure, also known as the F1 score, is a metric that combines precision
and recalls into a single score to provide a comprehensive evaluation of the model’s
performance. It is particularly useful in situations where both precision and recall
are equally important.

The F-measure is calculated as the harmonic mean of precision and recall, which
is expressed mathematically as follows:

DPrecisi
1 Score — 9 recision * Recall

Precision + Recall

An F1 score of 1 means that both the precision and recall are at their maximum
values, indicating that the model has made no false positives or false negatives. On
the other hand, a score of 0 indicates that the model has made no correct predictions
at all |71].

3.3.6 Jaccard similarity coefficient

The Jaccard similarity coefficient is a versatile and straightforward formula that
can be used in different contexts, such as image segmentation. It is a useful metric
to evaluate the quality of image segmentation, by measuring how similar the seg-
mentation results are to the ground truth. The formula of the Jaccard similarity
coefficient involves the intersection and union of the segmentation result S and the

ground truth G.
5 AGNS)
- AGUS)
The Jaccard similarity coefficient equation includes an operation of counting
quantity denoted by A(x). In this equation, the numerator represents the number
of matching pixels or true positives, which are the pixels correctly identified as

belonging to the target object or class |72].

3.4 Object Detection

Object detection is a highly dynamic research field within computer vision that in-
volves two primary tasks: object classification, which entails identifying and labeling

o8

Chapter 3 — Semantic Segmentation and Object Detection

every object in an image, and object localization, which involves identifying each
object and drawing a bounding box around it|73].

Recent advances in deep learning have significantly improved the accuracy and
efficiency of object detection systems. The development of CNNs has enabled the
creation of more powerful and accurate models that can process large amounts of
data quickly. Omne popular approach in object detection is YOLO and R-CNN.
These models have demonstrated impressive results in object detection tasks and
have been widely adopted in various computer vision applications.

Object detection is a field with numerous applications, ranging from surveillance
and security to autonomous driving with UAVs. It also has a critical role in ob-
ject recognition and scene comprehension, which are fundamental tasks in computer
vision. With the continuous advancement of computer vision, object detection sys-
tems are expected to become more precise and efficient, creating new opportunities
for their utilization in various fields.

3.5 Techniques and Approaches for Object Detec-
tion in Deep Learning

here are some techniques and approaches used specifically in object detection:

3.5.1 You Only Look Once

YOLO is a popular object detection architecture in computer vision that was first
introduced in 2016 by Joseph Redmon et al [74].

YOLO uses a single neural network to predict bounding boxes and class prob-
abilities directly from full images, allowing for real-time object detection with high
accuracy. This makes it a popular choice for applications such as surveillance, self-
driving cars, and robotics. The YOLO architecture has undergone several improve-
ments over the years, including the use of anchor boxes, batch normalization, and
feature pyramid networks, making it one of the most widely used and well-regarded
object detection algorithms.

There are several factors that have contributed to YOLO’s success in the com-
petition. These include its rapid processing speed, high level of detection accuracy,
strong ability to generalize well across different data sets, and the fact that it is
open-source and freely available to the community [75].

29

Chapter 3 — Semantic Segmentation and Object Detection

AdR

ELl _’ﬁ
3 Ty TS r

NEEN | — | m— (¢

m
L 7 ¥
] [4 sn 1824 1834) L) an

Conv. Laysr Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. layers | Conn. layer Conn. layer
7aTabdad 3x3x192 1x1x128 Ix1x256 g 1x1x512 Yo 3x3x1024
4 Moxpeol Layer 4Maxpool Layer Ix3x256 Ix32512 Ix3x1024 Ix3x1024
i v B 2x2-52 11256 1x1x512 JxIx1024
3Ix3x512 Ix3x1024 Ax3x 102 452
iMaxpool layer Moxpool Layer 4 & 4
2x2-52 2x2-+2
1 convolution | convolution 4 convolutions 442 +2=10 22+2=4 2 convolutions
convolutions convolutions

24 convolution |oyers

Figure 3.6: architecture of YOLO .

The detection network in question consists of 24 convolutional layers and 2 fully
connected layers. In between the convolutional layers, there are 1x1 convolutional
layers that help to reduce the feature space from the preceding layers. The network
is pretrained on the ImageNet classification task using half the resolution (224x224
input image). After pretraining, the resolution is doubled for detection.

The following versions of YOLO have been released up to this point:

e YOLOV1: Released in 2016, it was the original version of YOLO and used a
single neural network to perform object detection.

e YOLOvV2: Released in 2017, it improved the detection accuracy and speed
of YOLOv1 by using a more complex neural network architecture and imple-
menting batch normalization [76).

e YOLOV3: Released in 2018, it further improved the detection accuracy and
speed of YOLOv2 by using a feature pyramid network and performing multi-
scale predictions [77].

e YOLOv4: Released in 2020, it introduced several new techniques such as
spatial pyramid pooling, Mish activation function, and CIoU loss function,
which significantly improved the accuracy and speed of YOLO .

e YOLOvV5:Released in 2020, it is a lighter and faster of YOLOv4 that uses
a different neural network architecture called the "Scaled-YOLOv4" and
achieves state-of-the-art performance on several object detection benchmarks

In addition to YOLOvVH, newer versions have also been released, including YOLOvV6,
YOLOvT7, and YOLOvVS8. These newer versions are focused on improving the speed
and accuracy of object detection in different contexts.

60

Chapter 3 — Semantic Segmentation and Object Detection

3.5.2 Region-based Convolutional Neural Networks

The R-CNN It is an object detection algorithm that was introduced in 2014 by Ross
Girshick, et al [79].usually referred to as R-CNNs, which is short for region-based
CNN, The R-CNN family expanded to include Fast-RCNN and Faster-RCN, respec-

tively .

R-CNN, as the fundamental region-based architecture, lays the groundwork for
comprehending the inner workings of various other object-recognition algorithms.
Although it is considered a basic approach, it has been highly influential in the
field of object detection and localization by effectively applying convolutional neural
networks. Its success and early adoption played a crucial role in advancing the
development of more sophisticated detection algorithms that followed .

Warped region ﬂ‘ Tree? No

|

e S s
e = ! ,
b L o iy S R CNNIN :
k 3

4‘ Water? No |

1. Input images 2. Extract region 3. Compute CNN features 4. Classify regions
proposals (~2k)

Figure 3.7: R-CNN architecture

Fast R-CNN It was introduced in 2015 by Ross Girshick at Microsoft Research
, is a modification of the R-CNN object detection method that aims to improve
detection speed while also increasing detection accuracy. It proposes a different
approach to the region proposal module by applying the CNN feature extractor to
the entire input image first and then proposing regions, which reduces the number
of ConvNets needed to process the input [31].

61

Chapter 3 — Semantic Segmentation and Object Detection

S g-box Two outpul layers
dassifer regressor
LY 7
Fixed-size Rols after [ror | "1 Fusy connected layers
the Rol pooling layer —)
Proposed Rols ‘/ f/r T / > /" Rol pooling layer
have different sizes. f * f _
- ol extracior
/L7/—_—fz // | (setective search
4 .

Feature axtracior

Conviet

Input mage

Figure 3.8: Fast CNN architecture |\

The input image is first inserted into the algorithm, then the region proposals
are created using an algorithm such as selective search. Next, features are extracted
from each region proposal using a pre-trained CNN, followed by the classification of
each region’s proposal into one of the categories of objects. Finally, the boundary
box retreat is made to revise the boxes to identify detected objects.

Faster R-CNN It was proposed in 2015 by Shaoqing Ren et al . is a further
modification of the R-CNN family of object detection methods that improve upon
the region proposal mechanism of Fast R-CNN. Faster R-CNN introduces a Re-
gion Proposal Network (RPN) that shares the same features as the object detection
network and predicts object proposals, eliminating the need for a separate proposal
generation algorithm. The RPN enables Faster R-CNN to generate region proposals
faster and with higher accuracy than Fast R-CNN.

Additionally, Faster R-CNN replaces the Selective Search algorithm used in R-
CNN and Fast R-CNN with the RPN-based proposals, leading to even faster de-
tection times. This approach achieved state-of-the-art results on several benchmark
datasets and has become a widely used method in the field of object detection [31].

62

Chapter 3 — Semantic Segmentation and Object Detection

Region proposal natwork (RPN)

Bounding box
coordinates
(x, y. w, B)
»
__H Mo object
Object
I . Bounding box
coordinates
> (x. y, w. h)
VGG-16
Class A
Class B
Feature
— Fast R-CNN

Figure 3.9: Faster CNN architecture \\

3.5.3 Single Shot Detector

In 2016, the SSD model was introduced as a one-stage object detection algorithm
. Unlike two-stage detectors such as R-CNN, SSD directly predicts the object
bounding boxes and class labels without the need for a separate region proposal step.
SSD employs a series of convolutional layers with varying feature map resolutions to
detect objects at multiple scales and aspect ratios. Additionally, the algorithm uses
default bounding boxes, known as anchor boxes, at each feature map location to
improve object localization. These techniques enable SSD to achieve high accuracy
in object detection tasks.

LUK Y Xy ¥
o

"
™, (00)

i , conf
i

.........

Figure 3.10: architecture SSD .

63

Chapter 3 — Semantic Segmentation and Object Detection

3.6 Performance Metrics for Object detection

Performance metrics play a vital role in assessing the accuracy and effectiveness
of object detection algorithms. These metrics provide quantitative measures to
evaluate the performance of the models and compare them against each other. Here
are some commonly used performance metrics for object detection:

3.6.1 Average Precision

Average Precision calculates the average precision values across different levels of
recall. It considers the precision and recall trade-off and provides a single numerical
value to represent the overall performance of the model. The formal definition of
Average Precision is as follows:

- 1 & -
AveragePrecision = — E Precisionat Recall;
n =

=1

3.6.2 Mean Average Precision

Mean Average Precision calculates the average precision values for multiple object
classes and computes the mean across all classes. It is widely used as a standard
metric for object detection evaluation.The formal definition of Mean Average Preci-
sion is as follows:

m
MeanAverage Precision = — Z AveragePrecision forclass;
Jj=1

3.6.3 Intersection over Union

[oU measures the spatial overlap between the predicted bounding box and the
ground truth bounding box. It is calculated as the ratio of the intersection area
to the union area of the two bounding boxes. A high IoU value indicates a better
localization accuracy.The formal definition of IoU is as follows:

_ AreaofIntersection

IoU =

AreaofUnion

3.6.4 Precision-Recall Curve

The precision-recall curve plots the precision values against different levels of recall.
It provides a visual representation of the trade-off between precision and recall,
allowing for an analysis of the model’s performance at different operating points,
which is expressed mathematically as follows:

TruePositives

Precision =
TruePositives + FalsePositives

64

Chapter 3 — Semantic Segmentation and Object Detection

TruePositives

Recall =

TruePositives + FalseNegatives

3.6.5 F1 Score

The F1 score is the harmonic mean of precision and recall. It provides a single
metric that balances both precision and recall, giving an overall assessment of the
model’s performance, which is expressed mathematically as follows:

9. Precision -
FlScore — recision - Recall

Precision + Recall

3.6.6 Mean Average Precision at different IoU thresholds

This metric computes the average precision at specific IoU thresholds, such as 0.5,
0.75, or others. It provides insights into the model’s performance at different levels
of localization accuracy, which is expressed mathematically as follows:

1 k
MeanAverage PrecisionatloUthreshold, = z Z AveragePrecisionatIoUthreshold,pourclasse;
j=1

Conclusion

This chapter covered the fundamental concepts and techniques for semantic seg-
mentation and object detection in deep learning. We looked at various popular
models such as UNet, DeepLab, Mask R-CNN, YOLO, and SSD, which have made
significant contributions to computer vision tasks. With the rapid advancement of
deep learning, we can expect even more sophisticated models and techniques to be
developed in the future, making computer vision applications more powerful and
accurate than ever before.

65

Chapter 4

Experiments and results

Introduction

In this chapter, we will showcase the outcomes of our study focusing on semantic
segmentation and object detection using several models such as UNet, DeepLab, and
YOLO. The chapter will contain a problem definition, dataset description, and an
explanation of the data augmentation techniques employed to enhance the available
data. Additionally, we will delve into the construction of the training methods
and the conducted experiments. The results will be presented and compared, with
evaluation using evaluation metrics. Lastly, we will briefly overview the hardware
infrastructure and software tools used in our deep learning study.

4.1 Problem definition

The problem we focus on in this study revolves around the analysis of images cap-
tured by drones in areas impacted by floods. We have two primary objectives.
Firstly, we aim to identify and categorize objects present in the images with pre-
cision, including vehicles, houses, trees, etc., and discern their status amidst the
flooding using semantic segmentation. The second objective is to assess the extent
of homes affected by the floods through object detection.

To achieve these goals, we rely on leveraging deep learning models such as UNet,
DeepLab and YOLOv8n. These models provide us with the ability to analyse im-
ages accurately and efficiently, thereby enhancing the ability to assess damage and
improve the accuracy of flood disaster analysis.

4.2 Experiments on semantic segmentation

This section will introduce the dataset used, outline the chosen backbone architec-
ture, and detail the outcomes achieved through the application of the U-Net and
DeepLab deep learning models on the FloodNet dataset.

66

Chapter 4 — Experiments and results

4.2.1 Dataset
4.2.1.1 FloodNet

FloodNet offers high-resolution images obtained from low-altitude sources, distin-
guishing it from satellite imagery taken from higher altitudes that may encounter
obstructions such as clouds and smoke. The unique characteristics of FloodNet’s
images result in clearer scenes, which can greatly assist deep-learning models in
making more precise decisions about post-disaster damage assessment. By provid-
ing detailed and unobstructed visual data, FloodNet enhances the accuracy and
effectiveness of deep learning algorithms in analyzing and assessing the extent of
damages following a disaster. The data was collected with a small UAS platform,
DJI Mavic Pro quadcopters, after Hurricane Harvey. The original dataset comprises
2343 images, whereas we specifically utilized a subset of 50 images along with their
corresponding masks for our experiments.

The FloodNet dataset comprises multiple classes or categories for semantic seg-
mentation and object detection. These classes are represented in the table below
(Table [4.1). The dataset provides valuable information for analyzing and under-
standing flooded areas, allowing for more accurate identification, segmentation, and
detection of various objects or areas within the imagery—the assigned colors for
each class aid in visually distinguishing them during the segmentation and object
detection processes.

These classes represent different objects or areas within the flooded scenes and
provide valuable information for accurately identifying and assessing the extent of
flooding and damages in the affected areas [84).

Class Index Class Name
Background
Building Flooded
Building Non-Flooded
Road Flooded
Road Non-Flooded
Water
Tree
Vehicle
Pool
Grass

OO0 || T =W N~ O

Table 4.1: Class Definitions - FLOODNET Dataset.

The images in the FloodNet dataset are either resized or cropped to dimensions
that are multiples of 256. They are subsequently stored in a designated directory.
Each image undergoes a process where patches sized 256x256x3 are extracted and
preserved. After cutting the images into 256x256 patches, the total number of im-
ages is 8415. Then, you separated the images into two categories: those containing
useful information (images with masks having more than 5% non-zero pixels) and
those without useful information. The number of useful images is 5066, while the
number of useless images is 3349.

67

Chapter 4 — Experiments and results

For model training, approximately 90% of the available images from the train-
ing dataset, which amounts to 4559 images with a resolution of 256x256 pixels,
are used for training the models. The remaining 10% is reserved for the validation
process which amounts to 507 images.

The training process involves using a batch size of 16 and running 100 epochs.
The number of steps per epoch is determined by dividing the number of training
images by the batch size (4559/16 = 284, 94).

The model output layer has been used as a softmax activation function, which is
important for multi-category classification functions because it determines probabil-
ity scores for each category. Adam Optimizer is used during the process of assembling
models. As for loss function, it uses a specialized function, sm.losses.categorical-
focal-jaccard-loss. The model’s performance is assessed using two metrics: accu-
racy, which measures the general correctness of predictions, and the IoU, which
determines the overlap between predicted truth areas and the ground in the frag-
mentation function.

To ensure easy access without re-training the model from scratch, we store the
models in hdf5 format and save the training history, which includes metrics such
as accuracy and loss, as a spy file once the training is complete. This allows us to
utilize the models and review their performance at any desired time. Here are some
prominent features of the dataset are shown in figure [4.1]

Image 1 Image 2 Image 3

Figure 4.1: Some representative images from theFloodNet dataset.

4.2.2 Backbone

In the context of deep learning, the term "backbone" refers to the architectural
element that determines the arrangement of layers in the encoder network and es-
tablishes the structure of the decoder network. The backbone typically includes
convolutional neural networks such as VGG, ResNet, and Inception. These CNN
architectures are the foundation for feature extraction and representation learning
in various computer vision tasks, including object detection and semantic segmen-
tation.

68

Chapter 4 — Experiments and results

The choice of backbone architecture plays a crucial role in determining the per-
formance and efficiency of the overall deep learning model.

4.2.3 Evaluation and comparison

The obtained performance metrics such as accuracy and IoU are given in (Table
4.2). In training our models, we have fixed the Hyperparameters of training so we
can put all the models in the same training environment and evaluate them.

Accuracy | IoU | Val Accuracy | Val IoU
Unet+Resnet34 0.7471 0.5855 0.7377 0.5731
Unet+VGG19 0.7221 0.5477 0.7036 0.5279
DeeplabV3 0.9528 0.8944 0.6367 0.4931

Table 4.2: Results of the performance metrics for each model for semantic segmentation

From Table[4.2] we can observe that the best results are achieved by the Unet+Resnet34
model. This approach gives an IoU metric of 0.5855, which is the best among all
the studied models. The same trend can be noted with the evaluation using the ac-
curacy metric, where the highest value is achieved by the Unet+Resnet34 model
with an accuracy value of 0.7471.

Comparing the models, we can see that the Unet+VGG19 model achieves
slightly lower performance in terms of both accuracy and IoU metrics, with an ac-
curacy value of 0.7221 and an IoU value of 0.5477.

The DeeplabV3 model is experiencing overfitting. Despite achieving relatively
high accuracy of 0.9528 and a model’s IoU of (0.8944), the obtained validation
accuracy of 0.6367 and IoU of 0.4931 indicate that the Deeplabv3 model struggles
with generalization.

Overall, the Unet-+Resnet34 model outperforms the other models in terms of
both accuracy and IoU metrics, followed by the Unet+VGG19 and DeeplabV 3
models, respectively.

In figures , and), we display the evolution of the values of the per-

formance metrics in every epoch of the training and validation process in our models.

69

Chapter 4 — Experiments and results

Training and Validation Loss

11
—— Training loss Training and validation loU
—— Validation loss e
0.6 — Training lou o
1.0 —— Validation loU T
et
05
0.9
E 0.4
08 3
03
0.7
02
0.6 M
01
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

(a)

Training and validation Acc

—— Training Acc
—— Walidation Acc

0.7

0.6

0.5

acc

0.4

03

0.2

20

40 60
Epochs

(©)

80 100

(b)

Figure 4.2: Evolution of the values of the performance metric in Unet-+Resnet34

70

Chapter 4 — Experiments and results

Training and Validation Loss Training and validation loU

—— Training loss —— Training lou v
—— Vvalidation loss —— Validation loU NM

0.5

0.4

Loss
oy

03

0.2

Training and validation Acc

—— Training Acc PR
0.7 —— validation Acc b

e ——r—

0.6
© 05
0.4

03

0 20 40 60 80 100
Epochs

(©)
Figure 4.3: Evolution of the values of the performance metric in Unet+VGG19

71

Chapter 4 — Experiments and results

Training and Validation lou

Training and Validation Loss 09 — Training lou o~
. /
a— i —
— Taining loss Validation lou \/\/_/\
—— Validation loss 0.8 s
20
o7
15 0.6
2
7 2
g 05
10
0.4
5 03
A R ~— 02
o —_—
0 20 a0 &0 80 100 0 20 40 60 80 100
Epochs. Epochs

(a) (b)
Training and Validation acc

10
—— Training acc —

gg — Validation acc /_/-/
0.8

07

o 20 40 60 80 100
Epochs

(©)

Figure 4.4: Evolution of the values of the performance metric in DeepLab.

72

Chapter 4 — Experiments and results

4.2.4 Visual results

Testing Image Testing Label Prediction

00 150 200 50 100 150 200 250

(a) Unet+Resnet34 prediction (Imagel)

Testing Image Testing Label Prediction

50 100 150 200 250

(b) Unet+Resnet34 prediction (Image2)

Testing Image Testing Label Prediction

00 150 200 50 100 150 200 250

(c) Unet+Resnet34 prediction (Image3)

Prediction

Testing Image Testing Label

100 150 200 250

0

(d) Unet+Resnet34 prediction (Image4)

Figure 4.5: Visula results for the semantic segmentation using Unet+Resnet34 model.

73

Chapter 4 — Experiments and results

Prediction

0
50

100

150

200 \

250

0 50 100 150 200 250 0 50 100 150 200 250 0 S0 100 150 200 250

Testing Image Testing Label

(a) Unet+VGG19 prediction (Imagel)

Prediction

Testing Image Testing Label

o

0
100
150

200

250 25 I

50 100 150 200 250 O 50 100 150 200 250 0 50 100 150 200 250

(b) Unet+VGG19 prediction (Image2)

Prediction

n

250
50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

(c) Unet+VGG19 prediction (Image3)

Testing Label

Testing Image

Prediction

50 100 150 200 250 0 50 100 150 200 250

Testing Image Testing Label

50 100 150 200 250 0

(d) Unet+VGG19 prediction (Imaged)

Figure 4.6: Visula results for the semantic segmentation using Unet+VGG19 model.

4.3 Experiments on the object detection

4.3.1 Dataset
4.3.1.1 RescueNet

"RescueNet" is a dataset comprising a diverse collection of images used for structural
damage detection in building assessment. The dataset possesses several key charac-
teristics that make it suitable for training object detection models and classifying
building damages. Here are some prominent features of the dataset:

e Number of images: The dataset comprises 7016 distinct images representing
various scenes of buildings.

e Data format: Images are annotated in the YOLOvVS format, a common format
for machine learning tasks, especially object detection.

e Data augmentation: Data augmentation techniques were applied to each source
image, creating multiple versions with various transformations. These trans-
formations include a 50% probability of horizontal and vertical flips, equal

74

Chapter 4 — Experiments and results

probability of one of three 90-degree rotations (none, clockwise, counter-clockwise),
random rotation between -15 and 415 degrees, random shear horizontally and
vertically between -15° and +15°, and random brightness adjustments between
-25% and +25%.

e Data split: The dataset is divided into three main subsets: a training set
containing 94% of the data, a validation set comprising 4% of the data, and a
smaller test set accounting for 2% of the data.

e Damage classification: The dataset focuses on classifying damages in buildings
into three primary classes: "Moderate-Damage," "No-Damage," and "Total-
Destruction."

e Image resolution: All images in the dataset have a size of 640x640 pixels,
making them suitable for object detection and damage classification tasks.

This dataset was created with the goal of training object detection models specif-
ically for the task of identifying and classifying damages in buildings. It can be
valuable for various applications, such as post-natural disaster damage assessment
or building condition evaluation. Additionally, the dataset was created using the
Roboflow platform, which facilitated the process of data collection, enhancement,
and transformation. Figure [1.7] shows some representative images in the dataset.

Image 2

Image 3

-

Figure 4.7: Some representative images from the RescueNet dataset.

4.3.2 Evaluation

In the table[1.3] RescueNet data represent the analysis of damage to buildings based
on the following three categories: "Moderate-Damage," "No-Damage," and "Total-
Destruction". It shows the total number of instances in each category, as well as the
probabilities for the selected bounding boxes, and the Recall values indicating the
model’s ability to detect true positives. It also includes the model’s average precision
in detecting the categories (MAP50) and in the range of IoU=0.50 to 0.95 (MAP50-
95). High values in MAP and MAP50-95 indicate better performance in detecting
the categories, while other values, such as R, indicate the model’s effectiveness in
identifying true positive cases.
Here are the detailed results:

75

Chapter 4 — Experiments and results

Class Instances | Box(p) | R | MAP50 | MAP50-95
All 927 0.703 | 0.58 | 0.665 0.419
Moderate Damage 249 0.61 | 0.622 | 0.604 0.381
No Damage 299 0.756 | 0.559 | 0.806 0.576
Total Destruction 279 0.745 | 0.459 | 0.584 0.301

Table 4.3: Damage detection results using 8 batches and 25 epochs.

Figure shows the information related to the manual labeling of the objects
in this dataset. We present the subfigures in Figure from left to right and
top to bottom. The first subfigure shows the number of objects of each type in
the dataset and indicates that the objects are dominated by "No-Damage". The
second subfigure shows the size of the object bounding boxes in the dataset, and the
coordinates of the centers of all object boxes are fixed at one point. The size of the
object bounding box size shows that the dataset contains a large number of small-
area objects. The third subfigure represents the distribution of the coordinates of the
central points of the object identification funds, and it can be seen that the central
points of the objects are scattered in the image data area. The fourth subfigure
displays a scattered representation of the width and height corresponding to the
object bounding boxes, with the darkest color at the bottom left corner of the plot.
It further illustrates that the current dataset is predominantly composed of small
objects. This reflects that the data was captured from a high vantage point using
drones, allowing for the detection of objects despite their small size.

8000 -
7000 -
6000 -
§ 5000 -

[=
£ 4000 -
[%)

£ 3000 -
2000 -
1000 -
0-

No-Damage -

Total-Destruction

o
o
©
£
©

e
[}
i}
©
[id
7}

°
S

=

1.0-
0.8-
0.6 -
-
0.4-

0.2 -

0.0-
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
X width

Figure 4.8: Information about the manual labeling of objects in RescueNet dataset.

76

Chapter 4 — Experiments and results

Below in Figure |4.9| are the curves illustrating the model’s performance in object
detection during training and validation.

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)

] 0.6
—e— results 0.7 {H
3.51
-=++ smooth 3.04 |
2.5 - 064 0.5

3.01
0.4

2.0 4 251 231 0.5
2.0 . T 0.3
2.0 1 0.4
1.5 N‘.“"‘““ 151 \ 0.2
: —| 104 : —l 151 : : 0.3 : : : :
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
2.8
221 2 0.4
3.01 2.6 0.6 - #
2.0 4
2.4 0.5 A 0.34
: 2.5+ :
181 221 0.41
0.2 1
1.6 4 2.0 2.0 0.3 N
1.4) 1.87 0.2 J
1.5 . 0.1 /
T T T T 1.6 1 T T v‘ 01 3 T T T T
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Figure 4.9: Graphs Performance Metrics Curves for Object Detection Model

Train box-loss, train cls-loss, train dfl-loss: These curves represent the model’s
loss during training. These curves gradually decrease, meaning the model is learning
well and improving in predicting bounding boxes and classes.

Val box-loss, val cls-loss, val dfl-loss: These curves represent the model’s loss on
the validation dataset. These curves decrease gradually, meaning the model per-
forms well on data it has not seen during training.

Metrics/precision(b), metrics/recall(b), metrics/map50(b), metrics/map50-95(b):
These plots show how the model performs in precision, recall, and the average pre-
cision metric (MAP) for bounding boxes when using a specific loU (for MAP50
and MAP50-95). These curves are increasing, so the model better predicts object
locations.

4.3.3 Visual results

Figure [4.10] presents some visual results obtained by applying the YOLOv8 model
to the RescueNet dataset.

7

Chapter 4 — Experiments and results

26\Modera'(e [N

Figure 4.10: Examples of object detection results.

4.4 Hardware used in deep learning

Deep learning algorithms require significant computational power to process large
amounts of data and perform complex calculations. Various hardware components
are commonly used in deep learning systems to accelerate the training and inference
processes. This section will discuss three key hardware components: Central Pro-
cessing Units (CPUs), Graphics Processing Units (GPUs), and Tensor Processing
Units (TPUs).

4.4.1 Central processing units

A CPU is a computational device composed of multiple Arithmetic Logic Units
(ALUs), a Control Unit, a Cache Memory, and a Dynamic Random-Access Mem-
ory (DRAM). Due to their superior power, CPUs enable computers to perform a
wide range of tasks with precision and versatility. This versatility stems from the
substantial memory capacity of CPUs, which can exceed 1TB of RAM, facilitating
faster and lower latency retrieval of memory packages from RAM. In contrast, GPUs
(Graphics Processing Units) do not currently meet the rigorous requirements of DL.
Nonetheless, CPUs play a vital role in supporting GPUs by providing ample data
and managing read /write operations between RAM /HDD during preparation stages

[85].

78

Chapter 4 — Experiments and results

4.4.2 Graphics processing units

In recent years, GPUs, which are primarily designed for generating polygon-based
computer graphics, have witnessed significant advancements in computing power.
This can be attributed to the increasing complexity and demand for realistic graphics
in modern video games and graphic engines. Leading the market is NVIDIA, known
for its GPUs equipped with thousands of cores optimized for high-performance com-
puting. Interestingly, these processors have demonstrated their ability to handle
neural network computations and matrix multiplications, extending their utility be-
yond graphics processing [86].

GPUs have become the standard choice for training deep learning systems like
CNNs and RNNs. They offer high-speed processing, allowing for training on large
batches of images in just milliseconds. However, GPUs have high power consump-
tion, typically around 250 watts, requiring a full PC setup with an additional 150
watts. More advanced GPU systems can consume up to 400 watts. Popular GPUs
for training DL neural networks include ZOTAC GeForce GTX 1070, ASUS ROG
Strix Radeon RX 570, Gigabyte GeForce GT 710, and Sapphire Radeon Pulse RX
580.

4.4.3 Tensor processing units

Google has developed TPUs based on custom ASICs (Application-Specific Inte-
grated Circuits) specifically designed to accelerate machine learning workloads. TPUs
have been created with Google’s extensive expertise and leadership in machine learn-
ing in mind. They excel at accelerating linear algebra computations, which are
widely used in machine learning applications.

TPUs offer significant benefits when training large and complex neural network
models. They greatly reduce the time required to achieve accurate results, enabling
models that previously took weeks to train on other hardware platforms to converge
in a matter of hours. TPUs in the cloud are optimized for individual workloads,
ensuring efficient performance. In some cases, it may be appropriate to use GPUs
or CPUs on Compute Engine instances for machine learning workloads. The choice
of hardware depends on the specific requirements of the workload. It is important
to select the appropriate hardware to achieve optimal performance [87].

79

Chapter 4 — Experiments and results

4.5 Deep learning Software and tools

In this section, we will present the meanings and explanations of the programming
languages, software, and tools that were employed in creating our application.

4.5.1 Python programming language

Python is a popular programming language known for its simplicity, readability,
and ease of use, as well as its vast library of open-source packages and modules. It
supports object-oriented and functional programming and provides built-in support
for various data types, including lists, dictionaries, and tuples. Its dynamic type
system allows for flexible and rapid development. Python is widely adopted by
major tech companies, such as Google, Amazon, and Microsoft, and extensively
used in academia, particularly in the fields of data science and machine learning
[88].

@ python’

Figure 4.11: Python logo

4.5.2 Google Colaboratory

Google Colaboratory, or Colab for short, is a free, cloud-based platform that allows
users to write, execute, and share Python code. It provides a Jupyter Notebook
environment, with the ability to access and run code on Google’s cloud servers,
as well as to collaborate with others in real time. Colab comes pre-installed with
popular data science and machine learning libraries, including TensorFlow, Keras,
and PyTorch, making it a popular choice among researchers and educators. Colab
also allows users to upload and work with their own datasets and provides easy
integration with Google Drive [89].

80,

Figure 4.12: Google Colaboratory logo

4.5.3 Open Source Computer Vision Library

OpenCV is an open-source computer vision and machine learning software library.
It provides a comprehensive set of tools for image and video processing, including
various algorithms for image filtering, feature detection, object recognition, and

80

Chapter 4 — Experiments and results

tracking. OpenCV is written in C++ but also has interfaces for other programming
languages, including Python, Java, and MATLAB. The library is widely used in
industry and academia, particularly in fields such as robotics, autonomous vehicles,

and augmented reality [90],

O

OpenCV

Figure 4.13: OpenCV logo

4.5.4 TensorFlow

TensorFlow is a machine learning platform developed by Google that enables engi-
neers and researchers to manipulate mathematical expressions over numerical ten-
sors. It can automatically compute the gradient of any differentiable expression,
making it highly suitable for machine learning. TensorFlow can run on CPUs,
GPUs, and TPUs, and computation defined in TensorFlow can be easily distributed
across many machines. TensorFlow applications can be exported to other runtimes,
such as C++, JavaScript, or TensorFlow Lite, making it easy to deploy in practical
settings. TensorFlow is more than a single library with a vast ecosystem of compo-
nents developed by both Google and third parties. TensorFlow scales well and has
been used to train the exaFLOPS extreme weather forecasting model on the IBM
Summit supercomputer and to develop compute-intensive deep learning applications
such as AlphaZero [91].

TensorFlow

Figure 4.14: TensorFlow logo

4.5.5 Keras

Keras is a high-level deep learning API for Python, built on top of TensorFlow,
that provides a convenient way to define and train deep learning models on top of
different types of hardware (GPU, TPU, or CPU) and can be seamlessly scaled to
thousands of machines. Keras prioritizes the developer experience and offers a wide
range of different workflows, from high-level to low-level, enabling users to build and
train models with varying levels of usability and flexibility [91].

81

Chapter 4 — Experiments and results

Keras

Figure 4.15: Keras logo

4.5.6 Roboflow

Roboflow is a platform and toolset designed to streamline the process of preparing,
annotating, and managing datasets for computer vision tasks. It offers various
features, including data augmentation, annotation tools, dataset versioning, and
integration with popular deep-learning frameworks. Roboflow aims to simplify and
accelerate the development of machine learning models by providing a comprehensive
data preparation and annotation solution.

Figure 4.16: Roboflow logo

4.5.7 Ultralytics

Ultralytics is a suite of tools and libraries in the field of artificial intelligence and
machine learning. It aims to facilitate the development and training of deep neural
network models, particularly in areas like image analysis and object detection. Ultr-
alytics provides useful features and APIs that make it easy to conduct experiments
and analyze results.

ef ultralytics

Figure 4.17: Ultralytics logo

Conclusion

This chapter shows the evaluation of the use of Unet-+ VGG, Unet-+Resnet34, Deeplabv3
models in semantic segmentation as well as the application of YOLO model for ob-
ject detection. The results indicated that Unet+Resnet34 yielded favorable results,
while YOLOv8n showed acceptable performance in object detection.

82

(zeneral conclusion

In conclusion, this research focused on the effective assessment of the measurement
of the proportion of damage to buildings and the assessment of damage after natural
disasters using aerial image analysis. The main objective was to develop an auto-
mated system capable of detecting and classifying different types of damage, with
particular emphasis on identifying affected areas. Significant progress has been made
in the field of semantic segmentation and object detection through unmanned aerial
vehicles (UAVs) and deep learning techniques, specifically synthetic neural networks
(CNNs). Various models, including Unet+Resnet34, Unet+VGG, Deeplabv3, and
YOLOvVS8n, were evaluated in this study. Each model has its strengths and limita-
tions, and its performance has been assessed to achieve accurate and reliable results
in detecting and classifying different types of damage.

In the case of training the model YOLOvS8n, it is worth noting that we opted
for a training duration of only 25 epochs due to hardware resource constraints and
time limitations. While it would have been beneficial to extend this to 50 epochs
for potentially improved results and a more refined model, practical considerations
necessitated the abbreviated training period.

Research results demonstrate the possibility of using aerial image analysis and
deep learning techniques to assess damage after natural disasters efficiently. The
developed system provides valuable insights into the extent and types of damage,
helping with rapid response and recovery efforts. However, further research and
improvements are needed to enhance the system’s performance and expand its ap-
plication in real-world scenarios.

By leveraging the capabilities of drones and deep learning algorithms, this re-
search contributes to disaster management and paves the way for more effective and
automated assessment methods. The application of such technologies can greatly
help mitigate the effects of natural disasters and facilitate timely responses and re-
covery. Despite resource and time constraints, this study represents an important
step forward in seeking more efficient disaster relief efforts.

83

Bibliography

1]

2]

13
4]

[10]

[11]

[12]

Himadri Nath Saha et al. “Waste management using internet of things (iot)”.
In: 2017 8th annual industrial automation and electromechanical engineering
conference (IEMECON). IEEE. 2017, pp. 359-363.

Kathryn Hay and Katheryn Margaret Pascoe. “Engaging social workers in dis-
aster management: Case studies from New Zealand”. In: International Journal
of Disaster Risk Reduction 74 (2022), p. 102941.

Agoston Restas et al. “DrAlone applications for supporting disaster manage-
ment”. In: World Journal of Engineering and Technology 3.03 (2015), p. 316.

Vinay Dubey, Prashant Kumar, and Naveen Chauhan. “Forest fire detection
system using [oT and artificial neural network”. In: International Conference
on Innovative Computing and Communications: Proceedings of ICICC 2018,
Volume 1. Springer. 2019, pp. 323-337.

Dai Quoc Tran et al. “Damage-map estimation using UAV images and deep

learning algorithms for disaster management system”. In: Remote Sensing
12.24 (2020), p. 4169.

Jun Rentschler, Melda Salhab, and Bramka Arga Jafino. “Flood exposure and
poverty in 188 countries”. In: Nature communications 13.1 (2022), p. 3527.

Agoston Restas. “Water related disaster management supported by drone
applications”. In: World Journal of Engineering and Technology 6 (2018),
pp- 116-126.

Jane Bullock, George Haddow, and Damon P Coppola. Introduction to emer-
gency management. Butterworth-Heinemann, 2017.

Naqqgash Dilshad et al. “Applications and challenges in video surveillance via
drone: A brief survey”. In: 2020 International Conference on Information and
Communication Technology Convergence (ICTC). IEEE. 2020, pp. 728-732.

Sharifah Mastura Syed Mohd Daud et al. “Applications of drone in disaster
management: A scoping review”. In: Science € Justice 62.1 (2022), pp. 30-42.

Vishal Gewali and Sanjeeb Prasad Panday. “Deep Neural Networks for Wild
Fire Detection and Monitoring with UAV”. In: Advanced Communication and
Intelligent Systems: First International Conference, ICACIS 2022, Virtual
FEvent, October 20-21, 2022, Revised Selected Papers. Springer. 2023, pp. 411—
423.

Reza Shakeri et al. “Design challenges of multi-UAV systems in cyber-physical
applications: A comprehensive survey and future directions”. In: IEEE Com-
munications Surveys € Tutorials 21.4 (2019), pp. 3340-3385.

84

Chapter 4 — BIBLIOGRAPHY

[13]

[14]
[15]
[16]
[17]

18]

[19]
20]
[21]
[22]

23]

[24]

[25]

[26]

27]
28]

[29]

[30]

Faine Greenwood, Erica L Nelson, and P Gregg Greenough. “Flying into the
hurricane: A case study of UAV use in damage assessment during the 2017
hurricanes in Texas and Florida”. In: PLoS one 15.2 (2020), e0227808.

Sven Mayer, Lars Lischke, and Pawel W Wozniak. “Drones for search and
rescue”. In: I1st International Workshop on Human-Drone Interaction. 2019.

Jose Anand et al. “Drones for Disaster Response and Management”. In: Inter-
net of Drones. CRC Press, pp. 177-200.

Qian Wang et al. “An Overview of Emergency Communication Networks”. In:
Remote Sensing 15.6 (2023), p. 1595.

Milan Erdelj et al. “Help from the sky: Leveraging UAVs for disaster manage-
ment”. In: IEEE Pervasive Computing 16.1 (2017), pp. 24-32.

Aakash Sehrawat, T Anupriya Choudhury, and Gaurav Raj. “Surveillance
drone for disaster management and military security”. In: 2017 international
conference on computing, communication and automation (ICCCA). IEEE.
2017, pp. 470-475.

Kimon P Valavanis and George J Vachtsevanos. Handbook of unmanned aerial
vehicles. Vol. 1. Springer, 2015.

Vandana Mohindru et al. Unmanned Aerial Vehicles for Internet of Things
(IoT): Concepts, Techniques, and Applications. John Wiley & Sons, 2021.

Syed Agha Hassnain Mohsan et al. “Towards the unmanned aerial vehicles
(UAVs): A comprehensive review”. In: Drones 6.6 (2022), p. 147.

Cinzia Albertini et al. “Detection of Surface Water and Floods with Multi-
spectral Satellites”. In: Remote Sensing 14.23 (2022), p. 6005.

Huang Yao, Rongjun Qin, and Xiaoyu Chen. “Unmanned aerial vehicle for
remote sensing applications—A review”. In: Remote Sensing 11.12 (2019),
p. 1443.

Shervin Minaee et al. “Image segmentation using deep learning: A survey”. In:
IEFEFE transactions on pattern analysis and machine intelligence (2021).

Jaskirat Kaur and Williamjeet Singh. “Tools, techniques, datasets and appli-
cation areas for object detection in an image: a review”. In: Multimedia Tools
and Applications 81.27 (2022), pp. 38297-38351.

Zhong-Qiu Zhao et al. “Object detection with deep learning: A review”. In:
IEEE transactions on neural networks and learning systems 30.11 (2019),
pp. 3212-3232.

W Yan. Computational methods for deep learning. Springer, 2021.

Igbal H Sarker. “Deep learning: a comprehensive overview on techniques, tax-

onomy, applications, and research directions”. In: SN Computer Science 2.6
(2021), p. 420.

Nitin Kumar Chauhan and Krishna Singh. “A review on conventional machine
learning vs deep learning”. In: 2018 International conference on computing,
power and communication technologies (GUCON). IEEE. 2018, pp. 347-352.

Josh Patterson and Adam Gibson. Deep learning: A practitioner’s approach.
" O’Reilly Media, Inc.", 2017.

85

Chapter 4 — BIBLIOGRAPHY

[31]
32]

33]

[34]
[35]

[36]

37]
[38]
[39]

[40]

[41]

42]

[43]
[44]
[45]

|46]

147]

Mohamed Elgendy. Deep Learning for Vision Systems. Manning Publications,
2020.

Sagar Sharma, Simone Sharma, and Anidhya Athaiya. “Activation functions
in neural networks”. In: Towards Data Sci 6.12 (2017), pp. 310-316.

P Sibi, S Allwyn Jones, and P Siddarth. “Analysis of different activation func-
tions using back propagation neural networks”. In: Journal of theoretical and
applied information technology 47.3 (2013), pp. 1264-1268.

Yuhan Bai. “RELU-Function and Derived Function Review”. In: SHS Web of
Conferences. Vol. 144. EDP Sciences. 2022, p. 02006.

Nils Bjorck et al. “Understanding batch normalization”. In: Advances in neural
information processing systems 31 (2018).

Sergey loffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International con-
ference on machine learning. pmlr. 2015, pp. 448-456.

J Huber. “Batch normalization in 3 levels of understanding”. In: Towards Data
Science 6 (2020).

Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Proceedings of
the IEEE international conference on computer vision. 2017, pp. 2980—-2988.

Sebastian Ruder. “An overview of gradient descent optimization algorithms”.
In: arXiv preprint arXiv:1609.04747 (2016).

John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient meth-
ods for online learning and stochastic optimization.” In: Journal of machine
learning research 12.7 (2011).

Yurii Nesterov. “A method for unconstrained convex minimization problem
with the rate of convergence O (1/k" 2)”. In: Doklady an ussr. Vol. 269. 1983,
pp. 543-547.

Devansh- Machine Learning Made Simple. How does batch size impact your
model learning. https://medium. com/geekculture/how-does-batch-size-
impact-your-model-learning-2dd34d9fbifa. Dec. 2022.

Andrew Ferlitsch. Deep Learning Patterns and Practices. " Manning.", 2021,
pp- 91-95.

Halit Apaydin et al. “Comparative analysis of recurrent neural network archi-
tectures for reservoir inflow forecasting”. In: Water 12.5 (2020), p. 1500.

Mamta Mittal, Rajiv Ratn Shah, and Sudipta Roy. Cognitive Computing for
Human-Robot Interaction: Principles and Practices. Academic Press, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation”. In: Medical Image Comput-
ing and Computer-Assisted Intervention-MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.
Springer. 2015, pp. 234-241.

Alhassan Mumuni and Fuseini Mumuni. “Data augmentation: A comprehen-
sive survey of modern approaches”. In: Array (2022), p. 100258.

86

https://medium.com/geekculture/how-does-batch-size-impact-your-model-learning-2dd34d9fb1fa
https://medium.com/geekculture/how-does-batch-size-impact-your-model-learning-2dd34d9fb1fa

Chapter 4 — BIBLIOGRAPHY

48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), pp. 436-444.

Shervin Minaee et al. Image Segmentation Using Deep Learning: A Survey.
2020. arXiv: 2001.05566 [cs.CV].

Alberto Garcia-Garcia et al. “A review on deep learning techniques applied
to semantic segmentation. arXiv 2017”7, In: arXw preprint arXiv:1704.06857
(2020).

Raimi Karim. “Illustrated: 10 CNN architectures. towardsdatascience. com”.
In: 2019, https://towardsdatascience. com /illustrated-10-cnnarchitectures95d78ace614d
(2019).

Yann LeCun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifi-
cation with deep convolutional neural networks”. In: Communications of the
ACM 60.6 (2017), pp. 84-90.

Alberto Garcia-Garcia et al. “A review on deep learning techniques applied to
semantic segmentation”. In: arXiv preprint arXiv:1704.06857 (2017).

Sadegh Pasban et al. “Infant brain segmentation based on a combination of
VGG-16 and U-Net deep neural networks”. In: IET Image Processing 14.17
(2020), pp. 4756-4765.

Kaiming He et al. “Deep residual learning for image recognition”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770-778.

Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2015, pp. 1—
9.

Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks
for mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

Sik-Ho Tsang. “Review: MobileNetV1-depthwise separable convolution (lightweight
model)”. In: Towards Data Science (2018).

Tashnim Chowdhury et al. “Comprehensive semantic segmentation on high

resolution uav imagery for natural disaster damage assessment”. In: 2020 IEEE
International Conference on Big Data (Big Data). IEEE. 2020, pp. 3904-3913.

Ilias Papadeas et al. “Real-time semantic image segmentation with deep learn-
ing for autonomous driving: A survey”. In: Applied Sciences 11.19 (2021),
p- 8802.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional
networks for semantic segmentation”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 3431-3440.

Nahian Siddique et al. “U-net and its variants for medical image segmentation:
A review of theory and applications”. In: leee Access 9 (2021), pp. 82031-82057.

Ozan Oktay et al. “Attention u-net: Learning where to look for the pancreas”.
In: arXiv preprint arXiv:1804.03999 (2018).

87

https://arxiv.org/abs/2001.05566

Chapter 4 — BIBLIOGRAPHY

[65] Liang-Chiech Chen et al. “Semantic image segmentation with deep convo-
lutional nets and fully connected crfs”. In: arXiv preprint arXiv:1412.7062
(2014).

[66] Liang-Chieh Chen et al. “Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs”. In: IEEE
Transactions on pattern analysis and machine intelligence 40.4 (2017), pp. 834—
848.

[67] Liang-Chieh Chen et al. “Rethinking atrous convolution for semantic image
segmentation”. In: arXiv preprint arXiv:1706.05587 (2017).

[68] Liang-Chieh Chen et al. “Encoder-decoder with atrous separable convolution
for semantic image segmentation”. In: Proceedings of the European Confer-
encefDG on computer vision (ECCV). 2018, pp. 801-818.

[69] Frangois Chollet. “Xception: Deep learning with depthwise separable convolu-
tions”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 1251-1258.

[70] Md Atiqur Rahman and Yang Wang. “Optimizing intersection-over-union in
deep neural networks for image segmentation”. In: International symposium
on wvisual computing. Springer. 2016, pp. 234-244.

[71] Steven A Hicks et al. “On evaluation metrics for medical applications of arti-
ficial intelligence”. In: Scientific Reports 12.1 (2022), p. 5979.

[72] Ran Shi, King Ngi Ngan, and Songnan Li. “Jaccard index compensation for
object segmentation evaluation”. In: 201/ IEEFE international conference on
image processing (ICIP). IEEE. 2014, pp. 4457-4461.

[73] Yassine Bouafia and Larbi Guezouli. “An overview of deep learning-based ob-
ject detection methods”. In: (2018).

[74] Joseph Redmon et al. “You only look once: Unified, real-time object detec-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 779-788.

[75] Shubham Shinde, Ashwin Kothari, and Vikram Gupta. “YOLO based human
action recognition and localization”. In: Procedia computer science 133 (2018),
pp. 831-838.

[76] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2017, pp. 7263-7271.

[77] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In:
arXiv preprint arXiw:1804.02767 (2018).

[78] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “Yolov4:
Optimal speed and accuracy of object detection”. In: arXiv preprint arXiv:2004.1093)
(2020).

[79] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: Proceedings of the IEEE conference on computer
wiston and pattern recognition. 2014, pp. 580-587.

[80] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international confer-
ence on computer vision. 2015, pp. 1440-1448.

88

Chapter 4 — BIBLIOGRAPHY

[81] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with
region proposal networks”. In: Advances in neural information processing sys-
tems 28 (2015).

[82] Wei Liu et al. “Ssd: Single shot multibox detector”. In: Computer Vision—
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, Octo-
ber 11-14, 2016, Proceedings, Part I 14. Springer. 2016, pp. 21-37.

[83] Jun Deng et al. “A review of research on object detection based on deep learn-
ing”. In: Journal of Physics: Conference Series. Vol. 1684. 1. IOP Publishing.
2020, p. 012028.

[84] Maryam Rahnemoonfar et al. “Floodnet: A high resolution aerial imagery
dataset for post flood scene understanding”. In: IEEE Access 9 (2021), pp. 89644—
89654.

[85] Yasmeen Khaled and Amr Kayid. “Performance of CPUs/GPUs for Deep
Learning workloads”. In: Artificial General Intelligence. May 2018. DOTI: 10.
13140/RG.2.2.22603.54563.

[86] Eugenio Culurciello. Hardware for Deep Learning. Towards Data Science. Mar.
2017. URL: https : // towardsdatascience . com/ hardware - for - deep -
learning-8d9b03df4la.

[87] Google Cloud. Cloud Tensor Processing Units (TPUs). May 2016. URL: https:
//cloud.google.com/tpu/docs/tpus.

[88] Python Software Foundation. Python. What is Python? Ezecutive Summary.
https://www.python.org/doc/essays/blurb/. accessed 2023-05-10.

[89] Google Colaboratory. Website. Accessed: May 10, 2023. URL: https://colab.
research.google.com/.

[90] Gary Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools 25.11 (2000), pp. 120-123.

[91] Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

89

https://doi.org/10.13140/RG.2.2.22603.54563
https://doi.org/10.13140/RG.2.2.22603.54563
https://towardsdatascience.com/hardware-for-deep-learning-8d9b03df41a
https://towardsdatascience.com/hardware-for-deep-learning-8d9b03df41a
https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
https://www.python.org/doc/essays/blurb/
https://colab.research.google.com/
https://colab.research.google.com/

