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ABSTRACT

This work aims to study some groups that can be identified countably recogniz-
able.
We begin with mentioning some of the basic and preliminary concepts used in this
work.
In the first chapter, we studied the basic concepts of group theory: groups, subgroups,

isomorphisms, group actions and permutations.

In the second chapter, we found many properties of infinite groups. The aim of
this chapter is to discuss the main types of generalized nilpotent and soluble groups,

conjugacy classes and groups with finite conjugacy classes.

In the third chapter we studied the class of minimax groups in particular. We studied
the paper of F.de Giovanni and M.Trombetti who shows that the classes of minimax
groups is countably recognizable and they proved also that the properties of weak
maximal and minimal conditions are countably recognizable.

Keywords : Groups, conjugacy classes, countably recognizable class, minimax group,

maximal condition, minimal condition.
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RESUME

Ce travail vise a étudier quelques groupes qui peuvent étre reconnaissable de
facon dénombrable.
Nous commencons par mentionner quelques concepts de base et préliminaires utilisés

dans ce travail.

Dans le premier chapitre nous avons étudié les concepts de base de la théorie des
groupes: les groupes, sous-groupes, isomorphismes, actions de groupe et permuta-

tions.

Dans le deuxiéme chapitre nous avons trouvé de nombreuses propriétés des groupes
infinis. le but de ce chapitre est de discuter des principaux types de groupes nilpotents
et résolubles généralisés, des classes de conjugaison, et des groupes a classes de conju-

gaison finies.

Dans le troisieme chapitre, nous avons étudié la classe des groupes minimax est recon-
naissable de facon dénombrable.
Mote clés : Groupes, classes de conjugaison, classe reconnissable de fagon dénom-

brable, groupe minimax, condition maximale, condition minimale.
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NOTATIONS

group of nonsingular linear transformations of a vector space W.
general linear groups.

symmetric group of degree n.

sets of integers, rational numbers, real numbers, complex numbers.
group, subgroup.

H is a subgroup, a proper subgroup of the group G.

the left and right coset H in G respectively.

the order of group G.

the index of a subgroup H in a group G.

H is normal subgroup of G.

the sete of all homomorphisms frome G to G’.

the quotient of G over N.

H is isomorphic with G.

the centralizers, normalizers of x in G.

the orbit of x in G.

the stabilizer of x in G.

the commutator of x and y.

the derived subgroup of G.
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the center of a group G.
a classe of groups.
the rank of G.
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INTRODUCTION

Group theory is a branch of modern algebra that deals with the study of groups.
The origins of group theory back to the early 19" century when mathematicians began
to study the symmetry of geometric figures. The theory of groups and their properties
in the context of algebraic equations was first developed by the French mathematician
Evariste Galois in the 1830s. Another important figure in the development of group
theory was the German mathematician Felix Klein who introduced the concept of a
group in a more general setting in the 1870s. In the early 20" century, the study of group
theory was greatly expanded by the work of several mathematicians. Today, group
theory is a major area of research in mathematics with applications in many areas of
science and engineering, including quantum mechanics, chemistry, and cryptography.
Group theory is also used in the study of symmetry in music, art, and architecture.
In this dissertation we study the countably recognizable classes of groups. A group
class X is said to be countably recognizable if, whenever all countable subgroups of a
group G belong of X, then G itself is an X-group.
We give examples of countably recognizable groups classes: the class of minimax
groups is countably recognizable. A group G is called minimax if it has a series of finite

length :
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=G <G <---<G, =G

each of whose factors satisfies either the minimal or the maximal condition on sub-
groups. In this paper, it is shown that the class of minimax groups is countably
recognizable.

Also, the class of soluble groups of finite rank is countably recognizable. There are
many examples of countably recognizable classes of groups such as class of groups
with finite conjugacy classes(FC-groups).

This dissertation is composed of three chapters presented as follows :

In chapter 1, we study the fundamental concepts of group theory including groups,
subgroups, normal subgroups, costs, isomorphisms, isomorphisms theorem, groups
action and permutation. We give examples of groups; groups of numbers, groups of
linear transformations, groups of permutation groups of matrices. We prove (IN,+) and
(Z,x) are not groups.

In chapter 2, notions needed for our study, namely; soluble and nilpotent groups, con-
jugacy classes and centralizers and groups with finite conjugacy classes which has a
role in our study of group theory.

This chapter consists of four sections. The first section, which is dedicated to soluble
group, will be further explained by : compositions series, Jordan Holder theorem, De-
rived subgroup. In the second section, we are going to study the nilpotent groups going
through some notions : central series (descending and ascending central series). In the
third section, we will study conjugacy classes and centralizers. We will further explain
conjugacy classes, centralizers and normalizers. In section four we are going to study
the groups with finite conjugacy classes going through some notions : FC-element and
FC-group.

In the last chapter, we study the article of F. de Giovanniand Marco Trombetti “The
class of minimax groups is countably recognizable”.

This chapter consists of two sections. In the first section, we talk about free groups and
reduced words. Then, we talk about rank of groups. We also give an example of rank of

groups. In the second section, we study that the class of minimax groups is countably

4
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recognizable taking into consideration weak minimal and maximal conditions.



CHAPTER 1

FUNDAMENTAL CONCEPTS OF
GROUP THEORY

This chapter is devoted to studying the essential concepts of group theory, which
will be used all throughout the next chapters, in terms of definitions, exemples, theo-

rems, propositions and remarks [12].

1.1 Groups

1.1.1 Binary operations

Definition 1.1.1 Let S is a nonempty set, a binary operation "’0” on S is a function :

0:5XxS5—S

(x, y) — xoy

6



Fundamental concepts of group theory

1.1.2 Groups

Definition 1.1.2 A group is a set S together with a binary operation satisfying the following

conditions :

i) Associativity : Forall x,y,z € S
(xoy)oz = xo(yoz).
ii) Existence an indentity element : There exists an element e € S, Such that
xoe = X = eox.
Forallxe S
iii) Existence of inverses : For each element x € S, there existe x™' € S, Such that

1

xox ' =e = x"lox.

We write x.y for xoy and 1 For e, also we write x + y for xoy and O for e. In the first case,
the groups is said to be multiplicative, and in the second it is said to be additive.

We say that the group S is abelian if : for all x,y € S, we have :

X0y = Jox.

1.2 Examples of groups

1.2.1 Groups of numbers

(Z,+),(Q,+), (R, +) and (C, +) are abelian groups. Infact 0 being an identity and —x is
the inverse of x .

Z is the set of all integers, Q : rational numbers , R: real numbers, C: complex numbers.
Let (Q — {0}, X), (R — {0}, X), (C — {0}, X), are abelian groups, 1 being the identity and x™*

is the inverse of x.



Fundamental concepts of group theory

1.2.2 Groups of linear transformations

If W is an n-dimensional vector space over a field E, let GL(W) denote the set of all
bijective linear transformation of W.

Then GL(V) is a group with functional composition is the group operation :
aof(w) = a(f(w)) where w € W and «a, f € GL(W).

There is a close connection between the groups GL(W) and GL(n,E) . For if a fixed
ordered basis for W is chosen, each bijective linear transformation of W is associated

with a nonsingular 7 * n matrix over E. This correspondence is :
GL(W) = GL(n, E).

Infact when two linear transformations are composed, the product of the corresponding

matrices represents the composite.

1.2.3 Groups of permutation

Let A is a nonempty set, a bijection ¢ : A — A is called a permutation of A.
IfA=1{0,1,2,....,n} then Sym(A) is denoted by S, , and called the symmetric group of

degree n.

|Sul = n!

1 2 .. n

an element o € S, is written :
o(l) o(2) .. o(n)

¢ € S, is defined to be :
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Which equal +1 or —1. Recall that ¢ is even if sign ¢ = +1 and odd if sign ¢ = —1 From

the definition it is easy to check the formulas :

sign(p1ha) = (signor)(signg,) and sign(p™') = signo.

1.2.4 Groups of matrices

Let V be a ring with an identity element and let GL(n,V) denote the set of all n X n
matrices with coefficients in V which have inverses. Taking matrix multiplication as
the group operation, we see from elementary properties of matrices that GL(n,V) is a
group whose identity element is 1,, the n X n identity matrix. This group is called the
general linear group of degree n over V, it is nonabelian .

If n > 1in particular, if E is a field, GL(n,E) is the group of all nonsingular n X n matrices

over E.

1.3 Counter-example of groups

1.3.1 (N,+)
is not a group because :
i) Foralla,b,c e N:
@+b)+c=a+{b+o).

So + is associative.

ii) Foralla € IN :
a+0=0+a=a.

0 is indentity element of IN .
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iii) Foralla € IN :
Aa'eN:a+a'=0.

So there is no inverse .

1.3.2 (Z,X)
is not a group because :
i) Foralla,b,ce Z:
(@axb)yxc=ax(bxc).

So X is associative.

ii) ForallaeZ:
ax1l=1Xxa=a.

0 is indentity element of Z.

iii) Forallae Z:

So there is no inverse.

1.4 Subgroups

Definition 1.4.1 Let G be a group and let H be a subset of G, we say that H is a subgroup of
G (G and H nonempty ) if :

i) (H,.) is closed under the groupe operation of G, ie : Ya,b € Ha.b € H

10



Fundamental concepts of group theory

ii) Inverses : ifa € H, thena™! € H.

We shal write :

Remark 1.4.1 If H < G and H # G, we say H is subgroup propre of G. We shall write :

H < G.

1.4.1 Examples of subgroups

1) R, Qand Z are subgroups of C.

2) G=(Z,+)and H = ((nZ), +).
So H is a subgroup of G.

1.4.2 Left and right cosets

Definition 1.4.2 If H is subgroup of a group G, then for an element x € G, the left coset of H
in G is subset defined by :

xH = {xh/h € H}.
in a precisely similar way the right coset :
Hx = {hx/h € H}.

is called right coset H in G.

Definition 1.4.3 The order of a group G is the cardinality of that group or the order of a group

G is the number of its elements.

11



Fundamental concepts of group theory

Notation 1.4.1 The order of a group G is denoted by : |Gl|.

Definition 1.4.4 The index of a subgroup H in a group G is the number of right and left cosets
xH and Hx (resp). We denote it :

|G : H|

1.4.3 Normal subgroup

Definition 1.4.5 Let G be a group and H be a subgroup of G. A subgroup H is said to be normal
subgroup if for every a € G and h € H; We have aha™' € H
H is normal subgroup of G is denoted by : H < G.

Proposition 1.4.1 A subgroup of index 2 is a normal subgroup.

Proof. Let G be a group H < G an index = 2 then :
[G:H]|=2= |xH|=|Hx| =2

Hx ={H,x} ={H, Hx} =G

xH={H,x} ={H, xH} =G

Hx =xH

H<G =

1.5 Isomorphisms

1.5.1 Homomorphisms

Definition 1.5.1 Let G and G’ two groups. A function ¢ : G — G is a homomorphisms if :

P, y) = p(x).0(y).

12



Fundamental concepts of group theory

Forall x,y € G.
The set of all homomorphisms from G to G is denoted by : Hom (G, G).

Remark 1.5.1

1) Hom (G, G) is always nonempty, it has at least the 0 homomorphisms :

0:G—G

x — eH
2) A homomorphisms ¢ : G — G is called an endomorphism of G . The identity function
1: G — G s clearly an endomorphism.
1.5.2 Kernel of homomorphisms

The kernel ker ¢ of a homomorphism ¢ : G — G’ is subsets defined as follows :

kerp = {x € G, p(x) =1¢}.

1.5.3 Examples of Homomorphisms

i) ¢ : GL(n,F) — F* where p(A) = det A and F* = F \ {0}. Here F is a field.

i) ¢: R — R* (R, +), (R, )
x — eX

PX+Y)=pX) X p(Y) & XY =X xe.

Proposition 1.5.1

1) @ : G — G homomorphisms, so p(x") = (p(x))", for all x € G.

13



Fundamental concepts of group theory

2) p(x™Y = (px))™, forallx € G.

3) Im(p) <G, kerp < G.

Proposition 1.5.2 Let ¢ : G — G be a homomorphisms , monomorphisms , epimorphisms ,

and isomorphisms :

@ is homomorphisms

1. @ is an monomorphisms <= 3 and
@ injective
@ is homomorphisms
2. @ is an epimorphisms < < and
@ surjective
@ is homomorphisms

3. @ is an isomorphisms < { and

@ bijective
Remark 1.5.2 Let ¢ € Hom(G,G') :
i) @ is monomorphism < ker ¢ =15 .

ii) @ is epimorphism & Im ¢ = G’ .

iii) @ is isomorphism <= ker ¢ = 1lgand Im ¢ = G'.

Definition 1.5.2 If N is a normal subgroup of a group G (N <1 G); % is the quotient group of
N in G, is the set of all cosete of N in G equipped with the group operation :

(Nx).(Ny)=N(x.y).

1.5.4 Isomorphisme theorems

[12]

14



Fundamental concepts of group theory

1) First isomorphism theorem

i) If ¢ : G — G’ is a homomorphisme of groups, the mapping :

is an isomorphism, that is :

G ~
kergp

Imi.

ii) If G is a groups and N < G, the mapping s : G — % is an epimorphism

frome G to % with kernel N

this s is called natural or canonical homomorphisme.

2) Second isomorphism theorem

Let Gbeagroupsand H<G,H < G,then NNH < H and :
H

" NnH N

is an isomorphisms

that is:

H NH

[ —

NNH N

3) Third isomorphism theorem

Let Gbeagroup, N<Gand M < GandletN <M. Then% < %andwehave:

15



Fundamental concepts of group theory

1R

Z|Z|zIo
2o

1.6 Group actions and permutations

1.6.1 Left group action
We say that a group G oparates on the set X on the left if there exists a function :

f:GxX—X

(a,x) — ax
Such that :
i) fassociativ:Va,be G, Vxe X
a(bx) = (ab)x.
ii) fhav an indentity element : Vx € X
1x =x.

f is called left action.

1.6.2 Right group action
We say that a group G oparates on the set X on the right if there exists a function :

f:XxG—X

(x,a) — xa

16



Fundamental concepts of group theory

Such that :
i) fassociativ: Va,b € G,Vx € X
(xa)b = x(ab).
ii) f hav an indentity element : Yx € X
x1 =x.

fis called right action.

1.6.3 Permutation groups

Definition 1.6.1 If X a nonempty set, a subgroup G of the symmetric group Sym X is called a
permutation group on X.

The degree of the permutation group is the cardinality of X, if the group G operates on X the
relation is defined by :

XRcY & (thereexists a € Gsuch that: y =a.x ).

is an equivalence relation, that is :

i) x*Rcx = x =ex
i) xXRoy = y=ax = a'ly=al(ax) =ex =x = yRex

iii) xRgyand xRez = y=axandz =b.y = z = b.ax = (ba)x = xRgz

The equivalence class of x € X for R¢ is :

Gy ={ax/a € G}

17



Fundamental concepts of group theory

1.6.4 Orbits

Definition 1.6.2 Let G be a group operates on a set X. For each x € G :

Orbg(x) = {ax/a € G

the orbit of x under the action of G.

1.6.5 Stabilizer

Definition 1.6.3 Let G be a group operates on a set X. For eacha € X :

Stg(x) = {a € G/ax = «x}.

The stabilizer of x € G.

Remark 1.6.1 The stabilizer St, of x € X is a subgroup of G.

18



CHAPTER 2

SOLUBLE AND NILPOTENT GROUPS

In chapter 2, notions needed for our study, namely; soluble and niplotent groups, Con-
jugacy classes and centralizers and Groups with finite conjugacy classes which has a role in

studies of group theory will be discussed [12].

2.1 Soluble groups

2.1.1 Composition series

Definition 2.1.1 Let G be a group, a composition series for G of length n is a chain of subgroups
Hi N

G:H1>H2>...>Hi:€.
Such that : H; <H;_1,¥Yi=1,...,n.

Definition 2.1.2 Let ¥ and ¥ be two compositions series of G:

19



Soluble and nilpotent groups

1) We say that ¥ is a refinement of ¥, if p > n and if the chain ¥ is extracted from ¥’ i.e:

If there exists n positive integer:
Jo<pn<- <, <p.

Such that, for all i (0 < i < n) G; = Kj; we can then write : ¥ C ¥
If there exists an integer j € {0,1,----- ,p} such that : K; # G;, Vi (0 < i < n), we say
that ¥ is a proper refinement of ¥ in this case, we necessarily have p > n and we will

write: ™ c X,

2) We say that the compositions series . and ¥." are equivalent if n = p and if there exists a

permutation o of the integers 0,1,2,--------- ,n—1,such that forall i (0 <i<n-1):
G; N Koy
Gi+1 Ka(i)+1 .

We will express the equivalence of the two chain of composition by the notation: ¥ ~ ¥/

Remark 2.1.1 Any chain extracted from a composition series is not in general a composition

series in fact the normality condition does not still hold.

Definition 2.1.3 A group is said to be simple if it does not admit any normal subgroup other
than itself and the identity element.

2.1.2 Jordan Holder theorem

Definition 2.1.4 A composition series of a group G will be called a Jordan-Hoder chain if all
the quotients of the chain are simple groups.

This name will be justified by the Jordan-Hoder theorem.
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Proposition 2.1.1 A composition series of G is a chain of Jordan-Hoder iff it is strictly decreas-

ing and does not admit any proper refinement.

Proof. Let L. : G=Gy2G12---2G2Giy1 =22 G, = (e)

c simple & Gjy1 # G; and Giyq normal and maximal in G; & Vi € 0,n—1,7A the
i+1

subgroup H such that:

Gi >H > Gi—l and H < Gi.

Remark 2.1.2

1) Any simple group G admits a unique chain of strictly decreasing composition, which is a

chain of Jordan-Hoder:

G=G0>G1:(€).

2) Any chain of strictly decreasing composition of G admits a refinement which is a chain of

Jordan-Hdoder.

3) Any two Jordan-Hoder chain of G are equivalent.

2.1.3 Derived subgroup
Definition 2.1.5 Let G be a group, the commutator of two elements x,y € G is defined by :
[x, y] = x Ty xy.

Remark 2.1.3 G is abelian group if only if every commutator equals to 1.
Infact :

-1,,-1 -1,,-1

[x, y] =x"'y 'xy =1 & yxx"y ' xy = yx & xy=yx.
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Definition 2.1.6 Let G be a group, we call a derived subgroup of G the subgroup generated by
all commutators in G.
We denote : G" or GV,

S0 :
GO =<[x,y;x,yeG>
Theorem 2.1.4 Let G be a group; we have :

1) G «G.

2) N<G,so % is ablelian group if only if G’ C N ;
Proof. :

1) Letx,y,z€G:

we have :
z7x, ylz = z7 'ty tzxy
Then :
[z7xz,z7lyz] = 27 2z ty 2z tzz lyz = 27 iy ez
hence :

zx, ylz = [z7xz, 27 yz]
So G”is normal in G (G’ < G).

2) Letx,y e Gand %, € %:
= abelian & xij = ijx
N y=yx
ST T =N
& (yx) 'xyeN
exlylxyeN

& [x,y] € N hence % abelian & G” C N.
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Definition 2.1.7 A group G is said to be soluble if there exists an integer n > 0, such that :
G™ = (e).

Remark 2.1.5 If G # (e) is a soluble group, and if n is the smallest positive integer such that
G™ = (e),s0¥i(0 <i<n—1), wehave: Gi*D < GO,
and by theorem (2.1.4) GV < G9, we have :

G=G9>GW>...>GM = (e).
is a composition series of G.
Theorem 2.1.6 If G is a soluble group, so every subgroup of G and every quotient of G is soluble.

Proof. Suppose that : An € N, such that G™ = (e).
*+ Let H be a subgroup of G.

H<G=H <G
H <G = H® < G®?

Then we obtain H™ < G™ = (e), hence H™ = (e) is soluble.

N
+*Let N< G, andlet m: G — cm canonical epimorphisms such that n(x) = X, Vx € G.
N
as all commutator of c is an image by 1t of a commutator in G.
Obvirously that (%) = n(G’).

@
Like wise, on has (%) = 11(G?) and step by step we obtain :

(%)w = n(G)) = @).

hence % is soluble. m

Definition 2.1.8 G is said to be soluble iff G admits an abelian series (ie all quotients are

abelian).
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2.2 Nilpotent groups

2.2.1 Central series
Definition 2.2.1 The center of a group G, is denoted by Z(G) such that :
Z(G) ={a e G/a.b =b.a,V¥b € G}.
Definition 2.2.2 For a group G, a composition series :
:G=G12Gy2...>Gy1 2 Gy = (o).
is a central series, if it is a normal series and :

G; G
— < Z( )
Gi+1

forall 0 <i<n-1)
Proposition 2.2.1 The series ¥ is cental iff Vi € 0,1:[G;,G] < Gina

Proof.

e =) Suppose L is central = Giq < G and Ci < Z( G )
Gz'+1 Gz'+1

i

Letx€ G, geG=>x¢€ - and jj € - while & [%, 7] = Gi1
hence : [G;, G] £ Giyq. " "
® &) suppose :
[Gi,G] £ Gina (2.1)

Let x € Giq and g € G, we have :

G <G =>x€eG;

moreover; according to (2.1) = [x,g] = x"'g7'xg € Gi11 = g7'xg € Gin
hence Giz.1 < G

And hence [x,g] € Giy1 & [X, ] = Giy1 & X7 = gX

G; G
hence —— < Z( ) m
Gz'+1 Gi+1
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2.2.2 Nilpotence

Definition 2.2.3 A group G is nilpotent if G have a central series.
Proposition 2.2.2 Every nilpotent group is soluble.
Proof. If G is nilpotent group = G have a central series is normal series in all quotients are :

G; G
L < Z( )
Gis Gis

While all quotients abelien hence G is soluble. m

2.2.3 Descending central series
G being a group, let :
71(G) = G, »2(G) =[G, Gl = G, y3(G) = [12(G), Gl
In general :
7e1(G) = [14(G), Gl Vk € N™.

By recurrence on k, we prove that :

Vies1(G) < i(G), Yk € N*

Fork =1, we have = y,(G) = [G,G] = G’ = G’ <G, for k > 1 we have y.1(G) is engender

the elements of the form [x,yl;(such that : y € y(G), x € G)

It is enough to show :

z7x, y)z € Yk (G), forz € G
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Then :
z7x, ylz = [z7'yz, 27 xz] € Yi11(G)
Hence : yx(G) < G, for k1

Moreover the series (Vi(G))i=1 is descending for inclusion, infact for x € G, y € yx(G) we have :
[x,y] =y (xTyx) € yx(G),

hence yi(G) < yx+1(G) Yk € N*
Thus, for all group G, we define the descending chain of subgroups :

G=7Y12722 ... 2Vk2 Vi1 2 ... (2.2)

Definition 2.2.4 A group G has a descending central serie of length n (n > 1 in IN), if the

descending chain (2.2) is written :
G=y1>y2>...>Vu> Vus1 >= (e). (2.3)

In this case, the group G is nilpotent.

Definition 2.2.5 Let G be a group H < G, H is said to be characteristic if : Yf € Aut(G) :
f(H) = H and we denoted H C G.
(f € Aut(G)ie : f : G — G isomorphism).

2.24 Ascending central series

G being a group, let Zy = (e) , Z1 = (G).

We know that Z, is characteristic in G, hence the unique subgroup Z, of G, containing Z,, such
Z, G\ . e

that — =7 (—), is characteristic in G.

Z4 Z4
Step by step, we define for all i € N, the subgroup Z;., such that:
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And Z;,1 is characteristic in G.

Thus we determine an ascending chain of subgroups of G :

) =Zo<Z1 < <Z;i<Zij1 <+

In which, for all i € N, we have Z; T G, so Z; < G and Z;,; is the largest subgroup of G

containing Z, such that:

[Zis1,G] < Z;.

If there is an integer s > 0 such that Z; = G the series is written:

(6):Zo<21<"'<zs—1<ZSZG-

and from above, the chain is a central sequence of G.
Moreover, if G # (e) and if s is the smallest positive integer such that Z; = G, then for all

(0 <i<s—1)wehave Z; < Z;yy, infact Z; = Z;, implies Z; = Z; whatever j > i.

Definition 2.2.6 A group G is said to have an ascending central series of length s (s > 1), if

the ascending chain is written:

(€)=Zg<zl<"'<ZS_1<Zs=G.

Then the group G is nilpotent.

Remark 2.2.1 The group G = (e) will be considered as having a descending (respectively,

ascending) central series of length 0.
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2.3 Conjugacy classes and centralizers

2.3.1 Conjugacy classes

Definition 2.3.1 Let G be a group, two elements x and h in G are conjugate when :
h=gxg.

Forallge G
If X is a nonempty set and g is an element of group G, the conjugacy class of X by G, denoted
XY is the set :

X7 =gXg ' ={gxg7!,x € X}.
Lemma 2.3.1 Conjugacy is an equivalence relation.

Proof.

i) Reflexive:Let h € G, h = ehe™!, forall e € G.
ii) Symetrice:
Suppose Ax € Gsuchthat : h=gxg ' = gh=xg'=ghg=xg7'g=>ghg=x
Sox=gthg;V¥g,heqG.
iii) Transitive:
Suppose Ax,y € G such that : h = gxg~t and x = lyl"'; Vh,l,y,x € G
h=gxg'=h=glyllg™ = h = gly(gl)™

Remark 2.3.1 If H is a subgroup of G, all conjugacy classes of H; H = xHx™ is a subgroup of
G.
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2.3.2 Centralizers
The centralizer of x in G, for all x € G :
Ce(x) ={g € G, gx = xg}.

Hence |G : Cg(x)| = the cardinlety of the conjgacy class of x. Also {x} is a conjugcy class if and
only if x belongs in the center of G.

2.3.3 Normalizers

Ng(x) = {g € G, gxg™* = x}.
Is the normalizers of x in G.
Theorem 2.3.2 Let H be a subgroup of group G, we have :

H<G & Ne(H) =G.

Proposition 2.3.1 Let G be a group :

1) For all subgroup H of G, we have H <t Ng(H).

2) If H and K are two subgroup of G and hence H < K, then :
H <K = K < Ng(H).

3) K < No(H) = HK < G and H < HK.

Proof.
1) We remark that the definition of Ng(H) implies H C Ng(H), then :

xe€Ng(H) = xHx'=H
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hence H <t Ng(H).

2) IfH<k<G,then:
Hir> K= kHk™' =H, Vk e K.

hence k < Ng(H).

3) We have k < Ng(H), consider h € H and k € K, we have k € Ng(H) and hence
k™' € Nc(H), then k"'*Hk = H, we deduce that there exists i’ € H such that k"'Hk = I/,
hence hk = kh’, which implies HK € KH.

In a smilar way, we show that HK C KH, so Hk is subgroup of G
H € Ng(H) and K € Ng(H) implies HK € Ng(H), Then by 1) H is normal in Ng(H),
which is a subgroup of HK, is normal in HK.

Notation 2.3.1 For all H < G, N¢(H) is the largest subgroup of G in which H is normal.

2.4 Groups with finite conjugacy classes

Definition 2.4.1 A torsion group or a periodic group is a group in which every element has a
finite order. The exponent of such a group, if there exists is the least common multiple of the

orders of the elements. The exponent exists for any finite group and it divides the order of the

group.

Remark 2.4.1 A torsion-free group is a group whose the only element of finite order is the
identity.
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24.1 FC-element

Definition 2.4.2 An element g of a group G is called an FC-element if it has only a finite
number of conjugates in G, that is to say if |G: Cg(g)| is finite. It is a basic fact that the

FC-element always form a subgroup.
Proposition 2.4.1 In any group G the FC-elements form a characteristic subgroup.

Proof. Let g and h be FC-elements of G.

Then Cs(g) and Cg(h) have finite index, which implies that Cc(g) ~ Cg(h) has finite index. But
obviously Co(gh™) > Cs(g) ~ Cg(h), so Co(gh™) has finite index and (gh™") is an FC-element.
Thus the FC-elements form a subgroup. If B € AutG, then Cs(gf) = Cc(g)F, from which it
follows that C(g)P has finite index. Hence g is an FC-element. m

24.2 FC-group

Definition 2.4.3 A group G is called an FC-group if it equals its FC-center, that is every
conjugacy class of G is finite.

In particular all abelian groups and all finite groups are FC-groups.

Proposition 2.4.2

1) In any group G a finite normal subset consisting of element of finite order generates a

finite normal subgroup.
2) A torsion group G is an FC-group if and only if each finite subset is contained in a finite

normal subgroup.

Proof.

1) Let X = {xq,x2,- -+, x,} be the normal subset and let H = (X). Obviously H is normal in

G: we have to prove that it is finite.
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2)

If1+heH,thenh=x) ---x, wherel < a; < n. In general there will be many such
expressions for h, among them some of shortest length, say r.

Furthermore among these expressions of shortest length there is one which appears first in
the lexicographic ordering of r-tuples: this is the ordering in which (ay, ..., a,) precedes
(@, ..., o) ifa; = o fori < sand as < a for some s < r. Denote this first expression by
h =11y, y, where y; = x,, .

Suppose that a; = aj where i < j. Moving y; to the left we obtain

=i Y)Y Y Y Y

an expression of length less than r. Consequently the a; are all different.

Now assume that «; > a4 then

b=y YirYiny;  Yia o Yr

But this expression of length r precedes y1Y» - - - , in the ordering of r-tuples.

Hence oy < @y < -+ < a,. It follows that there are at most []}_,|x;| possibilities for h.

Let G be an FC-group and let F be a finite subset of G. The set of conjugates of elements
of F in G is a finite normal subset. By proposition (2.4.2) it generates a finite normal
subgroup. Conversely, if G has the property in question and x € G, then x € F < G for
some finite F. All conjugates of x belong to F, so there are only finitely many of them.
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CHAPTER 3

THE CLASS OF MINIMAX GROUPS IS
COUNTABLY RECOGNIZABLE

Countably recognizable classes of groups were introduced by Baer [1]. Baer produced
many interesting examples of countably recognizable group classes, and later many other
discovered countably recognizable group classes see for instance [3, 9, 10, 13, 4, 5] . On the
other hand, certain important group classes are not countably recognizable; for example the

class of free groups (see [8]) and of the class of groups which are embeddable into direct products
of finite groups [4].

3.1 Free groups

Definition 3.1.1 Let F be a group, X a nonempty set, and o : X — F a function. Then F,
or more exactly (F,0), is said to be free on X if to each function o from X to a group G there

corresponds a unique homomorphism p : F — G such that a = foo.
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A group which is free on some set is called a free group.

The function o : X — F is necessarily injective. For suppose that o(x1) = o(x2) and x1 # xy:
let G be a group with at least two distinct elements g, and g, and choose a functiona : X = G
such that a(x1) = g1 and a(xy) = g. Then p(0(x1)) = P(o(x2)), whence a(x1) = a(x,) and
g1 = g2, a contradiction. Clearly F is also free on Imo, the inclusion map Im o — F taking the
place of 0. Hence a free group is always free on a subset: in this case the commutativity of the
diagram says that the restriction of p to X is a, so that p is the unique extension of « to F.
Another consequence of the definition is that Im o generates F. Since this will follow from our

construction of free groups, we need not prove it now [12].

3.1.1 Constructing free groups

Proposition 3.1.1 If X is a nonempty set, there exists a group F and a function o : X — F

such that (F,0) is freeon X and F = <Im o >.

Proof. Choose a set disjoint from X with the same cardinality: for notational reasons we shall
denote this by X! = {x7'|x € X} where of course X! is merely a symbol. By a word in X is

meant a finite sequence of symbols from X U X~1 , written for convenience in the form :

xi € X, ei=1ore =-1,r>0:in case r = 0 the sequence is empty and w is the empty word,
which will be written 1. Of course two words are to be considered equal if and only if they have

the same elements in corresponding positions. m

Remark 3.1.1 The product of two words w = x{'---x,” and v = y;'---y;° is formed by

juxtaposition: thus

— €1 Er 4 ,M Ns
wv_xl ...xr’yl ys

_Sr--
1

—&1

with the convention that wl = w = Tw. The inverse of w is the word w™ = x -x, ' and

171=1.
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3.1.2 Reduced words

Definition 3.1.2 Let us examine the construction just described with a view to obtaining a
convenient description of the elements of the free group F.

A word w in X is called reduced if it contains no pair of consecutive symbols of the form xx™!
or x~'x, (x € X). By convention the empty word is reduced. If w is an arbitrary word, we can
delete from w all consecutive pairs xx™ or x 1x to obtain an equivalent word. By repeating this
procedure a finite number of times we shall eventually reach a reduced word which is equivalent

to w. Thus each equivalence class of words contains a reduced word. The important point to

establish is that there is just one reduced word in a class.

3.1.3 Rank of groups

Definition 3.1.3 The rank of a group G, denoted rank(G) can refer to the smallest cardinality
of a generating set for G, that is:

rank(G) = min{|X| : X C G,(X) = G}

If G is a finitely generated group, then the rank of G is a non negative integer.
The rank of a group is also often defined in such a way as to ensure subgroups have rank less

than or equal to the whole group.

3.1.4 Example rank of groups

e For a non trivial group G, we have rank(G) = 1 if and only if G is a cyclic group.
The trivial group 1 has rank(1) = 0, since the minimal generating set of 1 is the

empty set.
o If X isaset and G = F(X) is the free group with free basis X then:
rank(G) = |X|.
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o Ifa group H is a homomorphic image of a group G then:
rank(H) < rank(G)

e For a free abelian group Z" we have rank(Z" = n).

3.2 The class of minimax groups is countably recogniz-

able

In his paper Francesco de Giovanni and Marco Trombetti proved that the class of minimax

groups is countably recognizable.

Definition 3.2.1 A group class X is said to be countably recognizable if, whenever all countable

subgroups of a group G belong to X, then G itself is an X-group.

Definition 3.2.2 If X is a class of groups, a group G is said to be minimal non-X if it is not an

X -group or an X-critical (G ¢ X) but all its proper subgroups belong to X.

3.2.1 Minimal and maximal condition

Definition 3.2.3 Recall that a group G satisfies the minimal condition on subgroups if there are
no infinite descending chains of subgroups, and G satisfies the maximal condition on subgroups
if it admits no infinite ascending chains of subgroups. It is almost obvious that both the class
of groups satisfying the minimal condition and that of groups satisfying the maximal condition

on subgroups are countably recognizable [6].

Definition 3.2.4 A group G is said to satisfy the weak minimal condition on subgroups if it

has no infinite descending chains of subgroups [6] :

Xi>Xp>-->X, >
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such that the index |X,, : X,+1| is infinite for all n. The weak maximal condition on subgroups

is defined replacing descending chains by ascending chains.

3.2.2 Minimax groups

Definition 3.2.5 A group G is called minimax if it has a series of finite length :
{1}1=Gy<G1 <--- <G, =G

each of whose factors satisfies either the minimal or the maximal condition on subgroups. The
structure of soluble minimax groups has been described by Robinson (see [11] Part 2, Chapter

10).
Remark 3.2.1

1) The class of soluble groups of finite rank is countably recognizable, and all soluble groups
of finite rank are countable, it follows that any group whose countable subgroups are

soluble and minimax is countable, and so also minimax.

2) The class of soluble minimax groups is countably recognizable. However, the situation is

much more complicated in the insoluble case.

3) It was independently proved by Baer [2] and Zaicev [14] that for soluble groups the weak
minimal condition, the weak maximal condition and the property of being minimax are
equivalent. It turns out that also the class of groups satisfying the weak minimal condi-
tion and that of group satisfying the weak maximal condition on subgroups are countably
recognizable.

Most of our notation can be found in [11].

Corollary 3.2.1 It is clear that minimal non-X groups are countable for every countably recog-
nizable group class X. Thus it follows from the above theorem that any minimal non-minimax

group is countable [11].
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Theorem 3.2.2 The class of minimax groups is countably recognizable.

Lemma 3.2.1 Let G be a group, and let X be a subgroup of G.

(a) If Y is a countable subgroup of G and Y < XO*, for some positive integer k, then there
exists a countable subgroup U of G such that Y < XUk

(b) If X # XOF for some positive integer k, then there exists a countable subgroup U of G
such that X # XUk,

Recall that if X is a class of groups, the residual of a group G with respect to X is the intersection
of all normal subgroups N of G such that % belongs to X [6].

Lemma 3.2.2 Let G be a o-minimax group for some ¢ = (01, ...,0y,), Wheren > 2 and o1 = V.
Then G contains a normal subgroup N satisfying the minimal condition and such that the factor

group % is (02, ...,0,)-minimax [6].
Proof. Let :
1}1=Gy<G <---<G, =G.

be a g-series of G. As the statement is obvious if n = 2, we may suppose n > 3. It can be assumed

by induction on n that G, has a normal subgroup K with the minimal condition and such

Gn—l
that
"X

L . Gp1 . iy
respect to the class of o’-minimax groups, it follows that also the group % is o’-minimax.

is o’-minimax, where ¢’ = (0, ...,0,-1) . As K contains the residual R of G,_; with

Clearly, R is a normal subgroup of G and % is a (0a,...,0,)-minimax group, and so the proof
is complete.

Next lemma is the crucial point in the proof of our theorem. m

Lemma 3.2.3 Let G be a group whose countable subgroups are o-minimax for a fixed minimax

type 0 = (01, ...,0y). Then G is minimax [6].
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Proof. Assume for a contradiction that the statement is false, and choose a counterex-
ample for which the minimax type o has shortest length n. Then n > 1, because the
class of groups with the minimal condition and that of groups satisfying the maximal
condition are countably recognizable.

Put ¢’ = (02, ,04), and suppose first 1 = V. Let C be the set of all countable
subgroups of G, and for each element X of C denote by X the residual of X with

respect to class of o’-minimax groups. Write

%:Um

XeC

If X and Y are arbitrary elements of C, we have
(Xo, Yo) < (X, Y)o

and hence Gy is a subgroup of G, which is obviously normal. Let H be any countable
subgroup of Gy, and for each element h of H choose a countable subgroup X(h) of
G such that h belongs to X(h)o. Then

K =(X(h)|heH)
is a countable subgroup of G and

Moreover, since K is o-minimax, it follows from Lemma (3.2.2) that K, satisfies the mini-
mal condition on subgroups, and hence also H has the minimal condition. Therefore Gy
satisfies the minimal condition on subgroups. Let V|G, be any countable subgroup

of Go, and let W be a countable subgroup of G such that V.= GoW. ThenV/Gy is a
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homomorphic image of W/ Wy, and so it is o’-minimax group by Lemma (3.2.2) It fol-
lows now from the minimal assumption on n that the factor group G/Gy is minimax,
so that G itself is minimax, and this contradiction shows that o, = A.

Let K be any countable subgroup of G, and let £(K) be the set of all o-subgroups

of K. Clearly, ¢(K) is countable, because all its elements are finitely generated. For
each element E ofe(K), we will define a suitable countable subgroup U, (E) of G
containing K.

If E is not subnormal in G of defect at most n — 1, it follows from part (b) of Lemma (3.2.1)
that there exists a countable subgroup V of G containing K such that EV"~! £ E,

and in this case we put U;(E) = V. Suppose now that E is subnormal in G of defect
at most n — 1, so that ES"1 # E. As the group G is not minimax, there is a
non-negative integer i < n — 1 such that E>' |ES™*! is not minimax, and so the
minimal assumption on n yields that ES* contains a countable subgroup X such that
XECHLECHY s not o’-minimax. In this situation, part (a) of Lemma (3.2.1) can be
applied to obtain a countable subgroup W containing K such that X lies in E"'. Note
that the group EV*/EV*1 s not o’-minimax, because it admits a section isomorphic
to XEG1 JECHL, In this second case, we put Uy(E) = W.

As the subgroup
Uy = (UL(E)IE € &(K))

is clearly countable, the above argument can be iterated to construt an ascending

sequence (U,)uen of countable subgroups of G. Then

U, = U u,
neN

is a countable subgroup of G, so that it is o-minimax and we may consider an element
E in the set e(Us). In particular, E, is a finitely generated subgroup of U,

and hence it is contained in U,, for some positive integer m. Moreover, E, is subnormal
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in Uy of defect < n —1, and so it follows from the definition of U, that Es

must be even subnormal in G of defect at most n — 1. Therefore the group

EOLCI)erl (Eoo )/i/Eg)nwl (Eoo)ri+1

is not o’-minimax for some i, which is impossible because E, belongs to the set

e(Uy+1(Ew)). This last contradiction completes the proof of the lemma. m

Proof. (proof of theorem 3.2.2) Denote by V and A the minimal and the maximal condition on
subgroups, respectively, and for a positive integer n let 0 = (02, ..., 0,) be any n-tuple whose
entries belong to the set {V, A}. We shall say that a group G is minimax of type o (or o-minimax)

if it has a o-series, i.e. a finite series :
1}=Gy <G <---2G, =G

of length n such that the factor group C?l__l satisfies the condition o; for each positive integer
i <n. Clearly, o-minimax groups are minimax and every minimax group is o-minimax for
some o, but for a minimax group the minimax type is not uniquely determined. Note also that
any abelian minimax group is (A, V)-minimax.We point out finally that the class of o-minimax
groups is closed with respect to subgroups and homomorphic images, and that if H and K are

normal subgroups of a group G such that both % and % are o-minimax, then also the factor

G | .
group - is o-minimax.
Let G be a minimax group of type o = (01,...,0,) . A subnormal subgroup X of G is called a

o-subgroup if it satisfies 01 and there exists a series :
X=X;<---£X,=G

X; o .
such that o satisfies o; for each i =2, . . ., n. Of course, a normal subgroup N of a group
i-1

G is a o-subgroup if and only if it satisfies 01 and the factor group % is o’-minimax, where
o' =(0g,-+,00).

Let G be a group, and let X be a subgroup of G. Recall that the series of normal closures { X"} e,
of X in G is defined by putting X°° = G and
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XG,n+l — XXG'"

for each non-negative integer n. In particular, X < X" for all n, and X' = XC, the normal
closure of X in G. Note that X is subnormal in G of defect at most k if and only if X°* = X. The
following result has been proved in [5].

Let G be a group whose countable subgroups are minimax, and assume for a contradiction that
G is not minimax. Then it follows from Lemma (3.2.3) that for each minimax type o there exists
a countable subgroup G, of G which is not o-minimax. As the set L of all minimax types is

obviously countable, the subgroup
G =(Golo € )

is countable and it cannot be minimax. This contradiction proves the theorem. m
The last result of the paper shows that also the weak minimal and the weak maximal conditions

can be detected from the behaviour of countable subgroups.

Proposition 3.2.1 The class of groups satisfying the weak minimal condition and that of groups

satisfying the weak maximal condition are countably recognizable.

Proof. Let G be a group whose countable subgroups satisfy the weak minimal contradiction,

and assume for a contradiction that G admits an infinite descending chain of subgroups
Xi>Xp>-->X, >

such that the index |X,, : X,.1| is infinite for all positive integers n. Then for each n we can
choose a countably infinite subset U, of X, such that uX,.1 # vX,+1 whenever u and v are

elements of U, and u # v. Then :
U = (U,ln € IN)
is a countable subgroup of G and U, lies in U N X, for all n. It follows that :

UOX1>UOX2>--->UOXH>...

42



The class of minimax groups is countably recognizable

is an infinite descending chain of subgroups of U and the index |UNX,, : UN X,,11| is infinite for
each n. This contradiction shows that the class of groups satisfying the weak minimal condition
is countably recognizable. A similar argument proves that also the class of groups satisfying

the weak maximal condition is countably recognizable. m
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CONCLUSION

In this work we are interested in the class of minimax groups and we have seen that this
class is countably recognizable and also we have seen that the class of groups satisfying the weak
maximal and minimal conditions are countably recognizable this property is very important as

it helps us to deduce properties of classes of groups by showing theme in countable subgroups of

the group with out going to the whole group.
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