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ABSTRACT

This dissertation studies the existence and uniqueness of double delay integral
equations. Taylor collocation method is applied to obtain the approximate solution
for linear Volterra integral equations with double constant delay. The method is based
on the use of Taylor polynomials developed for the numerical solution of this type of
equation. We also conducted a careful computational analysis that justifies the errors
generated in the approximate solution up to the order m — 1. Numerical examples are

included to prove the convergent algorithms validity and efficacy.

Key Words: Measurable solution; Exponentially stable solution; Bounded so-
lution; Integrable solution; Linear Volterra double delay integral equations; Collocation

method; Taylor polynomials.



RESUME

Dans ce mémoire, nous étudions I’existence et le résultat d"unicité des équations
intégrales a double retard. La méthode de " Taylor collocation " est appliquée pour
obtenir la solution approchée des équations intégrales linéaires de Volterra avec un
double retard constant. La méthode basée sur 1'utilisation des polynémes de Taylor
est développée pour la résolution numérique de ce type d’équation. Nous présentons
également une étude théorique qui justifie les résultats numériques pour que 'ordre
de convergence soit égal a m — 1. Des exemples illustratifs sont inclus pour prouver la

validité et 'efficacité des algorithmes convergents présentés.

Mots-clés: Solution mesurable ; Solution exponentiellement stable ; Solution
bornée ; Solution intégrable ; Equations intégrales linéaires a double retard de Volterra;

Méthode de collocation; Polynomes de Taylor.
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INTRODUCTION

Integral equations are very valuable mathematical tools used in pure and applied
analysis. The first mention of an integral equation in mathematical literature can be
attributed to Abel in 1823, who encountered it while working on a mechanics problem.

Abel’s elegant solution was published in 1826.

In 1896, Vito Volterra developed a theory of integral equations, considering their
solutions as the inverses of specific integral operators. Ivar Fredholm made a significant
contribution in 1900, leading to an intriguing period of advancement in mathematical
analysis. Poincaré, Fréchet, Hilbert, Schmidt, Hardy, and Riesz were prominent figures

involved in this new field of research.

Volterra integral equations, introduced by Vito Volterra and further studied by
Traian Lalescu in his 1908 thesis under Emile Picard’s guidance, appear in various

mathematical, scientific, and engineering problems.

Double delay integral equations (DDVIEs) are specialized integral equations in-
volving two-time delays. They find applications in engineering, physics, and biology,

such as control systems, biomedical engineering, signal processing, and finance.

The primary objective of this work is to find an approximate solution for linear



INTRODUCTION

Volterra double delay integral equations (DDVIEs) using the Taylor collocation method
(TCM).

The collocation method aims to approximate the exact solution of an integral equa-
tion by employing a suitable function from a chosen finite-dimensional space. The
approximate solution must satisfy the integral equation at specific points on the inter-
val, known as the set of collocation points. In this study, we consider the space of spline

polynomials, denoted as an__li (I'ly), as the approximation space defined in (B=2T)
The key advantages of this method are:
- It is a direct method providing explicit formulas for the approximate solution.
- The method has a convergence order.

- Solving an algebraic system is unnecessary, making the proposed algorithm highly

effective and easy to implement.

The dissertation is structured as follows:

e Chapter One: This chapter covers fundamental notions, definitions, and neces-

sary theorems that will be utilized in the subsequent chapters.

e Chapter Two: Here, we establish existence and uniqueness theorems for nonlin-

ear integral equations with two constant delays.

e Chapter Three: We present a numerical method based on Taylor polynomials,
which constructs a collocation solution in the piecewise polynomial spline space
Sin__li (ITy). We prove the convergence of the approximate solution to the exact

solution. Theoretical results are supported by numerical examples.



CHAPTER 1

GENERALS AND NOTIONS
FUNDAMENTALS



Generals and notions fundamentals

In this chapter, we define some necessary notions and theories, such as the Taylor
series, integral equations, and some definitions which will prove existence theorems of
DDIEs, and also comparison theorems which will demonstrate the convergence of the

approximate solutions.

1.1 Taylor series
Definition 1.1.1 (see[[13]) Let the function f be n times differentiable at a. Then the polynomial
- fl) -
Tn = f(x - ﬂ)],
is called the n™ taylor polynomial of f at a . If f is infinitely differentiable at a, the series
- f@) »
Tx) =) ——(x—a),
is called the taylor series of f at a.

Example 1.1.1 For a function f(x) = 2x + 2x> whose first and second partial derivatives exist

at the point —3. The third-degree Taylor polynomial of f around the point =3 is :

f(=3)
3!

f(=3)

(= (3P

(x = (=3))°

T5(x) = f(=3) + f (=3)(x = (-3)) +

= —24 + 14(x + 3) — 2(x + 3)*.

1.2 Integral equations

In mathematics, an integral equation is an equation where the unknown function is

inside an integral. A standard integral equation in u(x) is of the form:

6
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h(x)

a(x)u(x) = f(x) + )\f k(x,t, u(t))dt, (1.2.1)

g(x)

and if equation (IZT) is linear then it becomes

h(x)

a()ux) = f(x) + A f k(x, Hu(t)dt, (1.2.2)

g(x)

where g(x) and h(x) are the limits of integration, may be variables, constants, or
mixed, A is a constant parameter, and K(x, t) is a known function, of two variables x
and t, called the kernel or the nucleus of the integral equation, the functions f(x) and
a(x) are a known. The unknown function u(x) that will be determined appears inside
the integral sign. In many other cases, the unknown function u(x) appears inside and

outside the integral sign.

1.2.1 Classification of linear integral equations

These equations are classified according to three dichotomies:

i) Location of the unknown equation

First kind: an integral equation is called an integral equation of the first kind if

a(x) = 0, the equation is written:

h(x)
fx)=A f k(x, t)u(t)dt.

g(x)

Second kind: an integral equation is called an integral equation of the second

kind if a(x) = 1, the equation is written:

7



Generals and notions fundamentals

h(x)

u(x) = f(x) + )\f k(x, tyu(t)dt.

g(x)

Third kind: an integral equation is called an integral equation of the third kind

if it is a linear Integral equation of the following form :

h(x)

a(x)u(x) + /\f k(x, tyu(t)dt = f(x).
g

(x)

where a(t) vanishes at a finite number of points in its domain.

ii) Limits of integration
Fredholm linear integral equations (FIEs): anequation of the form (I"22) whose
integration bounds a and b are fixed is called a linear Fredholm integral equation.

1. Fredholm linear integral equations of the first kind:

b
f(x) = Af k(x, t)u(t)dt,

Example 1.2.1
1
cos(x) = f (x — Hu(t)dt.
0

2. Fredholm linear integral equations of the seconde kind:

b
ux) = f(x)+ A f k(x, tyu(t)dt,

Example 1.2.2
1
u(x) = x* + f xtu(t)dt.
0

Volterra linear integral equations (VIEs): in Volterra integral equations, at least

one of the bounds of the integration is a variable.

8
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1. Volterra linear integral equations of the first kind:

fx)=A7A f ' k(x, Hyu(t)dt,
Example 1.2.3
e = %‘[0 (x + Hu(t)dt.

2. Volterra linear integral equations of the second kind:

ux) = F(0) + A f kG e,
Example 1.2.4
u(x) = In(x +2) + f (*# + x)u(t)dt.
0

Volterra-Fredholm integral equations: the Volterra-Fredholm integral equa-

tions appear in the literature in two forms, namely:

X b
a(x)u(x) = f(x) + Al‘fo ki (x, Hu(t)dt + /\zf ko (x, u(t)dt,

and the mixed form

X b
a(X)u(x) = f(x)+ A f(; f k(r, yu(t)dtdr,

where f(x) and k(x, t) are analytic functions. The unknown functions u(x) appears
inside and outside the integral signs. this is a characteristic feature of a second
kind IE . If the unknown functions appear only inside the integral signs, the

resulting equations are of first kind.

Example 1.2.5
X 1
u(x) = 6x + 5x% — f xu(t)dt + f tu(t)dt,
0 0

X 1
u(x) = x + 18x* - f f k(r — tyu(t)dtdr.
o Jo

9
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Notice that the unknown function u(x) appears inside the volterra and fredholm

integrals and outside both integrals.

Singular integral equations: an integral equation is called a singular integral
equation if one or both limits of integration become infinite, or if the kernel
k(x,t) of the equation becomes infinite at one or more points in the interval of
integration.
1. First style of Singular integral equations:
169]
u(x) = f(x) + /\f k(x, tyu(t)dt,

900

where the lower limit g(x), the upper limit h(x), or both limits of integration

are infinite.

Examples 1.2.1
ux)=1+e" - f u(t)dt,
0

u(x) =3x% + f e iy (ndt,

0
u(x) =x+ % I cos(x + t)u(t)dt.

o0

2. Second style of Singular integral equations:

f)=A [ Z-u(d)dt,0 < a < 1 (first kind),

0 (x_t)a

u(x) = f(x) +A j;]x o w(tdt, 0 < a < 1 (second kind).

Examples 1.2.2

3 — * 1 d
X f(; (x—t)éu(t) t,

ux) =1+ x>+ I}x . _1 P u(t)dt.

10
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e If @ = 1 the singular integral equations of first type and second type are

called generalized Abel integral equation.

Remark 1.2.1 The nature of the solution of integral equations solely depends on the
nature of the Kernel of the integral equation K(x,t). Kernels are of the following special

types:

1. Separable or Degenerate Kernel: If the kernel k(x, t) of an integral equation is written

in the form:

n

K t) = Y ai(xBi(t),

i=1
where the functions a;(x) for i = 1, ..., n are free, then it is said to be separable or

degenerate kernel. For example, the kernels xt, x*t* are separable.

2. Symmetric Kernel: If the kernel k(x, t) is a complex-valued function such that:
k(x,t) = k(t, x),

then it is said to be symmetric or Hermitian. For example, sin(x + t).

3. Convolution Kernel: when k(x,t) = k(x —t), then the integral equation is said

integral equation with convolution kernel.

iii) Nature of the known function f

Homogeneous: anintegral equationiscalled anintegral equation homogeneous

if f(x) = 0, the equation is written:

h(x)
a(x)u(x) = Af k(x, tyu(t)dt.
9(0)
Non-homogeneous: an integral equation is called an integral equation non-
homogeneous if f(x) # 0, the equation is written:

i(x)

a@u(x) = f(x)+ A f k(x, t)u(t)dt.

9(x)

11
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1.2.2 Integral equations with delay

Definition 1.2.1 Delay integral equations are those integral equations in which the solution

of the unknown function is given in the previous time interval.

General form of delay Volterra equations

1. The constant delay 7 is visible within the integral sign.

x(t) = g(t) + fot k(t,s)x(s—71)ds te[0,T], tTe€]0,t,
D(t), tel[-7,0[.

where x is an unknown function to be determined, k(f,s) is a continuous kernel

function, g(t) represents a known function, and 7 is a constant delay.

2. The constant delay 7 shows up on at the edges of the integral sign.

) — g + [ kit 9)xs)ds + [ kalt, 9)x(s)ds, € [0,T], 123

D(t), te[-1,0[.

Equation (CZ3) encompasses an important particular delay equation frequently

encountered in physical and biological modeling processes [[4], namely

g + [ k(t,s)xs)ds, te[0,T],
D(t), te[-7,0].

x(f) = (1.2.4)

it corresponds to setting k, = —k;(= k) in (CZ3) . It will be assumed that the given
functions @ : [-7,0 > R, g:[0,T] > R, k: Q>R (Q:=[0,T]x[-7,T]:=
{(t,s) : =t < s <t < T}) are (at least) continuous on their domains such that ([[-24)

possesses a unique solution u € C(I).

Examples 1.2.3

12
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1. Consider the following DVIEs:

0 x(t) = sin(t — 1) + sin(1) + sin(f) — tcos(1) + fot(t —s)x(s—1)ds t,s€]0,T],
X =
sin(t), te]-t0[.

2. Consider the following DVIEs:

" —32(1 + sin(£%)) + j: e~tx(s)ds + fot_l tsin(s)x(s)ds, te€[0,1],
x(t) =
sin(t) + 1, te[-1,0][.

3. Consider the following DVIEs:

vy < | o [kt ox-05)s,  telo1)
¢, t€[-05,0].

Multiple delay Volterra equations

1. VIEs with double delays: The general form of double delay integral equations

as the following:

g0 + [ (k) fuls, x()ds + [ ka(t, 5) fals, x(5))ds
x®) =1 + ftﬂﬁ ks(t, 3) fo(s, x(5))ds, t € [Tp, +00[,
o(t), te[0, 7.

where the constant delays 7, > 71 > 0, the functions g(t), ki(t, 5), ka(t, s), ks(t, s)
and @(t) are sufficiently smooth functions and x(t) is the unknown function

to be determined.

Example 1.2.6

sin(t) + e + ft:?(tz + cos(t + s))x(s)ds, te€[0,1],

x(t) =
et + 12, te[-1,0[.

13
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we have P(t) = e' + 12, ki(t,s) = ks(t,s) =0, g(t) =sin(t) +¢', ka(t,s) = £+ cos(t +s)
and f,(t,x) = x.

1.3 Preliminary notions

Notations and definitions

In this section, we present the preliminary notations and definitions that are used in

this thesis.

Definition 1.3.1 (o -algebra [8]) Let X be any non-empty set. A o -algebra of subsets of X is
a family A of subsets of X, with the properties:

1. 9, XeA.
2. ifE€ A, then X\ E € A

3. Z.fEl, E,, ...e¢ A, then Uie]N E, e A.

There are two extreme examples of sigma algebras:
o The collection {0, X} is a sigma algebra of subsets of X.

o The set P(X) of all subsets of X is a sigma algebra.

Notation 1.3.1 The pair (X,A) is called a measurable space, and the sets in ‘A are called the

measurable sets.

Definition 1.3.2 (Positive measure [6]) Let (X,:A) be a measurable space. A positive measure

on this space is a function u : A — [0, co] such that

1. u@=0.

14
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2. Countable additivity: For any sequence of mutually disjoint sets E,, € A,

u(fj E,) = i u(Ey).
n=1 =1

Notation 1.3.2 The set (X, A, 1) will be called a measure space.

Definition 1.3.3 (Measurable function [9]) Let (X, M) and (Y, N) be measurable spaces. A

fuction f : X — Y is measurable if

forall Be N, the set f~1(B) € M.

Definition 1.3.4 (Exponentially stable [3]) A measurable function h : R* — R is called
exponentially stable, if there are M > 0 and y > 0 such that ¥Vt € R*, |h(t)| < Me™"".

Definition 1.3.5 ( Bounded functions) A function f defined on some set X with real or complex
values is called bounded if the set of its values is bounded. In other words, there exists a real

number M such that Vx € X , | f(x) |[< M.

Definition 1.3.6 ( Integrable functions [6] ) Let (X, A, u) be a measure space. f : X — R be
measurable. Then f is called integrable if fx | fldu < oo.

Definition 1.3.7 ( Compact set [7] ) A set S C R is said to be compact if and only if, for every

collection C of open intervals I such that

SQILEJL

there exists a finite subcollection Cy C C such that

In other words, every open covering of S can be achieved by a finite subcovering.

15
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Definition 1.3.8 ( Topological space [9] ) Let X be a nonempty set. A collection © C P(X) is a
topology if

i 0,Xer,
Gi) ifUjetfori=1,.., M, then Uy (.. Um €T,

(iii) if {Uy}aer is a arbitrary collection of elements of T then | e Uy € T.
Notation 1.3.3 The pair (X, 7) is called topological space and the elements of T open sets.

Definition 1.3.9 ( [9]) X is a topology space, the Borel o -algebras B(x) is the smallest o

-algebras (the intersection of all o -algebras) containing all open subsets of X.
Notation 1.3.4 The elements of B(x) are called Borel sets.

Definition 1.3.10 ( Borel measure [9] ) Let (X, A, p) be a measure space. If X is a topological

space, then u is a Borel measure if every Borel set is in A.

Definition 1.3.11 (Nemytskii operator associated to the function f (Ny) [B])

Let 3(R*, R) be the set of all measurable functions from a subset of R* to R.

Let f : R* x R — R be a measurable function. We define the operator Ny on IJ(R*,R) by
Nex(t) = f(t, x(t)), t € R".

Definition 1.3.12 ([B]) Let k : [T, +oo[ X IR* — R be a given measurable function. We define
the linear operator K on I(R*, R) by the formula

J7 Kt 9)x(s)ds, b€ [, +o],
0, t €0, 7.

(Kx)(t) =

Property 1.3.1 Let E C J(R", R) be a vectorial space satisfying the following property:
If f €e Eand @ # A C D(f), D(f) is the domain of f, then the function: fA (the restriction

16
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of f on A) belongs to E and if f1, f,» € E such that D(f1) N D(f2) = @, then the function
f :D(f1) U D(f2) = R defined by:

fi®), teD(f),

ft) =
(), teD(f)

belongs also to E.

Remark 1.3.1 If f € E, then the function

_ B, teD(f),
| fO teDO)
0, teR*-D(f),

belongs also to E.

Lebesgue Spaces L, 1 <p < o0

Let (X, M, u) be a measure space. Given two measurable functions u,v : X — [—oo, 00],

we say that u is equivalent to v, and we write
u~vifu(x) =v(x)for pa.e xe X

Note that ~ is equivalence relation in the class of measurable functions.
With an abuse of notation, from now on we identify a measurable function u : X —

[—o0, 0o] with its equivalence class [u].

Definition 1.3.13 ( [9]) Let (X, M, u) be a measure space.

Let1 < p < oo, then

LP(X, M, 1) = {u : X — [—co, 0] : u measurable and llullzecx pmp < 00},

1/p
”u”LP(X,M,y) = (f |M|de) .
X

17
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If p = 400, then
L¥(X, M, 1) = {u : X — [—o00, 00] : u measurable and ||u|pox pmu) < oo},
where |[ullL~x ) is the essential supremum (esssup |ul) of the function |ul.
el x, M) = esssup |ul = inf{a € R : |u(x)| < a for pa.e. x € X}.

For simplicity, and when there is no possibility of confusion, we denote the spaces LP (X, M, u)
simply by LP(X, ) or LP(X) and the norms ||ullrrx s by [ullzecxy, ullze or |[ullp.

Remark 1.3.2 X = R with its Euclidean topology and let B(IR) be its Borel o -algebras.

i) LY(R) the set of all Lebesgue integrable functions on R.

ii) L*(IR) the set of all bounded functions on R.

Definition 1.3.14 ( see [9]) Let (X, M, u) be a measure space, with X a topological space,
u: M — [0, co] a Borel measure, and 1 < p < co. A measurable function u : X — [—oo, 0] is
said to belong to L} (X) if u € LP(K) for every compact set K C X. A sequence {u,} C L} (X) is

said to converge to u in L} (X) if u, — u in LP(K) for every compact set K C X,

loc

We note that the spaces L*(R*), L (R*), L'(R"), L, (IR*)satisfy the property (I31).

oc

1.4 Leibnitz rule for differentiation of integrals

Let f(x, t) be continuous and % be continuous in a domain of the x—f plane that includes

the rectanglea < x < b, ty <t <t, and let

h(x)
F(x) = f( | F(x, Dt (1.4.1)
g(x

18
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then differentiation of the integral in (IC4T) exists and is given by

dh(x) ), f Ty 4
g

, d
F (X) = £ = f(x/ h(X)) dx _f(x’ g(X)) dx ) ox

If g(x) = a and h(x) = b where a and b are constants, then the Leibnitz rule (ICZ2)

, dF P Of(x,t)
F (X) = a = f fax dt,

reduces to :

which means that differentiation and integration can be interchanged such as

d b b
o f eMdt = f te*dt.

Example 1.4.1 Consider the equation

F(x) = ¢* + f ' F(t)dt,
0

applying Leibnitz rule, we find
F (x) = & + F(x).

1.5 Piecewise polynomial spaces

LetITy ={t, : 0=1) <t < .. <8 <8 =1 < <..<t;l <!, denote a mesh

(grid) on the given interval I = [0, T], where the stepsize is givenby h =t —t, and
assume that h = 3 = ¢ with N and N positive and integer.
Define the subintervals ¢/, = [t;, t;H[,n =0,..,N-1,i=0,..,r-2,and o}, !, = [t;;_ll, t;f]

Definition 1.5.1 For a given mesh Ily the piecewise polynomial space Sf) (Iy) with u >

0,-1<d <y, is given by

S¥(Iy) = {v € C(11) : vl,, € M, (0 < < N - 1)),
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Here, I1,, denotes the space of (real) polynomials of degree not exceeding u.

1t is readily verified that Sf)(HN) is a (real) linear vector space whose dimension is given by

dimS{(ITy) = N(u —d) +d + 1.

1.6 Collocation method

A collocation method is based on the idea of approximating the exact solution of a
givenintegral equation with a suitable function belonging to a chosen finite dimensional
space such that the approximated solution satisfies the integral equation on a certain
subset of the interval on which the equation has to be solved (called the set of collocation
points ). Here We consider as the approximating space the polynomial spline space. In
order to describe the relevant collocation method for given N , let ITy be a uniform par-
tition of a bounded interval I = [0, T] with gride points t =(@+1)1+nh,n=0,1,..N,
and i = 0,...,vr — 1 where T = (r + 1)t let h be the stepsize. Define the subintervals

o=t b [ n=0,.,N-1,i=0,..,r-2and o}, = [t 7]

n+1

We define the real polynomial spline space of degree m — 1 as follow :
SCL(Iy) = {u(,R) € CT'(IT) : }y = ul,, € Myr,n=0,..,N=1,i=0,..,r—1}

The main advantages of Taylor collocation method are :

i) This method is direct and the approximate solution is given by using explicit formulas.
ii) This method has a convergence order.

iii) There is no algebraic system needed to be solved, which makes the proposed

algorithm very effective and easy to implement.
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1.7 Comparison theorems

Lemma 1.7.1 (Discrete Gronwall-type inequality [#] ) Let {kj}'? be a given nonnegative

sequence, and the sequence {¢,} satisfies

e
&p < Po +Zki€i, n> O,

with pg > 0. Then, &, can be bounded by
n-1
En < poexp [Z k-], n>0.
j=0

Lemma 1.7.2 (Discrete Gronwall-type inequality [1] ) If { fu},50/ {9n},50 a1 {€n} 10 are non-

negative Sequence and
n—-1
En an+zgi€i, n>0,
i=0

then

n—1 n-1
en < fut ijgjexp [Z gk), n>0.
j=0 k=0

Lemma 1.7.3 [B](Discrete Gronwall’s inequality) Assume that (a,)n>1 and (q,)ns1 are given

non-negative sequences and the sequence (&,),>1 satisfies €1 < p and

n—1 n—1
+qu+ 0(8],
=1 =1

then
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EXISTENCE AND UNIQUENESS RESULT OF DDIEs

2.1 Introduction

The aim of this chapter is to stady the existence and uniqueness theorems for the

nonlinear double delay integral equation proved in [B].

g + [ k(t,s)f(s, x(s))ds, t € [Ta,+oo[,
x(t) = =12

_ (2.1.1)
0) te 0,1

2.2 Application of double delay integral equations

The problem (ZI) represents an integral formulation of the following nonlinear

Gurtin-MacCamy model [0, IT].

B(t) = [, K(t,t - 0,5)B(0)do + F(t, ),

(2.2.1)
S(H = [ H(t,t - 0,5)B(0)do + G(t, S),
where
K(t,0,S) =p(0,S)I1(o,t,0,S), H(t,0,S)=y0)l(ot0,S),
I1(o,t,x,S) =exp (— fx pa—o,S(t - o))da) ,
0
F(t,s) = f ) B(a,s)I(a, t,t, S)po(a — t)da,
G(t,s) = foo y(@)1I1(a, t,t, S)po(a — t)da.
Assume
B, S) = RoPo(m)p(S), wu(a,S) = u@), Poa)=Cy@) = Xiga,1(a), (2.2.2)
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Under (Z22), it can be easily seen that (ZZT) becomes

—gm

S(t) = I y(t — o)I(to, t,t — 0, S)B(o)do, (2.2.3)

(%

B(t) = f_a RoCy(t — 0)I(to, t, t — 0, S)P(S(t))B(o)do
a, (2.2.4)

= RoCP(S())S(t)

and that by putting (Z224) in (Z23) we obtain

m

S(t) = RoC f B y(t = o)I(to, t,t — 0, S)P(S(0))S(0)do,
= (2.2.5)

= RoC ft_a y(t — o)exp (— ft_g p(a =t +0,5(0))do | p(S(0))S(0)do
t 0

—ay

The hypotheses (ZZ22) are very common in purely logistic models describing the dy-
namics of a population with a finite life span in which the individuals reach maturation

at the age a™.

Table 2.1: Parameters and their explanation in the nonlinear Gurtin-MacCamy model.

Parameters Explanation

B birth rate

S a weighted age distribution

B age specific fertility

U age specific mortality

¢ nonnegative decreasing function which is responsible for the reduction of fertility
by crowding effect

XI characteristic function of the interval I

a, maximum age of the considered population

a™ maturation age of the considered population

I1(a) survival probability, I1(a;) = 0

K maternity function

R Net reproduction rate: number of newborns per individual in the whole life

H function non increasing and convex

C positive constant

y weight y reflects the different ecological impact from individuals of different ages
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2.3 Existence of a measurable Solution
Let E ¢ J(R", R) be a vectorial space satisfying the property (IL31).

Theorem 2.3.1 ([B]) Suppose that the following conditions are satisfied:

i) g:[12,+0o[ = Rand @ : [0, 7o[ = R are measurable functions such that ®, g € E.

ii) f:IR" X R — R is a measurable function such that the Nemytskii operator Ny transforms

the space E into itself.

iii) k : [15,+0o[ x R* — R is a measurable function and the linear integral operator K

generated by the function k transforms the space E into itself.

Then Problem (171 has a unique measurable solution defined on R*.

Proof. It is clear that there exists a unique integer r > 1 such that rt; < 1, < (r+1)7;.
We define the function x : R* — R as follows: x = x,, on the interval [0, (r + n)t[ for

n > 1 such that

D(t), if tel0,1o]
t—11

g(t) + j;_Tz k(t,s)f(s, D(s))ds, if te ][ty (r+1)t]
Using definition (C311), we obtain

x(t) =

x(t) = o0 Y tellml 2.3.1)
g(H) + RND)B), if te [t (r+ 1)l

and forn > 2

Xn1(t), if tel0,(r+n-1)7

H =
) g(t) + ft:? k(t,s)f(s, xu-1(s))ds, if te€[(r+mn—1)t1, (r +n)7q[
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Using definition (C3T), we obtain

() = xn_l(t),_ if tel0,(r+n—-1)7] (2.32)
g(t) + (KNgx,_1)(t), if te[(r+n—1)1, (r+n)7[

We will prove that the sequence (x,) is well define and x,, € E for all n > 1.

1. Wehave x; = ® € E on [0, 72[, and on [y, (r + 1)71[ we have x; = g + KNfCD €E.
Then, by the property (L31), we deduce that x; € E.

2. Assume that x,_; € E for n > 2, hence by the definition of x,, we get x, € E on
[0, (r + n — 1)71[. Moreover, by the assumptions of Theorem (Z31), we deduce
thatx, =g + Efon_l eEon|[(r+n—-11,(r+n)t.

Then, by the property (*), we get x,, € E.
Thus the sequence (x,) is well define and x,, € E for all n > 1, therefore the function

x is measurable and define on R*.

Now, we will prove that x is a solution of ().

Step1: xisasolution on [0, (r + 1)71[. By definition, x is a solution of (ZIT) on [0, 75[.
Moreover, for t € [1, (r+ 1)1 [wehave 0 <t — T, <t—71 <111 < Ty

which implies that

t—Tl

x(t) = x1(t) = g(t) + f k(t,s)f(s, D(s))ds,

t—1o

=g(t)+f_ 1k(t‘,s)f(s,x(s))t;ls.

-1

Then x is a solution on [0, (r + 1)74[.
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Step 2: xis a solution on [(r + 1)1y, +oo[. For t € [(r + 1)71, +00[ , there exists a unique

integer n > 1 such that (r + n)t; <t < (r + n + 1)1y, hence

t—T

x(t) = x4 (t) = g(t) + f 1k(if, S)f(s, x,(s))ds,

t—’l’z

=g(t) + ft_ 1k(if, s)f(s, x(s))ds.

1
Then x is a solution on [(¥ + 1)1, +0oo].

For the uniqueness, let y be a solution of (ZTT) on R*, we will prove that x = y by

the following induction.

1. x=yon[0,(r+1)t4[.
We have x = y = ® on [0, 15[ and for t € [15, (r + 1)71[ we have
0<t-—1,<t-1 <r7y <1y then y(t) = g(t) + t:? k(t,s)f(s, D(s))ds = x(t), we
deduce that x = y on [0, (r + 1)74].

2. Assume that x = y on [0, (r + n)74[ for n > 1, and show that x = y on
[0,(r+n+1)Tq].
Lette[(r+n)t,(r+n+1)71[,hence 0 <t -1, <t—11 < (r+n)ty.

Then, -
y(t) = g(t) + f K(t,9)F(s, y(s))ds,

)

= g(t) + f _ 1k(t,s)f(s,xn_1(5))dS

= x(t) = x(b),

which implies that x = y on [0, (r + 1 + 1)74[.
Then Problem (ZTT) has a unique measurable solution defined on R*. m

Remark 2.3.1 Under the conditions of Theorem (I_31)), the solution x need not be in the space

E as in the following counterexample.
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Example 2.3.1 [B] Consider the following double delay integral equation

1+ [ x(s)ds, te [ty +oo,

0, te [01 TZ['

x(t) = (2.3.3)

such that T, — 71 > 1, we have ®(t) =0, g(t) =1, k(t,s) = 1and f(t,x) = x.
Let E = L*(IR"), it is clear that E satisfies the property (IL3) and contains the functions ®©
and g. Moreover, the operators K and N transform the space E into itself. Then, by Theorem
(Z371), Problem (B-41) has a unique measurable solution x defined on R* by (31) and (Z32).
Hence, for all t € [T, (r + 1)t1[, x(t) = x1(t) = Land forall t € [(r + 1)1y, (r + 2)71[, x(t) =
x2(t) = 1+ (12 — 11). So, by using the iteration, we deduce that forn >2andt € [(r +n —

D1y, (r + n)1y),

n—1
x(t) =x0)= ) (m-m).
i=0

This implies that || x ||L~®r+) = 1 for all n > 1.

Consequently, we obtain || x ||p~@r+)= 400 and x ¢ E.

2.4 Existence of an Exponentially Stable Solution

We will need the following lemma.

Lemma 2.4.1 [B] Suppose that the following conditions are satisfied:

i) g : [12,400] = R and @ : [0,72] — R are measurable functions such that ® €

LOO([O/ TZ[)/g €Ly ([TZI +OO[)

Loc

ii) f : R* X R — R is a measurable function and there exist a constant b and a function

a € L7 (RY) such that | f(t,x) <a(t)+b|x|forallt € R" and x € R.
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iii) k : [1p, +oo[ X R* — R is a measurable function and the linear integral operator K

transforms the space L}’ (IR") into itself.

Then Problem (Z11) has a unique solution in L7, (IR*)

Proof. We have the vectorial space L}’ (R") verifies the property (L3.1) and the

[o0]
Loc

functions ®, g € L (R*). Moreover, the assumption (ii) guarantees that the Nemytskii
operator Ny transforms the space L (IR") into itself. Additionally to the assumption
(iii), we deduce, by Theorem (Z3), that Problem (ZTT) has a unique measurable
solution x on IR* defined by x = x,, on [0, (r + n)t4[ for n > 1, where the sequence (x,)
is defined by (Z31)) and (232). Moreover, the sequence (x,) € L° (IR"), hence for all

n > 2,we have x € L*([0, ( + n — 1)7{]), which implies that x € L}? (IR").

Thus Problem (Z1.1) has a unique solution in L (R¥). m

The following result gives a sufficient condition on k so that the operator K trans-

forms the space L;° (IR") into itself.

Proposition 2.4.1 [3] Assume that the function t — fT ?2 | k(t, t—s) | dsbelongsto LY ([72,+00[),

Loc

then the operator K transforms the space Ly (RY) into itself.

Proof. The operator K transforms the space L (IR*) into itself if and only if, for all
a > 7y and for all x € L ([T, +o0[), we have Kx e Ly ([T2, al).

We have for all t € [1,, af

t—T1

| Rx(t) | < g(t) + f 1k, 9) | x(5) | s,

t—’l’z

t—T1
=g(t) + f | k(t,t —s) || x(t —s) | ds, (change of variable)
t

-1

-1
< % lleoaea) f kGt t=3) 1ds, (| F@) 1< f Il ae)
t—’l’z

and since ft:? | k(t, t —s) | ds € Kx € L®([1,, a), then Kx € L([1,, a).

Thus, K transforms the space LY (R*) into itself. m
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Example 2.4.1 [B] Consider Problem (Z11) with g, ® and f fulfilling the assumptions (i) and

(ii) of Lemma (Z41) and k(t,s) = it—ies. Since

t—11
f | k(t,t —s)|ds = [Zt In (%) — (1o — ’cl)] et € LY ([1a, +o0),

)

then, by Proposition (Z4T) and Lemma (Z471), Problem (T) has a unique solution x €
LY (IRY).

Loc

The following result gives the existence of an exponentially stable solution of Prob-

lem (2ZZ1T).

Theorem 2.4.1 [B] Suppose that the following conditions are satisfied:

i) g: [ty +oo[ = Ris exponentially stable and ® € L*([0, 72[).

ii) f:R* X R — R is a measurable function and there exist a constant b and a exponentially

stablea : R* — Rsuch that | f(t,x) <a(t)+b|x|forallt € R" and x € R.

iii) k: [1y, +0o[ X R* — R is a measurable function such that the function

t— f | k(t,t —s) | ds € L}, ([T2, +00[).

iv) There exists ¢ > T, such that ba = b (ess sup fT fz | k(t,t —s)|ds|<1.
t>c

Then Problem (ZZ171) has a unique exponentially stable solution.

Proof. By Proposition (ZZ41), the assumption (iii) guarantees that the operator K
transforms the space L}’ (IR*) into itself, then from the above assumptions, we deduce
by Lemma (Z4T), that Problem (Z1T) has a unique solution x € L° (R"). Moreover,
there exist y1, 2 > 0 such that | g(t) | @' € L*(R") and a(f)e’?' € L*(R*).

Now, let 0 <y < min(y;,72) we have forall t > ¢
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f—1T

() & <l g(t) | " + f 6 | k() || £G5,x(9) | ds

t—1o
f—1T1

<l g(t) | e + ™ f | k(t,s) | a(s)e’*ds
t—1T
t—”[l ’
+e’?b f | k(t,s) || x(s) | €°ds (assumption (ii))
t—1o
<l g(t) | et + &2 f | k(t, t —s) | a(t — s)e”>)ds

1

+ be'™ f | k(t,t —s) || x(t —s) | e"*)ds (change of variable)

1

<l g(z)e"* |lpo@rs +ae”™ || a(z)e’* ||ror+)
+bae’™ || x(2)€”* |lio(e-rpy (| fX) | LI f lleo), (assumption (iv))
<l g(2)e"* ||porr) +ae’?™ || a(z)e"™ [|romw+)

+ bae”™ || x(2)€”* ||t ((e=rpc)) Tbae”™ || x(2)€”* ||z (i)

hence, forall t > ¢

(1 = bae’™) || x(z)e”* |lL=(c, ) <l g(2)e7"* [lLowe) +ae’™ || a(z)e’ ||romwr+)

+ bae’™ || x(2)e”* |l (c=tpc]) -

Since ba < 1, then there exists 0 < y < min(y1,)2) such that (1 — bae’™ > 0, which
implies from the above estimate that x(t)e’" € L*([c, +c0]), moreover x(t)e’* € L¥([0, c]),
it follows that x(t)e’" € L*([0, +0)). Thus Problem (Z-IT) has a unique exponentially

stable solution on R*. m

Example 2.4.2 [B] Consider Problem (1) with g, ® and f fulfilling the assumptions (i) and
(ii) of Theorem (Z41) and k(t, s) = %, hence

fz | k(t, t —s) | ds = 1n(2t _ Tl) € L ([15, +00]).

7 2tT2
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2t — T
th

Since, lim ln( ) = 0, then there exists ¢ > T, such that

t—+oo

b (ess sup | k(t,t —s) | ds) <L

t>c T1

Thus, by Theorem (Z1) , Problem (I1) has a unique exponentially stable solution .

Remark 2.4.1 [B] . If we replace the expression "exponentially stable” by "bounded” in the
assumptions (i) and (ii) of Theorem (Z41) and by setting y = y1 = y, = 0 in the proof, we
obtain a unique bounded solution of (TT).

Theorem 2.4.2 [3] Suppose that the following conditions are satisfied:

i) g:[12, +0o[ = R is exponentially stable and ® € L*([0, t,]).

ii) f: R* xR — R isa measurable function and there exist a constant b and an exponentially

stable a : R* — Rsuch that | f(t,x) <a(t)+b|x|forallt € R* and x € R.

iii) k : [12, +oo[ X R* — R is a measurable function and | k(t,s) |< h(s)ds such that h €

L} (R").

Then Problem (ZL1) has a unique solution x € L7 (IR™). Moreover, there existy > 0,A > 0
and B > 0 such that for all t € RY,

| x(t) | &' < (,8 + A f t h(s)ds) exp (beVTz f t h(s)ds.) (2.4.1)
0 0

Proof. We have, by the assumption (iii), for all « > 2 and for all t € [1,, a]

f | k(t,t —s)|ds < f h(t —s)ds < f h(s)ds < +oo.
1 1 0

Then, by Proposition 241, the operator K transforms K transforms the space L (R*)

Loc

into itself, hence from the above assumptions, we deduce by Lemma 27T, that Problem
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(]
Loc

(ITT) has a unique solution x € L (R*). Moreover, the solution is given by the

following iteration: x = x, on the interval [0, (r + n)71), n > 1 such that

D(t), if tel0,1s]
g + [ k() f(s, Ds)ds, if t€ [T, (r+ Dl

)

and forn > 2

Xn-1(t), if tel0,(r+n—-1)7qf

) =
0 g(t) + ft:? k(t,s)f(s, xn-1(s))ds, if t€[(r+mn—1)t1, (r +n)7q[

On the other hand, there exist y1, 7, > 0 such that | g(t) | &' € L*(R") and a(t)e’*' €
L=(R*).

Let y = min(y1,y,) and define the sequence (€,),>1 as follows: for n > 2

€, = €8S sup {I x(t) | te[(r+n—1)1, (r+ I’Z)Tl[}

and €1 = ess sup {| x(t) | e, t € [0, (r + 1)14[}

Now, forn >2and t € [(r+ n — 1)1y, (r + n)71[, we have
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f—1T1

Ol <l gt e+ [ D [k s) | @(s) + b | x(s) s
g t
’ (r+n—1)11
<l 9@ hoep ey +67 | 2200 [l f h(s)ds
0

(r+n—-1)71
+ be’ ™ f h(s)ds | x(s) | e"*ds
0

(r+1)1;
< g(2)€"* |1 ey, +00p €722 || a(2)€7* ||Lo(r+) f h(s)ds
0

n- (r+))T1
+ 2% || a(z)e"* [|Low+) Z f h(s)ds
=2 (r+j-1)1q
(r+1)11 n— (r+7)71
+ be’ ™ f h(s)ds | x(s) | e"°ds + be’™ Z f h(s) | x(s) | e”°ds
0 =2 (r+j-1)11
n—1 n—1

<l 9@ llm(qeprenp + Z 9+ ) e,
=

where
1)
g1 = e || a(z)e?’? ||por+y €72 f r+m h(s)ds and for j > 2

(r+))T1

q] = el2™2 || a(z)eyzz ||L°°(]R+) f ]’l(S)dS

(r+j-1)1q

a = be'™ [ "% 1y (s)ds and for ji=2

(r+))T1
a; = be’™ f h(s)ds

(r+j=1)

On the other hand, for t € [0, 7;[,we have | x(f) | & < ™ || @ [|r(o,r,p, and for

t € [1p, (r + 1)11[, we have

| x(t) | et <l g(Z)e”lz ||L°°([Tz,(r+1)ﬁ[) +e’ || h ||L°°([o,m[)

X (|| a(z)e" llLqo,rryp +0€7" ™ 1| @ |lre(o,re,p)
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hence,

€1 < max{e’™ || @ ||L= o,z 1| 9(2)"% ||y (r+1)m1D)

+& || hlpomp (1 a2 |lieqormp 0™ | @ llioorap)} = o,
Let g = max{p, || g(z)e”"* ||L=([rp,+o0p}, then for all n > 2

n—1
€, < ﬁ + qu +
i=1

with €; < B, we deduce, by Lemma (I"Z3), that for all n > 2

€, < [ﬁ + y ql) exp [”Z‘,‘ ai]

i= i=1

n—1
a€;
1

i=

(r+n—1)11
= (‘3 + 027 || a(z)e"? ||po e f h(s)ds)
0

(r+n—1)71
X exp (bey’fz f h(s)ds) .
0

Then, for A = 2™ || a(z)e’** ||p~w+ and t € [(r = n — 1)74, (r + n)71[, we obtain
(r+n—-1)11 (r+n—1)71
|x(t) | e <€, < (ﬁ +A f h(s)ds) exp (be?’TZ f h(s)ds)
0 0

< (ﬁ +A f t h(s)ds) exp (beyfz f t h(s)ds) .
0 0

Moreover, for t € [0, (r + 1)71[, we obtain

(r+n-1)71 (r+n—-1)71
|x(t) | e < B < (ﬁ +A f h(s)ds) exp (beVT2 f h(s)ds).
0 0

This completes the proof of the theorem. m
Remark 2.4.2 [B]

1. If h € LY(R*) we deduce, by the inequality (B222), that the solution is exponentially
stable.
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2. If we replace the expression "exponentially stable” by "bounded” in the assumptions (i)
and (ii) of Theorem (Z41), then, by setting y = y1 = y, = 0 in the proof, we obtain the
inequality (ZZ0), with y = 0. Moreover, if h € L(R*), then the solution is bounded.

Example 2.4.3 Consider Problem (ZT1) with g, ® and f fulfilling the assumptions (i) and (ii)
of Theorem oD and k(t, s) = tse" 9. Since

| k(t,s) |< se”® = h(s) € LY(R"),

then, by Theorem U571, Problem (1) has a unique exponentially stable solution.

2.5 Existence of an integrable Solution

Arguing as in Lemma 4], we deduce the following result.
Lemma 2.5.1 [B] Suppose that the following conditions are satisfied:

i) g : [12,400] = Rand @ : [0,72] — R are measurable functions such that ® €

L=([0, 72[), g € L, ([12, +o0]).

Loc

ii) f : R* X R — R is a measurable function and there exist a constant b and a function

a € Ly (RY) such that | f(t,x) <a(t)+b|x|forallt € R" and x € R.

iii) k : 1o, +oo[ X R* — R is a measurable function and the operator K transforms the space

LY (R*) into itself.

Loc

Then Problem (Z11) has a unique solution in L7, (IR*)

The following result gives a sufficient condition on k so that the operator K trans-

forms the space L;? (R") into itself.
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Proposition 2.5.1 [B] Let k be the function defined on by R* by% = f(;(zs) | k(t + s, s) | dt such

that
T1, S2> 1Ty — 11,

O(s) =

-5, 0<s<1,—1;.

If the function% € L® (R*), then the operator K transforms the space L (R*) into itself.

Proof. The operator K transforms the space L} (R*) into itself if and only if, for all

a>21,—1;and x € L! (R*), we have Kx € L!([1,, a]). Assume that k € LY (IR*), then

Loc

for a > 27, — 1y and x € L] (R*), we have

o i t—1T1
f | Kx(t) | dt < f f | k(t,s) || x(s) | dsdt
T T Ji-Tp
27Ty —Tq =11 122 f—11
Sf f | k(t,s) || x(s) | dsdt + f f | k(t,s) || x(s) | dsdt
T - 27y—11 Ji-
27Ty—Tq To—T1 2Ty—1T1
f f k(t,s) || x(s) | dsdt + f f k(t,s) || x(s) | dsdt
t T2—T1
+f f | k(t,s) || x(s) | dsdt
T22"£Zl T S+T) 277 —2T1 27y —Tq
f f | k(t,s) || x(s) | dtds + f f k(t,s) || x(s) | dtds
e To—Tq s+11
f f | k(t,s) || x(s) | dtds
Tp2—T1 s+11
To—Tq 27y—21T1 T
Sf | x(s) | | k(t,s) | dtds + f | x(s) | f | k(t,s) | dtds
0 Tp—S T2—T1 1

+f |x(5)|f | k(t,s) | dtds
T2—T1

<k lzo,c2-m Il X llL2o,e0—7,7) + |l k e (tra—t1 22— X Lt ([ea=11 2(20—11)])

+ 1k e a—rr,ama )l X iy —eya-1y]) -

This shows that Kx € L'([1,, a]).

Thus, K transforms the space Li (R) into itself. m

Example 2.5.1 [B] Consider Problem (I1) with g, ® and f fulfilling the assumptions (i) and
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(ii) of Lemma Z57T and k(t,s) = (t — s)e°. Since

~ (ta—11)e°, s>2T0—1y,

se®, 0<s<T1—11.

then, k € L (IR*), this implies, by proportion 57 and Lemma 571, that Problem (1) has

a unigue solution x € L! (R™).

Loc

The following result gives the existence of an integrable solution of (Z1T).

Theorem 2.5.1 [B] Suppose that the following conditions are satisfied:

i) g:[12,+co[ » Rand @ : [0, 7] — R are measurable function such that g € L'([t,, +0[)
and @ € LY([0, 72]).

ii) f : R* X R — R is a measurable function and there exist a constant b and a function

a € LN(RY) such that | f(t,x) <a(t)+b|x|forallt € R* and x € R.
iii) k: [1y, +0o[ X R* — R is a measurable function such that k € L®(IRY).

iv) There exists ¢ > T, — 71 such that b ||FI; Ilzeo(1c,+00p< 1.

Then Problem (ZI1) has a unique solution x € L'(R*).

Proof. By Proposition I, the assumption (iii) guarantees that the operator K trans-
forms L] (R") into itself, then from the above assumptions, we deduce by Lemma 5T,

that Problem (Z7I-1) has a unique solution x € L! (R*).

Loc
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We will show that x € L'(IR*). We have forall t > ¢ + 1,

t t t S—T1
f | x(s) | ds Sf | g(s) | ds + f f | k(s,7) || a(r) | drds
c+1To C+Tp Cc+Tp S—To
t S—T1
+ f f | k(s,7) || x(r) | drds
t C+Tp S—Tp . .
Sf |g(s)|ds+f f | k(r +s,s) || a(s) | drds

c+13 c T1

f—11 (%)
+b f f | k(r +s,5) || x(s) | drds (change of variable)

<7 ey + Tk ey +0 11K lzsqemll 2 ergen)
< g ey + Tk oy +b 11K e +eonll X e cna))

+ b |l k llze e, +oonll X Nt ety )

hence, forallt > c+ 1,
t

(1= b 1% eoge o) f %) 1 ds <1l 7 llsgwer+ 1 K ool @ ey

c+1To

+ Dl K llze e, roonl X i gecera) -

This shows that L!([7,, +o0]), moreover @ € L'([0, 7,]) and x € L'([7, ¢ + T2]).

Then Problem (ZTT) has a unique integrable solution on R*. m

Example 2.5.2 [B] Consider Problem (I1) with g, ® and f fulfilling the assumptions (i) and
(ii) of Theorem ZAN and k(t,s) = (t + s)e™, hence

[(t1+ e — (12 + 1)e™]e ™ +2(e™ —e ™)se™, s>1T,—1y,

k(s) =
e 2[1,+5+1 -1 —e —2se77], 0<s<t-1.

We have,%is continuous and lims_,mplz(s) then,?is bounded and there exists ¢ < T, such that

bl k (e, +00))< 1. Thus, by Theorem A7, Problem (1) has a unique solution x € LY(R*).
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2.6 Double delay convolution integral equations

Consider the following nonlinear double delay integral equation:

t—T1

gty + [ Bt = 9)f(s,x(s))ds, t € [T2,+0o[,
q)(t), te [0, Tz[,

x(t) = (2.6.1)

where i : R* — R is a measurable function. We have (ZZ&1) is of the form (Z1-T)
such that k(t, s) = h(t — 5). Then | f | k(t,t —s) |ds = [ :2 | h(s) | ds and

7 f;z | h(t) |dt,  s=2Ta—1,
k(s) = L
ﬁz_s|h(t)|df, 0<s<T—1.

The following result is directly yielded by applying Theorem 51 and by using

Remark
Theorem 2.6.1 [3] Suppose that the following conditions are satisfied:

i) g: [12, +oo[ = R is exponentially stable(resp. bounded) and ® € L}([0, 15[).

ii) f: R* xR — R isa measurable function and there exist a constant b and an exponentially
stable function (resp. bounded) a such that | f(t,x) < a(t)+0b | x | forall t € R* and
xeR

iii) i : R* — R is a measurable function such that f: | h(t) | dt < +o0 and b f: | h(t) | dt <
1.

Then Problem (ZT7T) has a unique exponentially stable(resp. bounded)solution . Also,
by applying Theorem (Z21), the following result takes place.

Theorem 2.6.2 [3] Suppose that the following conditions are satisfied:

i) g:[12, +oo[ = Rand @ : ([0, 7o[) — Raremeasurable functions such that g € L([t,, +00[)
and @ € LY([0, T5).
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ii) f : R* X R — R is a measurable function and there exist a constant b and a function

a € LN(R*) such that | f(t,x) <a(t)+b|x|forallt € R* and x € R.

iii) i : R* — R is a measurable function such that f;z | h(t) | dt < +o0 and b f;z | h(t) | dt <
1.
Then Problem (7I1) has a unique solution x € L'(R").

Finally, we consider the following double delay integral equations of the form

RoC ft:? y(t = o)exp (— fot_g p@a—t+o, x(a))da) P(x(0))x(o)do,
x(t) = t €1y, +o0[, (2.6.2)

o(1), tel0,tf.

problem ( Z62) will be studied under the following assumptions:

1. Ry, CeR*.

2. yis a non negative function on R*.

(O8]

. t(a,b) = a(a) such that a is a non negative function.

S

. ¢ is a non negative decreasing function on R*.

5. @ is a non negative function on [0, 75[.

Then Problem (Z62) is a double delay convolution integral equation of the form

(2z60) such that

h(s) = RoCy(s)exp (— fos aa — s)da) , f(s,%) = Pp(x)x.

Moreover, it is clear, by above assumptions, that if (Z62) has a measurable solution
x € R, then x is non negative .

The following corollaries are directly yielded by applying Theorem 6 T(resp. Theorem
67).
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Corollary 2.6.1 [B] Suppose that the following conditions are satisfied:

i) e L0, ).

ii) y,a : R* — R are measurable functions such that

RoCo(0) sz y(t)exp (—f aa — t)da) dt < 1.
T 0

1

Then Problem (Z61) has a unique non negative bounded solution.

Corollary 2.6.2 [B] Suppose that the following conditions are satisfied:
i) @ e LY([0,72]).

ii) y,a : R* — R* are measurable functions such that

RoCo(0) fTZ y(t)exp (—f a(a — t)da) dt < 1.
T 0

1

Then Problem (Z6.1) has a unique non negative solution x € L'(R").
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CHAPTER 3

NUMERICAL SOLUTION OF DOUBLE
DELAY INTEGRAL EQUATIONS
USING TAYLOR COLLOCATION

METHOD
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3.1 Introduction

In this chapter, we apply a direct collocation method based on the use of Taylor poly-
nomials to approximate the solution of linear Volterra integral equations with two
constant delays in the polynomial spline Sf;_li (Ily). The approximate solution is given
by using iterative formulas, and we prove the convergence of the approximate solution

to the exact solution.

We consider the linear Volterra integral equation with two constant delays 71, 7, of

the form:

t—"(l

x(t) = g(t) + fo - ks (t, s)x(s)ds + ft ko (t,s)x(s)ds + ft: ki(t,s)x(s)ds, (3.1.1)

)

for t € [1,, T] and x(t) = ®(t) for t € [0, 72]. In the following we assume that the given

functions g, ki, k», k3 and @ are sufficiently smooth. Furthermore, we suppose that

T2

D(12) = g(12) + f k1(t2,8)D(s)ds + f(; o ky (12, 8)D(s)ds.

2—T

3.2 Description of the method

We suppose that T = (r+1)7,, wherer € {1, 2,3,...}. Let I'ly be a uniform partition of the
interval I = [1,, T] defined by tf1 =@+ 1Dt,+nh,n=0,1,..,N,i=0,1,..,r—1, where the

step-size is given by h = #

11—ty and assume that h = ¢+ = ¥ with N and N; positive

and integer. Define the subintervals ¢}, = [t;;¢# [,[n=0,1,.,N-1,i=0,1,.,r—2and
ont = [, ti;']. Moreover, denote by 7, the set of all real polynomials of degree not

exceeding m. We define the real polynomial spline space of degree m — 1 as follows:
SCU(IIy) = {u(,R) € C'(ID) : u, = ul; € Ty, n=0,..,N-1,i=0,1,.,r—1}. (3.2.1)

This is the space of piecewise polynomials of degree (at most) m — 1. Its dimension is

rNm, i.e., the same as the total number of the coefficients of the polynomials uh,n =
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0,..,N-1,p=0,1,.,r-1.To find these coefficients, we use Taylor polynomial on each

subinterval.

3.2.1 Approximate solution in the interval o}

First, we approximate x in the interval o) by the polynomial

m—1

TGCEDY x(j)g!”)

I

(t—72); teoy, (3.2.2)

where x(1,),j = 0,...,m — 1 is the exact value of x' at 7, and the function x must be
differentiable around the 7, point. By differentiate equation (B-I_T) j-times, we get, for
i=0,1,..,m—-1,

T2 {171 t—To )
x(t) =gV (t) + ( f ki(t, s)D(s)ds + f ky(t, s)D(s)ds + f ks(t, s)CD(s)ds) (t)
t t 0

! —T2
i1 S i b
+ Y [0 ke, px)]” + f Ik (t, 5)x(s)ds,
=0 T2

which implies,

2 =11 t-12 ()
x(j)(t) :g(j)(t) + ( f ki(t, s)D(s)ds + f ky(t, s)D(s)ds + f ks(t, 5)D(s) ds) )
t-11 t—1o 0
-1 ; - (i) t "
+ Z (l) [8(1] ka(t, t)] HxD(t) + f 9k (t, s)x(s)ds,

i=0 =0
hence,

0]

sz kl(t,s)CI)(s)als+f_Tl kz(t,s)CI)(s)ds+‘f_Tz kg(t,S)q)(S)dS) (12)
t 0

-T1 t—1o

x0(13) = g¥(1) + (
j

i1

3 0 (;) 057k, 0] (20w

i=0 =
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3.2.2 Approximate solution in the interval o)

Second, for x to be approximated by u) (n € {1,2,...,N — 1}) on the interval ¢!, x must

be approximated by u} (0 < k < n) on each interval o7, such that

3

—1 () (40
i, o(tn)
0\n
HOED I
I

(t-1y; ted (3.2.3)

n’

Il
o

where 11, is the exact solution of the integral equations

forteo, nefl,2,..,N; -1},

To t—'[l t—To
iao(t) = g(t) + f ki(t, s)D(s)ds + f ko (t, s)D(s)ds + f ks(t, s)D(s)ds
t—-11 t—1 0
n=l 0 : ; (3.2.4)
+Y f ka(t, s)u’(s)ds + f ka(t, $)ihno(s)ds,
i—0 Yt f
and fort € 0%, n € {(N;,N; +1,...,N — 1},
t—To T2
iy o(t) = g(t) + f ks(t, s)D(s)ds + f ko (t, s)D(s)ds
0 =12
nNi-1 - A~ t—T1
+ Z f ka(t, s)u(s)ds + f ka(t, s)ul_y, (s)ds
i=0 t? 011 !
t(r]t+l_T] n-l t?+l (325)
+ f ki (t, $)ityy_y, (s)ds + Z f k(t, s)u?(s)ds+
b=y i=n+1-N; Vi
t
f Kt o(s)ds.
tO

n

Now, forall j =0, 1, ..., m—1, the formula for computing the values of the coefficients
ﬁfi)o(tg) can be obtained by employing similar arguments to those used for obtaining the

values of xU)(t,) above, we get the following formulas
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fornell,2,..,N; —1},

2 t—71 t—1p 0
ﬁfj,g(t):go)(m( f_ kn(t, s)D(s)ds + f_ ka(t, s)D(s)ds + fo k3(t,s)(D(s)ds) 0

n-l £ 1. i1 . . )
3 f Akt 9yud(e)ds + Y [0]ka(t, Do (]
i=0 Yt i=0

t
- f IVki(t,8)itn0(5)ds,
tn
which implies,

T t—T1 ) )]
afig(t):g<f>(t2)+( ft ki (t, 5)D(s)ds + ft ka(t, 5)®(s)ds + fo ka(t, s)q)(S)dS) (t)

—Tn

n=1 m=1 pO ¢ j-1
£y ot f M ka(t, )5 — 19ds + Y Z ( )[aU D, D10 (1)
i=0 I=0 b i=0 =0

+ f VK1 (t, )i o(s)ds,

0
tn

(3.2.6)

hence,

—T1

-, ()
29 (t9) = gt (t°)+( ki (t, 5)D(s)ds + f ka(t, )D(s)ds + f kg(t,s)q)(s)ds) (%)
t 0

—Tp

1
+ () a(] 1- l)k (t t) (z l)(tO)A(l)O(tO)

(l)

+

f VK (£2,5)(s — 19)'ds,
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and forn € {N;,N; +1,..,N —1},

-1 > )
ﬁ;(ﬁ)(t) = g(j)(t) + ( fo ks(t, s)D(s)ds + f ky(t, s)CD(s)ds+) (3]

0
n—N1-1 0 . j-1
A0 0 (j-1-i) 0 N
+ ; L d,"ky(t, s)u; (s)ds + ;[81 kot t = T)ul_y (t = T1)]°
-7 ) ]'—1 s |
+ ] 8(1])k2(t, S)uy_y, (5)ds — Z [agf ey (8, £ — Tl (= 1110
= i=0

fan ™1 nl 1 .

" f agf)kl(t,s)ug_N](s)ds+ Z f 8§])k1(t,s)u?(s)ds
t=n i=nt1-Ny VY

+Z[a” ks, Bt (] + f s, )it ($)ds,

which implies,

-7

P - 0
ﬁiz];)o(t) = g(f)(t) + ( f} ks(t, s)D(s)ds + f ky(t, s)CD(s)ds+) ()
m—1

n—N1-1 t‘.J

Mot ) (10 0
1,0M1 ] 40y
+ ZO‘ ST ft 3V ka(t, 5)(s — 19)'ds

i 1=0

-1 i
+ (;)[8?‘1‘”kz(t,t - Tl)]“")(t)[uS_Nl(t —1)]?

S
- (1)[a§f‘1‘f>k1(t,t — )] By, (£ = 72)]?

!
=0 =0
tgﬂ_Tl .
+ f 8(1])k1(t,s)u2_N1ds+ f VK1 (¢, s)ulds
t=1y i=n+1-N; ?

=i t
£ ()[80 (e D01 + f 9 ka(t, )1 (s)ds,

i=0 =0

—_
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which implies,

=172 T2 ()
a;{g(t):gw(tn( f ks(t, s)D(s)ds + f kz(t,s)<I)(s)ds+) (t)
1

0 f—Tz
et g0 @) et
+ R f Nka(t, s)(s — £9)'ds
j : £0

ﬁ(r) O(to )

j— i m-1 4.
1) "n-N1,0\ " n—-N;y i—1—i i .
+ZZ (Z)—Z_l)!N [0V kot £ = T)ISD@)(E — T1 — £2_ )

i=0 [=0 r=0
m—1 ﬁ(l (tO ) t—11
—N1,0 —N- ]

+Z% f IV ka(t,5)(s — £y, )'ds

1=0 ' s

=1 iom=1 a0 (40
DHHN} M[&W—“kl(a =) -1 = 1)

. | (r_l)' ] n—Nq

i=0 =0 r=0

m=1 p( (0 )

n=-N1,0\"'n-N ©) 0 )

P Y Dot f Nkt 9)(s = £y, )'ds

1=0 ' o

e S e W O P
i0\"i )] 0y!

MM f ks (t,5)(s — 19)'ds

i=n+1-N;y =0 g

1 i,

1\ (-1~ =D (15

WM CIRETAT

i=0 =0

t
+ f VK1 (¢, 8)1h,0(5)ds,
tVl
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hence,

FQ o ()
u(ﬂo (0 = <j>(t0)+( f ks(t, s)®@(s)ds + f kz(t,s)CD(S)dS) (ta)

.
n—N;-1 m-1 A(l) o)

f IVka(£2,5)(s — 19)'ds
]—1 i

l —1—i i
+Z ) ;(11) N1,0 ot Nl)[aij h(t, t - 1)) D(t0)

)Afj RGN | 2 Y (R 29) el (3

0 _

+ ”2‘3‘ v A(l) 0)f 8(])1( (2, 5)(s — t%)ds
‘ 0 ! !

3.2.3 Approximate solution in the interval og

Third, for x to be approximated by ug (p €efl,2,..,r—=1}) on the interval a x must be
approximated by u,i (0<k<N-1and0<j<p)oneach interval ak such that,

) m—1 ﬁg’;(tg) N p
() = Tty ted (3.2.8)
j=0 '
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where l, is the exact solution of the integral equation

p—2 N-1

flop(t) = g(t) + f ks(t, s)p(s)ds + Z f ks(t, s)u;(s)ds

i=0 d=0

t—To tqiil
+ f ka(t, s)ul ™ (s)ds + f ko(t, s)ul " (s)ds
. t=1

N-Ni-1 7!

1 t—T1
) f " kat, 9l (s + f alt, syl (s)ds
= f—T1
tllj_T1 N-1 t5+i
+ f ka(t, s,y ()ds + f ki(t, syl (s)ds
=11 =NVt
t
+ f ki(t, s)fiop(s)ds.
fo
The coefficients u(] : ,(tp) is given by the following formula
] ' T2 ) p—2 N-1 t’ . '
ﬁé],;(t>=g“>(t>+( f k3<t,s><1><s>ds) <t>+ZZ kst sy o)
0 i=0 d=0
-1
+ 3 [0V kst t— )l (- )] + f Vks(t, s)ul ™" (s)ds
i=0
1 i S
- @wYH%mwwm“%m{%—um>
i=0 [=0

p-1 N-N;-1 7!

12 d=1 d

+
. -..<| 2

\.
>_|

=

j
[0kt t = )il (¢ = 710
p—l

- d=N-Nj+1

+Z[a<f e g, (010 + ftp VK1 (¢, 5)0ho p(5)ds,

51

OVka(t, s)ul ™" (s)ds + Z f IVka(t, sy (s)ds
t

b1 N-1 .
+j; 8(])k1(t s)uN N, ()ds + fdl o'?ij)kl(t, s)uZ_l(s)ds

(3.2.9)

t—’l’1 .
¥ [a“1 kot £ = )il (= T)]? + f 3l )iy, (s
t—T1
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which implies,

" KR~ o 0
fo k3(t,s)®(s)ds) (t)+ZZ f 0Pk t, syl (s)ds

ig)(t) = g7(t) +

—_—

i=0 d=0
ol i L
+ (l)[a‘;‘l"’kg(t, t= ) Ol (- )]
i=0 =0
t—Tz . 1
+ Jy VK (t, s)ub ™" (s)ds
0
-1

(1) (097 Mkt £ — )OI (= 1]
1=0

() 1 d+1 () 1
+ &]kz(t,s)ug (s)ds + dZ:l‘ IZ B 9 ka(t, s)u’” (s)ds

=0

f—’l’z

[y

+ (l)[a(] Tt t — )OI N, (= )]Y
1=0
+ - (9(])k2(t s)uh,_ (s)ds

-T1

—.

Il
o

i

<~

i=0
t;—’l’l . N-1
+ ft OVki(t, syl (s)ds + Z f 8(])k1(t syl (s)ds

! d=N-N;+1

-1 i
+ (l)[a‘;‘l‘”kl(t, DI (hag) (1) + f 9k (t, )ik, (s)ds,
. tO
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which implies,

. T2 )
ﬁg{;(t>=g<f>(t>+( fo k3<t,s><1><s>ds) ®

p—2 N-1 m-1 ﬁ(l)(tl) t
dizN'd a1 (7 Al
PINE R
i=0 d=0 =0 d
- _ A1) -1
+]Z l mi ot D 4 b et - o - 27
4 ey kbt S
i=0 =0 r=0
m—1 ﬁ(l) tp—l )
0,p-1\%0 () p=lyl
Y, A= s
1=0 o
L iomelagO (Tl
A0 - ‘ _
_ Z Z S L0 kgt £ — )] (T — £y
‘ I (r-1)!
i=0 =0 r=0
A(l -1 -
w5 p-1yi
+Z T 9 ka(t,s)(s —t, )ds
=0 t—1o
N—N1—1 m—1 Z:Z(l) (tP—l) tp—l
dp-1\a 1 0) P=1y1
I e R R
d=1 1=0 d
=1 i om=1 @ -
+) A MR R e
: I (r=1)! ! 2 ' B
i=0 =0 r=0
m-1 ﬁ(l) (tp_l ) t—7q1
N-Ny p-1\EN-Ny ) — ¢ty
1=0 o
1 i me1 g g )
A (@ o ‘ _
-y R 109 (£ = )] — 1y — £ )
‘ | = 1
i=0 =0 r=0
m—lﬁl) (tp—l ) 1
N-N,p-1V"N-N; NN ) P !
. . ft AR
1=0 !
N S WA A B
Zpitd [ o0 )
Fy Y e ft " k(e s)s - £ ds
d=N-N;+1 =0 d
-1 .
N o
¥ (z)[a‘f (e, HI A ()
i=0 [=0
t -
+ f 3Pk (t, )t ()4,
tP
(3.2.10)
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hence,

g () = g (t) +

—
o

N
N
z
»—\

mlﬁ

™
1

=0

Iy
=
2
~. Il
o
~

-
|

+
| RO g
_ ==

1
Lo

- =
[
= O

Opl

— ™
f\\/\/

|
3 M

Oﬁ; TMN. T
= o o

D+’J

—
Il
o

f b ks(t, s)D(s)ds

)]
) ()

i
td

N-Ni-1m-1 g (tf’ 1) gl
-1
+ Z l' B 8§J)k2(tg, s)(s— 1) ds
d=1 =0 d
j-1 ;
(j=1-1)

+ Z (l) N-Ny,p— 1(tN Nl)[al kZ(t/

i=0 =0

j-1 i ;

(I 1-

SR ENRIN TR

i=0 =0

m-1 ﬁ;]) Np— 1(tN N) t?\z_lNlﬂ 0

—INT 1

+ T ‘ﬁ_l (91] kl(tg,s)(s — t’;,

1=0 ) EN-N

N1t gy
dp-11d 1) ~141

+ 7 L‘l 3 ky(t],5)(s — t)'ds

d=N-N;+1 =0 ’

j=1 i

o D (4P N
f d\"ks(ty,s)(s — t,)'ds
A . l NOYRREN) LIy

ity (# O kot t = )1 ()

o1
i f 8(])k2(t s)(s — th71)ds

3.2.4 Approximate solution in the interval o/,

Finally, for x to be approximated by u}, (1 € {

1,.,N -

l}andp € {1,2,..,

t— 1))

— )] ()

r—1}) on the

interval o/, x must be approximated by ”1{ (0<k<nand 0 < j<p)oneach interval a]{
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such that,

ub(t) = E—(t—t); ted, (3.2.11)

where #,,, is the exact solution of the integral equations

forteo,ne(l,2,.,N; -1},

p—2 N-1

() = g(t) + f ka(t, )p(s)ds + ) Y f kst s (s)ds

i=0 d=0

) t—1o
+Z f ks(t, )™ (s)ds + f kst sy ()ds
=0
p-1 N-Ni+n-1

S ECETACTD) f falt syt (s

d=n+1 fa (3.2.12)
=11 n+1 -
+f ko (t, s)uN N, L, (8)ds +f ki(t, s)uN N, L, (8)ds
f—

1
N-1 #1

+ Z fm k(t, s)u? “(s)ds + Zf ka(t, s)ut (s)ds
I=N-Ny+n+1 V1 !

t
+ f ki(t, s)ily,,(s)ds,
tl”

n

and fort € o’,n € (N;,N; +1,..,N -1},

p—2 N-1 ‘
() = g(t) + f kst s)qb(s)ds+z f ks(t, )i (s)ds
i=0 d=0

n—1 1 t—1p
+Z f ks(t, sy (s)ds + f ka(t, s)ul " (s)ds
iz0 vt e

n

p=

R f e+ Y f falt, i s)ds

d=n+1 (3.2.13)

H—Nl tp

. i+l
+ )
p
i=0 ;
£

t -1 n-l i+1
+ ka(t, s)ul_ (s)ds + f ky (¢, s)u’ (s)ds
f 1 Ny Z t’:’ 1

th=1 i=n-+1-N

t
+ f ki(t, s)iiy,,(s)ds,

n

t_

ka(t, s)ul (s)ds + f ko(t, s)ul, _y, (s)ds

tn_Tl
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~(f) (tp

The coefficients i1,,(t,) is given by the following formula

forteol,ne(1,2,..,N; -1},

P21

2 () = g (t) + ( f ’ ks( S)CD(s)ds)(j) (1) + Z f IVks(t, s)ul(s)ds
" 0 ’ i=0 d=0 ’
+Z f 9”’k st syl 1(s)ds+ [ N ka(t, b — o)l (t— 1)1
i=0 i=0

f OVks(t, syl (s)ds — Z[&“”kz(tt )l (= 1)]@

Yl

1 N- N1+n 1

t’;H . t
+ f kst sy (s)ds + Z L 8(])k2(t syl (s)ds

d=n+1 d
t_

j—
+ Z[a“ Tt t = Tl = T)IO + f Nkas(t, syl ., (5)ds

tn—'[l

p=1_

t +
- Z[agf‘l‘”kl(t,t — Uy (= T + f 1 a(])kl(t U, (S
i=0 t-1q

N-1 #1

Z f i+1
p-1
N—-Nj+n+1 ti

[&” Dkt B, (H]O + f VK1 (t,5)1h, (5)ds,

nl t}'a+1 .
ng)kl(t, s)uf_l(s)ds + Z L 8§J)k1(t, syl (s)ds
-

i=0
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which implies,

iy (6) = g7 +

T2 0) P2 N-1
f ks(t, s)( s)ds) (t)+ZZ f OVks(t, sy (s)ds

—
(=]

i=0 d=0
n—1
+ f 8(])k ts)up (s)ds
i=0 i
j-1
* Z(Z) [0V kst t = T OO (t = 72)]°
i=0 [=

+ f IV ka(t, s)ul” (s)ds
h
- (j)[aij_l_i)kz(t,t - o), (¢ - )]
' 0

i=0
tn+ .
+ f VK (t, s)ul " (s)ds

N-N;+n-1 tﬂ 1

+ Z ft kot syt (s)ds

d=n+1 d

jo1 i

3 (;)[a“ ettt =TI O, = )]
i=0 =0

—+

8 kz(t sl (s)ds

t—1T

NN+n

==

1
f, T1

]

(l)w“ k(e = )OO — )]0

i=0 =0 l

tp+l_
+ f Nk (t, )y, (5)dds + f VK (¢, s)u! ™ (s)ds
t—11 i=N-Ni+n+1

+Z f Ik (8, s)ud (s)ds +

+ f VK1 (¢, 5)0h,(5)ds,
t

n

j-

1
(Z) [ ks 8, D108, (1
1=0

i=
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which implies,

p—2 N-1m-1 5 l(t)

o 0 4 .
() = <f>(t)+( fo k3(t,s)CD(s)ds) () + ftd IVks(t, 5)(s — t1)'ds

i=0 d=0 I=0
n-1 m-1 ﬁ(l) (tr?_l) ti_ll ;
v %f - kst )(s — £ ds
i=0 =0 ' 4
T W N (s W
I I I 1 e A (AR Ll (I
/ 1) (r—=0nr "1
i=0 =0 r=0
m—1 ﬁ(l) tp_l) t—To
# ) = f N ka(t,)(s — £, )'ds
I !

——— 10" ha(t, £ = T (W)t~ T2 — £

|
- [
M ||M|
L o
7
iR :
—
—_— =~
SN—
:E
‘?
—_
\-/

1=0 r=0
70 Y 1 "
1

¥ ”— f 9 ka(t, 9)(s = ) ds
1=0
N-Nppn-11 g 7l

; [ kot )6 - s
d=n+1 1=0 . a
i1 EEEENN ()

. JZ‘ZZ‘ © [\ NN (- Nl*”)[a(f‘1_i)k (t,t =) O - 11— By )
4 ! (r=1)! Tkt t-T T T NN
i=0 I=0 r=0
-1 »0 -
el UN-Ny+np— 1( N- N1+”) o IVk . d

D Dot O - 11 = £, )'ds
=0 ' "

1 NG
]Znim 1(Z)uN Ny +n,p— 1( N- N1+")[8(] =0 (t,t—11)] (l l)( Bt -1 t y
- 1 - T - - +n
i=0 1=0 r=0 =D 1
m—1 ﬁ(l) ( ) b -
N-Ni+n,p-1V"N- N1+” o %) -
+ = I! »f—n 9y ka(t, s)(s — ty_y, L)'

N-1  m=1 5D 1(,5’?‘1) £
—1\%i

) Ok (t,5)(s)(s — 77)ds

. . tP
i=N-Ni+n+1 [=0 i
n-1 m-1 A(l)( P) P
i,]? i i+1 (]) P ]
+ 7 d,’ki(t,s)(s — t;)ds
i=0 1=0 ) t
-1 i

N (;)[agf‘l‘%(t, D1 @al) ()
0

I=

VK1 (¢, 5)0h,(5)ds,

+
By
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hence,

p=2 N-1 m-1 5 (#
i

| | - 0 o
ﬁﬁi)p(fﬁ)=g(”(tﬁ)+( f kg(tZ,S)CD(s)ds) (tﬁ)+Z ? f IVks(t2,5)(s — £)ds
0 - tfi

i=0 d=0 I=0
n-1 m-1 ~(0) 1( P 1) tp,ll
1}7 i+ . B
' o f | Wks(, )5 — 77 ds
i=0 I1=0 : tf
-1 i
1ol gy (1) (g
"2 (l) A he(t £ = I V(E)
i=0 I=0
-1 i
! 1 1-i -
Z‘Z() A2 (0 ottt = I (E)
i=0 l:
A~ 1 —1
m 1 (tp ; \ N
+ 8 Dia(#,5)(s — 271 )ds
1=0 th—
N-Ny+n-1m=1 (tp 1) ot
dp-1\d o
+ T‘ft;l agj)kz(tfl,s)(s_tz )ldS

1 0.
i\ . L .
"2 (l)”%) et (B IO et £ = )10

i=0 =0
j=1 i ;
! - y

B Z Z (l) g\l) Ny+n,p— 1( N- N1+n)[ ] lkl(t,t— Tl)](l )(tZ)

i=0 1=0

m—1 ﬁ(l) ( ) —

N-N 1\V'N- N n+1 .

+ 1+npl' 140 f [;?il)kl(t s)(s — tN N1+n)ld5
=0 ' tﬁ—n

N-1 m—1 L’Z(l) (tp_l) t}?_l
p—1\"1 i+1 ) .
ﬁl 8(1])k1(tf,, S)(s — tf )lds

i=N-Ni+n+1 =0 : t
N(

S e ot

* Il 9 ky(th, s)(s — t)'ds

i=0 1=0 : tf

j-1
i

i=0 I=0
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and fort € o), n € (N,N; +1,...,N — 1}

p—2 N-1

a2 () = (7)(t)+( fo k3(t,s)CD(s)ds) +ZZ;‘ f Ik (t, s)uc (s)ds

1

n-1 t’.’_ll
i+ (]) P—l
+Z;‘ j; Wkt syl (s)ds
1=l i

-1
+ Y1 kst = ol (= )]
i=0
t—’l’z

+ OVks(t, 5)uld ™V (s)ds

!

-1
- Z[aif‘l‘”kzu,t - )y (- )]

+ f 8(])k2(t )’ (s)ds + Z f a<f>k2ts)u” (s)ds
t—1o

d=n+1
TZ—N1—1 t‘l
"a0)
+ Z L OVky(t, syl (s)ds
i=0 i

j—1
L |
+ Y 1 et t = Tl (¢ = )]
i=0

t_
+ f 8(])k2(t S)ul,_y, (s)ds
&

j-1
= Y1 k= ol (= 1)]O

i=0

.-
+ f Nka(t, s)ul_ (s)ds + f VK (t, s)u! (s)ds
th=T1 i=n+1-N; 7
j-1

+ Y 10V kit By (D] + f ki (t, 8)ih(s)ds,
t

i=0
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which implies,

T ) p—2 N-1 L '
A(J) () = g(t) + (f ks(t, s)D(s)d ) (t) + Z Zf 3§])k3(t, s)u;(s)ds
0 i=0 d=0
n—1
+ Z f 8(j)k3(t,s)uf_1(s)ds
=0 i
j-1
+ 2 (1)[a§f‘1‘“k3(t,t — )@ (¢~ w2)]”
i= 0 1=0

—T2

- IVks(t, s)ul ™ (s)ds

-1

;h

>_|

j—
(1)[5‘] Tkt t = )OI (- )] O
1=0

pl

+ f kot syl (s)ds + Z f a<f>k ot ) (s)ds

d=n+1

i=0

n—Np—-1 ti
+ Z f Ik (t, syt (s)ds
o
+ (l)[a“ Tt =TI Oy, (- )]

i=0 [=0
f—T1

+ 8(1j)k2(t, S)uf,_y, (8)ds
S
- (l)laif‘l‘“kl(t,t - ) @) [ud_y, (8 = 72)]”
t 111 n-l t
+ f © Kt sl (s)ds + Y f Ok (t, )l (s)ds
f-11 i=nt1-N; Y1

j-1 i t
+ (;)[a” (e 1O 0 + f 9kt )i (),
: 0 £,
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which implies,

, ) 72 0) p=2 N-1 m-1 ﬁ )
() = g0(b) + ( f ka(t, s)<1>(s)ds) () + a<f>k3 (t,5)(s — £)'ds
0

i=0 d=0 I=0
n—-1 m-1 ﬁ(l) (tp_l) Ay
,, 1 . i+1 - —
+ pr - kst s)(s — £ )'ds
i=0 1=0 ) 4
o (1) p-1
+JZ£42E i M[Q(’ sl t =) (E -T2 - £
, o= e
i=0 [=0 r=0
m-1 ﬁ(l) (tp—l) =1
Doptin 2 )
Y f e
1 w1, A(r) - 1
i mel 0, (&) (-1 (i-1) p-1yr-1
- 1 k£ - )N - )
, 1) (r=1D!
i=0 =0 r=0
m1 g =y e
n,p—l n n+1 - -1
* )= 9 kot 5)(s — £5)'ds
=0 t—1o
N-1 o1 g 7y et
dp-1\d NG P=1y1
s | Wt — s
d=n+1 1=0 d
n-Ni-1m-1 5 (tp) A
+ l’pzl : VKo (t,5)(s — £)'ds
i=0 =0 ' g
=1 i om=1 ™ P
+) Z Y[ M[&” Tttt = T - 11— £ )
, A o
i=0 [=0 r=0
m-1 {0 # )
Ny T G —t )
Ly o ftp Nkalts)(s — £y, )ds
=0 n—T1
U iomel gy
i\Hu-n,, - B
B N B T B T O
/ I = o
i=0 =0 r=0
m-1 ﬁl) i ) 1
Ve [ B — )
+lz:(; I! jt; -1 Ikt s)(s —t,_y,)ds
n-1  m-1 P
” (£) () 7!
N f Okt 5)(s — £ ds
i=n+1-N; [=0 A
-1
1
' ()[3(’ Tt 1Ol (1)
i=0 =0

t
+ ﬁ VK1 (¢, 5)1h, (5)ds,
t}’l
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hence,

)(]) )+P2N1m 1ﬁfi)z(t

) (th) = gO(th) + ( f ks(t, s)®D(s)ds f IPks(, 5)(s — £)'ds

0 i=0 d=0 I=0
n—-1 m—1 (l) (tp 1) 1
zp 1 G) -1y1
v f k(e )5 — ¢ Yds
i=0 1=0 fi
-1 i .
1\ . -1 j—1—i i—
+) (l)u;?p_laﬁ 9 kst t = )] ()
i=0 [=0
-1 0.
1\ . -1 j—1-i i—
- X Y 0 et el
i=0 =0
m=1 O @y e
’ _1\tn n+l . _
D e L CTE (CR A
Il o
1=0 no 2
N1l g @7y e
. S [ ket s - £l
d=n+1 1=0 : iy
n—-N1—-1 m-1 ﬁ('l) (tp) tp

i’ Dy (4f
). ) COky(E, s)(s — 17)ds

i\ . -
+ Z (l) :l) Ny, p(tp Ny )[ ] l)kZ(t t— Tl)](l /)(tp)
i=0 =0
=1 i .
(ANG| 1 )
i=0 =0
m—1 ﬁ(l) tp ) b a
n—=Ny,p\"'n—-N; n+l 0 ) , l
+ o ﬁ 9, ki(t,,s)(s — tn—Nl) ds
1=0
n-1 1 (l) p)
+ f 0 ])kl (t ff])lds
i=n+1-Nj 1:() t

~—

(3.2.16)
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3.3 Analysis of convergence

3.3.1 Boundedness of the approximate polynomial’s coefficients

We need the following lemma to prove the convergence of the method.

Lemma 3.3.1 Let g, ky, ko and ks be m times continuously differentiable on their respective

domains. Then, there exists a positive number a(m) such that for all n = 0,1, ...,

p=0,1,.,r=1,and j=0,...,m, we have

185, Ny < a(m),

where loo(t) = x(t) for t € oy,

Proof. The proof is split into two steps.

Claim 1. Let ai =|| ﬁqu)o IILDO(UQ), we have j =0,...,m,

< max{ll x0) ooty J = O,...,m} = a;(m).

O —.

from (B2Z6), we have foralln =0,1,..,N;—land j=1,.., m -1,

j-1 n—-1 m-1
aL§c1+mb}Zaﬁl+b§a2+hd% a.,
1=0 i=0 =0

and from(B2Z7), we have foralln = N;,N; +1,.., N-land j=1,..,m -1,

§
AR

) j-1 m=1 n-1
al, < ¢+ mb; Z a, + b2ad + 2hm?d? Z a,_y, + hd; al

1=0 1=0 i=0 1

~—

Il
o

where, forall j=0,..,m—-1

. 7 T 0]
c= max{||g<f> ([ ket )RS + [ Kalt, D)) llsty, = O,y = 1},
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¢ = max{||g<f> +([2 kit s)0()ds + ft:? ka(t, )DE)ds + [ k(t, s)@(s)ds)(j) oty = O, vy 11— 1},
b = max {(MDY ™ ks (t, DIty j = 1,ym = 1;i =0, j = ;1 =0,...,1},

b% = max{ll fot | 8§j)k1(t, s) | dsllp=0), ] = 0, ...yt = 1},

d! = max {1107ki(t, s)(s — £9)dslly ), j = 0,...,m = Ln =0,.,N-1;i=1,2,3},

and

2 = max {() 2z lV ket t = Ty [ =0, i =0, j— ;s = 1,2

The constants c,c;, b}, b3, d and d? are positive and independent of N.
Hence,

forallm=0,1,..,N; -1,

. j-1 j-1 n-1 m-1
a{lﬁc1+mbiZai+b§Za;+hd%Z a,
=0 =0 =0 =0

and foralln =N;,N;+1,..,N—-1,

| j-1 -1 m-1 n=1 m-1
al, < ¢ + mb; Z a, + b3 Z al, + 2hm*d? Z a,_y, + hd] Z a,
=0 1=0 1=0 i=0 1=0

which implies that, for all j > 1
foralln=0,1,...,N; -1,

b (3.3.2)

Sci+biad+b Y ab+hd Y Y b,
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and foralln =N;,N;+1,..,N—-1,

j-1 m—1 n-1 m-1

a <c+ (mbl + bz) at + 2hm*d? Z a,_y, + hd; Z ar

~———— k=0

1=0 i=0 k=0
by
j-1 m—1 n-1 m-1 333
Sc+b1ag+blzaﬁ+2hm2d§2ail\,+hd%ZZa (33.3)
k=1 1=0 i=0 k=0
j-1 n-1 m—1
<c+ba)+ by Y ab+ (2mPd + d}) a.
k=1 i=0 k=0
Moreover, for j =0, foralln = 0,1, ..., N; — 1, we have from (B-2.4)
n-1 m-1
O <c¢y+bia) + hd; at, (3.3.4)
i=0 k=0
and forall n = N;,N; + 1, ..., N — 1, we have from (BZZH)
n-1 m-1
a) < ¢+ byay + 2mPds + d))h at. (3.3.5)
i=0 k=0

Now, for each fixed n > 1, we consider the sequence a{l for j =0, ..., m. That satisfies
foralln=0,1,..,N -1,

j-1 n-1 m—1
< C% + b]&lg + b1 llﬁ + hdl af,
k=1 i=0 k=0

a (3.3.6)

where d; = 2m?d? + d} and ¢! = max(c, ¢;).
1t 4 1
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Using Lemma([CZT), we find forall j=0,..,mandn=0,1,..,N -1,

‘ n-1 m-1 j-1
a, <|cj + bia) + hd, Z Z aﬁ.‘) exp [Z bl]
i=0 k=0 k=0
n-1 m-1
< c%exp (mby) + biexp (mby) a> + hdyexp (mby) ai.‘ 3.3.7
C2 bz dz

n—

<o+ boa)+hdy Y Y ak

1 m
i=0 k=0
Consider the sequence z, = }.7; a, forn > 0.

Then, by (8337), we have

n—1 n-1 m
<ch+buad +hdy Y ol +hdy Y Y ab (3.3.8)

i=0 =0 k=1
n n-1

< Cé + b3ﬂg + hd32ﬂ? + hngZi.

i=0 i=0
Moreover, from (B31)), we obtain

zo < may(m) = c3. (3.3.9)

We set c3 = max(c;, ¢3). Then, from (B338) and (339), we haveforalln = 0,1,..,N-1,

n n-1
Zy < C3 + b3a’ + hds Z a? + hd; Z Z;.
i=0 i=0
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Using the notations of Lemma (I”Z2), for alln =0, 1,..., N — 1, we put

n

en =12 fo=03+bsa+hds ) al, g;=hds.

i=0

Then, foralln =0,1,..., N — 1, we obtain,

n n-1 ] n-1

zy <c3 + b3a® + hds Z a? + Z hds|c3 + bga]O. + hd; Z a? exp {Z hd;;)
i=0 =0 i=0 k=0

n n-1 j

<3+ bsa + hds Z a0+ Y hds|cs + bsa + hds Z a° |exp (Tads)
=0

i=0 i=0

n-1
<c3 (1 + ’Czdg) + (b3 + hdg) 612 +h (b3 + b3d3exp (Tzdg,) + Tzdgexp (’Czdg)) Z ﬂ?
————— =0
Cy4 d4
n-1
<cy + (bs + ) al + hdy ) al.
by

On the other hand,for j =0, foralln =0, ..., N — 1, we have from (B3.6)

n—-1 m-1
hS 1 + blﬂg + hdl af
i=0 0

S

o~
I

Using (B3:10), we deduce that

n-1 n-1 n—1
ag SC% + blag + hd, Z a? + hd, Z [04 + b4a? + hd, Z ag]

i=0 i=0 k=0

—_

< (Cl + T2d1C4) +b161 +h (dl + d1b4 + T2d4d1) El

S— i
ds

Iy
o

C5

This implies that foralln =0,1,..,N -1,

n—1

(1-b1)a <cs+ hd5Za?.

i=0

68

(3.3.10)



NUMERICAL SOLUTION OF DDIEs USING TAYLOR COLLOCATION METHOD

Hence, foralll —b; >0andn =0,1,..., N — 1 we have

n—

Cs ]’ld5
10, " 1-b

[=)

0
a <

a..

1
i=0

Using the notation of Lemma (ICZT), for alln = 0,1, ..., N — 1, we put

Cs k = hd5

_ 0 _
En =y Po= T T T T

Then, foralln =0,1, ..., N — 1, we obtain
n-1
hd
0 (_C5 ) 5

1
< (1 i5b1 )exp Tods
N— —
Co c7

<ce +exp (12c7) .
| ——
cg

Which implies, from (B310), that forall j=1,..mandn =0,..,N -1,

n—

afq <z, <cs+ b4C8 + I’ld4 Cg

1
i=0
<c4 + b4C8 + d4T1C8
<0C9.

Hence, the first step is completed by setting

ay(m) = max (a%(m), 09) .
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Claim2. There exists a positive constant a(m) such that || ﬁ,({)p llpr)< a(m) for all

n=0,1,.,N-1,j=0,..,mandp=1,2,...,r- 1.

A ()

Leta,({;;, = hy) IILw(Uﬁ)S a(m)and ¢, = max {afp,j =0,..m,i=0,..,.N— 1}forp =1,..r-1.

Similarly to Claim 1, from (B22T10), we obtain forall j =1, .., m,

p-1 j-1
] !
aO,p <cp+ b5 Z &+ d5 Z aO,p,
i=0 =

where ¢y, b5, and d5 are positive numbers.

Using the notation of Lemma (IZZT), foralln = 0,1, ..., N — 1, we put

p-1
_ ) _ 2 ' _
En =0y, Po=Co + bs i, ki=ds.

i=0

Then, foralln =0,1,..,N—-1and j =0,1, ..., m, we obtain

‘ p-1 j-1
aé/p < [clo + bs Z ei] exp[ d5]
i=0 k=0
p-1
< cypexp (mds) + bsexp (mds) &

1

I
o

c11 be
p-1
<c11 + b6 Z &;.

1=

Then, by Lemma (ICZ1), we obtain forallp =0, ..., r~1,n =0, .., N-1,and j = 0, ..., m,
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a{)’p Scnexp[ bé]
k=0
(3.3.11)
<cpiexp ((r — 1)be)
<C.
Next, from (B2214) and (B2ZZ15), we obtain foralln =1,..., N — 1,
' p-1 j—1 n-1 m-1
a]n,p <cCpp+ b7 &+ ey llfqlp + d7h af.,p, (3312)
py =0 i=0 1=0
where ¢y, by, e; and d; are positive numbers.
Then, by Lemma (I"ZT), for all j =0, ..., m,
} p-1 n-1 m-1 j-1
a,, <|ca+b; ) & +dsh Z af.’p] exp( 67]
i=0 i=0 1=0 k=0
-1 n-1 m-1
< cypexp (mey) + byexp (mey) &i + ezexp (mey) aglp + dyexp (mey) h Z Z af.,p (3.3.13)
i=o D —— iz =0
€13 bg es dsg
p-1 n-1 m-1
<ci3 + l’)g Z &+ egﬂgrp + dg]’l ﬂ;p.
i=0 i=0 1=0

Consider the sequence y, = Z']il ‘11]740' n—-0,1,..,N-1,

hence, by the aforementioned inequality, the sequence v, satisfies foralln =1,.., N—1,

p-1 n n-1
Yn < mciz + mbg Zsi+ meg ag,p+ mdg hZ“?,p"‘ mdg thi. (3.3.14)
i= i=0 i=0
Ciql by €9 dg do
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Moreover, from (B311), we obtain

Yo < mag(m) = c3,. (3.3.15)

Letcyy = max(c1 " )

Then, from (B3314) and (33316), we obtain foralln =0,1,..., N -1

p-1 n n-1
0 0
Yn <cCiyt+ l’)g E &+ €9lln’p + dg]’l E ai,p + dgh E Yi.
i=0 i=0 =0

Using the notations of Lemma (I”Z2), for alln =0, ..., N — 1, we put

p-1 n
. 0 0 —
En = Yn, fn =Cuy+ b9 Z &+ egan,p + dgh Z ai,p’ gi = dgh
i=0 =0

Then, foralln =0,1, ..., N — 1, we obtain

p-1 n—1 p-1 j n-1
Yn <C1a + by &+ eganp + doh Z a;, + Z hdy | c14 + b &+ ega?p + doh Z a?p exp Z hd,
i=0 i=0 =0 i=0 i=0 k=0
p—1

<Cyg (1 + T2dgexp(T1d9)) + bg (1 + Tngexp(Tng)) Z &+ (6'9 + Tzdg) ag/p
i=0 ~———

C15 b1o €10
n-1
+h (dg + dgegexp(’[zdg) + Tzdgexp(l'zdg)) Z agp
i=0
dio
p-1 n-1
. 0 0
<ci15 + by &+ €104y, + hdo ai,p'
i=0 =0

(3.3.16)

On the other hand, for j = 0, we have from (B312),

p-1 n-1 m-1

0

anPSC12+b7Z€j+d7h Elp
i=0 i=0 =0
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Using (B316), we deduce that

n-1 p-1 n-1
Elgp <cip + b7Z€l +d7hZa +d7l’lZ Ci5 + bloz&‘ +€10£l +hd102a ip
= i=0 i=0 i=
<(c12 + d71o015) + (b7 + T2b1od7) Z & + h(dy + drey + diod7T2) Z (3.3.17)
C16 b1 dn

p-1 n—1
<cCi + bll &+ ]’ld]l (ng.

i=0 i=0

Using the notation of Lemma (CZ1), for alln = 0,1, ..., N — 1, we put

-1
= a, pr Po=Cie+bu ) &, ki=hdn.

i

=

Il
o

Then, foralln =0,1,..,N—-1and j =0,1, ..., m, we obtain

p-1

0
Ay p < [C16 + b1y
i=0

n—1
ei] exp [Z hdn]
k=0
-1

< cigexp (Tadq1) + briexp (Tzdll) €

=

C17 b]2
p—1
<ci7 + b12 &;.
i=0

Then, by Lemma (ICZ1), we obtain forallp =0, ..., r~1,n =0, .., N-1,and j = 0, ..., m,
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p-1
0
@y, <Ci7exp (Z blz]
k=0

<cizexp ((r — 1)by)

SClg.

Which implies, from(B316), that forall j=1,..,mand n=0,1,..,N -1

-1 n—

] . 0
Ay p <cCp5+ bl() &+ €1()L1n,p + hdlo

=

1
0
a ip
i=0

AT
- O

< c15 + b €i + e10C1s + Tad10C1s
~——
€19

o

=

-1

=

<Cy + b10 &;.

i

1]
o

Using Lemma (ICZT), we obtain,

p—1
0
Ty Scmexp( E blo]
k=0

<cyoexp ((r — 1)byo)

<0p1.
This completes the proof of Lemma (B3).

3.3.2 Experimental order of convergence

The following theorem describes the order of convergence of the method.
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Theorem 3.3.1 Let g, ki, ky and kz be m times continuously differentiable on their respective
domains. Then, (BZ2)-(BZZ18) define a unique approximation u € an__li (I'ly), and the resulting

error function e = x — u satisfies

Il e llg-< Ch™

provided that h is sufficiently small, where C is a finite constant independent of h.

Proof. The proof is split into two steps.

claim 1. There exists a constant C; independent of & such that || ¢° @y Cih™,
where the error ¢ = ¢ |0 that is defined on 09, by €%(t) = €X(t) =| x(t) — u(#) | for all
n=01,..,N—-1.

Lett e 08. Then, we have from Theorem (B=3), for sufficient small &,

m
| x IILoo(og>h a(m)

hm
m! m!

| en(t) 1=1 x(t) = ug 1<

In general forn =1,2,...,N; — 1 and t € 62, we have from (324),

x(t) — 1y, 0(t Z fﬁl ki(t,s) x(s) — u?(s)) ds + f ky(t,s) (x(s) — 1,,0(s)) ds.
i=0 f

n

And forn = Ny, ..., N — 1 and t € 6%, we have from (3235),

—-N; o, t—1q
(£) = dno( k(t) (s) —uj(s))d ka(t,8) (x(5) — ) _y, (5) ) d
X U, ot ;‘ft: o(L,S8) 1 x(s S)S+L_T] 2 S(.'X'S u NS)S
o n_l t?ﬂ
kat,s) (x(5) = 1y, 6))d kit s) (x(s) - u}(s))
+£ﬁ 1 s(xs uNS)S—i_i:n;MI? 1 s(xs us)s

+ﬁk1(t,s) (x(s) — ,0(s)) ds.
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This implies that forn =1,2,...,N; - 1,

n-1
1 = 0 oy < Tk Y 1 €D oy +k 11 = g Nl - (3.3.18)

i=0
And forn =Ny,..,N—-1,

H—Nl—l
1 = 0 oy S KY€ Ny 20K 1€y oot
=0 (3.3.19)

n—1

whk Y e iy ikl x = gl

i=n+1-N;

From (B3318),(3319), forn =1, ..., N — 1, we have

n-1
A 0 N
1 = i Ny < 20k Y 11 €0 gy +hk 1 2 = g ooy,
=0

where k = max (II ki llpo@oy, i =1,2, 3),

hence,
n—1
(1= 1) 11 = o oy < 20k ) 1€ Il -
i=0
For1—-hk >0

A 2k =,
1 =t lloop) < 771 DN Ny -
i=0

Therefore, by theorem (B31), forn =1,2,..,N -1,
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0 0
Il e, ||Lw(a2) <[l x—u, ||L°°(02)

A N 0
<l x =G0 llpo@oy + I Ao =ty o0
(09) (@9)

a(m)
< x =0 |l o0 +—hm

Then, forn=1,2,...,.N -1,

2hk al(m
” e ||L°°(OO)— 1 hk Z ” e ||L°°((70) +Q

Hence, by Lemma (CZT), foralln = 0,1, ..., N; — 1,

0
Il e, ||L°°(09,) <

claim 2. There exists a constant C, independent of / such that || e [|;~;< Ch™. Define
the error ¢/(t) on o? by €?(t) = x(t) — u?(t) and on o}, by e’(t) = €,(t) = x(t) — ub(t) for all
n=0,.,N-landp=0,..r-1.

First, lett € ag. Then, we have from equation (329),
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PN t:ii+1 t=12
x(t) — Do (t) = Z Z f ks(t, 5) (x(s) — ui(s)) ds + f  Falt,s) (x(s) - 7 (5)) ds
i=0 d=0 Yt to
4! NN A
+ f ko(t, s) (x(s) - ug'l(s)) ds + Z f ko(t, s) (x(s) - uZ-l(s)) ds
b2 -Vt

tp—’[l

¥ f kit (x(s) = Ly, ) s + f k) (x(9) — i () ds

0Tl -1

N-1 tgﬂl t
+ Z f k(t, s) (x(s) — uf ' (s)) ds + f kn(t, s) (x(s) — flg,p(s)) ds.
d=N-N+1 Y ' fy

This implies that forn =0,..,N-landp =0, ..,r -1,

p—1 N-1
N -1
= o Ny <k Y Y 1€l Ny +20K 1 € oy
i=0 d=0
N-N;-1
—1 —
kY ey 2011 €
d=1
_ } A
+ hk || eZ ||Loo(O_Z’1) +hk || X — uo,p ”L‘X’((;g) .
d=N-Np+1

(3.3.20)

N-N; ”Lm(a” !

z

From (B370), forn =0,..,N-1,andp =0, ...,y — 1, we have

-1 N-
A i -1

12 = o Ny < ik 1€ llopy +20k 1€l

d=0

1

+2hk Y |l |

d=1

‘G
,_\

L@

(=]

i=

L‘X’(Ugil) +hk || X — u()’p ”Loo(gg),

where k = max (II k; IILW(GQ),i =1,2, 3),
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hence,

p-1 N-1

(1= 1) |1 x = g ooty < th D Ny +2hK 1 e
=0 d=0

N-
-1
+ thZ (AR
=1

For1-hk>0

;-n

N-

,_x

hk & 2hk _
N p-1
=0y ey < 7= D D ety g 1 ey
i=0 d=0
2k NS
+ 1 _ hk d || ed ||Loo(0.5_l) .
=1

Therefore, by theorem (B31), forn =1,2,...,N; =1,

1€ lwiory <Ix = 1) Il

<l x = dop llogry + Il o = 4 [l
(99) 0 (o)

. a(?ﬂ)
<l x =l llity + "

Then, forn=1,2,...,N; -1,

-1 N-1
hk 1. 2k
1€ iy < 7 2 D €l iy + 77 b Ml
i=0 d=0
2k o pa a(m) .
"1k L ey Mgy +=

Then,
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-1 N-1 p-1 N-1
Wk X . 2hk .
|| eg ||L°°(o'g) S 1 _ hk ” ed ||L°"(U’) +1 hk || e; ||Loo(gg_1)
i=0 d=0 i=0 d=0
p-1 N-1
.\ 2hk el a(m) B
1-hk d @l T
i=0 d=0
which implies,
p-1 N-1
5hk ; a(m). .
165 ey € T Dy D 1€ oty + ="
i=0 d=0 “~————
SmﬂXIIGﬁ,II=|IE’II
which implies,
p-1
5hkN ; a(m) . .
) ey < T ZO] 1€ Ny +——h

-1
5k7y § ; a(m), .
< 1_thO €} llmiy += 0 h"

hence, by Lemma (ZT), foralln = 0,1,..,N -1,

|| eﬁ ||L°°(O‘g) < 4 1 - hk

_a(mh" 5Tk
=T P\T Tk
)

hm

a(m)h™ (p_l 5kt, ]
———exp
m!
i=0

a(m
- m!

< Gh".

exp (c22)
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Next, lett € ¢! forn =1,2,...,N; — 1. Then, we have from (32-12),

P2 N1 tfi+1 n-l t?;ll
X(t) =y (t) = Z f ka(t, ) (x(5) — u(s)) ds + Z ﬁ k() (x(6) — 17 (9)) ds
i=0 d=0 V1 i=0 VYt
t—1p tﬁj
+ f k(s (x(s) — ' (5)) ds + f ka(t, s) (x(s) — ' (s)) ds
N-Nj+n-1 -1 -1,
+ d;l fts d ka(t, s) (x(s) — 1y (s))ds + ft N ka(t, s) (x(s) —uf Nlm(s))ds
i — N-1 tf’ﬂl
+ ft_’” ki(t, s) (X(s) — uN N, +n(s)) ds + i:N;:‘MH ﬁ_l ki(t,s) (x(s) — uf_l(S)) ds

-1

I t
+ ZZ:O: L ki(t, s) (x(s) —uf (s)) ds + L ki(t, s) (x(s) - an,p(s)) ds

(3.3.21)
And forn = Ny, ..., N —1and t € o, we have from (B213),
p=2 N-1 n1 t;}:ll
x(t) =ty p(F) :ZZ f ka(t,s) (x )—u;(s))ds+2 ﬁ  ks(t,5) (x(5) — 17 (9)) ds
i=0 d=0 i=0 Y
+ ﬁ t:h ka(t,s) (x(s) = 1) (5)) ds + f " ka(t, s) (x(s) — ' (5)) ds
nNi=1 -
+dzn::1f ko(t, s) x(s) ub” 1(s)) ds + ZZ(; f#’+ ko(t, s) (x(s)—uf(s)) ds
et (0 - @)as+ [ ) (0 - 9)
,;;Tll , t—11 t
Tkt 9) (x(6) — 7)) ds + | Ka(t,5) (x(5) = p(s)) d
+i=n;N1L) 1 s(xs us)s+ft£1 s(xs ups)s

(3.3.22)

This implies from (B321),(B322), forn = 1,...,N — 1, we have
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r-1 N-1 n—
N i -1
1 =y Ny < Bk 1€ logegy +ik Y 1€ Nl
i=0 d=0 i=0
N-1
1 1
F 2 gy +HE Y 11
d=n+1
.
1Y e Mgy ikl = g Nl
i=0
where k = max (|| ki ll,=0, i = 1,2,3),
hence,
p—1 N-1 n-1
A ] -1
(1= hk) 1| X = oy llpooory < 20 [ +2th 4 iy
i=0 d=0 i=0
For1-hk>0
1
hk p—1 N-1 _1
% = g iy < 72 thZ €} oty +7 =77 th e/ Ny -
i=0 d=0

Therefore, by theorem (B31), forn =1,2,...,N -1,

1€ iy <l = 8 i
A A~ p
<IN = B pooory + 1 B =t ooty

a(m)

<l x =l ooty += = H"

Then, forn=1,2,..,N -1,

82



NUMERICAL SOLUTION OF DDIEs USING TAYLOR COLLOCATION METHOD

2hkN 2hk
e oty < T th||e||w>+1 thne” e

L alm)
m!

hm

where ¢ = ¢e|,; = x — u'.

Hence, by Lemma (I"ZT), for alln =0,1,..,N -1,

n—-1
) a(m™ 2k, ; 2k
I en llpo@ry < L Z IFe llqa fexp — 1 - hk

j=0
-1
a(mh™ 2k, 2k,
< 00 (1
S| +1—hk;”e oy | exP | 77k
—————

a(m)C23]’l 272kC23 1
<=4 5T thn oo,

using again Lemma (ICZT), for alln =0,1,...,N -1,

p-1
p oz(m)cma 2T2kC23
en oy < mt O [Z 1 - hk

[_

OL(WZ)C23hm 2TkC23
S exP(l—hk)

a(m)cosh™
< %ew (c24)

< Conm.

We taking C, = max{C}, C3}.
Thus, the proof is completed by taking C = max{C;, C,}. =
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3.4 Numerical examples

In this section, we give two numerical examples to illustrate the theoretical results

obtained in the second chapter. In each example, we calculate the error between x

and the Taylor collocation solution u. We notice that the absolute error decreases with

increasing value N and m.

Example 3.4.1 Consider the double delay Volterra integral equation

f—1

W0 =90+ [ e,

1+t

for t € [1,7] and g is chosen so that x(t) = &, &(t) = &L for t € [0,1].

The absolute errors for (N, m) = {(2,2),(4,4), (6,6),(8,8)} are presented in Table B

Table 3.1: Absolute errors of Example B2

FI(N,m) = (2,2) | (N,m) =44 | (N,m)=(6,6) | (N,m)=(8,8)
100 0.0 0.0 0.0
2[366x10*F [412x10° |9.82x10 0 |952x10 "
3[1.75x10° | 1.90x10° | 6.02x10° 0 |728x 10!
4]190x10° |432x107 | 2656x10° 0 |420x 10"
5[143x10° | 1.15x107 | 924x100 |220x 10"
69.09x10*F |214x107 |232x100 | 1.09x 101

7 [149x10° | 870x107 | 658x 1011 | 532x 101

Example 3.4.2 Consider the double delay Volterra integral equation

t—’l’]

(ts + cos(s + t))x(s)ds

x(t) = g(t) + j; - sin(s + t)x(s)ds + ft

.
t

+ f cos(s + t)x(s)ds,
t—11

fort € [1,6] and g is chosen so that x(t) = sin(t) + 1, ®(t) = sin(t) + 1 for t € [0, 1].

The absolute errors for (N, m) = {(4,6), (6,6),(8,6),(8,8)} are presented in Table B2.
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Table 3.2: Absolute errors of Example B-42

FT(N,m)=4,6) | (N,m)=(6,6) | (N,m)=(8,6) | (N,m)=(8,8)
1]00 0.0 0.0 0.0

2 231x10° | 617x10° |317x10° | 2.60x 10~
3(318x107 |469x10° |794x10° | 253x 107
4]510x10° |634x107 |234x107 |3.65x10°
5[09.02x10° |1.05x10° | 381x10° | 641x107

6| 472x10° | 575x10% | 2.02x10* |337x10°
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CONCLUSION

In conclusion, we have successfully studied the existence and uniqueness of theorems
for nonlinear integral equations involving two constant delays. Furthermore, we em-
ployed the Taylor polynomials method to obtain a numerical solution for these double
delay integral equations. We also investigated the convergence of the approximate
solution and found that it is a reliable approach. The implementation of this method is
straightforward, making it easily applicable in practice. Extending our research to en-
compass generalizations of the proposed approach for nonlinear double delay integral

equations would be beneficial.

t—Tl

x(t):g(t)+f0_T2 k3(t,s,x(s))ds+f kz(t,s,x(s))ds+‘f_ ki(t,s, x(s))ds.

-7y
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