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INTRODUCTION

The second-order linear recurrence sequences (un(a, b; p, q))n≥0, or briefly (un)n≥0 is

defined as follow

un = pun−1 + qun−2, n ≥ 2 (1)

With the initials conditions u0 = a, u1 = b [17, 21] . This sequence was introduced by

Horadam in 1985 (see[17, 18, 24]). Which were generalized many sequences, mostly

depending on p, q, a and b. Examples of such sequences include the Fibonacci num-

bers sequences and Lucas numbers sequences. Many authors have been interested in

studying these sequences. For example Hoggatt in [16], Vorobiov in[30], and recently

Marques in [22] and Shattuck in [27].

Generating functions are a particularly useful tool in the study of combinatorics.

They allow us to apply analysis and algebraic techniques to combinatorial problems,

particularly in the context of recurrence, many authors have calculated generating

functions for the products of some numbers and polynomials , you can refer to [4, 7, 26].

The main purpose of this work is to obtain new results on generating functions

using the concept of symmetric functions . Our thesis is organized into three chapters:

In the first chapter, we present the tools and preliminaries necessary for understand-
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Introduction

ing the following chapters. We first give definitions and properties of linear recurrence

relations for some numbers and polynomials. Following that, we offer some reminders

regarding formal series. At the end, we introduce the ordinary generating functions of

some polynomials.

In the second chapter, we recall the elementary and completes symmetric functions,

as well as their properties.

In the third chapter, by making use the symmetrizing operators δk
a1a2

we introduce

new generating functions for the products of the Fibonacci number, Lucas numbers

and Jacobsthal numbers with bivariate Fibonacci polynomials, bivariate Lucas polyno-

mial, bivariate Pell Lucas polynomials, bivariate Jacopsthal polynomials and bivariate

Jacopsthal Lucas polynomials.
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CHAPTER 1

NOTATIONS AND PRELIMINARIES

In this chapter, we mention some definitions and fundamental theorems related to

linear recurrence relations, formal series and generating functions that are utilized in

our work, for more details, you can refer to [1, 2, 25].

1.1 Linear recurrence relations

Definition 1.1.1 [28] A linear recurrence relation of degree k is a recurrence relation of the

form

un + f1 (n) un−1 + f2 (n) un−2 + ... + fk (n) un−k = 1 (n) , (1.1)

where f1 (n) , f2 (n) , ..., fk (n) et 1 (n) are functions of n and fk(n) , 0.

Remark 1.1.1

1. If 1 (n) = 0, then (1.1) is said to be homogeneous recurrence relation, if 1 (n) , 0, then

(1.1) is said to be non-homogeneous recurrence relation.
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Notations and preliminaries

2. If f1 (n) , f2 (n) , ..., fk (n) are constants, then the recurrence relation (1.1) is known as a

linear recurrence relations of constant coefficients.

Theorem 1.1.1 [28] The linear recurrence relation

un + f1 (n) un−1 + f2 (n) un−2 + ... + fk (n) un−k = 1 (n) ,

with u0 = a0, u1 = 1, ..., uk−1 = ak−1, are constants has a unique solution.

Lemma 1.1.1 [28] Let u(1)
n be the solution of the relation:

un + f1 (n) un−1 + f2 (n) un−2 + ... + fk (n) un−k = 11 (n) ,

and u(2)
n the solution of the relation:

un + f1 (n) un−1 + f2 (n) un−2 + ... + fk (n) un−k = 12 (n) .

Then c1u(1)
n + c2u(2)

n is the solution of

un + f1 (n) un−1 + f2 (n) un−2 + ... + fk (n) un−k = c111 (n) + c212 (n) .

Proof. We have[
c1u(1)

n + c2u(2)
n

]
+ f1 (n)

[
c1u(1)

n−1 + c2u(2)
n−1

]
+ ... + fk (n)

[
c1u(1)

n−k + c2u(2)
n−k

]

=c1u(1)
n + c1 f1 (n) u(1)

n−1 + ... + c1 fk (n) u(1)
n−k + c2u(2)

n + c2 f1 (n) u(2)
n−1 + ... + c2 fk (n) u(2)

n−k

=c1

[
u(1)

n + f1 (n) u(1)
n−1 + ... + fk (n) u(1)

n−k

]
+ c2

[
u(2)

n + f1 (n) u(2)
n−1 + ... + fk (n) u(2)

n−k

]

=c111 (n) + c212 (n) .

This completes the proof
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Notations and preliminaries

1.2 Linear homogeneous recurrence relations with con-

stant coefficients

Definition 1.2.1 [24] A linear homogeneous recurrence relation of degree k with constant

coefficients is a recurrence relation of the form

un = c1un−1 + c2un−2 + ... + ckun−k, (1.2)

where c1, c2, ..., ck are real numbers, and ck , 0

Example 1.2.1 The recurrence relation Fn = Fn−1 + Fn−2 is a linear homogeneous recurrence

relation of degree two.

Example 1.2.2 The recurrence relation un = un−5 is a linear homogeneous recurrence relation

of degree five.

Example 1.2.3 The recurrence relation un = un−1 + u2
n−2 is not linear. The recurrence relation

un = 3un−1 + 5 is not homogeneous. The recurrence relation vn = nvn−1 does not have constant

coefficients.

Remark 1.2.1 [24]The basic approach for solving linear homogeneous recurrence relations is

to look for solutions of the form un = zn where t is a constant . Note that un = zn is a solution

of the recurrence relation un = c1un−1 + c2un−2 + ... + ckun−k if and only if

zn = c1zn−1 + ... + ckzn−k

when both sides of this equation are divided by zn−k and the right-hand side is subtracted from the

left, we obtain the equation zk
− c1zk−1

− ...− ck = 0. Consequently, the sequence un with un = zn

is a solution if and only if z is a solution of this last equation. We call this the characteristic

equation of the recurrence relation. The solutions of this equation are called the characteristic

roots of the recurrence relation. As we will see, these characteristic roots can be used to give an

explicit formula for all the solutions of the recurrence relation.
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Notations and preliminaries

Definition 1.2.2 [3]The characteristic polynomial of the recurrence relation

un = c1un−1 + c2un−2 + ... + ckun−k

is

P(z) = zk
− c1zk−1

− ... − ck.

Example 1.2.4 The characteristic polynomial of the recurrence relation un = 5un−1 − 6un−2 is

z2
− 5z + 6.

Example 1.2.5 The characteristic polynomial of the recurrence relation Pn = Pn−2 + Pn−3 is

z3
− z − 1.

Remark 1.2.2 The characteristic equation associated with the recurrence relation is obtained

by canceling the characteristic polynomial of the latter.

Theorem 1.2.1 If z is a root of multiplicity m of recurrence relation(1.2) then un = nrzn, 0 ≤

r < m is a solution of the relation (1.2)

Theorem 1.2.2 [24] Let c1, c2, ...., ck be real number. Suppose that the characteristic equation

zk
− c1zk−1... − ck = 0,

has k distinct roots z1, z2, ...., zk. Then a sequence un is a solution of the recurrence relation

un = c1un−1 + c2un−2 + .... + ckun−k,

if and only if

un = α1zn
1 + α2zn

1 + ... + αnzn
n.

for n = 0, 1, 2, ..., where α1, α2, ..., αk are constants.
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Notations and preliminaries

Example 1.2.6 Consider the following recurrence relation: un = un−1 + 6un−2 with initial

conditions u0 = 0,u1 = 1.

The characteristic equation is z2
− z − 6. This can be factored as (z + 1)(z − 3), hence there are

two real roots: −1 and 3, then the general solution is

un = c1(−2)n + c23n.

The initial conditions u0 = 0 and u1 = 1 implies that c1 = −1
5 and c2 = 1

5 .Thus the solution is

un =
(3)n

5
−

(−2)n

5
.

Theorem 1.2.3 [24] Let c1, c2, ...., ck be real numbers. Suppose that the characteristic equation

zk
− c1zk

− ... − ck = 0,

hasr distinct roots z1, z2, ...., zk with multiplicities m1,m2, ...,mr, respectively, so that mi ≥

1∀i = 1, 2, ..., r and
∑r

i=1 mi = k. Then a sequence {un} is a solution of the recurrence relation

un = c1un−1 + c2un−2 + .... + ckun−k.

If and only if

un = (α1.0 + α11n + ... + α1m−1nm1−1)zn
1

+(α2.0 + α21n + .... + α2m2−1nmr−1)zn
2+

.

.

.

+(αr.0 + αr.2n + .... + αrmr−1nmr−1)zn
r

for n = 0, 1, 2, ..., where αi j are constants for 1 ≤ i ≤ r and 0 ≤ j ≤ mi − 1.

13



Notations and preliminaries

1.2.1 Recurrence relations of some numbers and polynomials

Definition 1.2.3 [3]Generalized Fibonacci sequence (Gn)n∈N is defined by the following recur-

rence relation 
Gn = pGn−1 + qGn−2,n ≥ 2

G0 = α,G1 = β.
(1.3)

With p, q ∈ R+ and α, β ∈ C .

Lemma 1.2.1 [3] Let z2
− pz − q = 0, the characteristic equation of the recurrence relation

(1.3). Then

1. If the characteristic equation has two real solutions z1 and z2, then the general solution

for(1.3) is given by:

Gn =
λ1zn

1 − λ2zn
2

z1 − z2
,

with λ1 = β − αz2 and λ2 = β − αz1.

2. If the characteristic equation has only one real solution z, then the general solution for

(1.3) is given by:

Gn = (c1 + c2n)zn,

with c1 = α and c2 =
β − αz

z
.

Definition 1.2.4 [8] The k-Fibonacci numbers are defined by the following recurrence relation:


Fk,n = kFk,n−1 + Fk,n−2,∀n ≥ 2

Fk,0 = 0,Fk,1 = 1.
(1.4)

The first terms of the k-Fibonacci numbers are given by

n 0 1 2 3 4 5 6 7

Fk,n 0 1 k k2 + 1 k3 + 2k k4 + 3k2 + 1 k5 + 4k3 + 3k k6 + 5k4 + 6k2 + 1

14



Notations and preliminaries

The Binet formula is written:

Fk,n =
1

√

k2 + 4

k +
√

k2 + 4
2

n

−

k −
√

k2 + 4
2

n . (1.5)

Definition 1.2.5 [12] The k-Lucas numbers are defined by the following recurrence relation:


Lk,n = kLk,n−1 + Lk,n−2,∀n ≥ 2

Lk,0 = 2,Lk,1 = k.
(1.6)

The first terms of the k-Lucas numbers are given by

n 0 1 2 3 4 5 6

Lk,n 2 k k2 + 2 k3 + 4k k4 + 6k2 + 4 k5 + 8k3 + 12k k6 + 10k4 + 24k2 + 8

The Binet form is written:

Lk,n =

k +
√

k2 + 4
2

n

+

−k −
√

k2 + 4
2

−n

. (1.7)

Definition 1.2.6 [9] The k-Pell numbers are defined by the following recurrence relation:


Pk,n = 2Pk,n−1 + kPk,n−2,∀n ≥ 2

Pk,0 = 0,Pk,1 = 1.
(1.8)

The first terms of the k-Pell numbers are given by

n 0 1 2 3 4 5 6 7

Pk,n 0 1 2 k + 4 4k + 8 k2 + 12k + 16 6k2 + 32k + 32 k3 + 24k2 + 80k + 64

The Binet formula is written:

Pk,n =
1

2
√

1 + k

((
1 +
√

1 + k
)n
−

(
1 −
√

1 + k
)n
)
. (1.9)

Definition 1.2.7 [10] The k-Pell-Lucas numbers are defined by the following recurrence rela-
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Notations and preliminaries

tion: 
Qk,n = 2Qk,n−1 + kQk,n−2,∀n ≥ 2

Qk,0 = 2,Qk,1 = 2.
(1.10)

The first terms of the k-Pell-Lucas numbers are given by

n 0 1 2 3 4 5 6

Qk,n 2 2 2k + 4 6k + 8 2k2 + 16k + 16 10k2 + 40k + 32 2k3 + 36k2 + 96k + 64

The Binet formula is written:

Qk,n =
(
1 +
√

1 + k
)n

+
(
1 −
√

1 + k
)n
. (1.11)

Definition 1.2.8 [19] The k-Jacobsthal numbers are defined by the following recurrence rela-

tion: 
Jk,n+1 = kJk,n + 2Jk,n−1,∀n ≥ 1

Jk,0 = 0, Jk,1 = 1.
(1.12)

The first terms of the k-Jacobsthal numbers are given by

n 0 1 2 3 4 5 6 7

Jk,n 0 1 k k2 + 2 k3 + 4k k4 + 6k2 + 4 k5 + 8k3 + 12k k6 + 10k4 + 24k2 + 8

The Binet formula is written:

Jk,n =
1

√
k2 + 8

k +
√

k2 + 8
2

n

−

k −
√

k2 + 8
2

n . (1.13)

Definition 1.2.9 [11]The k-Jacobsthal-Lucas numbers are defined by the following recurrence

relation: 
jk,n+1 = kjk,n + 2 jk,n−1,∀n ≥ 1

jk,0 = 2, jk,1 = k.
(1.14)
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The first terms of the k-Jacobsthal-Lucas numbers are given by

n 0 1 2 3 4 5 6

jk,n 2 k k2 + 4 k3 + 6k k4 + 8k2 + 8 k5 + 10k3 + 20k k6 + 12k4 + 36k2 + 16

The Binet formula is written:

jk,n =

k +
√

k2 + 8
2

n

+

k −
√

k2 + 8
2

n

. (1.15)

• By taking k = 1 in the identity (1.4)-(1.15), we obtain the following table.

Recurrence relations Binet Formula

Fn = Fn−1 + Fn−2,∀n ≥ 2

F0 = 0,F1 = 1.
Fn =

1
√

5

(1 +
√

5
2

)n

−

(
1 −
√

5
2

)n
Ln = Ln−1 + Ln−2,∀n ≥ 2

L0 = 2,L1 = 1
Ln =

(
1 +
√

5
2

)n

+

(
−1 −

√
5

2

)−n

Pn = 2Pn−1 + Pn−2,∀n ≥ 2

P0 = 0,P1 = 1
Pn =

1

2
√

2

((
1 +
√

2
)n
−

(
1 −
√

2
)n)

Qn = 2Qn−1 + Qn−2,∀n ≥ 2

Q0 = 2,Q1 = 2.
Qn =

(
1 +
√

2
)n

+
(
1 −
√

2
)n

Jn+1 = Jn + 2Jn−1,∀n ≥ 1

J0 = 0, J1 = 1.
Jn =

1
3
(
2n
− (−1)n)

jn+1 = jn + 2 jn−1,∀n ≥ 1

j0 = 2, j1 = 1.
jn = 2n + (−1)n .

Tabel 1: Binet Formula of Recurrence relations

Definition 1.2.10 [25] For n ∈N, the bivariate Fibonacci polynomials are defined by


Fn(x, y) = xFn−1(x, y) + yFn−2(x, y),n ≥ 2

F0(x, y) = 0,F1(x, y) = 1.
(1.16)
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Definition 1.2.11 [25] For n ∈N, the bivariate Lucas polynomials are defined by


Ln(x, y) = xLn−1(x, y) + yLn−2(x, y),n ≥ 2

L0(x, y) = 2,L1(x, y) = x.
(1.17)

Definition 1.2.12 [25] For n ∈N, the bivariate Pell polynomials are defined by


Pn(x, y) = 2xyPn−1(x, y) + yPn−2(x, y),n ≥ 2

P0(x, y) = 0,P1(x, y) = 1.
(1.18)

Definition 1.2.13 [25] For n ∈N, the bivariate Pell Lucas polynomials are defined by


Qn(x, y) = 2xyQn−1(x, y) + yQn−2(x, y),n ≥ 2

Q0(x, y) = 2,Q1(x, y) = 2xy.
(1.19)

Definition 1.2.14 [25] For n ∈N, the bivariate Jacobsthal polynomials are defined by


Jn(x, y) = xyJn−1(x, y) + 2yJn−2(x, y),n ≥ 2

J0(x, y) = 0, J1(x, y) = 1.
(1.20)

Definition 1.2.15 [25] For n ∈N, the bivariate Jacobsthal Lucas polynomials are defined by


jn(x, y) = xyjn−1(x, y) + 2yjn−2(x, y),n ≥ 2

j0(x, y) = 2, j1(x, y) = xy.
(1.21)

the following table gives the Binet formula:[25, 7, 29]
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Notations and preliminaries

Polynomials Values of α, β Binet formula

Fn
(
x, y

)
α
(
x, y

)
=

x +
√

x2 + 4y
2

, β
(
x, y

)
=

x −
√

x2 + 4y
2

αn
− βn

α − β

Ln
(
x, y

)
α
(
x, y

)
=

x +
√

x2 + 4y
2

, β
(
x, y

)
=

x −
√

x2 + 4y
2

αn + βn

Pn
(
x, y

)
α
(
x, y

)
= xy +

√
x2y2 + y, β

(
x, y

)
= xy −

√
x2y2 + y

αn
− βn

α − β

Qn
(
x, y

)
α
(
x, y

)
= xy +

√
x2y2 + y, β

(
x, y

)
= xy −

√
x2y2 + y αn + βn

Jn
(
x, y

)
α
(
x, y

)
=

xy +
√

x2y2 + 8y
2

, β
(
x, y

)
=

xy −
√

x2y2 + 8y
2

αn
− βn

α − β

jn
(
x, y

)
α
(
x, y

)
=

xy +
√

x2y2 + 8y
2

, β
(
x, y

)
=

xy −
√

x2y2 + 8y
2

αn + βn

Tabel 2: Binet formula of some polynomials.

1.3 Generating functions

1.3.1 Formal series

LetK be a commutative field (K = R or C).

Definition 1.3.1 [3]The elements of the set K[[z]] =

 ∞∑
n=0

anzn, an ∈ K

 are called formal

series with coefficients inK. for n ∈N, zn called the monomial of degree n and an it’s coefficient.

Definition 1.3.2 [3] Let α(z) =

∞∑
n=0

anzn and β(z) =

∞∑
n=0

bnzn be two formal series. Then the

sun of α(z) and β(z) is given by

α(z) + β(z) =

∞∑
n=0

(an + bn)zn.

Definition 1.3.3 [3]Let α(z) =

∞∑
n=0

anzn and β(z) =

∞∑
n=0

bnzn be two formal series. Then the
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product of α(z) and β(z) is given by

α(z)β(z) =

∞∑
n=0

cnzn,

with

cn =

∞∑
k=0

akbn−k.

Definition 1.3.4 [3] Two formal series α(z) =

∞∑
n=0

anzn and β(z) =

∞∑
n=0

bnzn are equal if and

only if for all n , 0, an = bn.

Definition 1.3.5 [3]We say that the series
∞∑

n=0

anzn is the inverse of the series
∞∑

n=0

bnzn if:

 ∞∑
n=0

anzn

  ∞∑
n=0

bnzn

 = 1.

Example 1.3.1 The series α =

∞∑
n=0

anzn is inversible and its inverse is (1 − z) , indeed

(1 − z)

 ∞∑
n=0

zn

 =

∞∑
n=0

zn
− z

∞∑
n=0

zn

=

∞∑
n=0

zn
−

∞∑
n=0

zn+1

= 1 +

∞∑
n=0

zn
−

∞∑
n=0

zn

= 1.

Proposition 1.3.1 [3] A formal series
∞∑

n=0

anzn is invertible if and only if an , 0.

Proof. We need to determine whether or not there exists a formal series β(z) =
∞∑

n=0

anzn, inK[[z]] such that α(z)β(z) = 1. Expanding the product, we have
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α(z)β(z) =

 ∞∑
n=0

anzn

  ∞∑
n=0

bnzn


=

∞∑
n=0

 n∑
k=0

akbn−k

 zn.

Comparing the coefficient of zn on both sides of α(z)β(z) = 1, we see that β(z) satisfies the

equation if and only if a0b0 = 1 and
n∑

k=0

akbn−k = 0 for all n ≥ 1. If a0 is not invertible inK

then the equation α(z)β(z) = 1 can not solved for b0, so that β(z) does not exist and α(z) is

not invertible inK[[z]]. If a0 is invertible inK, then b0 = a−1
0 exist. Each of the remaining

equations (for n ≥ 1) can be rewritten as a0bn = −

n∑
k=0

akbn−k, or upon multiplying by

b0, bn = −b0

n∑
k=0

akbn−k. These equation can be solved by indication on k ≥ 1, yielding

a solution for β(z) which gives the multiplicative inverse of α(z). Therefore, β(z) is

invertible inK[[z]].

Proposition 1.3.2 [3] If α(z) and β(z) are two nonzero formal series then α(z)β(z) is also

nonzero.

1.3.2 Ordinary generating functions (OGF)

Definition 1.3.6 [3] The ordinary generating function (OGF) of the sequence (an)n∈N =

(a0, a1, a2, . . . ), is defined by:

G(z) =

∞∑
n=0

anzn.

Example 1.3.2 The generating functions for the sequences (an)n∈N with an = 5, an = n + 1 and

an = 2n are
∞∑

n=0

5zn,
∞∑

n=0

(n + 1)zn and
∞∑

n=0

2nzn, respectively.

Theorem 1.3.1 [13] Let A(z) the ordinary generating function of (an)n∈N and B(z) the ordinary

generating function of (bn)n∈N, so
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1. A(z)+B(z) is the ordinary generating function of (an + bn)a≥0.

2. zA(z)is the ordinary generating function of (0, a0, a1, a2, . . . , an−1).

3. A(z)B(z)is the ordinary generating function of (a0, a0b1 + a1b0 + a1b1 + a2b0, . . . )

4. (1-z)A(z)is the ordinary generating function of .(a0, a1 − a0, a2 − a1, . . . , an − an−1, . . . ).

Theorem 1.3.2 [3] Let the sequence (Gn)n∈N defined by the following recurrence relation


Gn = pGn−1 + qGn−2

G0 = α,G1 = β
(1.22)

with p, q ∈ C and α, β ∈ C. So the generating function of (Gn)n≥0 is given by

G(z) =
α + (β − pα)z
1 − pz − qz2 .

Proof. We have:

G(z) =

∞∑
n=0

Gnzn = G0 + G1z +

∞∑
n=2

Gnzn

= α + βz +

∞∑
n=2

(pGn−1 + qGn−2)zn

= α + βz + pz
∞∑

n=2

Gn−1zn−1 + qz2
∞∑

n=2

Gn−2zn−2

= α + βz + pz
∞∑

n=1

Gnzn + qz2
∞∑

n=0

Gnzn

= α + βz + pz

 ∞∑
n=0

Gnzn
− α

 + qz2
∞∑

n=0

Gnzn

= α +
(
β − αp

)
z + pzG(z) + qz2G(z).

So,

G(z) =
α +

(
β − pα

)
z

1 − pz − qz2 .

This completes the proof.
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From the previous theorems we deduce the following table [3]:

values of p, q, α, β cofficient of zn generating function

p = k, β = 1, q = 1, α = 0 Fk.n
1

1−kz−z2

p = β = k, q = 1, α = 2 Lk.n
2−kz

1−kz−z2

α = 0, p = 2, q = k, β = 1 Pk.n
z

1−2z−kz2

α = β = p = 2, q = k Qk.n
2−2z

1−2z−kz2

p = k, q = 2, α = 0, β = 1 Jk.n
z

1−kz−2z2

p = β = k, α = q = 2 jk.n
2−kz

1−kz−2z2

Table 1: Generating function of some k numbers .

For k = 1 in the table 1 we obtain the following table [3].

values of p, q, α, β cofficient of zn generating function

p = 1, β = 1, q = 1, α = 0 Fn
1

1−z−z2

p = β = 1, q = 1, α = 2 Ln
2−z

1−z−z2

α = 0, p = 2, q = 1, β = 1 Pn
z

1−2z−z2

α = β = p = 2, q = 1 Qn
2−2z

1−2z−z2

p = 1, q = 2, α = 0, β = 1 Jn
z

1−z−2z2

p = β = 1, α = q = 2 jn
2−z

1−z−2z2

Table 2:Generating function of some numbers .

Theorem 1.3.3 [25] The generating function of the bivariate Fibonacci polynomials is given

by
∞∑

n1=2

Fn(x, y)zn =
z

1 − xz − yz2 . (1.23)
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Proof. We have:

G(z) =

∞∑
n=0

Fn(x, y)zn = F0(x, y) + F1(x, y)z +

∞∑
n=2

Fn(x, y)zn

= z +

∞∑
n=2

(
xFn−1(x, y) + yFn−2(x, y)

)
zn

= z + xz
∞∑

n=2

Fn−1(x, y)zn−1 + yz2
∞∑

n=2

Fn−2(x, y)zn−2

= z + xz
∞∑

n=1

Fn(x, y)zn + yz2
∞∑

n=0

Fn(x, y)zn

= z + xz

 ∞∑
n=0

Fn(x, y)zn
− 0

 + yz2
∞∑

n=0

Fn(x, y)zn

= z + xzG(z) + yz2G(z).

Then,

G(z) =
z

1 − xz − yz2 .

This completes the proof.

Theorem 1.3.4 [25] The generating function of the bivariate Lucas polynomials is given by

∞∑
n=2

Ln(x, y)zn =
2 − xz

1 − xz − yz2 .

Proof. By definition, we have

G(z) =

∞∑
n=2

Ln(x, y)zn

= L0(x, y) + L1(x, y)z +

∞∑
n=2

Ln(x, y)zn

= 2 + xz +

∞∑
n=2

(
xLn−1(x, y) + yLn−2(x, y)

)
zn

= 2 + xz + xz
∞∑

n=2

Ln−1(x, y)zn−1 + yz2
∞∑

n=2

Ln−2(x, y)zn−2
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= 2 + xz + xz
∞∑

n=1

Ln(x, y)zn + yz2
∞∑

n=0

Ln(x, y)zn

= 2 + xz + xz

 ∞∑
n=0

Ln(x, y)zn
− 2

 + yz2
∞∑

n=0

Ln(x, y)zn

= 2 − xz + xzG(z) + yz2G(z)

Then,

G(z)
(
1 − xz − yz2

)
= 2 − xz.

So,

G(z) =
2 − xz

1 − xz − yz2 .

This completes the proof.

Theorem 1.3.5 [25] The generating function of the bivariate Pell polynomials is given by

∞∑
n=2

Pn(x, y)zn =
z

1 − 2xyz − yz2

Proof. We have

G(z) =

∞∑
n=0

Pn(x, y)zn

= P0(x, y) + P1(x, y)z +

∞∑
n=2

Pn(x, y)zn

= z +

∞∑
n=2

(
2xyPn−1(x, y) + yPn−2(x, y)

)
zn

= z + 2xyz
∞∑

n=2

Pn−1(x, y)zn−1 + yz2
∞∑

n=2

Pn−2(x, y)zn−2

= z + 2xyz
∞∑

n=1

Pn(x, y)zn + yz2
∞∑

n=0

Pn(x, y)zn

= z + 2xyz

 ∞∑
n=0

Pn(x, y)zn
− 0

 + yz2
∞∑

n=0

Pn(x, y)zn

= z + 2xyzG(z) + yz2G(z).
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Then

G(z)
(
1 − 2xyz − yz2

)
= z.

So

G(z) =
z

1 − 2xyz − yz2 .

This completes the proof.

Theorem 1.3.6 [25] The generating function of the bivariate Pell-Lucas polynomials is given

by
∞∑

n=0

Qn(x, y)zn =
2 − 2xyz

1 − 2xyz − yz2

Proof. We have

G(z) =

∞∑
n=0

Qn(x, y)zn

= Q0(x, y) + Q1(x, y)z +

∞∑
n=2

Qn(x, y)zn

= 2 + 2xyz +

∞∑
n=2

(
2xyQn−1(x, y) + yQn−2(x, y)

)
zn

= 2 + 2xyz +

∞∑
n=2

Qn−1(x, y)zn−1 + yz2
∞∑

n=2

Qn−2(x, y)zn−2

= 2 + 2xyz +

∞∑
n=1

Qn(x, y)zn + yz2
∞∑

n=0

Qn(x, y)zn

= 2 + xyz + 2xyz

 ∞∑
n=0

Qn(x, y)zn
− 2

 + yz2
∞∑

n=0

Qn(x, y)zn

= 2 − 2xyz + 2xyzG(z) + yz2G(z).

Then

G(z)
(
1 − 2xyz − yz2

)
= 2 − 2xyz.

So

G(z) =
2 − 2xyz

1 − 2xyz − yz2 .

This completes the proof.
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Theorem 1.3.7 [25] The generating function of the bivariate Jacobsthal polynomials is given

by
∞∑

n=0

Jn(x, y)zn =
z

1 − xyz − 2yz2

Proof. We have

G(z) =

∞∑
n=0

Jn(x, y)zn

= J0(x, y) + J1(x, y)z +

∞∑
n=2

Jn(x, y)zn

= z +

∞∑
n=2

(
xyJn−1(x, y) + 2yJn−2(x, y)

)
zn

= z + xyz
∞∑

n=2

Jn−1(x, y)zn−1 + 2yz2
∞∑

n=2

Jn−2(x, y)zn−2

= z +

∞∑
n=1

Jn(x, y)zn + 2yz2
∞∑

n=0

Jn(x, y)zn

= z + xyz

 ∞∑
n=0

Jn(x, y)zn
− 0

 + 2yz2
∞∑

n=0

Jn(x, y)zn

= z + xyzG(z) + 2yz2G(z).

Then

G(z)
(
1 − xyz − 2yz2

)
= z.

So

G(z) =
z

1 − xyz − 2yz2 .

This completes the proof.

Theorem 1.3.8 [25] The generating function of the bivariate Jacobsthal-Lucas polynomials is

given by
∞∑

n=0

jn(x, y)zn =
2 − xyz

1 − xyz − 2yz2
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Proof. We have

G(z) =

∞∑
n=0

jn(x, y)zn

= j0(x, y) + j1(x, y)z +

∞∑
n=2

jn(x, y)zn

= 2 + xyz +

∞∑
n=2

(
xyjn−1(x, y) + 2yjn−2(x, y)

)
zn

= 2 + xyz + xyz
∞∑

n=2

jn−1(x, y)zn−1 + 2yz2
∞∑

n=2

jn−2(x, y)zn−2

= 2 + xyz + xyz
∞∑

n=1

jn(x, y)zn + 2yz2
∞∑

n=0

jn(x, y)zn

= 2 + xyz + xyz

 ∞∑
n=0

jn(x, y)zn
− 2

 + 2yz2
∞∑

n=0

jn(x, y)zn

= 2 − xyz + xyzG(z) + 2yz2G(z).

Then

G(z)
(
1 − xyz − 2yz2

)
= 2 − xyz.

So

G(z) =
2 − xyz

1 − xyz − 2yz2 .

This completes the proof
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CHAPTER 2

ELEMENTARY AND COMPLETE

SYMMETRIC FUNCTIONS

Symmetric functions are important in many areas of mathematics, with a wide range

of applications in algebra, combinatorics, number theory and physics. For example, in

combinatorics they are used to solve problems involving permutations and partitions.

In physics, they have applications in the study of quantum field theory. In algebra, they

play a key role in the study of polynomials and their properties. In this chapter, we set

some definitions and properties of elementary and complete symmetric function, for

more details you can refer to [3, 1, 6].

2.1 Symmetric functions

Definition 2.1.1 [26] A function f (x1, x2, ..., xn) in n variables is symmetric if for all permu-

tations of the index set (1, 2, ...,n) the following equality holds:
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f (x1, x2, ..., xn) = f (xs(1), xs(2), ..., xs(n)).

Which means, a function of several variables is symmetric if its values does not change when

we swap variables.

2.1.1 Elementary symmetric functions

Definition 2.1.2 [3]Let k and n be tow positive integer and {λ1, λ2, . . . , λn} are the set of given

variables. Then, the elementary symmetric function ek(λ1, λ2, . . . , λn) is defined by

e(n)
k = ek(λ1, λ2, . . . , λn) =

∑
i1+i2+...+in=k

λi1
1λ

i2
2 . . . λ

in
n , 0 ≤ k ≤ n, (2.1)

with i1, i2 . . . in = 0 ∨ 1.

Remark 2.1.1 [26] Set e0(λ1, λ2, ..., λn) = 1, by usual convention, for k < 0, we set

ek(λ1, λ2, ..., λn) = 0.

Example 2.1.1 For an equation of degree 2, we have :

e0(λ1, λ2) = 1, e1(λ1, λ2) = λ1 + λ2, e2(λ1, λ2) = λ1λ2.

Example 2.1.2 For an equation of degree 3, we have:

e0(λ1, λ2, λ2) = 1, e1(λ1, λ2, λ2) = λ1 + λ2 + λ3, e2(λ1, λ2, λ2) = λ1λ2 + λ1λ3 + λ2λ3,

e3(λ1, λ2, λ2) = λ1λ2λ2.

Proposition 2.1.1 [14] The generating function of the elementary symmetric functions is given

by:

E(z) =
∑
k≥0

ekzk =

n∏
i=1

(1 + λiz).

Proof. We have
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e(n)
k = ek(λ1, λ2, . . . , λn) =

∑
i1+i2+...+in=k

λi1
1λ

i2
2 . . . λ

in
n with e(n)

k = 0 if k > n.

For n = 2, we have

2∏
i=1

(1 + λiz) = (1 + λ1z)(1 + λ2z)

= 1 + (λ1 + λ2)z + λ1λ2z2

= e0 + e1z + e2z2)

=

2∑
k=0

ekzk.

So the assertion is true for n = 2. Assume the proposition is true for n, i.e that

∑
n≥o

ekzk =

n∏
i=1

(1 + λiz)

and we want prove that the proposition is true for n + 1, i.e that

n+1∑
k=0

ekzk =

n+1∏
i=1

(1 + λiz)

we have,

n+1∏
i=1

(1 + λiz) =

n∏
i=1

(1 + λiz)(1 + λn+1z)

=

 n∑
k=0

ekzk

 (1 + λn+1z)

=

n∑
k=0

ekzk + λn+1

n∑
k=0

ekzk+1

=

n∑
k=0

ekzk + λn+1

n∑
k=1

ek−1zk

=

n∑
k=0

ekzk + λn+1

n∑
k=0

ek−1zk

=
∑
k≥0

(
e(n)

k + λn+1e(n)
k−1

)
zk

31



Symmetric functions

=
∑
k≥o

e(n+1)
k zk

=

n+1∑
k=0

ekzk.

Thus the proposition is true for alln ≥ 0

2.1.2 Complete symmetric functions

Definition 2.1.3 [3] Let k and n be tow positive integer and {λ1, λ2, . . . , λn} are the set of given

variables. Then, the complete symmetric functions hk(λ1, λ2, . . . , λn) is defined by

h(n)
k = hk(λ1, λ2, . . . , λn) =

∑
i1+i2+...+in=k

λi1
1λ

i2
2 . . . λ

in
n , (2.2)

with i1, i2 . . . in ≥ 0.

Remark 2.1.2 [26] Set h0(λ1, λ2, ..., λn) = 1, by usual convention, for k < 0, we set

hk(λ1, λ2, ..., λn) = 0.

Example 2.1.3 For an equation of degree 2 we have

h0(λ1, λ2) = 1, h1(λ1, λ2) = λ1+λ2, h2(λ1, λ2) = λ2
1+λ

2
2+λ1λ2, h3(λ1, λ2) = λ3

1+λ
3
2+λ

2
1λ2+λ1λ

2
2, ...

Example 2.1.4 For an equation of degree 3, we have

h0(λ2, λ1, λ3) = 1, h1(λ2, λ1, λ3) = λ1 + λ2 + λ3, h2(λ2, λ1, λ3) = λ2
1 + λ2

2 + λ2
3 + λ1λ2 +

λ1λ3 + λ2λ3, h3(λ2, λ1, λ3) = λ3
1 + λ3

2 + λ3
3 + λ2

1λ2 + λ2
1λ3 + λ2

2λ1 + λ2
2λ3 + λ2

3λ1 + λ3λ2λ1 +

λ3λ2λ2 + λ1λ2λ3, ...

Proposition 2.1.2 [14]The generating function of the completes symmetric function is given

by:

H(z) =
∑
k≥0

hkzk =
1

n∏
i=1

(1 − λiz)

.
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Proof. We have

hn
k = hk(λ1, λ2, . . . , λn) =

∑
i1+i2+...+in=k

λi1
1λ

i2
2 . . . λ

in
n ,

for n=2 , we have:

∑
k≥0

h2
kzk = h2

0 + h2
1z + h2

2z + . . .

= 1 + (λ1 + λ2)z + (λ2
1 + λ1λ2 + λ2

2)z2 + . . .

= (1 + λ1z + λ2
1z2 + . . . )(1 + λ2z + λ2

2z2 + . . . )

=

∑
k≥0

(λ1z)k


∑

k≥0

(λ2z)k


=

1
(1 − λ1z)(1 − λ2z)

=
1

2∏
i=1

(1 − λiz)

.

So the assertion is true for n = 2. Assume the proposition is true for n, i.e that

(n)∑
k≥0

h(n)
k zk =

1
n∏

i=1

(1 − λiz)

,

and we want prove that the proposition is true for n + 1, i.e that

∑
k≥0

hn+1
k zk =

1
n+1∏
i=1

(1 − λiz)

,

we have

h(n+1)
k = λn+1h(n+1)

k−1 + h(n)
k .

Thus ∑
k≥0

hn+1
k zk =

∑
k≥0

(
λn+1h(n+1)

k−1 + h(n)
k

)
zk
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= λn+1

∑
k≥0

h(n+1)
k−1 zk +

∑
k≥0

hn
k zk

= λn+1

∞∑
k=1

h(n+1)
k−1 zk +

∑
k≥0

hn
k zk

= λn+1z
∑
k≥0

h(n+1)
k zk +

∑
k≥0

hn
k zk,

which gives ∑
k≥0

h(n+1)
k zk

− λn+1z
∑
k≥0

h(n+1)
k zk =

∑
k≥0

h(n)
k zk.

Thus ∑
k≥0

h(n+1)
k zk(1 − λn+1z) =

∑
k≥0

λn
k zk =

1
n∏

i=1

(1 − λiz)

,

then

∑
k≥0

h(n+1)
k zk =

(1 − λn+1z)−1

n∏
i=1

(1 − λiz)

=
1

n+1∏
i=1

(1 − λiz)

.

Thus the proposition is true for all n ≥ 0

Proposition 2.1.3 For all m ∈N, we have

m∑
i=0

(−1)eihm−1 = δm,0

Such that δ is the Kronecker symbol

δi, j =


0 if i , j

1 if i = j
(2.3)
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Proof. Let f (z) and 1(z) be two functions such that

f (z) =

n∏
i=1

(1 − λiz) and 1(z) =
1

n∏
i=1

(1 − λiz)

According to the above, we obtain

f (z) =

∞∑
i=0

ei(−z)i =

∞∑
i=0

(−1)ieizi and 1(z) =

∞∑
j=0

h jz j

These function being inverse:

 ∞∑
i=0

(−1)ieizi


 ∞∑

j=0

h jz j

 = 1

thus,
∞∑

m=0

 m∑
i=0

(−1)ieihm−i

 zm = 1.

So all the coefficients of the series are zero, except the first so:

∞∑
i=0

(−1)ieihm−i = δm,0

This completes the proof.

Proposition 2.1.4 [3] For all n ≥ 0, we have

1. H(z).E(−z) = 1.

2. H(−z).E(z) = 1.

Proof. 1. We have

E(z) =
∑
k≥0

ekzk =
∏
i≥1

(1 + λiz)

E(−z) =
∑
k≥0

ek(−z)k =
∏
i≥1

(1 − λiz)
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H(z) =
∑
k≥0

hk(−z)k =
∏
i≥1

(1 − λiz)−1.

Then,

H(z).E(−z) =

∏
i≥1

(1 − λiz)−1


∏

i≥1

(1 − λiz)

 = 1

2. The proof is similar to the proof of 1.

This completes the proof.

2.2 Some properties on symmetric functions

Definition 2.2.1 [3]Let n be positive integer and A = {a1, a2} are set of given variables, then

the symmetric function Sn is defined by

Sn(A) = Sn(a1 + a2) =
an+1

1 − an+1
2

a1 − a2
,

with

S0(a1 + a2) = 1, S1(a1 + a2) = a1 + a2, S2(a1 + a2) = a2
1 + a1a2 + a2

2.

Remark 2.2.1 [3]We have Sn(a1 + a2) = 0, for n < 0.

Remark 2.2.2 Let A = {a1, a2} an alphabet, we have

Sn(a1 + a2, ) = hn(a1, a2).

Definition 2.2.2 [1] Let A and B be any two alphabets. We define Sn(A − B) by the following

form
∞∑
j=0

S j(A − B)z j = E(−z)H(z). (2.4)

With

H(z) =
∏
b∈B

(1 − bz)−1 and E(−z) =
∏
a∈A

(1 − az).
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Proposition 2.2.1 [26] By taking A = φ in (2.4), we obtain

∞∑
j=0

S j(−B)z j =
∏
b∈B

(1 − bz), (2.5)

Proposition 2.2.2 [26] By taking B = φ in (2.4), we obtain

∞∑
j=0

S j(A)z j =
1∏

a∈A

(1 − az)
. (2.6)

Lemma 2.2.1 [3] Given two alphabet A = {x} and B = {b1, b2, ..., bn}, we have

Sn+k(x − B) = xkSn(x − B),

for all k ≥ 0.

Proposition 2.2.3 [3] If A is of cardinal 1 (i.e.A = x), so∏
b∈B

(1 − bz)

(1 − xz)
= 1 + ... + z j−1S j−1(x − B) + z j S j(x − B)

(1 − xz)
. (2.7)

Proof. According to (2.4) we have:∏
b∈B

(1 − bz)

(1 − xz)
=

∞∑
j=0

S j(x − B)z j. (2.8)

Thus

∞∑
j=0

S j(x − B)z j = 1 + ... + S j−1(x − B)z j−1 + S j+1(x − B)z j+1 + ...

= 1 + ... + S j−1(x − B)z j−1 + z j(S j(x − B) + S j+1(x − B)z + ...)

= 1 + ... + S j−1(x − B)z j−1 + z j(S j(x − B) + xS j(x − B)z + ...)
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= 1 + ... + S j−1(x − B)z j−1 + z jS j(x − B)(1 + xz + x2z2 + ...)

= 1 + ... + z j−1S j−1(x − B) + z j S j(x − B)
(1 − xz)

.

Then ∏
b∈B

(1 − bz)

(1 − xz)
= 1 + ... + z j−1S j−1(x − B) + z j S j(x − B)

(1 − xz)
.

This completes the proof.

Proposition 2.2.4 [2] Considering successively the case A = φ, B = φ, we get the following

factorization
∞∑
j=0

S j(A − B)z j =

∞∑
j=0

S j(A)z j
∞∑
j=0

S j(−B)z j.

Thus,

S j(A − B)z j =

j∑
k=0

S j−k(A)Sk(−B).

Corollary 2.2.1 [25] For n ∈N, the symmetric function of bivariate Fibonacci polynomials is

given by

F(x, y) = Sn−1(a1 + [−a2]).

Corollary 2.2.2 [25] For n ∈ N, the symmetric function of bivariate Lucas polynomials is

given by

L(x, y) = Sn(a1 + [−a2]) − xSn−1(a1 + [−a2]).

Corollary 2.2.3 [25] For n ∈N, the symmetric function of bivariate Pell polynomials is given

by

P(x, y) = Sn−1(a1 + [−a2]).

Corollary 2.2.4 [25] For n ∈ N, the symmetric function of bivariate Pell-Lucas polynomials

is given by

Q(x, y) = 2Sn(a1 + [−a2]) − 2xySn−1(a1 + [−a2]).
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Corollary 2.2.5 [25] For n ∈N, the symmetric function of bivariate Jacobsthal polynomials is

given by

J(x, y) = Sn−1(a1 + [−a2]).

Corollary 2.2.6 [25] For n ∈N, the symmetric function of bivariate Jacobsthal-Lucas polyno-

mials is given by

j(x, y) = 2Sn(a1 + [−a2]) − xSn−1(a1 + [−a2]).

In the following table we give symmetric functions of some numbers[25]

Sequences Symmetric functions

Fn Sn−1(a1 + [−a2])

Ln 2Sn(a1 + [−a2]) − Sn−1(a1 + [−a2])

Pn Sn−1(a1 + [−a2])

Qn 2Sn(a1 + [−a2]) − 2Sn−1(a1 + [−a2])

Jn Sn−1(a1 + [−a2])

jn 2Sn(a1 + [−a2]) − Sn−1(a1 + [−a2])

Table 1 : Symmetric functions of some numbers.

In the following table we give symmetric functions of some polynomials[25]

Sequences Symmetric functions

Fn(x) Sn−1(a1 + [−a2])

Ln(x) 2Sn(a1 + [−a2]) − xSn−1(a1 + [−a2])

Pn(x) Sn−1(a1 + [−a2])

Qn(x) 2Sn(a1 + [−a2]) − 2xSn−1(a1 + [−a2])

Jn(x) Sn−1(a1 + [−a2])

jn(x) 2Sn(a1 + [−a2]) − xSn−1(a1 + [−a2])

Table 2 : Symmetric functions of some polynomials.

39



CHAPTER 3

ORDINARY GENERATING

FUNCTIONS OF THE PRODUCTS FOR

SOME NUMBERS AN POLYNOMIALS

In this chapter, we introduce some new generating functions for the products of

Fibonacci numbers, Pell numbers, Jacobsthal numbers with bivariate Fibonacci poly-

nomials, bivariate Pell polynomials, bivariate Jacobsthal polynomials, bivariate Lucas

polynomials, bivariate Pell-Lucas polynomials and bivariate Jacobsthal-Lucas polyno-

mials.

3.1 Definitions and some properties

Definition 3.1.1 [3] Let f be a function on Rn, the divided difference ∂ai,ai+1 is defined by

∂ai,ai+1( f ) =
f (a1, ..., ai, ai+1, ..., an) − f (a1, ..., ai−1, ai+1, ai, ..., an)

ai − ai+1
. (3.1)
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Definition 3.1.2 [3] The symmetrizing operator δk
a1a2

is defind by

δk
a1a2

f (a1) =
ak

1 f (a1) − ak
2 f (a2)

a1 − a2
, ∀k ∈N. (3.2)

Remark 3.1.1 [3] If f (ai) = ai, in the formula (3.2), we obtain

δk
a1a2

f (a1) =
ak+1

1 − ak+1
2

a1 − a2
.

Remark 3.1.2 [3] Let A = {a1, a2} an alphabet, we have

δk
a1a2

(a1) = Sk(a1 + a2).

3.2 Principal formula

In this section , we present a theorem in order to derive new generating functions of

the products of some well-known numbers and polynomials. The presented theorem

is based on symmetric functions.

Theorem 3.2.1 [4] Let A, B and C be three alphabets, respectively, {a1, a2}, {b1, b2} and {c1, c2}

then we have

∞∑
n=0

Sn(A)Sn+k−1(B)Sn+k−1(C)zn =

bk
1bk

2



(
∞∑

n=0
Sn(−A)bn

2cn
1zn

) (
∞∑

n=0
Sn(−A)bn

1cn
1zn

)
∞∑

n=0
Sn(−A)Sn−k−1(B)Cn+k

2 zn

−

(
∞∑

n=0
Sn(−A)bn

2cn
2zn

) (
∞∑

n=0
Sn(−A)bn

1cn
2zn

)
∞∑

n=0
Sn(−A)Sn−k−1(B)Cn+k

1 zn


(c1 − c2)

∏
a∈A

(1 − ab1c1z)
∏
a∈A

(1 − ab2c1z)
∏
a∈A

(1 − ab1c2z)
∏
a∈A

(1 − ab2c2z)
,

(3.3)

for all k ∈N0.
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Ordinary generating functions of the products for some numbers and polynomials

Proof. By applying the operator δk
c1c2
δk

b1b2
to the series f (b1c1z) =

∞∑
n=0

Sn(A)bn
1cn

1zn, we

have

δk
c1c2
δk

b1b2

(
f (b1c1z)

)
= δk

c1c2
δk

b1b2

 ∞∑
n=0

Sn(A)bn
1cn

1zn



= δk
c1c2


bk

1

∞∑
n=0

Sn(A)bn
1cn

1zn
− bk

2

∞∑
n=0

Sn(A)bn
2cn

1zn

b1 − b2


= δk

c1c2

 ∞∑
n=0

Sn(A)
bn+1

1 − bn+k
2

b1 − b2
cn

1zn


= δk

c1c2

 ∞∑
n=0

Sn(A)Sn+k−1(B)cn
1zn



=

ck
1

∞∑
n=0

Sn(A)Sn+k−1(B)cn
1zn
− ck

2

∞∑
n=0

Sn(A)Sn+k−1(B)cn
2zn

c1 − c2

=

∞∑
n=0

Sn(A)Sn+k−1(B)cn+k
1 zn

−

∞∑
n=0

Sn(A)Sn+k−1(B)cn+k
2 zn

c1 − c2

=

∞∑
n=0

Sn(A)Sn+k−1(B)
(

cn+k
1 − cn+k

2

c1 − c2

)
zn

=

inf∑
n=0

Sn(A)Sn+k−1(B)Sn+k−1(C)zn.

On the other hand, since

f (b1c1z) = 1∏
a∈A

(1 − ab1c1z)
,
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δk
c1c2
δk

b1b2

 1∏
a∈A

(1 − ab1c1z)

 = δk
c1c2



bk
1∏

a∈A

(1 − ab1c1z)
−

bk
2∏

a∈A

(1 − ab2c1z)

b1 − b2


= δk

c1c2


bk

1

∏
a∈A

(1 − ab2c1z) − bk
2

∏
a∈A

(1 − ab1c1z)

(b1 − b2)
∏
a∈A

(1 − ab1c1z)
∏
a∈A

(1 − ab2c1z)

 .
Using the fact that:

∞∑
n=0

Sn(−A)bn
1bn

1zn =
∏
a∈A

(1 − ab1c1z) ,

then

δk
c1c2
δk

b1b2

 1∏
a∈A

(1 − ab1c1z)

 = δk
c1c2



∞∑
n=0

Sn(−A)bk
1bn

2c1zn
−

∞∑
n=0

Sn(−A)bk
2bn

1cn
1zn

(b1 − b2)
∏
a∈A

(1 − ab1c1z)
∏
a∈A

(1 − ab2c1z)



= δk
c1c2


−bk

1bk
2

∞∑
n=0

Sn(−A)
(

bn−k
1 − bn−k

2

b1 − b2

)
cn

1zn

∏
a∈A

(1 − ab1c1z)
∏
a∈A

(1 − ab2c1z)



= δk
c1c2


−bk

1bk
2

∞∑
n=0

Sn(−A)Sn−k−1(B)cn
1zn

∏
a∈A

(1 − ab1c1z)
∏
a∈A

(1 − ab2c1z)



=
1

c1 − c2


−ck

1bk
1bk

2

∞∑
n=0

Sn(−A)Sn−k−1(B)cn
1zn

∏
a∈A

(1 − ab1c1z)
∏
a∈A

(1 − ab2c1z)
+

ck
1bk

1bk
2

∞∑
n=0

Sn(−A)Sn−k−1(B)cn
2zn

∏
a∈A

(1 − ab1c1z)
∏
a∈A

(1 − ab2c1z)


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=

bk
1bk

2



(
∞∑

n=0
Sn(−A)bn

2cn
1zn

) (
∞∑

n=0
Sn(−A)bn

1cn
1zn

)
∞∑

n=0
Sn(−A)Sn−k−1(B)Cn+k

2 zn

−

(
∞∑

n=0
Sn(−A)bn

2cn
2zn

) (
∞∑

n=0
Sn(−A)bn

1cn
2zn

)
∞∑

n=0
Sn(−A)Sn−k−1(B)Cn+k

1 zn


(c1 − c2)

∏
a∈A

(1 − ab1c1z)
∏
a∈A

(1 − ab2c1z)
∏
a∈A

(1 − ab1c2z)
∏
a∈A

(1 − ab2c2z)
.

This completes the proof.

If k = 0, 1, 2 in the theorem (3.2.1), we deduce the following lemmas.

Lemma 3.2.1 [5] Let A, B and C be three alphabets, respectively, {a1, a2}, {b1, b2} and {c1, c2}

then we have
∞∑

n=0

Sn(A)Sn−1(B)Sn−1(C)zn =
M
D
, n ∈N, (3.4)

with

M = (a1 + a2)z − a1a2(b1 + b2)(c1 + c2)z2 + b1b2c1c2(a1 + a2)(2a1a2 − (a1 + a2)2)z3 + a1a2b1b2c1c2

(b1 + b2)(c1 + c2)(a1 + a2)2z4
− b1b2c1c2a2

1a2
2(a1 + a2)(b1b2(c1 + c2)2 + c1c2(b1 + b2)2

− c1c2b1b2)z5

+ a3
1a3

2b2
1b2

2c2
1c2

2(b1 + b2)(c1 + c2)z6.

D = 1 − (a1 + a2)(b1 + b2)(c1 + c2)z + (b1b2(a1 + a2)2(c1 + c2)2 + ((b1 + b2)2
− 2b1b2)((a1 + a2)2c1c2

− 2a1a2c1c2 + a1a2(c1 + c2)2))z2
− (a1 + a2)(b1 + b2)(c1 + c2)(b1b2c1c2(a1 + a2)2 + b1b2a1a2(c1 + c2)2

+ a1a2c1c2(b1 + b2)2
− 5a1a2c1c2b1b2)z3 + (a2

1a2
2c2

1c2
2(b1 + b2)4 + c2

1c2
2b2

1b2
2(a1 + a2)4 + a2

1a2
2b2

1b2
2(c1 + c2)4

− a1a2b1b2c1c2(4b1b2c1c2(a1 + a2)2 + 4a1a2c1c2(b1 + b2)2 + 4a1a2b1b2(c1 + c2)2
− (a1 + a2)2(b1 + b2)2

(c1 + c2)2) + 6a2
1a2

2b2
1b2

2c2
1c2

2)z4
− a1a2b1b2c1c2(a1 + a2)(b1 + b2)(c1 + c2)(b1b2c1c2(a1 + a2)2 + a1a2c1c2

(b1 + b2)2
− 5a1a2b1b2c1c2)z5 + (a2

1a2
2b3

1b3
2c2

1c2
2(a1 + a2)2(c1 + c2)2 + a2

1a2
2b2

1b2
2c2

1c2
2((b1 + b2)2

− 2b1b2)

((a1 + a2)2c1c2 − 2a1a2c1c2 + a1a2(b1 + b2)2))z6
− a3

1a3
2b3

1b3
2c3

1c3
2(a1 + a2)(b1 + b2)(c1 + c2)z7

+ a4
1a4

2b4
1b4

2c4
1c4

2z8.
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Lemma 3.2.2 [5] Let A, B and C be three alphabets, respectively, {a1, a2}, {b1, b2} and {c1, c2}

then we have
∞∑

n=0

Sn(A)Sn+1(B)Sn+1(C)zn =
M1

D
, n ∈N, (3.5)

with

M1 = (c1 + c2)(b1 + b2) − (a1 + a2)(c1c2(b1 + b2)2 + b1b2(c1 + c2)2
− c1c2b1b2)z + c1c2b1b2(a1 + a1)2

(b1 + b1)(c1 + c1)z2
− c2

1c2
2b2

1b2
2(a1 + a1)((a1 + a1)2

− 2a1a2)z3
− a2

1a2
2b2

1b2
2c2

1c2
2(b1 + b2)(c1 + c2)z4

+ a2
1a2

2b3
1b3

2c3
1c3

2(a1 + a2)z5.

From the previous lemma we deduce the following relationship

∞∑
n=0

Sn−1(A)Sn(B)Sn(C)zn =
M2

D
, n ∈N, (3.6)

with

M2 = (c1 + c2)(b1 + b2)z − (a1 + a2)(c1c2(b1 + b2)2 + b1b2(c1 + c2)2
− c1c2b1b2)z2 + c1c2b1b2(a1 + a1)2

(b1 + b1)(c1 + c1)z3
− c2

1c2
2b2

1b2
2(a1 + a1)((a1 + a1)2

− 2a1a2)z4
− a2

1a2
2b2

1b2
2c2

1c2
2(b1 + b2)(c1 + c2)z5

+ a2
1a2

2b3
1b3

2c3
1c3

2(a1 + a2)z6.

Lemma 3.2.3 [5] Let A, B and C be three alphabets, respectively, {a1, a2}, {b1, b2} and {c1, c2}

then we have
∞∑

n=0

Sn(A)Sn(B)Sn(C)zn =
M3

D
, n ∈N, (3.7)

with

M3 = 1 − (a1a2c1c2(b1 + b2)2 + a1a2b1b2(c1 + c2)2 + b1b2c1c2(a1 + a2)2
− 3a1a2c1c2b1b2)z2 + 2a1a2b1b2c1c2

(a1 + a2)(b1 + b2)(c1 + c2)z3
− (b1b2a12a2

2c2
1c2

2(b1 + b2)2 + c1c2a12a2
2b2

1b2
2(c1 + c2)2 + a1a2b2

1b2
2c2

1c2
2

(a1 + a2)2
− 3a2

1a2
2b12b2

2c2
1c2

2)z4 + a3
1a3

2b13b3
2c3

1c3
2z6.
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From the previous lemma we deduce the following relationship

∞∑
n=0

Sn−1(A)Sn−1(B)Sn−1(C)zn =
M4

D
, n ∈N, (3.8)

with

M4 = z − (a1a2c1c2(b1 + b2)2 + a1a2b1b2(c1 + c2)2 + b1b2c1c2(a1 + a2)2
− 3a1a2c1c2b1b2)z3 + 2a1a2b1b2c1c2

(a1 + a2)(b1 + b2)(c1 + c2)z4
− (b1b2a2

1a2
2c2

1c2
2(b1 + b2)2 + c1c2a2

1a2
2b2

1b2
2(c1 + c2)2 + a1a2b2

1b2
2c2

1c2
2

(a1 + a2)2
− 3a2

1a2
2b2

1b2
2c2

1c2
2)z5 + a3

1a3
2b3

1b3
2c3

1c3
2z7.

By making the following restriction: c1− c2 = 1, b1− b2 = 1, a1− a2 = x, c1c2 = 1, b1b2 = 1,

a1a2 = y, and by replacing a2 by [−a2] and b2 by [−b2] and c2 by [−c2] in (3.8), we get

a new generating function, involving the product of Fibonacci numbers with bivariate

Fibonacci polynomials as follows.

∞∑
n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2]) =
NFFF(x,y)

DFFF(x,y)
, (3.9)

with

NFFF(x,y) = z − (x2 + 5y)z3
− 2xyz4 + (x2y + 5y2)z5

− y3z7.

DFFF(x,y) = 1 − xz −
(
4x2 + 9y

)
z2
−

(
x3 + 7xy

)
z3 +

(
16y2 + x4 + 3x2y

)
z4 +

(
7xy2 + x3y

)
z5
−(

4y2x2 + 9y3) z6 + xy3z7 + y4z8.

Corollary 3.2.1 ∀n ∈N we have

FnFnFn
(
x, y

)
= Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2]).

Put y = 1 and x = y = 1 in the relation (3.9) we get the following corollaries

Proposition 3.2.1 For n ∈N, a generating Function of the product of Fibonacci numbers with

Fibonacci polynomials is given by:

46



Ordinary generating functions of the products for some numbers and polynomials

∞∑
n=0

FnFnFn(x) =
z − (x2 + 5)z3

− 2xz4 + (x2 + 5)t5
− t7

DFFF(x)
, (3.10)

with

DFFF(x) = 1−xz−
(
4x2 + 9

)
z2
−

(
x3 + 7x

)
z3 +

(
16 + x4 + 3x2

)
z4 +

(
7x + x3) z5

−
(
4x2 + 9

)
z6 +

xz7 + z8.

Then

FnFnFn(x) = Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2]).

Corollary 3.2.2 For n ∈ N, a generating Function for the cubes Fibonacci numbers is given

by:
∞∑

n=0

FnFnFn =
z − 6z3

− 2z4 + 6z5
− z7

1 − z − 13z2 − 8z3 + 20z4 + 8z5 − 13z6 + z7 + z8 . (3.11)

With

FnFnFn = Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2]).

By replacing a2 by [−a2], b2 by [−b2] and c2 by [−c2], taking c1 − c2 = 1, b1 − b2 = 1,

a1 − a2 = x, c1c2 = 1, b1b2 = 1, a1a2 = y in (3.4) we obtain:

∞∑
n=0

Sn(a1+[−a2])Sn−1(c1+[−c2])Sn−1(b1+[−b2])zn =
xz + yz2

− x(x2 + 2y)z3
− yx2z4 + 3xy2z5

− y3z6

DFFF(x,y)
.

(3.12)

Theorem 3.2.2 For n ∈ N, a generating Function of the product of Fibonacci numbers with

bivariate Lucas polynomials is given by:

∞∑
n=0

FnFnLn
(
x, y

)
zn =

NFFL(x,y)

DFFL(x,y)
. (3.13)

With

NFFL(x,y) = −2y3t7 + t6xy3 + (−3x2y2 + 2x2y + 10y2)t5 + (x3y − 4xy)t4 + (x4 + 2x2y − 2x2
− 10y)t3

− t2xy + (−x2 + 2)t,
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and

DFFL(x,y) = DFFF(x,y).

Proof. We have

∞∑
n=0

FnFnLn
(
x, y

)
zn =

∞∑
n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])(2Sn(a1 + [−a2]) − xSn−1(a1 + [−a2]))zn

= 2
∞∑

n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn(a1 + [−a2])zn

− x
∞∑

n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2])zn

= 2
z + −(x2 + 5y)z3

− 2xyz4 + (x2y + 5y2)z5
− y3z7

DFFL(x,y)

= − x
xz + yz2

− x(x2 + 2y)z3
− yx2z4 + 3xy2z5

− y3z6

DFFL(x,y)

so,
∞∑

n=0

FnFnLn
(
x, y

)
zn =

NFFL(x,y)

DFFL(x,y)
,

with

NFFL(x,y) = −2y3t7 + t6xy3 + (−3x2y2 + 2x2y + 10y2)t5 + (x3y − 4xy)t4 + (x4 + 2x2y − 2x2
− 10y)t3

− t2xy + (−x2 + 2)t.

This completes the proof

Corollary 3.2.3 For n ∈N, we have

FnFnLn
(
x, y

)
= Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])(2Sn(a1 + [−a2]) − xSn−1(a1 + [−a2])).

Put y = 1 and x = y = 1 in the relation (3.13) we get the following corollaries.

Corollary 3.2.4 For n ∈ N, a generating Function of the product of Fibonacci numbers with

Lucas polynomials is given by
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∞∑
n=0

FnFnLn(x) =
(2 − x2)z − xz2 + (x4

− 10)z3 + (x3
− 4x)z4 + (10 − x2)z5 + xz6

− 2z7

DFFL(x)
,

with

DFFL(x) = DFFF(x).

Then

FnFnLn(x) = Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])(2Sn(a1 + [−a2]) − Sn−1(a1 + [−a2])).

Corollary 3.2.5 For n ∈N, a generating Function for the product of Fibonaccui numbers with

Lucas numbers is given by:

∞∑
n=0

FnFnLn =
z − z2

− 9z3
− 3z4 + 9z5 + z6

− 2z7

1 − z − 13z2 − 8z3 + 20z4 + 8z5 − 13z6 + z7 + z8 , (3.14)

with

FnFnLn = Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])(2Sn(a1 + [−a2]) − Sn−1(a1 + [−a2])).

By making the following restriction: c1−c2 = 2xy, b1−b2 = a1−a2 = 2 and c1c2 = y, b1b2 =

a1a2 = 1 and by replacing a2 by [−a2] and b2 by [−b2] in (3.8), we get a new generating

function, involving the product of Pell numbers with bivariate Pell polynomials as

follows.
∞∑

n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2]) =
NPPP(x,y)

DPPP(x,y)
, (3.15)

with

NPPP(x,y) = z − (4x2y2 + 11)z3
− 16xyz4 + (4x2y2 + 11)z5

− z7.

DPPP(x,y) = 1−8xyz−
(
40x2y2 + 36y

)
z2
−
(
104xy2 + 32x3y3) z3+

(
64y2 + 16x2y2

− 48x2y3) z4+(
104xy3 + 32x3y4

)
z5
−

(
40y4x2 + 36y3

)
z6 + 8xy4z7 + y4z8.
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Corollary 3.2.6 For n ∈N, we have

PnPnPn
(
x, y

)
= Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2]).

Put y = 1 in the relation (3.15) we get the following corollary.

Corollary 3.2.7 For n ∈ N, a generating Function of the product of Pell numbers with pell

polynomials is given by:

∞∑
n=0

PnPnPn(x) =
z −

(
11 + 4x2) z3

− 16xz4 +
(
11 + 4x2) z5

− z7

DPPP(x)
, (3.16)

with

DPPP(x) = 1−8xz−
(
40x2 + 36

)
z2
−
(
104x + 32x3) z3+

(
70 + 16x4

− 48x2
)

z4+
(
104x + 32x3) z5

−(
40x2 + 36

)
z6 + 8xz7 + z8.

Then

PnPnPn(x) = Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2]).

Monsour in [20] give the formula(3.17) which is obtained by taking x = y = 1 in the

relation (3.15)
∞∑

n=0

PnPnPn =
z(1 − 4z − z2)

(1 − 2z − z2)(−1 − 14z − z2)
. (3.17)

representing a generating function of the cubes of Pell numbers.

We deduce the following corollary.

Corollary 3.2.8 For n ∈N, we have

PnPnPn = Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2]).

By replacing a2 by [−a2], b2 by [−b2] and c2 by [−c2], taking c1 − c2 = b1 − b2 = 2 ,

a1 − a2 = 2xy, c1c2 = b1b2 = 1 , a1a2 = y in (3.4) we obtain
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∞∑
n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn(a1 + [−a2])zn (3.18)

=
2xyz + 4yz2

−
(
4xy2 + 8x3y3) z3

− 16x2y3z4 + 18xy3z5
− 4y3z6

DPPP(x,y)
.

Theorem 3.2.3 For n ∈ N, a generating Function for the product of Pell numbers with

bivariate Pell-Lucas polynomials is given by

∞∑
n=0

PnPnQn
(
x, y

)
zn =

NPPQ(x,Y)

DPPQ(x,Y)
, (3.19)

with

NPPQ(x,Y) = 2xyz + 8yz2 +
(
14xy2

− 8x3y3) z3 +
(
14xy3

− 8y4x3
)

z5
− 8y3z6 + 2xy4z7.

DPPQ(x,y) = DPPP(x,y).

Proof. We have

∞∑
n=0

PnPnQn
(
x, y

)
zn =

∞∑
n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])(2Sn(a1 + [−a2]) − 2yxSn−1(a1 + [−a2]))zn

= 2
∞∑

n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn(a1 + [−a2])zn

− 2xy
∞∑

n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn(a1 + [−a2])zn

=
2
(
2xyz + 4yz2

−
(
4xy2 + 8x3y3) z3

− 16x2y3z4 + 18xy3z5
− 4y3z6

)
D2

−

2xy
(
z −

(
11y + 4x2y2) z3

− 16xy2z4 +
(
11y2 + 4x2y3) z5

− y3z7
)

D2

=
2xyz + 8yz2 +

(
14xy2

− 8x3y3) z3 +
(
14xy3

− 8y4x3
)

z5
− 8y3z6 + 2xy4z7

DPPQ(x,Y)

This completes the proof.

Corollary 3.2.9 For n ∈N, we have

PnPnQn
(
x, y

)
= Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])(2Sn(a1 + [−a2]) − xSn−1(a1 + [−a2])).
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Put y = 1 and x = y = 1 in the relation (3.19) we get the following corollaries

Corollary 3.2.10 For n ∈ N, a generating Function of the product of Pell numbers with

pell-Lucas polynomials is given by

∞∑
n=0

PnPnQn(x) =
2xz + 8z2 +

(
14x − 8x3) z3 +

(
14x − 8x3) z5

− 8z6 + 2xz7

DPPQ(x)
, (3.20)

with

PnPnQn(x) = Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])(2Sn(a1 + [−a2]) − 2xSn−1(a1 + [−a2])).

Corollary 3.2.11 For n ∈N, a generating Function for the cubes Pell-Lucas numbers is given

by
∞∑

n=0

PnPnQn =
2z + 8z2 + 6z3 + 6z5

− 8z6 + 2z7

1 − 8z − 76z2 − 136z3 + 32z4 + 136z5 − 76z6 + 8z7 + z8 , (3.21)

with

PnPnQn = Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])(2Sn(a1 + [−a2]) − xSn−1(a1 + [−a2])).

By making the following restriction:c1 − c2 = xy, b1 − b2 = a1 − a2 = 1, c1c2 = 2y,

b1b2 = a1a2 = 2 and by replacing a2 by [−a2] and b2 by [−b2] in (3.8), we get a new gener-

ating function, involving the product of Jacobsthal numbers with bivariate Jacobsthal

polynomials as follows.

∞∑
n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2]) =
NJJJ(x,y)

DJJJ(x,y)
,

with

NJJJ(x,y) = z −
(
32y + 4x2y2) z3

− 16xy2z4 +
(
256y2 + 32y3x2) z5

− 512y3z7.

DJJJ(x,y) = 1−xyz−
(
12x2y2 + 50y

)
z2
−xy

(
48y + 4x2y2) z3 +

(
672y2 + 16x4y4 + 120x2y3

)
z4 +

8xy2 (48y + 4x2y2) z5
−

(
128xy4 + 320y2 (10y + 2x2y2)) z6 + 512xy4z7 + 4096y4z8.
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Corollary 3.2.12 ∀n ∈N, we have

JnJnJn
(
x, y

)
= Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2]).

By replacing a2 by [−a2], b2 by [−b2] and c2 by [−c2],taking c1−c2 = b1−b2 = 1 , a1−a2 = xy

and c1c2 = b1b2 = 2 , a1a2 = 2y in (3.4) we obtain:

∞∑
n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn(a1 + [−a2])zn (3.22)

=
z −

(
32y + 4x2y2) z2

− 16xy2z4 +
(
256y2 + 32x2y3) z5

− 512y3z7

DJJJ(x,y)
.

Theorem 3.2.4 For n ∈N, a generating Function for the product of Jacobsthal numbers with

bivariate Jacobsthal-Lucas polynomials is given by

∞∑
n=0

JnJn jn
(
x, y

)
zn =

NJJ j(x,y)

DJJ j(x,y)
. (3.23)

With

NJJ j(x,y) = xyz + 4z2
− 4x2y2z3

− 32x2y4z5
− 128y3z6 + 512xy4z7

DJJ j(x,y) = DJJJ(x,y).

Proof. We have

∞∑
n=0

JnJn jn
(
x, y

)
zn =

∞∑
n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])
(
2Sn(a1 + [−a2]) − xySn−1(a1 + [−a2])

)
zn

= 2
∞∑

n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn(a1 + [−a2])zn

− xy
∞∑

n=0

Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])Sn−1(a1 + [−a2])zn

=
2
(
xyz + 2yz2

−
(
16xy2 + 4x2y2)

− 8x2y3z4 + 128xy3z5
− 64y3z6

)
DJJJ(x,y)

.
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−

xy
(
z −

(
32y + 4x2y2) z2

− 16xy2z4 +
(
256y2 + 32x2y3) z5

− 512y3z7
)

DJJJ(x,y)
.

=
xyz + 4z2

− 4x2y2z3
− 32x2y4z5

− 128y3z6 + 512xy4z7

DJJ j(x,y)
.

This completes the proof.

Corollary 3.2.13 For n ∈N, we have

JnJn jn
(
x, y

)
= Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])

(
2Sn(a1 + [−a2]) − xySn−1(a1 + [−a2])

)
.

Put y = 1 and x = y = 1 in the relation (3.23) we get the following corollaries

Corollary 3.2.14 For n ∈N, a generating Function of the product of Jacobsthal numbers with

Jacobsthal-Lucas polynomials is given by

∞∑
n=0

JnJn jn(x) =
z +

(
32 + 4x2) z3

− 16xz4 +
(
256 + 32x2) z5

− 512z7

DJJ j(x)
, (3.24)

with

DJJ j(x) = 1−xz−
(
12x2 + 50

)
z2
−x

(
48 + 4x2) z3 +

(
672 + 16x4 + 120x2

)
z4 +8x

(
48 + 4x2) z5

−(
128x + 320

(
10 + 2x2)) z6 + 512xz7 + 4096z8.

Then

JnJn jn(x) = Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])(2Sn(a1 + [−a2]) − xSn−1(a1 + [−a2])).

Corollary 3.2.15 For n ∈ N, a generating Function for the product of Jacobsthal numbers

with Jacobsthal-Lucas numbers is given by

∞∑
n=0

JnJn jn =
z − 36z3

− 16z4 + 288z5
− 512z7

1 − z − 62z2 − 52z3 + 808z4 + 416z5 − 3968z6 + 512z7 + 4096z8 , (3.25)

with

JnJn jn = Sn−1(c1 + [−c2])Sn−1(b1 + [−b2])(2Sn(a1 + [−a2]) − Sn−1(a1 + [−a2])).
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CONCLUSION

In this dissertation, by making use the concept of symmetric functions we have de-

rived some new ordinary generating functions for the products of Fibonacci numbers,

Pell numbers, Pell-Lucas numbers and Jacobsthal et Jacobsthal-Lucas numbers with

bivariate Fibonacci polynomials, bivariate Lucas polynomials, bivariate Pell polynomi-

als, bivariate Pell-Lucas polynomials, bivariate Jacobsthal polynomials and bivariate

Jacobstha-Lucas polynomials.
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ABSTRACT. In this dissertation, we present a theorem in order to calculate new

generating functions for second-order recurrences relations. The presented theorem

is based on symmetric functions. Where by making use the symmetrizing operator

δk
c1c2
δk

b1b2
on the series

∞∑
n=0

Sn(A)bn
1cn

1zn we gived the generating functions of the prod-

ucts of Fibonacci numbers, Pell numbers and Jacobsthal numbers with the bivariate

Fibonacci polynomials, bivariate Lucas polynomial, bivariate Pell Lucas polynomials,

bivariate Jacobsthal and Jacobsthal Lucas polynomials.

Key Words: Symmetric functions, generating functions, recurrence relations.

RÉSUMÉ. Dans ce mémoire, nous présentons un théorème afin de calculer des

nouvelles fonctions génératrices pour les relations de récurrences du second ordre, Le

théorème présenté est basé sur les fonctions symétriques , où l’utilisation de symétriseur

δk
c1c2
δk

b1b2
sur la série

∞∑
n=0

Sn(A)bn
1cn

1zn nous permet d’obtenir les fonctions génératrices des

produits de nombre de Fibonacci, les nombres de Pell et les nombres de Jacobsthal avec

les polynômes de Fibonacci bivariés, les polynômes de Lucas bivariés, les polynômes

de Pell-Lucas bivariés et les polynômes de Jacobsthal et de Jacobsthal-Lucas bivariés.

Mots-clés: Fonctions génératirices, fonctions symétriques, relations de récur-

rences.
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