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INTRODUCTION

The second-order linear recurrence sequences (u,(a, b;p, q))n0, or briefly (u,),o is
defined as follow

Uy = PUn-y + iy, 1 22 (1)

With the initials conditions uy = a, u; = b [17, 21] . This sequence was introduced by
Horadam in 1985 (see[17, (18, 24]). Which were generalized many sequences, mostly
depending on p,q,a and b. Examples of such sequences include the Fibonacci num-
bers sequences and Lucas numbers sequences. Many authors have been interested in
studying these sequences. For example Hoggatt in [16], Vorobiov in[30], and recently
Marques in [22] and Shattuck in [27].

Generating functions are a particularly useful tool in the study of combinatorics.
They allow us to apply analysis and algebraic techniques to combinatorial problems,
particularly in the context of recurrence, many authors have calculated generating

functions for the products of some numbers and polynomials, you can refer to [4} 7, 26].

The main purpose of this work is to obtain new results on generating functions

using the concept of symmetric functions . Our thesis is organized into three chapters:

In the first chapter, we present the tools and preliminaries necessary for understand-
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ing the following chapters. We first give definitions and properties of linear recurrence
relations for some numbers and polynomials. Following that, we offer some reminders
regarding formal series. At the end, we introduce the ordinary generating functions of

some polynomials.

In the second chapter, we recall the elementary and completes symmetric functions,

as well as their properties.

In the third chapter, by making use the symmetrizing operators 6, we introduce
new generating functions for the products of the Fibonacci number, Lucas numbers
and Jacobsthal numbers with bivariate Fibonacci polynomials, bivariate Lucas polyno-
mial, bivariate Pell Lucas polynomials, bivariate Jacopsthal polynomials and bivariate

Jacopsthal Lucas polynomials.



CHAPTER 1

NOTATIONS AND PRELIMINARIES

In this chapter, we mention some definitions and fundamental theorems related to
linear recurrence relations, formal series and generating functions that are utilized in

our work, for more details, you can refer to [1, 2} 25].
1.1 Linear recurrence relations

Definition 1.1.1 [28] A linear recurrence relation of degree k is a recurrence relation of the
form

Uy + fi (M) Upa + o (M) Upp + oo + fo (M) Uy = g (n), (1.1)

where f1(n), f2(n), ..., f (n) et g (n) are functions of n and fi(n) # 0.
Remark 1.1.1

1. If g(n) = 0, then is said to be homogeneous recurrence relation, if g (n) # 0, then

(1.1)) is said to be non-homogeneous recurrence relation.
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2. If f(n), f2(n), ..., fc (n) are constants, then the recurrence relation (1.1) is known as a

linear recurrence relations of constant coefficients.

Theorem 1.1.1 [28|] The linear recurrence relation

uy+ M)y + oMty + .o+ fr (Wi =g (),
with ug = ap, u1 = 1, ..., W1 = ax_1, are constants has a unique solution.

Lemma 1.1.1 [28] Let u' be the solution of the relation:

Uy + (M) up1 + o (M) Uy + ... + frr (1) g = g1 (1),

and u? the solution of the relation:

Uy + fi (M) tp1 + fr (M) Uy + .. + f (M) Uy = g2 (1) .

Then clug) + czu,(f) is the solution of

Uy + fi M)y + for (M) Uy + .. + f (1) Uy = 191 (N) + C292 () .

Proof. We have

[cluﬁll) + czu,(f)] + f1(n) [clufll_)l + czuf_)l] + ...+ fi (n) [clus)k + czuff_)k]

()]

2 2 2
ot czu,g) +caf1 (n) ui_)l + ...+ fi(n) uijk

:clu,(}) +c1f1(n) ufql_)l +..+cifi(mu
1 1 1 2 2 2
—c, [ufﬁ + A ) u, + o+ fi(n) u;jk] + ¢ [uiﬂ + A u®, + o+ fi(n) u;jk]

=c191 (1) + 292 () .
This completes the proof m

10
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1.2 Linear homogeneous recurrence relations with con-

stant coefficients

Definition 1.2.1 [24] A linear homogeneous recurrence relation of degree k with constant

coefficients is a recurrence relation of the form
Uy = CiUy—1 + Colly—o + ... + Cilly_x, (1.2)

where ¢y, ¢y, ..., ¢ are real numbers, and c; # 0

Example 1.2.1 The recurrence relation F, = F,_1 + F,_, is a linear homogeneous recurrence

relation of degree two.

Example 1.2.2 The recurrence relation u, = u,_s is a linear homogeneous recurrence relation

of degree five.

Example 1.2.3 The recurrence relation u, = u,_1 + ”i-z is not linear. The recurrence relation
U, = 3u,_1 + 5 is not homogeneous. The recurrence relation v, = nv,_; does not have constant

coefficients.

Remark 1.2.1 [24]The basic approach for solving linear homogeneous recurrence relations is
to look for solutions of the form u, = z"" where t is a constant . Note that u, = z" is a solution

of the recurrence relation u, = cilly—1 + Colly— + ... + CklUy—y if and only if
2" ="+ L+

when both sides of this equation are divided by z"* and the right-hand side is subtracted from the

k k-1

left, we obtain the equation z* — ¢,z — ... — ¢ = 0. Consequently, the sequence u, with u, = z"
is a solution if and only if z is a solution of this last equation. We call this the characteristic
equation of the recurrence relation. The solutions of this equation are called the characteristic
roots of the recurrence relation. As we will see, these characteristic roots can be used to give an

explicit formula for all the solutions of the recurrence relation.

11
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Definition 1.2.2 [3]The characteristic polynomial of the recurrence relation
Uy, = C1Up—1 + CoUy_o + ... + CkUy—k

18

P(z) =2z — 12 — ... — ¢

Example 1.2.4 The characteristic polynomial of the recurrence relation u, = 5u,_1 — 6u,_, is

72 -5z + 6.

Example 1.2.5 The characteristic polynomial of the recurrence relation P, = P,_, + P,_3 is

22 —z-1.

Remark 1.2.2 The characteristic equation associated with the recurrence relation is obtained

by canceling the characteristic polynomial of the latter.

Theorem 1.2.1 If z is a root of multiplicity m of recurrence relation(1.2)) then u, = n'z",0 <

r < m is a solution of the relation (1.2)

Theorem 1.2.2 [24] Let ¢;, ¢y, ...., cx be real number. Suppose that the characteristic equation

k_l... —Cr = O,

ZF -z
has k distinct roots z1,zy, ...., zx. Then a sequence u, is a solution of the recurrence relation

Uy, = ClUp—1 + CoUy—p + .... + CxUy—k,

if and only if

— n n n
Uy = X127 + AZ) + ... + 0Z,.

forn=0,1,2,..., where ay, s, ..., o are constants.

12
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Example 1.2.6 Consider the following recurrence relation: u, = u,_q + 6u,_, with initial
conditions ug = 0,u; = 1.
The characteristic equation is z* — z — 6. This can be factored as (z + 1)(z — 3), hence there are

two real roots: —1 and 3, then the general solution is
U, = c1(=2)" + c3".

The initial conditions uy = 0 and uy = 1 implies that ¢; = 5 and ¢, = £ .Thus the solution is

_ @ =2
"5 5

Theorem 1.2.3 [24]] Let c3, ¢y, ...., cx be real numbers. Suppose that the characteristic equation
K= = =0,

hasr distinct roots zi,zs, ...., zx with multiplicities my, my, ..., m,, respectively, so that m; >

1¥i=1,2,..,rand Y,;_; m; = k. Then a sequence {u,} is a solution of the recurrence relation
Uy, = ClUy—1 + CoUy—n + ... + CrUy—k.
If and only if

Uy = (@10 + a1l + o + Ay n™)z]

+(0(2,0 + ann+ ...+ 042m2_1nmf_1)zg+

F(@ro + Aot + e+ Ay, )2

forn=0,1,2,..., where a;j are constants for 1 <i<rand0 < j<m; - 1.

13
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1.2.1 Recurrence relations of some numbers and polynomials

Definition 1.2.3 [3]Generalized Fibonacci sequence (G,)qen is defined by the following recur-

rence relation

G, =vG,_1 +9G,_5,n>2
Pl o (1.3)
GQ =q, G1 = ﬁ

Withp,g € Ry and a,p € C.

Lemma 1.2.1 [3] Let z*> — pz — q = 0, the characteristic equation of the recurrence relation

(1.3). Then

1. If the characteristic equation has two real solutions z; and z,, then the general solution
for(1.3)) is given by:

n_ n
_ /\121 Azzz

n
1 —2p

with Ay = —azyand A, = f — az;.
2. If the characteristic equation has only one real solution z, then the general solution for

is given by:

Gn = (a1 + con)z",

—az

with ¢y = aand ¢, =

Definition 1.2.4 [8] The k-Fibonacci numbers are defined by the following recurrence relation:

Fk,n = ka,n—l + Fk,n—Z/ Yn>2
(1.4)

Fro=0,F; =1

The first terms of the k-Fibonacci numbers are given by

n |01]2 3 4 5 6 7
Fin |O|1 | k| K+1[KE+2k |k +32+1 |k +4Kk +3k | k® +5k* + 6k> + 1

14
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The Binet formula is written:

Fin = (1.5)

1 ((k+ «/k2+4)” _[k— \/k2+4)n]
Vid +4 2 2 '

Definition 1.2.5 [12|] The k-Lucas numbers are defined by the following recurrence relation:

Lk,n = kLk,n—l + Lk,n—Z/ Yn>2
(1.6)

Lio=2,L1 =k

The first terms of the k-Lucas numbers are given by

n |01 2 3 4 5 6
Lin |2 | k| KP+2 | +4k |k +6Kk2+4 | K +8k+ 12k | k® + 10k* + 24k> + 8

The Binet form is written:

Lk,n:(’” \/ZMJ +[—k— XMJ | )

Definition 1.2.6 [9] The k-Pell numbers are defined by the following recurrence relation:

Pk,n = 2Pk,n—l + kPk,n—Z/ Yn>2
(1.8)

Pio=0,P; = 1.

The first terms of the k-Pell numbers are given by

n |0]1]2| 3 4 5 6 7
P |0[1]2|k+4]|4k+8 |k +12k+16 | 6k* + 32k + 32 | k> + 24k* + 80k + 64

The Binet formula is written:

1 n n
Pk,nzzm((n V1+k) —(1—\/1+k)). (1.9)

Definition 1.2.7 [10] The k-Pell-Lucas numbers are defined by the following recurrence rela-

15
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tion:
Qk,n = ZQk,n—l + ka,n—Zr Vn>2

Qro =2,0k1 =2.

(1.10)

The first terms of the k-Pell-Lucas numbers are given by

n |01 2 3 4 5 6
Qkn | 22| 2k+4 | 6k+8|2k*+16k+ 16 | 10k> + 40k + 32 | 2k + 36k* + 96k + 64

The Binet formula is written:
Qun=(1+ VI+K) +(1- VI+k). (1.11)

Definition 1.2.8 [19] The k-Jacobsthal numbers are defined by the following recurrence rela-

tion:
]k,n+1 = k]k,n + 2]k,n—1; Vn>1

Jko=0,Jk1 = 1.

(1.12)

The first terms of the k-Jacobsthal numbers are given by

n 0|12 3 4 5 6 7
Jin |01 k| K2+2 |k +4k | kK*+6k*>+4 | ko +8k>+ 12k | k® + 10k* + 24k*> + 8

The Binet formula is written:

Jin = (1.13)

1 ((k+ \/k2+8]n_(k— \/k2+8J”J
Vi +8 2 2 '

Definition 1.2.9 [11The k-Jacobsthal-Lucas numbers are defined by the following recurrence

relation:

.k,n 1= k 'k,n +2 .k,n—ll Vn>1
Jlmt = Kk . 2) (1.14)

Jko =2, jk1 = k.

16



Notations and preliminaries

The first terms of the k-Jacobsthal-Lucas numbers are given by

n

1 2 3 4

5 6

j kn

k1K+4|K+6k| kK +8+8 | kK +10k+20k | k° + 12k* + 36k* + 16

The Binet formula is written:

e By taking k = 1 in the identity (I.4)-(1.15), we obtain the following table.

Definition 1.2.10 [25] For n € IN, the bivariate Fibonacci polynomials are defined by

2

i [k+ \/k2+8]n+(k— \/k2+8Jn
kn=|—"——>—" _— | .
/ 2

Recurrence relations

Binet Formula

F,=F,1+F,,,¥n>2

el )

FOZO,F1:1.

Ln :Ln_1+Ln_2,Vn22 7 _(1+ \/5)”+(_1_ \/g)—n
L0:2,L1:1 ! 2 2
P,=2P, 1+ P, ,,¥Vn>2 n n

o Po= ——((1+ )"~ (1- V2))

Py=0,P;=1 22

H=2 n— + n_,VTZZZ n n

Qn=2Quw1+ Qu Q. = (1+V2) +(1- 3)
Q0:2,Q1:2.

]n 1 :]n +2]n_1,\7’1’l >1 1 "

’ Ju =32 = (1))

]0:0,]1:1.

jn+1 = jn + 2jn—1/ Vn>1

jO = 2/j1 =1

ju= 2"+ (1)

Tabel 1: Binet Formula of Recurrence relations

Pn(xl }/) = an—l(x/ ]/) + yFn—Z(x/ ]/),n >2

Fo(x,y) =0,F1(x,y) = 1.

17
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Notations and preliminaries

Definition 1.2.11 [25] For n € IN, the bivariate Lucas polynomials are defined by

Lu(x,y) = xL,—1(x, y) + yL,—2(x, y),n > 2

(1.17)
Lo(x,y) = 2,Li(x, y) = x.
Definition 1.2.12 [25] For n € IN, the bivariate Pell polynomials are defined by
P.(x,y) = 2xyP,_1(x, y) + yP,_»(x, y),n > 2
Yy Yn1X, Y) + Yln2X, Y (1.18)

Py(x,y) =0,P1(x,y) = 1.

Definition 1.2.13 [25]] For n € IN, the bivariate Pell Lucas polynomials are defined by

Qu(x, y) = 2xyQua(x, y) + yQu2(x, y),n > 2
Qo(x, y) = 2, Q1(x, v) = 2xy.

(1.19)

Definition 1.2.14 [25] For n € IN, the bivariate Jacobsthal polynomials are defined by

]”(x’ y) = xy]n_l(x, y) + 2y]n—2(x, y),n >2
Jo(x, y) =0, Ji(x,y) = 1.

(1.20)

Definition 1.2.15 [25] For n € IN, the bivariate Jacobsthal Lucas polynomials are defined by

(X%, Y) = XY Ju-1(X, ¥) + 2y jua(x, y),n > 2
Jn( Y) = xYju-1(x, ¥) + 2Yju-2(x, y) 121)

jO(x/ ]/) = 2/ jl(x/ y) = x]/-

the following table gives the Binet formula:[25, 7, 29]

18
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Polynomials Values of a, Binet formula
X+ x2+4y X — x2+4y at — B
Fu (%) axy)=—"F—pEy)=—"7"" ap
X+ /x> +4y X — A/x* +4y
Ly (x,y) a(x,y) = \/f,ﬁ(x, y) = \/f o’ + "
a” __ﬁn
Py (x, y) a(x,y)=xy+ Xy +y,B(x,y) =xy— X2y +y Z=p

Qu (x,y) a(x,y)=xy+ yx?y* +y,p(x,y) =xy— X2y +y a’ + g
Xy + /x2y* + 8y Xy — /x2y* + 8y a — B

@y Jaly)= > B y) = : T
+ 212 + 8 — /212 +8
) | aG = LN gy WINIER

Tabel 2: Binet formula of some polynomials.

1.3 Generating functions

1.3.1 Formal series

Let K be a commutative field (K = R or C).

[o¢]

Definition 1.3.1 [3]The elements of the set Kl[[z]] = Z a,z", a, € K} are called formal
n=0
series with coefficients in K. for n € IN, z" called the monomial of degree n and a,, it’s coefficient.

(o]

Definition 1.3.2 [3] Let a(z) = Z a,z" and B(z) = Z b,z" be two formal series. Then the
n=0 n=0

sun of a(z) and B(z) is given by

a(z) + (z) = Z(an +b,)2".
n=0

[se]

Definition 1.3.3 [3|Let a(z) = Z a,z" and B(z) = Z b,z" be two formal series. Then the

n=0 n=0

19
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product of a(z) and B(z) is given by

o0

a(2)pE) = Y ",

n=0

with

[o¢]
Cy = Z akbn—k-
k=0

[e¢]

Definition 1.3.4 [3] Two formal series a(z) = Zanz” and p(z) = Z b,z" are equal if and
n=0 n=0
only if for alln # 0, a, = b,,.

o0

Definition 1.3.5 [3]We say that the series Z a,z" is the inverse of the series Z b,z" if:

n=0 n=0
(Z anz”) (Z bnz”) =1
n=0 n=0
Example 1.3.1 The series a = Z a,z" is inversible and its inverse is (1 — z) , indeed
n=0
(1 —z)(Zz”] = Zz” —ZZZ”
n=0 n=0 n=0
— Z 7" — Z Zn+1
n=0 n=0
= 1+ Z Zz" — Z z"
n=0 n=0

(o]

Proposition 1.3.1 [3] A formal series Z a,z" is invertible if and only if a, # 0.

n=0

Proof. We need to determine whether or not there exists a formal series (z) =

[o¢]

Z a,z", in K[[z]] such that a(z)f(z) = 1. Expanding the product, we have

n=0

20
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a(z)B(2)

Il Il
—_——
NERTNG
8
—_———
> N
x S
N
>§ Q/
oy 7 N
S
I ek
N s
N
=
~—~

Comparing the coefficient of z" on both sides of a(z)p(z) = 1, we see that f(z) satisfies the

equation if and only if apby = 1 and Z axb,_x = 0 for all n > 1. If ag is not invertible in K
k=0
then the equation a(z)B(z) = 1 can not solved for b, so that f(z) does not exist and a(z) is

not invertible in KK[[z]]. If ay is invertible in K, then b, = aal exist. Each of the remaining

equations (for n > 1) can be rewritten as agb, = — Z axb,—x, or upon multiplying by

k=0
n

by, b, = —by Z axb,—r. These equation can be solved by indication on k > 1, yielding

k=0
a solution for p(z) which gives the multiplicative inverse of a(z). Therefore, (z) is

invertible in K[[z]]. =

Proposition 1.3.2 [3] If a(z) and p(z) are two nonzero formal series then a(z)p(z) is also

nonzero.

1.3.2 Ordinary generating functions (OGF)

Definition 1.3.6 [3] The ordinary generating function (OGF) of the sequence (a,)yen =
(a0, a1, 4z, ... ), is defined by:

(o]

G(z) = Z a,z".

n=0

Example 1.3.2 The generating functions for the sequences (a,),en with a, = 5,a, = n+1and

a, = 2" are Z 52", Z(n + 1)z" and Z 2"z", respectively.
n=0

n=0 n=0

Theorem 1.3.1 [[13|] Let A(z) the ordinary generating function of (a,)nen and B(z) the ordinary

generating function of (by)nen, SO

21



Notations and preliminaries

1. A(z)+B(z) is the ordinary generating function of (a, + by,)s0.
2. zA(z)is the ordinary generating function of (0,a9,a1,ay, ..., a,-1).
3. A(z)B(z)is the ordinary generating function of (ap, apb1 + a1by + a1b1 + azxby, . ..)

4. (1-z)A(z)is the ordinary generating function of .(ap, a1 — Ao, 42 — a1, ..., 0, — Ay-1,...).
Theorem 1.3.2 [3]] Let the sequence (G,)nen defined by the following recurrence relation

G, =pG,1 +9G,-
Pl T i (1.22)

(;0 ==(X,(;1 = ﬁ
withp,q € Cand a, p € C. So the generating function of (Gp,)xxo is given by

a+(f-pa)z
R e

Proof. We have:
G@z) = Z Gu2" = Go+Giz+ Z G,2"
n=0 =2

= a+pz+ Z(pGn_l +qG,0)Z"

n=2

oo oo
= a+pz+pz Z Gzt +g2° Z G0z 2
n=2 n=2
o0 00
= a+pz +pzZ G,z" + qZZZan”
n=1 n=0

= a+5z+pz(Zan”—a)+quZan”
n=0 n=0

= a+(B-ap)z+pzG(z) + q2°G(2).

So,
a+(B-pa)z

C@) = 1-pz—gz2 "~

This completes the proof. m

22
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From the previous theorems we deduce the following table [3]:

values of p,q, a0, p cofficient of z" | generating function
p=kB=19=1a=0 Fin =
p=B=kqg=1a=2 Ly e
a=0,p=2,9=kp=1 Prn T

a=f=p=2,q9=k Qkn %
p=kqg=2,a=0,p=1 Jien Tz

p=B=ka=q=2 Jen B

Table 1: Generating function of some k numbers .

For k = 1 in the table 1 we obtain the following table [3].

values of p,q, a0, p cofficient of z" | generating function
p=1=14=1a=0 F, o
p=p=lq=1a=2 L, —
a=0,p=2,9=1=1 P, T
a=p=p=249=1 Qn e
p=19=2,a=0,p=1 I E—
p=p=la=q=2 2 e

Table 2:Generating function of some numbers .

Theorem 1.3.3 [25]] The generating function of the bivariate Fibonacci polynomials is given

by

[s¢]

z
Fu(x,y)z" = —. (1.23)
~ 1—-xz—-yz?
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Proof. We have:

G(Z) = ZFn(x/y)Zn FO(xr y) +F1(xr}/)Z+ZFn(x/ y)zn
n=0 n=2

= z+ ) (Fua(x,y) + yFua(x, ) 2"
n=2

= z+4+2xz Z Foq(x, y)z" " + yz? Z Foo(x, y)z"2
n=2 n=2

= z+Xxz Z Fu(x, y)z" + yz* Z Fu(x, y)z"
n=1 n=0

= z+xz (Z Fu(x, y)z" — 0] +yz? Z Fu(x, y)z"
n=0

n=0
= z+xzG(z) + yzzG(z).
Then,
z
6@ =15 yz2’

This completes the proof. =

Theorem 1.3.4 [25] The generating function of the bivariate Lucas polynomials is given by

2 —xz

L,(x, y)z" = ———.
nzz;' 1—xz—yz?

Proof. By definition, we have

i Lu(x, y)z"

n=2

= Lo, y) + Liv, )z + Y Lu(x, y)2"
n=2

G(2)

= 2+xz+ Z (xLy-1(x, y) + yLo—a(x, y)) 2"

n=2

= 2+xz+Axz Z Lo (x, y)z" ' + yz? Z Lya(x, y)z" >
n=2 n=2
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2+xz+xz Z La(x, y)z" + yz* Z La(x, y)z"
n=1 n=0

2+ xz+xz (Z La(x, y)z" — 2) +yz° Z La(x, y)z"
n=0 n=0

2 — xz + x2G(z) + yz2°G(2)

Then,
G(2) (1 - Xz — yzz) =2 —xz.
So,
2—-xz
O

This completes the proof. m

Theorem 1.3.5 [25] The generating function of the bivariate Pell polynomials is given by

- z
P, (x,y)z" =
nzz;‘ 1-2xyz — yz?

Proof. We have

i P,(x, y)z"

n=0

G(z)

(o]

= Po(x,y) + Pi(x, y)z + Z P, (x, y)z"

n=2

= z+ Z (2xyPu-1(x, y) + yPu2(x, y)) 2"

n=2

= z+2xyz Z P, i(x, y)z" " + yZ Z P, o(x,y)z" 2
n=2 n=2

= z+42xyz Z P,(x, y)z" + yz* Z P, (x, y)z"

n=1 n=0

= z+42xyz (Z P,(x,y)z" - OJ + yz* Z P,(x, y)z"
n=0 n=0

= z+2xyzG(z) + yzzG(z).
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Then
G(z) (1 — 2xyz — yzz) =z.

So
z

6@ = 1-2xyz — yz?

This completes the proof. m

Theorem 1.3.6 [25|] The generating function of the bivariate Pell-Lucas polynomials is given
by

Proof. We have

I
gk
O
=
&
NS
N
=

G(2)
= Qo(x, y) + Qulx, y)z + 2 Qu(x, y)z"
= 2+2xyz+ i‘ (2xyQu-1(x, y) + yQu-2(x, y)) 2"
= 2+ 2xyz+ i Quo1(x, )2 + y2 i Qua(x, )22
= =

= 242xyz+ Z Qu(x, y)z" + yz2 Z Qu(x, y)z"
n=1 n=0

= 2+4xyz+2xyz (Z Qul(x, y)z" - 2] +yz? Z Qu(x, y)z"
n=0

n=0
= 2-2xyz+ 2xyzG(z) + yzZG(z).

Then
G(z) (1 — 2xyz — yzz) =2 — 2xyz.
So
G2 = 2 —2xyz
A= 1z 2xyz — yz2’

This completes the proof. =
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Theorem 1.3.7 [25|] The generating function of the bivariate Jacobsthal polynomials is given

by

Proof. We have

Then

So

G(z)

Jobt,y) + i, )z + Y Julx, y)2"
n=2

zZ+ Z (xy]n—l(x/ y) + zy]n—2(x/ y)) zZ"
n=2

z42yz ) a2 + 292 Y Jualr, y)2

n=2 n=2

Z+ Z Ju(x, y)z" + 2yz* Z Ju(x, y)2"
n=1 n=0

Z+xyz (Z Ju(x, y)z" - 0) + 2yz Z Ju(x, y)2"
n=0 n=0

z + xyzG(z) + 2yz°G(z).

G(z2) (1 - XYz — 2yzz) =z

z

6@ = 1—xyz — 2yz?

This completes the proof. =

Theorem 1.3.8 [25|] The generating function of the bivariate Jacobsthal-Lucas polynomials is

given by

i,(x 2" = 2 —xyz
n:OJ” Y= 1 -xyz - 2yz?
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Proof. We have

G(2)

i jn(x, y)z"

n=0

= jole,y)+ ez + Yl )2

n=2

= 2+ XYz + Z (xyjn—l(x/ y) + Zyjn—Z(xl y)) z"
n=2
= 2+xyz+xyz Z fua(x, y)z" ™ + 2y2° Z Juoa(x, y)z" 2
n=2 n=2

= 2+xyz+xyz Z ju(x, y)2" + 2y2° Z Jn(x, y)z"

n=1 n=0

= 2+xyz+xyz (Z Jn(x, 1)2" — 2) +2yz° Z Jjn(x, y)z"

n=0 n=0

= 2 —xyz + xyzG(z) + 2yz2>G(2).

Then
G(z) (1 - xyz — 2yz2) =2 - xyz.
So
2 —xyz
6 = 1—xyz —2yz%

This completes the proof m

28



CHAPTER 2

ELEMENTARY AND COMPLETE
SYMMETRIC FUNCTIONS

Symmetric functions are important in many areas of mathematics, with a widerange
of applications in algebra, combinatorics, number theory and physics. For example, in
combinatorics they are used to solve problems involving permutations and partitions.
In physics, they have applications in the study of quantum field theory. In algebra, they
play a key role in the study of polynomials and their properties. In this chapter, we set
some definitions and properties of elementary and complete symmetric function, for

more details you can refer to [3} 1} 16].
2.1 Symmetric functions
Definition 2.1.1 [26] A function f(x1,x,...,X,) in n variables is symmetric if for all permu-

tations of the index set (1,2, ..., n) the following equality holds:
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Symmetric functions

fx1, X2, 00 X0) = f(Xs1), Xs2) s Xs(n))-

Which means, a function of several variables is symmetric if its values does not change when

we swap variables.

2.1.1 Elementary symmetric functions

Definition 2.1.2 [3]Let k and n be tow positive integer and {A1, Ay, ..., A,} are the set of given

variables. Then, the elementary symmetric function ex(A1, Ay, ..., A,) is defined by

ez(cn) = ex(A1, Ay, e An) = Z /\illAéz Ay, 0<k<n, (2.1)

i1 +ip+...+i, =k

ZUlthll,lzZn =0v1l.

Remark 2.1.1 [26]] Set ey(A1, Ay, ..., Ay) =1, by usual convention, fork <0, we set
€k(A1, Az, ceey /\n) =0.

Example 2.1.1 For an equation of degree 2, we have :
eo(M,A2) =1, e(A, A2) = A+ Ay, (A, A2) = Aids.

Example 2.1.2 For an equation of degree 3, we have:
eo(A1, A2, A2) =1, (A1, Az, Ao) = A+ Aa + A3, ea(A1, Az, A2) = A + MiAs + AxAs,
e3(A1, A2, Az) = A1A2A,.

Proposition 2.1.1 [14|] The generating function of the elementary symmetric functions is given
by:
n

E(z) = Zekzk = H(l + Aiz).

k>0 i=1
Proof. We have
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Symmetric functions

e = e, Ay, A= Y AIAZ LAY withel” = 0ifk > n.

i1 +ip+...+i, =k

For n = 2, we have

(1 + /\12)(1 + AZZ)

2
H(l +A2)

i=1
= 1+ (/\1 + /\2)2 + A]Azzz

= ey+ez+ ezzz)
2
= ez~
k=0

So the assertion is true for n = 2. Assume the proposition is true for 7, i.e that
n
Z ezt = H(l + Aiz)

n>o i=1

and we want prove that the proposition is true for n + 1, i.e that

n+1 n+l1

Z ezt = H(l + Aiz)

k=0 i=1

we have,
n+1 n
H(l +Az) = H(1 +A2)(1 + Apir2)
i=1 i=1
= {Z ekzk] (1 + A4112)
k=0

n

n
= Z ezt + Ay Z ez
k=0
n



Symmetric functions

(n+1) _k
Yo
k>0

n+1

= eka.

k=0

Thus the proposition is true for alln > 0 =

2.1.2 Complete symmetric functions

Definition 2.1.3 [3]] Let k and n be tow positive integer and (A1, Ay, . .., A,} are the set of given
variables. Then, the complete symmetric functions hi(A1, Ay, ..., Ay) is defined by

K = (A, Ay ) = Z Al Al (2.2)

i1 +ip+...+ip=k

with il,iz...in > 0.

Remark 2.1.2 [26]] Set ho(A4, Ay, ..., Ay) =1, by usual convention, for k <0, we set
hk(/\l/ Az, ceey An) =0.

Example 2.1.3 For an equation of degree 2 we have

ho(Al,/\z) =1, I’ll(/\l, /\2) = A+A,, hZ(Al, Az) = /\%+A§+A1/\2, hg(Al, Az) = A?+A;+A%/\2+/\1A§,

Example 2.1.4 For an equation of degree 3, we have

ho(Az, A1, As) =1, hi(Ag, Ay, A3) = Av+ Aa+ A3, ha(Ag, Ay, A3) = AT+ A5+ AS+ AAs +
MAz+ A2As, h3(Ag, A1, Az) = A3+ A5+ A3+ AfAs + AfA5 + AJA1 + A2As + A3A0 + A3A%A; +
AsAZAy + AAgAs, ...

Proposition 2.1.2 [14]The generating function of the completes symmetric function is given

by:
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Proof. We have
W= (A, Ay, M) = Z Apl Al

i +ip+...+i, =k

for n=2, we have:

Z hizk

k>0

2 2 2
hy+hiz+hyz+ ...

T+ A+ A)z+ AT+ AMA + A2 + ...

= 1+Az+ A2+, )1+ Az +A3Z2+...)

(Z(Alz)k] [Z(Azz)k)

k>0 k>0
1

(1 - A1z2)(1 = A22)
1

ﬁ(l - Aiz)
i=1

So the assertion is true for n = 2. Assume the proposition is true for 7, i.e that

(n)

Z h(ﬂ)zk = — 1 ,
= H(1 —Az2)

i=1

and we want prove that the proposition is true for n + 1, i.e that

thﬂ ‘= n+1 1 ’
k>0 H(1 _ /\iZ)

i=1

we have

RO = A B 4 i,
Thus

Y =Y (k™ + 1) 2

k>0 k>0
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Symmetric functions

= A Zh(HH) k4 Zhn k

k>0 k>0

A ) h<"+1>zk + Y

k=0
_ +1ZZhn+1)k+Zhnk
- n
k>0 k>0

which gives

1 1
Z hf{“ )k — /1n+1ZZ h,({”Jr IZk = Z h;{”)zk.

k>0 k>0 k>0
Thus
1
Y BV = Apaz) = ) A =
k>0 k>0
B - (1-Aiz)
1

then

Thus the proposition is true for all n > 0

Proposition 2.1.3 For all m € IN, we have

m
Z 1)€zm1— m,0

=0

Such that 6 is the Kronecker symbol
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Symmetric functions

Proof. Let f(z) and g(z) be two functions such that

flz) = ﬁ(l ~Az) and g(z) = n;
i=1 H(l a2
i=1

According to the above, we obtain

fz) = Z ei(—2)' = Y (=1)ez" and g(z)= Z hiz!
=0 =

i=0 j=0

These function being inverse:

thus,
£

m=0

(—1)ieihm_i] Z" =1.
i=0

1

So all the coefficients of the series are zero, except the first so:
Z(_l)ieihm—i = Om,0
i=0

This completes the proof. m

Proposition 2.1.4 [3|] For all n > 0, we have

1. H(z).E(-2z) =1.

2. H(-2).E(z) = L.

Proof. 1. We have

E(z) = Z ezt = H(l + Aiz)

k>0 ix1
E(-2) =) a2 = [[a-A2)
k=0 i1
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Hz) = Z hy(—z)f = H(1 — Azl

k>0 i>1

H(z).E(-z) = (Ha - /\iz)‘l) (Ha - /\iz)] =1

Then,

i>1 i>1
2. The proof is similar to the proof of 1.
This completes the proof. =

2.2 Some properties on symmetric functions

Definition 2.2.1 [3]Let n be positive integer and A = {ay,a,} are set of given variables, then

the symmetric function S, is defined by

n+l _ an+1

Sn(A) = Sy(ay + ap) = —F—,

ap —dap

with

So(ﬂl + ﬂz) =1, Sl(ﬂl + Elz) =m + ap, Sg(ﬂl + az) = I)l% + a4, + ﬂ%.
Remark 2.2.1 [3]|We have S,(a; +a;) =0, for n <O0.

Remark 2.2.2 Let A = {ay, a5} an alphabet, we have
Sn(ﬂll + az,) = hn(al, Elz).

Definition 2.2.2 [1|] Let A and B be any two alphabets. We define S,(A — B) by the following

form

Z S{A - B)z = E(~2)H(z). (2.4)

j=0
With
H@) =[]a-bz" and E(-z)=]]01-a2).

beB acA
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Proposition 2.2.1 [26] By taking A = ¢ in (2.4)), we obtain

i Si(-B)z = H(1 —bz),
j=0

beB

Proposition 2.2.2 [26] By taking B = ¢ in (2.4), we obtain

Lemma 2.2.1 [3|] Given two alphabet A = {x} and B = {by, b,, ..., b,}, we have
Susk(x — B) = kan(x - B),
forallk > 0.

Proposition 2.2.3 [3] If A is of cardinal 1 (i.e.A = x), so

H(1 — bz)

beB

].Sj(x - B)
(1—-x2)

(1-xz)°

=1+..+ ZHS]-_l(x -B)+z

Proof. According to (2.4) we have:

H(1 bz)

be(Bl ) ZS (x — B)Z.

Thus

Z Si(x — B)z/

=0

1+..4+Si1(x=B)zZ ™" + Sj(x — B2 +

= 1+..+Si1(x=B)Z " +2/(Sj(x = B) + Sjri(x = B)z + ...)

= 1+..+S5,4(x- B)z ™ + zj(S/-(x —B)+xSi(x —B)z +...)
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Symmetric functions

1+4..+Si1(x =Bz +2/S;(x = B)(1 + xz + X’z + ...)

= -1 (1—XZ) .
Then
| |(1—bz)
) Si(x—B)
beB  _ j-1g. _ jo 7
1=x2) 1+..+27§5;4(x-B)+z 1)

This completes the proof. =

Proposition 2.2.4 [2] Considering successively the case A = ¢, B = ¢, we get the following

i S{(A-B)Z = i Si(A)Z/ i Si(-B)z'.
. =

j=0 j=0

factorization

Thus,

j
S{A-B)d = Z S 1(A)Sk(~B).
k=0

Corollary 2.2.1 [25] For n € IN, the symmetric function of bivariate Fibonacci polynomials is
given by
F(x,y) = Sy-a(ar + [—az]).

Corollary 2.2.2 [25] For n € IN, the symmetric function of bivariate Lucas polynomials is
given by
L(x,y) = Su(ay + [-az]) — xSy-1(a1 + [—az]).

Corollary 2.2.3 [25] For n € IN, the symmetric function of bivariate Pell polynomials is given

by
P(x,y) = Sp—1(a1 + [-az]).

Corollary 2.2.4 [25] For n € IN, the symmetric function of bivariate Pell-Lucas polynomials
is given by
Qx, y) = 25u(ar + [-a2]) = 2xySy—a (a1 + [—a2]).
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Corollary 2.2.5 [25] For n € IN, the symmetric function of bivariate Jacobsthal polynomials is
given by

](x/ l/) = Sn—l(al + [_QZ])-

Corollary 2.2.6 [25] For n € IN, the symmetric function of bivariate Jacobsthal-Lucas polyno-

mials is given by

j(x,v) = 25,(a1 + [-a2]) — xS,—1(a1 + [-az2]).

In the following table we give symmetric functions of some numbers[25]

Sequences Symmetric functions
F, Sn-1(a1 + [-a2])
L, 25,(an + [-a2]) = Su-1(an + [—az])
P, Sn-1(a1 + [-a2])
Qn 25,(a1 + [—a2]) — 25,-1(a1 + [-a2])
Jn Sn-1(a1 + [-a2])
Jin 25,(ay + [-az]) — Su-a(ay + [—az])

Table 1 : Symmetric functions of some numbers.

In the following table we give symmetric functions of some polynomials[25]

Sequences Symmetric functions
Fy(x) Sn-1(a1 + [-a2])
Ly(x) 25,(a1 + [-a2]) — xSp-1(an + [—a2])
Py (x) Sp-1(a1 + [-a2])
Qu(x) | 25:(a1 + [-a2]) — 2x5, (a1 + [-a2])
Ju(x) Sp-1(a1 + [-a2])
Jn(x) 25,(a1 + [—a2]) — xSp-1(a1 + [-a2])

Table 2 : Symmetric functions of some polynomials.
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CHAPTER 3

ORDINARY GENERATING
FUNCTIONS OF THE PRODUCTS FOR
SOME NUMBERS AN POLYNOMIALS

In this chapter, we introduce some new generating functions for the products of
Fibonacci numbers, Pell numbers, Jacobsthal numbers with bivariate Fibonacci poly-
nomials, bivariate Pell polynomials, bivariate Jacobsthal polynomials, bivariate Lucas
polynomials, bivariate Pell-Lucas polynomials and bivariate Jacobsthal-Lucas polyno-

mials.

3.1 Definitions and some properties

Definition 3.1.1 [3] Let f be a function on R", the divided difference 0,,,,,, is defined by

f(al/ s iy ity ey an) - f(all ey Ai—1,Aix1, iy e oy an)
ai — 4j+1 '

(3.1)

aﬂi,ﬂm (f) =
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Definition 3.1.2 [3] The symmetrizing operator &k , is defind by

ayf(m) - a5 f(a2)

ay —ap

Ok o f(a1) = Yk € N. (3.2)

Remark 3.1.1 [3] If f(a;) = a;, in the formula (3.2)), we obtain

k+1 k+1
a —a
k _ " 2
6a1uzf(a1) = 1 — a,

Remark 3.1.2 [3] Let A = {ay,a,} an alphabet, we have

o (a1) = Sk(a1 + a).

a1az

3.2 Principal formula

In this section , we present a theorem in order to derive new generating functions of
the products of some well-known numbers and polynomials. The presented theorem

is based on symmetric functions.

Theorem 3.2.1 [4] Let A, B and C be three alphabets, respectively, {a1,a,}, {b1, by} and {c1, c2}

then we have

Y Su(A)Snik1(B)Snis1(C)2" =

n=0

(z Su(—A)bc!z )(z Su(—A)bc!z ) Y Su(=A)S i1 (B)CI2"
n=0

(3.3)
s

B (i Sn(-A)bZCZZ”)(E Sn(—A)b’fCZZ”) Y Su(~A)S it (BYCI2"
n=0 1n=0 n=0
(c1 —¢2) [T(1 —abicyz) [1(1 = abyciz) [1(1 = abicrz) [1(1 — abycrz)
acA acA acA a€cA

for all k € INy.
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Ordinary generating functions of the products for some numbers and polynomials

162 bl bz

Proof. By applying the operator & 6%, to the series f(bic1z) = Z Sn(A)iclz", we
n=0

have

65162 6];1172 (f(b1 clz))

On the other hand, since

6121172 611:1 by [Z Sn (A)bg’crfz”]
n=0

BY Su(Apiciz" — 15 ) S, (Abiciz"
n=0 n=0

oy sn(A)sn+k_1(B)cglz")
n=0

[oe]

&Y Su(A)S i (BYZ" = 5 Y Su(A)Suir (B)chz"
n=0

n=0

C1—C

Y SuASuir(BY 2" = Y Su(A)Ssica (B)es 2"
n=0 =0

€1 —C

1
1 —C

0o Cn+k _ Cl’l+k
Y SuA)Sira(B) (—2) 2"
n=0

inf

> 5sA)Snsi1(B)Syaia (O
n=0

b — 1
f(bic12) H(1 —ablclz),

aeA
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b b
H (1 —abyc12) H (1 —abyc1z)
1 acA aeA
61; C26 = 61626’2
1t H (1 —abyic12) by = by
acA
b H (1 - abyerz) — b H (1 — abyc12)
_ 6k acA acA
- [[a-aben [ ] @ -abeiz)
acA acA
Using the fact that:
Z Su(-AWYz" = [ (1 - abicrz),
acA
then
sn (A 2" Z Sp(—A)EDIcl 2"
6k 6k 1 _ n= n=0
€162 " b1by - 6162
' H (1 — abyc12) (b1 by) H (1 — abyc12) H (1 — abycyz)

aeA aeA aeA

C1€2

H (1 — abyc12) H (1 — abyc12)

acA acA

—bkkasn( A)S i (B)cf"

C1C2 H (1 — abyc12) H (1 — abyc12)

acA acA

[bkkaS( A)( I;l_ o k) ciz"

1 —c§b§b§Zsn(—A)sn_k_1(B)cglz" c’;b';bgan(—A)sn_k_l(B)cgz"
n=0 =

T a-o H (1 —abic,2) H (1 — abyc12) T H (1 —abic1z) H (1 — abyc12)

acA acA acA acA
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(io S”(‘A)bgc’fzn) ( L 5"(‘A>b’50¥2”) L 5,(-A)S, (B 2"
bib;

) (io ° ”(‘A)bgcgz") ( L S"<—A>b’fc§z”) L S,(~A)S,i1(BIC} 2"
(c1 = c2) [T(1 = abicyz) [1(1 = abacrz) [1(1 - abicyz) [1(1 = abacyz)

acA acA acA acA

This completes the proof. =

If k =0,1,2 in the theorem (3.2.1), we deduce the following lemmas.

Lemma 3.2.1 [5] Let A, B and C be three alphabets, respectively, {a1,a,}, {b1, b2} and {c1, cp}

then we have
M

D S A)Sa(B)S,a(Q)" = 5, neN, (3:4)
n=0

with

M = (111 + Elz)Z - Ellllg(bl + bz)(Cl + Cz)Z2 + b1b2C1C2(611 + 112)(2611&2 - (al + 612)2)23 + a1a2b1b2c1c2
(b1 + b)(cy + c2)(a1 + 02)224 - blbzclcza%a%(al + a)(b1by(c1 + Cz)2 +ci6a(by + bz)2 - Clczble)ZS

+ a3abibscicy(by + ba)(cr + c2)2°.

D =1— (a1 +a) (b1 + ba)(c1 + c2)z + (biba(a1 + 32)*(c1 + 2)* + (b1 + b2)* — 2b1b)((a1 + a2)*crc2
— 201050102 + M (c1 + €2)7))2° — (a1 + a2) (b1 + bo)(c1 + ©2)(B1bacica(ar + a2)* + bibaayan(cr + ¢2)
+ a1ay0102(b1 + by)? — Sawarcicobiby)z® + (a%a%cfc%(lh + b))t + cfc%b%b%(al +a)t + a%aﬁb?bg(cl +0p)*
— @11 bacicr(Ab1bacica(ar + a2)? + 4araxcica(by + by)? + daiarbiby(ci + ¢2)* — (a1 + a2)* (b1 + by)?
(c1 + ©2)?) + 6a3a3b3b5c35)z" — arasbibacica(ar + a2)(by + by)(c1 + c2)(brbacica(ar + a2)* + a1azc10
(b1 + by)? = Bayarbibycicy)z” + (afa%b?bgc%cg(m + )% (c1 + ¢)* + a%agb%bgc%cg((lﬁ + by)? = 2b1by)
(a1 + a2)*c1co — 2a1a501C5 + a1a(by + br)?))z8 — ai’agbi’bgci’cg(m +a,) (b1 + by)(cq + )2’

447474 4 4 8
+ a;a,bibycicyz°.
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Lemma 3.2.2 [5] Let A, B and C be three alphabets, respectively, {a1,a,}, {b1, b2} and {c1, c2}

then we have

Y SIS (BISun (O =, neN, @5)

n=0

with
My = (c1 + &) (b + by) — (a1 + aa)(crca(by + ba)* + biba(cy + ¢2)* — c1cabiba)z + crcobiby(ay + ay)?

(b1 + b1)(c1 + c1)z% — Abibi(ar + a1)(a1 + a1)* — 2map)z° — alasbibscicy(by + by)(cy + co)z*

221313 3 3
+ atasbibicics(a + a2)z°.

From the previous lemma we deduce the following relationship

M,

3/ ne N/ (36)

an 1(A)S4(B)S,(C)z" =

with

M; = (c1 + c2)(b1 + b2)z — (a1 + az)(c1c2(b1 + bz)2 + biby(cq + Cz)z - Clczb1bz)22 + c162b1bo (a1 + 111)2
(b1 + b1)(c1 + a1)2° — Febibs(ar + ar)((a1 + a1)* — 2a1a0)z* — a2asbibscics (b + by)(cr + )2

21313
+alasbibicics(ay + ay)z°.

Lemma 3.2.3 [5]] Let A, B and C be three alphabets, respectively, {a1,a,}, {b1, b2} and {c1, c2}

then we have

Z S$.(A)S,(B)S,(C)z" = %, n €N, (3.7)
with

M3 =1- (a1a2clcz(b1 + b2)2 + alazblbz(ﬁ + Cz)2 + blszlCz(ﬂl + az)z — 3&15[2C1C2b1b2)22 + ZﬁllazblszlCz
(a1 + @) (b1 + by)(c1 + 2)2° — (bibal?a5cics(by + bo)* + crcoal?asbiby(cr + ¢2)* + a1aabibscics

(a1 + a2)* — 3a3a5b1%b5c3c5)z* + aaab1°bcicyz°.
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From the previous lemma we deduce the following relationship
Z S11(A)$11(B)S,(C)2" = 5, meEN, (3.8)
n=0

with

My=2z- (ﬂlﬁlzClCz(bl + b2)2 + Ellazlhbz(cl + C2)2 + blbzchz(ﬁll + Elz)z - 3&1&2C1C2b1b2)23 + 2ﬂ1ﬂ2b1b2C1C2
(a1 + @) (b1 + by)(c1 + 2)z* — (hibyadascicy(by + by)* + crcuaiasbiby(cr + ¢2)* + aanbibscics
(a1 + @2)* — 3a3a5b3b5¢763)z° + aaybibscicaz’.

By making the following restriction: ¢y —c; =1,b1—=b, = 1,41 —a, = x,c1c, =1, biby = 1,

may = y, and by replacing a, by [-a,] and b, by [-b,] and ¢; by [—c,] in (3.8), we get

a new generating function, involving the product of Fibonacci numbers with bivariate

Fibonacci polynomials as follows.

NFFF(x,y)

Y Sualer + [=eaD)Sua(br + [<b2])S 1 (@ + [-aa]) = : (3.9)

n=0

D FFF(x,y)

with

Nrrpy) = 2z — (¥ + 5y)2° — 2xyz* + (¥%y + 5y%)2° — y°2’.

Drrriey) = 1 — xz — (4x% + 9y) 22 — (% + 7xy) 2° + (16y2 +xt + 3x2y) 2+ (7xy? + X3y) 2 —
(4y*x* +9y°) 28 + xyP2” + y*28.

Corollary 3.2.1 V¥n € IN we have

FuFuFy (x,y) = Sp-a(cr + [—¢2])Sp-a(by + [=b2])Sp-1(a1 + [—az]).

Put y =1 and x = y = 1 in the relation (3.9) we get the following corollaries

Proposition 3.2.1 Forn € IN, a generating Function of the product of Fibonacci numbers with

Fibonacci polynomials is given by:
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= — (2 +5)z% = 2xz* + (x* + 5)° — 7
Y i E () = S e L O 310
o Drrrey

with
Drrpiy = 1—xz—(4x* + 9) 22 — (& + 7x) 2° + (16 +xt + 3x2) 4+ (Tx+x3)2° — (4x2 +9) 20 +
xz’ + 28,
Then
F,F,Fy(x) = Syq(c1 + [=c2])Sp-a(by + [=D2])Sp-i(ar + [—az]).

Corollary 3.2.2 For n € IN, a generating Function for the cubes Fibonacci numbers is given
by:

iFnFnFn _ 2z—6z3—224+6z5—z7 .
e 1—-2z—1322 — 823 + 20z* + 825 — 132° + 27 + 28

(3.11)

With
F.F,F, = S,1(c1 + [=c2])Sn-1(b1 + [=02])Sn-1(ar + [—az]).

By replacing a, by [-a,], b, by [-b:] and ¢, by [-c;], taking ¢; —c, =1, by = b, = 1,
a1 —dy =X,C1Cp = 1, blbz = 1, qdx =Y in we obtain:

xz + yz* — x(x* + 2y)z% — yx?z* + Bxy’z° — 328

Y Sular+=a2D)Sma(ert—caD) St (br+[=ba)z" = 5
=0 FFF(x,y)

(3.12)

Theorem 3.2.2 For n € IN, a generating Function of the product of Fibonacci numbers with

bivariate Lucas polynomials is given by:

- N
Z F,F,L,(x,y)z" = Py, (3.13)
=0 DFFL(x,y)
With
Nepryy = —2°F +t°x)° + (=3x°y° + 2x°y + 10y7)E + (F°y — dxy)t* + (x* + 2x%°y — 2x* — 10y)#°

- tzxy + (=x + 2)t,
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and

DFFL(x,y) = DFFF(x,y)'
Proof. We have

Y BEL (2 = ) Sualen +[=cl)Sua(by + [=b:)@Sy(@r + [<a2]) = x5, (a1 + [-a2])z"
n=0

n=0

= 2) Sualer + [~aDSualbr + [~ba])Su(@ + [-a])2"
n=0

= x) Suaer +[~aD)Sualbr + [~ba)Sua (a1 + [a])2"
n=0
N2t —(x2 4+ 5y)z> — 2xyz* + (xPy + 5y)2° — y*27

DFFL(x,y)
xz + yz* — x(x* + 2y)z% — yx?z* + 3xy’z° — 28
=- x
Drrrx,y)
S0,
- N
Z F,F,L, (x/ ]/) z"' = M/
n=0 Drrry)
with
Nrrry = =20 + 0y + (=327 + 2x%y + 10y°)° + (X°y — day)t* + (x* + 2x%y — 2x° — 10y)F°

— Pxy+ (=x* + 2t
This completes the proof m

Corollary 3.2.3 For n € IN, we have

FyFuLy (x,y) = Spa(cr + [=c2])Snca(by + [=021)(2S (a1 + [—a2]) = xSy-1 (a1 + [—a2])).

Put y =1 and x = y = 1 in the relation (3.13) we get the following corollaries.

Corollary 3.2.4 For n € IN, a generating Function of the product of Fibonacci numbers with

Lucas polynomials is given by
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7

i FyFuLn(x) = (2 - x%)z —xz> + (x* = 10)2° + (° — 4x)z* + (10 — 2%)z° + xz° — 277
n=0 Drrr

with

Drrity = Drrre-

Then
FnFnLn(x) = Sn—l(cl + [_CZ])Sn—l(bl + [_bZ])(ZSn(al + [_aZ]) - Sn—l(al + [_[12]))-

Corollary 3.2.5 Forn € N, a generating Function for the product of Fibonaccui numbers with

Lucas numbers is given by:

iFFL - z—-2>—92° - 32* +92° + 2° - 277
- ntnbn — 1—Z—13Z2—823+2024+825_13Z6+Z7+281

(3.14)

with

F.F,L, = Sy1(c1 + [—c2])Sn-1(br + [=02])(25,(a1 + [-az]) — Sy-a(ar + [—az])).

By making the following restriction: ¢;—c, = 2xy, by —b, = a;—a, = 2and cic; = y, bib, =
ma, = 1 and by replacing a, by [-a,] and b, by [-b,] in (3.8), we get a new generating
function, involving the product of Pell numbers with bivariate Pell polynomials as

follows.
Nppp(x,y)

Y, Sualer + [=e2)Sua (b + [=b2])S,1 (@1 + [—a2]) =

n=0

, 3.15
D PPP(x,y) ( )

with

Npppgy =z — (4x2y* + 11)2° — 16xyz* + (4x%y* + 11)2° — 27.

Dpppxy) = 1-8xyz—(40x%y? + 36y) z° —(104xy? + 32x° 1) 2 +(64y> + 16x2y* — 48x%y°) 2*+
(1O4xy3 + 32x3y4) z° - (40y4x2 + 36]/3) 20 + 8xytz” + Y2t
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Corollary 3.2.6 For n € IN, we have

P,P,P, (x, y) = Sp-1(c1 + [=c2])Sn—1(b1 + [=D2])Sp-1(a1 + [—az]).

Put y = 1 in the relation (3.15) we get the following corollary.

Corollary 3.2.7 For n € N, a generating Function of the product of Pell numbers with pell

polynomials is given by:

z— (11 +4x?) 2% — 16xz* + (11 + 4x?) 2° — 27

Dppp(y

i P,P,P,(x) = ) (3.16)
n=0
with
Dpppy = 1-8xz—(40x? + 36) 22— (104x + 322%) 2°+(70 + 16x* — 48x?) 24 +(104x + 322°) 2°
(40x% + 36) z° + 8xz7 + z8.
Then

P,P,P,(x) = S,_1(c1 + [=c2])Sn-1(b1 + [=b2])Sn-1(a1 + [—az]).

Monsour in [20] give the formula(3.17) which is obtained by taking x = y = 1 in the

relation (3.15)

z(1 — 4z — z?)

nz_‘g PubuPu = (1 -2z —-22)(-1-14z — 22)’ (317)

representing a generating function of the cubes of Pell numbers.

We deduce the following corollary.

Corollary 3.2.8 For n € IN, we have

P,P,P, =S, 1(c1 + [-c2])Su-1(b1 + [=D2])Sy-1 (a1 + [—a2]).

By replacing a, by [-a:], b, by [-b;] and ¢, by [-c;], taking ¢; —c; = by — by = 2,
ay —ay =2xy,c160 = biby =1, ma; = yin we obtain
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Z Sn-1(c1 + [=c2])Sn-1(by + [=b2])Sn(ar + [—a2])Z" (3.18)
n=0

_ 2xyz +4y2” — (dxy? + 8x°y°) 2° — 16x’y’zt + 18xy°z — 4y°z°
B DPPP(x,y) .
Theorem 3.2.3 For n € IN, a generating Function for the product of Pell numbers with

bivariate Pell-Lucas polynomials is given by

Nppo,y)

Y PuPuQu(x,y)2" = (3.19)
n=0

Drpoiy)’

with
Nppowy) = 2xyz + 8yz? + (14xy* — 8x%y) 2% + (14xy3 - 8y4x3) z° — 81328 + 2xy*7”.

D PPQ(x,y) = D PPP(x,y)-

Proof. We have

Y Sualer + [~eaD)Sua(br + [~ba)(2Su(ar + [a2]) = 2yxS,, 1 (@ + [-a]))z"

n=0

Y PuPuQu (x,y) 2"
n=0
= 2) Sualer + [~D)Sua(br + [~b])S (@ + [~a])2"
n=0

- 2xyz Su-1(c1 + [=c2)Su-1(by + [=b2])Su(ar + [—a2])Z"
n=0

2 (nyz +4yz? — (dxy? + 8x°y°) 2% — 1637y °z* + 18x1°2° — 4y326)
D,
2xy (z - (11y + 4x*y?) 22 — 16xy%z* + (117 + 4x%°) 2° — y3z7)
D,
2xyz + 8yz? + (14xy* — 8x°y%) 2> + (14xy3 - 8y4x3) z°> = 8y°2% + 2xy*z”

Dppg,v)

This completes the proof. =

Corollary 3.2.9 For n € IN, we have

P,P,Qy (x,y) = Su-i(c1 + [—c2])Su-1(b1 + [=D2])(2S4(a1 + [—az]) — xSp-1(a1 + [—a2])).
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Put y =1 and x = y = 1 in the relation (3.19) we get the following corollaries

Corollary 3.2.10 For n € IN, a generating Function of the product of Pell numbers with

pell-Lucas polynomials is given by

i P,P,0,(x) = 2xz + 82% + (14x — 8x%) 2% + (14x — 8x%) 2° — 82° + 2xz7, (3.20)

oy Dppg(x)

with
P,P,Qu(x) = Sy_i(cr + [—c2])Su-1(br + [=D2])(2S,(a1 + [—az]) — 2xS,-1(a1 + [—az])).

Corollary 3.2.11 Forn € IN, a generating Function for the cubes Pell-Lucas numbers is given

by
27 + 82% + 62° + 62° — 82° + 277

PnPn n = ,
nZ:O < 1—8z — 762> — 13623 + 32z* + 1362° — 762° + 827 + z8

(3.21)

with

P,P,Q, = Su-i(cr + [—c2])Sn-1(b1 + [-021)(25,(a1 + [—a2]) — xS,-1(a1 + [—az])).

By making the following restriction:c; — ¢, = xy, by = b, = a1 —a, = 1, cic; = 2y,
b1b, = aya, = 2 and by replacing a, by [-a,] and b, by [-b,] in (B.8)), we get a new gener-
ating function, involving the product of Jacobsthal numbers with bivariate Jacobsthal

polynomials as follows.

= ~ Nyjy
Y Surler + [=ea)Spma by + [02)Sa(m + [-m]) = 52,
—~ 111Gy

with

Njjjay =z — (32y + 4x2y*) 2° — 16xy°z* + (256* + 321°x%) z° — 5121°27.

Dyjjey = 1—xyz—(12x%y* + 50y) z° —xy (48y + 4x*y*) 2° + (672]/2 + 16xty* + 120x2y3) zt+
8x1? (48y + 4x2y?) 25 — (128xy* + 320y (10y + 2x%12)) 2° + 512xy27 + 4096y2".
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Corollary 3.2.12 Vn € N, we have

JuJuln (X, y) = Spoa(c1 + [=c2])Spoa(br + [=D2])S o1 (ar + [—az]).

By replacing a, by [—a,], b, by [-b,] and c; by [—c; ] taking ci—c, = b1—=by = 1,a1—a, = xy
and 16y = blbz =2 , A10p = 2y in we obtain:

Y Suealer + [=e2)Sua(by + [=b2])S, (@1 + [—a2])2" (3.22)
n=0

_ z—(82y + 4x’y?) 22 — 16xy’z* + (256y° + 32x°y°) 2° — 512°7
B Dyjyep '

Theorem 3.2.4 For n € IN, a generating Function for the product of Jacobsthal numbers with

bivariate Jacobsthal-Lucas polynomials is given by

[} PJ .
Y Julujin () 2" = S (3.23)
oy Dyjjtxy)

With
Njjjwy = Xyz +42° — 42 y*2% = 32x%y*2° — 1281°2° + 512xy*2”

Dyjicey = Dijy)-

Proof. We have

Y e @2 =Y Sualer + [=eDSua(by + [=b2]) (2841 + [<a2]) = xyS,a (a1 + [-m]) "

n=0 n=0

= 2)" Spaler + [~eaD)Sua(br + [<B])S, (@ + [—aa])2"
n=0

= 2y ) Spaler + [=al)Sus(by + [-baD)Sn 1@ + [-])2"

n=0

2 (xyz + 2yz% — (16xy? + 4x°y?) — 8x2y°z* + 128xy°z° — 64y3z6)

Dyjje
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xy (z — (32y + 4x?y?) 22 — 16xy°z* + (256 + 32x°1°) 2° — 512y3z7)

Dy
xyz + 422 — 4x?y?2 — 32x%y*z° — 1281°2° + 512xy4z’

Dyjjy

This completes the proof. m

Corollary 3.2.13 For n € IN, we have

JnJnjn (x, F/) = Su-1(c1 + [—c2])Sn-1(br + [=b2]) (2S4(a1 + [-a2]) — xySy-1(ar + [-a2])).

Put y =1 and x = y = 1 in the relation (3.23) we get the following corollaries

Corollary 3.2.14 For n € IN, a generating Function of the product of Jacobsthal numbers with

Jacobsthal-Lucas polynomials is given by

. , z+ (32 + 4x?) 2% — 16xz* + (256 + 32x2) z° — 51277
Z JuJnjn(x) = , (3.24)

=0 Dyjjw

with

Djjjey = 1=xz— (1227 + 50) 22— x (48 + 42%) 22 + (672 + 16x* + 120x?) z* + 8x (48 + 42%) 2° -
(128x + 320 (10 + 2x?)) z° + 512xz7 + 40962°8.

Then

JuJujn(x) = Su-1(c1 + [=c2])Sn-1(b1 + [=021)(2S (a1 + [-a2]) — xSu-1(a1 + [—a2])).

Corollary 3.2.15 For n € IN, a generating Function for the product of Jacobsthal numbers

with Jacobsthal-Lucas numbers is given by

z —362° — 16z* + 288z° — 51277

; I = T 65— 527 + 80824 + 41625 — 396820 + 51277 + 40962°"

(3.25)

with

JuJnjn = Su-a(c1 + [=c2])Su-1(b1 + [=021)(2S,(a1 + [—a2]) — Sp—1(a1 + [—a2])).
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CONCLUSION

In this dissertation, by making use the concept of symmetric functions we have de-
rived some new ordinary generating functions for the products of Fibonacci numbers,
Pell numbers, Pell-Lucas numbers and Jacobsthal et Jacobsthal-Lucas numbers with
bivariate Fibonacci polynomials, bivariate Lucas polynomials, bivariate Pell polynomi-
als, bivariate Pell-Lucas polynomials, bivariate Jacobsthal polynomials and bivariate

Jacobstha-Lucas polynomials.
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ABSTRACT. In this dissertation, we present a theorem in order to calculate new
generating functions for second-order recurrences relations. The presented theorem

is based on symmetric functions. Where by making use the symmetrizing operator

ok . 0F on the series Z Su(A)bjciz" we gived the generating functions of the prod-

€12 " b1by
ucts of Fibonacci numbers Pell numbers and Jacobsthal numbers with the bivariate
Fibonacci polynomials, bivariate Lucas polynomial, bivariate Pell Lucas polynomials,

bivariate Jacobsthal and Jacobsthal Lucas polynomials.

Key Words: Symmetric functions, generating functions, recurrence relations.

RESUME. Dans ce mémoire, nous présentons un théoreme afin de calculer des
nouvelles fonctions génératrices pour les relations de récurrences du second ordre, Le

théoréme présenté est basé sur les fonctions symétriques , ot11'utilisation de symétriseur

Sk o, 675 p,Sur la série Z Sx(A)bjciz" nous permet d’obtenir les fonctions génératrices des

produits de nombre de Fibonacci, les nombres de Pell et les nombres de Jacobsthal avec
les polyndmes de Fibonacci bivariés, les polyndmes de Lucas bivariés, les polyndomes

de Pell-Lucas bivariés et les polynomes de Jacobsthal et de Jacobsthal-Lucas bivariés.

Mots-clés: Fonctions génératirices, fonctions symétriques, relations de récur-

rences.

Sty g A LU aal g e celial Ao yIad (o pa Lied 5,50l oid G L pasle

S HBLE )3 gl Jleatiw! Of oo ddasd) Ao | )il OLEMall 308 godt JIgud) Cbawst
Mlaet Slelaxd 308 gadl J1 gt Olasms LY ey Y000 5,(A)D]C]2" ddeadeadt e O 6 b,
(e AGL ged 3 gis Ol ,iSs ae Jlius gSola dldelg JL slael ¢ 850 gl
=9 Jluwssla 9 JhwwsSla s gus O 0SS« o aier Jb dgus Ol s

| o) S Mal) (3l godt I 9! can JI5LSS el WA PP { uf| P L

56



BIBLIOGRAPHY

[1] A. Abderrezzak, Généralisation de la transformation d’Euler d"une série formelle,

Adv. Math., 103 , 180-195, 1994.

[2] A. Abderrezzak, Généralisation d’identités de Carlitz, Howard et Lehmer, Ae-
quationes Math., 49 , 36-46, 1995.

[3] Kh. Boubellouta , Fonctions symétriques et leurs applications a certains nombres
et polyndmes, ( Doctoral dissertation). Mohamed Seddik Ben Yahia University ,
Jijel, Algeria. 2020.

[4] kh. Boubellouta, A. Boussayoud and M. Kerada, Symmretric functions for second-

order recurrence sequences, 2020.

[5] Kh. Boubellouta, A. Boussayoud, S. Araci and M. Kerada, Some Theorems On
Generating Functions and Their Applications, Advanced studies in contemporary

mathematics. 30 (3), 307 - 324, 2020.

[6] A. Boussayoud, L'action de l'opérateur 6’;1,62 sur la Série Z Sux(A)e}z"( Doctoral
0

dissertation), Mohamed Seddik Ben Yahia University, ]ijel,nglgeria, 2017.

57



Bibliographie

[7] S. Boughaba, A. Boussayoudl and N. Saba, Generating functions of the products
of Bivariate complex Fibonacci polynomials with Gaussian numbers and polyno-

mials, Discussiones Mathematicae, 2020.

[8] P. Catarino, On Some Identities for k-Fibonacci Sequence, Int. J. Contemp. Math.
Sciences. 9 (1), 37 - 42,2014.

[9] ] P. Catarino, On Some Identities and Generating Functions for k- Pell Numbers,

Int. Journal of Math. Analysis. 7( 38), 2013, 1877 - 1884.

[10] P. Catarino and H. Campos, Incomplete k-Pell, k-Pell-Lucas and modi ed k-Pell
numbers, Hacettepe Journal of Mathematics and Statistics, 46 (3), 361 372, 2017.

[11] H. Campos, P. Catarino, A. P. Aires, P. Vasco and A. Borges, On Some Identities
of k-Jacobsthal-Lucas Numbers, Int. Journal of Math. Analysis. 8 ( 10), 489 - 494,
2014.

[12] S. Falcon, On the Lucas Triangle and its Relationship with the k-Lucas Numbers,
J. Math. Comput. Sci. 2 (3), 425-434, 2012.

[13] S. Fiorini, MATH-F-307 Mathématiques discretes. Version 2012.

[14] D.Foata et GN. Han, Principe de combinatoire classique, Université Louis Pasteur,

Strasbourg Département de mathématique, 2008.

[15] A.F Horadam, Generating functions for powers of a certain generalized sequence

of numbers, Duke Math. J. 32, 437— 446, 1965.

[16] V. E. Hoggatt, Fibonacci and Lucas Numbers. A Publication of the Fibonacci
Association. University of Santa Clara, Santa Clara. Houghton Mi in Company.

1969.

[17] A.F Horadam, Basic properties of a certain generalized sequence of numbers, The

Fibonacci Quarterly 3 ,161-176, 1965.

[18] A.F Horadam, Generating functions for powers of a certain generalized sequence

of numbers, Duke Math. J. 32, 1965.

58



Bibliographie

[19] D. Jhala, K. Sisodiya and G. P. S. Rathore, On Some Identities for k-Jacobsthal
Numbers, Int. Journal of Math. Analysis. 7 ( 12), 551 - 556, 2013.

[20] T. Mansour A Formula for the Generating Functions of Powers of Horadamis

Sequence, Australas. J. Comb. 30, 207-212, 2004.

[21] T. Mansour. Squaring the terms of an lth order linear recurrence, Australas. J.

Comb. 31, 15-20, 2005.

[22] D. Marques, The Order of Appearance of the Product of Consecutive Lucas Num-
bers, the Fibonacci Quarterly. 51 (1), 38-43, 2013.

[23] M. Merca, A Generalization of the Symmetry Between Complete and Elementary
Symmetric Functions, Indian ]J.Pure Appl. Math. 45, 75-89, 2014.

[24] K. H. Rosen, Discrete Mathematics and its Applications, Monmouth University
(and formerly AT et T Laboratories).

[25] N. Saba and A. Boussayoudl, Complete homogeneous symmetric functions of
Gauss Fibonacci polynomials and bivariate Pell polynomials,Open Journal of

Mathematical Sciences, 2020.

[26] N. Saba and A. Boussayoud1, Ordinary generating functions of binary products
of (p,q)-Modified-Pell numbers and k-numbers at positive and negative indices

,627-648, 2020.

[27] M. Shattuck, Combinatorial Proofs of Determinant Formulas for the Fibonacci and

Lucas Polyndmials, the Fibonacci Quarterly. 51 (1), 63-71, 2013.

[28] A. M. Sharari, Introduction to Combinatorial Theory, Saudi University Publica-

tions, Kingdom of Saudi Arabia.

[29] S.Uygun, Bivariate Jacobsthal and Jacobsthal Lucas polynomial sequences,]. Math.
Computer Sci., 21, 176-185, 2020.

[30] N. N. Vorobiov, Numeros de Fibonacci, Editora MIR, URSS. 1974.

59



	Introduction
	 Notations and preliminaries
	Linear recurrence relations
	Linear homogeneous recurrence relations with constant coefficients
	Recurrence relations of some numbers and polynomials

	Generating functions
	Formal series
	Ordinary generating functions (OGF) 


	Elementary and complete symmetric functions
	Symmetric functions
	Elementary symmetric functions
	Complete symmetric functions 

	Some properties on symmetric functions

	 Ordinary generating functions of the products for some numbers an polynomials 
	Definitions and some properties
	Principal formula


