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ABSTRACT

This work aims to study some groups that can be identified countably recogniz-

able.

We begin with mentioning some of the basic and preliminary concepts used in this

work.

In the first chapter, we studied the basic concepts of group theory: groups, subgroups,

isomorphisms, group actions and permutations.

In the second chapter, we found many properties of infinite groups. The aim of

this chapter is to discuss the main types of generalized nilpotent and soluble groups,

conjugacy classes and groups with finite conjugacy classes.

In the third chapter we studied the class of minimax groups in particular. We studied

the paper of F.de Giovanni and M.Trombetti who shows that the classes of minimax

groups is countably recognizable and they proved also that the properties of weak

maximal and minimal conditions are countably recognizable.

Keywords : Groups, conjugacy classes, countably recognizable class, minimax group,

maximal condition, minimal condition.
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RÉSUMÉ

Ce travail vise à étudier quelques groupes qui peuvent être reconnaissable de

façon dénombrable.

Nous commençons par mentionner quelques concepts de base et préliminaires utilisés

dans ce travail.

Dans le premier chapitre nous avons étudié les concepts de base de la théorie des

groupes: les groupes, sous-groupes, isomorphismes, actions de groupe et permuta-

tions.

Dans le deuxième chapitre nous avons trouvé de nombreuses propriétés des groupes

infinis. le but de ce chapitre est de discuter des principaux types de groupes nilpotents

et résolubles généralisés, des classes de conjugaison, et des groupes à classes de conju-

gaison finies.

Dans le troisième chapitre, nous avons étudié la classe des groupes minimax est recon-

naissable de façon dénombrable.

Mote clés : Groupes, classes de conjugaison, classe reconnissable de façon dénom-

brable, groupe minimax, condition maximale, condition minimale.
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 ممخص    

 
                                                       .يمكن عدهاالتي  الزمر يهدف هذا العمل إلى دراسة بعض

.العمل هذا في المستخدمة والأولية الأساسية المفاهيم بعض بذكر نبدأ  

.والتبديلات أفعال الزمر التماثل، الزمر الفرعية، الزمر،: لنظرية الزمر الأساسية المفاهيم الأول الفصل في درسنا  

 هو التذكير بالانواع الفصل هذا من  الهدف.اللانهائية خصائص الزمر من وضعنا العديد الثاني الفصل في 
.المحدودة الاقتران ذات زمر والزمر زمر الاقتران لمحمحمة، ذات قوة عادمة والقابمة المعممة لزمر الرئيسية  

 فرانشيسكو مقال درسنا الخصوص وجه عمى الأقصى و الأدنى الحد الزمرة ذات تصنيف درسنا الثالث الفصل في
 قاما أيضا و عميها عدها يمكن والأقصى الأذى الحد ذات أن الزمرة بتبيين قاما بحيث تروميتي وماركو جيرفاني دي

.عدها يمكن الضعيفة والدنيا القصوى الشروط أن برهان  

 الحد الزمر ذات الأقصى، الحد الزمر ذات عدها، يمكن طبقات الاقتران، طبقات الزمر،: المفتاحية الكممات
. الأدنى  
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NOTATIONS

GL(W) group of nonsingular linear transformations of a vector space W.

GL(n,E) general linear groups.

Sn symmetric group of degree n.

Z, Q, R, C sets of integers, rational numbers, real numbers, complex numbers.

G, H, . . . group, subgroup.

H 6 G, H < G H is a subgroup, a proper subgroup of the group G.

xH, Hx the left and right coset H in G respectively.

|G| the order of group G.

|G : H| the index of a subgroup H in a group G.

H C G H is normal subgroup of G.

Hom(G,G’) the sete of all homomorphisms frome G to G’.
G
H

the quotient of G over N.

H ' G H is isomorphic with G.

CG(x), NG(x) the centralizers, normalizers of x in G.

OrbG(x) the orbit of x in G.

StG(x) the stabilizer of x in G.

[x, y] the commutator of x and y.

G’, G(1) the derived subgroup of G.
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Notations

Z(G) the center of a group G.

X a classe of groups.

rank(G) the rank of G.

α, β, f, . . . functions.
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INTRODUCTION

Group theory is a branch of modern algebra that deals with the study of groups.

The origins of group theory back to the early 19th century when mathematicians began

to study the symmetry of geometric figures. The theory of groups and their properties

in the context of algebraic equations was first developed by the French mathematician

Evariste Galois in the 1830s. Another important figure in the development of group

theory was the German mathematician Felix Klein who introduced the concept of a

group in a more general setting in the 1870s. In the early 20th century, the study of group

theory was greatly expanded by the work of several mathematicians. Today, group

theory is a major area of research in mathematics with applications in many areas of

science and engineering, including quantum mechanics, chemistry, and cryptography.

Group theory is also used in the study of symmetry in music, art, and architecture.

In this dissertation we study the countably recognizable classes of groups. A group

class X is said to be countably recognizable if, whenever all countable subgroups of a

group G belong of X, then G itself is an X-group.

We give examples of countably recognizable groups classes: the class of minimax

groups is countably recognizable. A group G is called minimax if it has a series of finite

length :

3



Introduction

{1} = G0 < G1 < · · · < Gn = G

each of whose factors satisfies either the minimal or the maximal condition on sub-

groups. In this paper, it is shown that the class of minimax groups is countably

recognizable.

Also, the class of soluble groups of finite rank is countably recognizable. There are

many examples of countably recognizable classes of groups such as class of groups

with finite conjugacy classes(FC-groups).

This dissertation is composed of three chapters presented as follows :

In chapter 1, we study the fundamental concepts of group theory including groups,

subgroups, normal subgroups, costs, isomorphisms, isomorphisms theorem, groups

action and permutation. We give examples of groups; groups of numbers, groups of

linear transformations, groups of permutation groups of matrices. We prove (N,+) and

(Z,×) are not groups.

In chapter 2, notions needed for our study, namely; soluble and nilpotent groups, con-

jugacy classes and centralizers and groups with finite conjugacy classes which has a

role in our study of group theory.

This chapter consists of four sections. The first section, which is dedicated to soluble

group, will be further explained by : compositions series, Jordan Hölder theorem, De-

rived subgroup. In the second section, we are going to study the nilpotent groups going

through some notions : central series (descending and ascending central series). In the

third section, we will study conjugacy classes and centralizers. We will further explain

conjugacy classes, centralizers and normalizers. In section four we are going to study

the groups with finite conjugacy classes going through some notions : FC-element and

FC-group.

In the last chapter, we study the article of F. de Giovanniand Marco Trombetti ”The

class of minimax groups is countably recognizable”.

This chapter consists of two sections. In the first section, we talk about free groups and

reduced words. Then, we talk about rank of groups. We also give an example of rank of

groups. In the second section, we study that the class of minimax groups is countably

4
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recognizable taking into consideration weak minimal and maximal conditions.
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CHAPTER 1

FUNDAMENTAL CONCEPTS OF

GROUP THEORY

This chapter is devoted to studying the essential concepts of group theory, which

will be used all throughout the next chapters, in terms of definitions, exemples, theo-

rems, propositions and remarks [12].

1.1 Groups

1.1.1 Binary operations

Definition 1.1.1 Let S is a nonempty set, a binary operation ′′o′′ on S is a function :

o : S × S −→ S

(x, y) −→ xoy

6



Fundamental concepts of group theory

1.1.2 Groups

Definition 1.1.2 A group is a set S together with a binary operation satisfying the following

conditions :

i) Associativity : For all x, y, z ∈ S

(xoy)oz = xo(yoz).

ii) Existence an indentity element : There exists an element e ∈ S, Such that

xoe = x = eox.

For all x ∈ S

iii) Existence of inverses : For each element x ∈ S, there existe x−1
∈ S, Such that

xox−1 = e = x−1ox.

We write x.y for xoy and 1 For e, also we write x + y for xoy and 0 for e. In the first case,

the groups is said to be multiplicative, and in the second it is said to be additive.

We say that the group S is abelian if : for all x,y ∈ S, we have :

xoy = yox.

1.2 Examples of groups

1.2.1 Groups of numbers

(Z,+), (Q,+), (R,+) and (C,+) are abelian groups. Infact 0 being an identity and −x is

the inverse of x .

Z is the set of all integers,Q : rational numbers ,R: real numbers,C: complex numbers.

Let (Q− {0},×), (R− {0},×), (C− {0},×), are abelian groups, 1 being the identity and x−1

is the inverse of x.

7



Fundamental concepts of group theory

1.2.2 Groups of linear transformations

If W is an n-dimensional vector space over a field E, let GL(W) denote the set of all

bijective linear transformation of W.

Then GL(V) is a group with functional composition is the group operation :

αoβ(w) = α(β(w)) where w ∈W and α, β ∈ GL(W).

There is a close connection between the groups GL(W) and GL(n,E) . For if a fixed

ordered basis for W is chosen, each bijective linear transformation of W is associated

with a nonsingular n ∗ n matrix over E. This correspondence is :

GL(W) w GL(n,E).

Infact when two linear transformations are composed, the product of the corresponding

matrices represents the composite.

1.2.3 Groups of permutation

Let A is a nonempty set, a bijection φ : A −→ A is called a permutation of A.

If A = {0, 1, 2, ......,n} then Sym(A) is denoted by Sn , and called the symmetric group of

degree n.

Sn = {φ : {0, 1, ...n} −→ {0, 1, ...n}}.

|Sn| = n!

an element σ ∈ Sn is written :

 1 2 .....n

σ(1) σ(2) .....σ(n)

 The signature of permutation

φ ∈ Sn is defined to be :

si1nφ =
∏

1≤i< j≤n

φ(i) − φ( j)
i − j

.

8



Fundamental concepts of group theory

Which equal +1 or −1. Recall that φ is even if sign φ = +1 and odd if sign φ = −1 From

the definition it is easy to check the formulas :

si1n(φ1φ2) = (si1nφ1)(si1nφ2) and si1n(φ−1) = si1nφ.

1.2.4 Groups of matrices

Let V be a ring with an identity element and let GL(n,V) denote the set of all n × n

matrices with coefficients in V which have inverses. Taking matrix multiplication as

the group operation, we see from elementary properties of matrices that GL(n,V) is a

group whose identity element is 1n, the n × n identity matrix. This group is called the

general linear group of degree n over V, it is nonabelian .

If n > 1 in particular, if E is a field, GL(n,E) is the group of all nonsingular n×n matrices

over E.

1.3 Counter-example of groups

1.3.1 (N,+)

is not a group because :

i) For all a, b, c ∈ N :

(a + b) + c = a + (b + c).

So + is associative.

ii) For all a ∈N :

a + 0 = 0 + a = a.

0 is indentity element ofN .

9



Fundamental concepts of group theory

iii) For all a ∈N :

@ a−1
∈N : a + a−1 = 0.

So there is no inverse .

1.3.2 (Z,×)

is not a group because :

i) For all a, b, c ∈ Z :

(a × b) × c = a × (b × c).

So × is associative.

ii) For all a ∈ Z :

a × 1 = 1 × a = a.

0 is indentity element of Z.

iii) For all a ∈ Z :

@
1
a
∈ Z.

So there is no inverse.

1.4 Subgroups

Definition 1.4.1 Let G be a group and let H be a subset of G, we say that H is a subgroup of

G (G and H nonempty ) if :

i) (H,.) is closed under the groupe operation of G, ie : ∀a, b ∈ H a.b ∈ H

10



Fundamental concepts of group theory

ii) Inverses : if a ∈ H, then a−1
∈ H.

We shal write :

H ≤ G.

Remark 1.4.1 If H ≤ G and H , G, we say H is subgroup propre of G. We shall write :

H < G.

1.4.1 Examples of subgroups

1) R, Q and Z are subgroups of C.

2) G = (Z,+) and H = ((nZ),+).

So H is a subgroup of G.

1.4.2 Left and right cosets

Definition 1.4.2 If H is subgroup of a group G, then for an element x ∈ G, the left coset of H

in G is subset defined by :

xH = {xh/h ∈ H}.

in a precisely similar way the right coset :

Hx = {hx/h ∈ H}.

is called right coset H in G.

Definition 1.4.3 The order of a group G is the cardinality of that group or the order of a group

G is the number of its elements.

11



Fundamental concepts of group theory

Notation 1.4.1 The order of a group G is denoted by : |G|.

Definition 1.4.4 The index of a subgroup H in a group G is the number of right and left cosets

xH and Hx (resp). We denote it :

|G : H|

1.4.3 Normal subgroup

Definition 1.4.5 Let G be a group and H be a subgroup of G. A subgroup H is said to be normal

subgroup if for every a ∈ G and h ∈ H; We have aha−1
∈ H

H is normal subgroup of G is denoted by : H � G.

Proposition 1.4.1 A subgroup of index 2 is a normal subgroup.

Proof. Let G be a group H ≤ G an index = 2 then :

[G : H] = 2⇐⇒ |xH| = |Hx| = 2

Hx = {H, x̄} = {H, Hx} = G

xH = {H, x̄} = {H, xH} = G

Hx = xH

H � G

1.5 Isomorphisms

1.5.1 Homomorphisms

Definition 1.5.1 Let G and G′ two groups. A function ϕ : G −→ G′ is a homomorphisms if :

ϕ(x, y) = ϕ(x).ϕ(y).

12



Fundamental concepts of group theory

For all x, y ∈ G.

The set of all homomorphisms from G to G′ is denoted by : Hom (G, G′).

Remark 1.5.1

1) Hom (G, G′) is always nonempty, it has at least the 0 homomorphisms :

0 : G −→ G′

x −→ eH

2) A homomorphisms ϕ : G −→ G is called an endomorphism of G . The identity function

1 : G −→ G is clearly an endomorphism.

1.5.2 Kernel of homomorphisms

The kernel ker ϕ of a homomorphism ϕ : G −→ G′ is subsets defined as follows :

kerϕ = {x ∈ G, ϕ(x) = 1G′ }.

1.5.3 Examples of Homomorphisms

i) ϕ : GL(n,F) −→ F? where ϕ(A) = det A and F? = F \ {0}. Here F is a field.

ii) ϕ : R −→ R+ (R,+), (R+,×)

x −→ eX

ϕ(X + Y) = ϕ(X) × ϕ(Y)⇐⇒ eX+Y = eX
× eY.

Proposition 1.5.1

1) ϕ : G −→ G′ homomorphisms, so ϕ(xn) = (ϕ(x))n, for all x ∈ G.

13



Fundamental concepts of group theory

2) ϕ(x−1) = (ϕ(x))−1 , for all x ∈ G.

3) Im(ϕ) 6 G′ , kerϕ C G.

Proposition 1.5.2 Let ϕ : G −→ G′ be a homomorphisms , monomorphisms , epimorphisms ,

and isomorphisms :

1. ϕ is an monomorphisms⇐⇒


ϕ is homomorphisms

and

ϕ injective

2. ϕ is an epimorphisms⇐⇒


ϕ is homomorphisms

and

ϕ surjective

3. ϕ is an isomorphisms⇐⇒


ϕ is homomorphisms

and

ϕ bijective

Remark 1.5.2 Let ϕ ∈ Hom(G,G’) :

i) ϕ is monomorphism⇐⇒ ker ϕ = 1G .

ii) ϕ is epimorphism⇐⇒ Im ϕ = G′ .

iii) ϕ is isomorphism⇐⇒ ker ϕ = 1G and Im ϕ = G′.

Definition 1.5.2 If N is a normal subgroup of a group G (N � G);
G
H

is the quotient group of

N in G, is the set of all cosete of N in G equipped with the group operation :

(Nx).(Ny)=N(x.y).

1.5.4 Isomorphisme theorems

[12]
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Fundamental concepts of group theory

1) First isomorphism theorem

i) If ϕ : G −→ G′ is a homomorphisme of groups, the mapping :

ψ :
G

kerϕ
−→ Imϕ.

is an isomorphism, that is :

G
kerϕ

' Imψ.

ii) If G is a groups and N � G, the mapping s : G −→
G
N

is an epimorphism

frome G to
G
N

with kernel N

this s is called natural or canonical homomorphisme.

2) Second isomorphism theorem

Let G be a groups and H ≤ G , H � G , then N ∩H � H and :

ϕ :
H

N ∩H
−→

NH
N

is an isomorphisms

that is:

H
N ∩H

'
NH
N

3) Third isomorphism theorem

Let G be a group , N � G and M � G and let N ≤M . Then
M
N
C

G
N

and we have:

15



Fundamental concepts of group theory

G
N
M
N

'
G
M

1.6 Group actions and permutations

1.6.1 Left group action

We say that a group G oparates on the set X on the left if there exists a function :

f : G × X −→ X

(a, x) −→ ax

Such that :

i) f associativ : ∀a, b ∈ G,∀x ∈ X

a(bx) = (ab)x.

ii) f hav an indentity element : ∀x ∈ X

1x = x.

f is called left action.

1.6.2 Right group action

We say that a group G oparates on the set X on the right if there exists a function :

f : X × G −→ X

(x, a) −→ xa

16
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Such that :

i) f associativ : ∀a, b ∈ G,∀x ∈ X

(xa)b = x(ab).

ii) f hav an indentity element : ∀x ∈ X

x1 = x.

f is called right action.

1.6.3 Permutation groups

Definition 1.6.1 If X a nonempty set, a subgroup G of the symmetric group Sym X is called a

permutation group on X.

The degree of the permutation group is the cardinality of X, if the group G operates on X the

relation is defined by :

X<GY⇐⇒ ( there exists a ∈ G such that : y = a.x ).

is an equivalence relation, that is :

i) x<Gx =⇒ x = e.x

ii) x<Gy =⇒ y = a.x =⇒ a−1y = a−1(ax) = ex = x =⇒ y<Gx

iii) x<Gy and x<Gz =⇒ y = a.x and z = b.y =⇒ z = b.a.x = (b.a)x =⇒ x<Gz

The equivalence class of x ∈ X for<G is :

Gx = {a.x/a ∈ G}

17



Fundamental concepts of group theory

1.6.4 Orbits

Definition 1.6.2 Let G be a group operates on a set X. For each x ∈ G :

OrbG(x) = {ax/a ∈ G

the orbit of x under the action of G.

1.6.5 Stabilizer

Definition 1.6.3 Let G be a group operates on a set X. For each a ∈ X :

StG(x) = {a ∈ G/ax = x}.

The stabilizer of x ∈ G.

Remark 1.6.1 The stabilizer Stx of x ∈ X is a subgroup of G.

18



CHAPTER 2

SOLUBLE AND NILPOTENT GROUPS

In chapter 2, notions needed for our study, namely; soluble and niplotent groups, Con-

jugacy classes and centralizers and Groups with finite conjugacy classes which has a role in

studies of group theory will be discussed [12].

2.1 Soluble groups

2.1.1 Composition series

Definition 2.1.1 Let G be a group, a composition series for G of length n is a chain of subgroups

Hi :

G = H1 > H2 > . . . > Hi = e.

Such that : Hi � Hi−1, ∀i = 1, . . . ,n.

Definition 2.1.2 Let Σ and Σ
′ be two compositions series of G:
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Soluble and nilpotent groups

Σ : G = G0 > G1 > · · · > Gn = (e)

Σ
′ : G = K0 > K1 > · · · > Kp = (e).

1) We say that Σ
′ is a refinement of Σ, if p > n and if the chain Σ is extracted from Σ

′ i.e:

If there exists n positive integer:

j0 < j1 < · · · < jn 6 p.

Such that, for all i (0 6 i 6 n) Gi = K ji we can then write : Σ ⊆ Σ
′ .

If there exists an integer j ∈ {0, 1, · · · · · · , p} such that : K j , Gi, ∀ i (0 6 i 6 n), we say

that Σ
′ is a proper refinement of Σ in this case, we necessarily have p > n and we will

write: Σ ⊂ Σ
′ .

2) We say that the compositions series Σ and Σ
′ are equivalent if n = p and if there exists a

permutation σ of the integers 0, 1, 2, · · · · · · · · · ,n − 1, such that for all i (0 6 i 6 n − 1):

Gi

Gi+1
'

Kσ(i)

Kσ(i)+1
.

We will express the equivalence of the two chain of composition by the notation: Σ ∼ Σ
′

Remark 2.1.1 Any chain extracted from a composition series is not in general a composition

series in fact the normality condition does not still hold.

Definition 2.1.3 A group is said to be simple if it does not admit any normal subgroup other

than itself and the identity element.

2.1.2 Jordan Hölder theorem

Definition 2.1.4 A composition series of a group G will be called a Jordan-Höder chain if all

the quotients of the chain are simple groups.

This name will be justified by the Jordan-Höder theorem.
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Proposition 2.1.1 A composition series of G is a chain of Jordan-Höder iff it is strictly decreas-

ing and does not admit any proper refinement.

Proof. Let Σ : G = G0 > G1 > · · · > Gi > Gi+1 > · · · > Gn = (e)
Gi

Gi+1
simple ⇐⇒ Gi+1 , Gi and Gi+1 normal and maximal in Gi ⇐⇒ ∀i ∈ 0,n − 1,@ the

subgroup H such that:

Gi > H > Gi−1 and H C Gi.

Remark 2.1.2

1) Any simple group G admits a unique chain of strictly decreasing composition, which is a

chain of Jordan-Höder:

G = G0 > G1 = (e).

2) Any chain of strictly decreasing composition of G admits a refinement which is a chain of

Jordan-Höder.

3) Any two Jordan-Höder chain of G are equivalent.

2.1.3 Derived subgroup

Definition 2.1.5 Let G be a group, the commutator of two elements x, y ∈ G is defined by :

[x, y] = x−1y−1xy.

Remark 2.1.3 G is abelian group if only if every commutator equals to 1.

Infact :

[x, y] = x−1y−1xy =1⇔ yxx−1y−1xy = yx⇔ xy=yx.
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Definition 2.1.6 Let G be a group, we call a derived subgroup of G the subgroup generated by

all commutators in G.

We denote : G’ or G(1).

so :

G(1) =< [x, y]; x, y ∈ G >

Theorem 2.1.4 Let G be a group; we have :

1) G′ � G.

2) N � G, so
G
N

is ablelian group if only if G′ ⊆ N ;

Proof. :

1) Let x, y, z ∈ G :

we have :

z−1[x, y]z = z−1x−1y−1zxy

Then :

[z−1xz, z−1yz] = z−1x−1zz−1y−1zz−1xzz−1yz = z−1x−1y−1xyz

hence :

z−1[x, y]z = [z−1xz, z−1yz]

So G’ is normal in G (G′ � G).

2) Let x, y ∈ G and x̄, ȳ ∈
G
N

:
G
N

abelian⇔ x̄ȳ = ȳx̄,

⇔(yx)−1xy = N

⇔ (yx)−1xy ∈ N

⇔ x−1y−1xy ∈ N

⇔ [x,y] ∈ N hence
G
N

abelian⇔ G’ ⊆ N.
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Soluble and nilpotent groups

Definition 2.1.7 A group G is said to be soluble if there exists an integer n ≥ 0, such that :

G(n) = (e).

Remark 2.1.5 If G , (e) is a soluble group, and if n is the smallest positive integer such that

G(n) = (e), so ∀ i (0 ≤ i ≤ n − 1), we have : G(i+1) < G(i).

and by theorem (2.1.4) G(i+1) � G(i), we have :

G = G(0) > G(1) > · · · > G(n) = (e).

is a composition series of G.

Theorem 2.1.6 If G is a soluble group, so every subgroup of G and every quotient of G is soluble.

Proof. Suppose that : ∃ n ∈N, such that G(n) = (e).

∗ Let H be a subgroup of G.

H ≤ G⇒ H′ ≤ G′

H′ ≤ G′⇒ H(2)
≤ G(2)

Then we obtain H(n)
≤ G(n) = (e), hence H(n) = (e) is soluble.

∗ Let N � G, and let π : G −→
N
G

an canonical epimorphisms such that π(x) = x̄, ∀x ∈ G.

as all commutator of
N
G

is an image by π of a commutator in G.

Obvirously that
(G
N

)′
= π(G′).

Like wise, on has
(G
N

)(2)

= π(G(2)) and step by step we obtain :

(G
N

)(n)

= π((G)n) = (ē).

hence
G
N

is soluble.

Definition 2.1.8 G is said to be soluble iff G admits an abelian series (ie all quotients are

abelian).
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2.2 Nilpotent groups

2.2.1 Central series

Definition 2.2.1 The center of a group G, is denoted by Z(G) such that :

Z(G) = {a ∈ G/a.b = b.a,∀b ∈ G}.

Definition 2.2.2 For a group G, a composition series :

Σ : G = G1 ≥ G2 ≥ . . . > Gn−1 ≥ Gn = (e).

is a central series, if it is a normal series and :

Gi

Gi+1
6 Z

( G
Gi+1

)
for all (0 6 i 6 n − 1)

Proposition 2.2.1 The series Σ is cental iff ∀i ∈ 0, 1 : [Gi,G] ≤ Gi+1

Proof.

• ⇒) Suppose Σ is central⇒ Gi+1 � G and
Gi

Gi+1
6 Z

( G
Gi+1

)
Let x ∈ Gi, 1 ∈ G⇒ x̄ ∈

Gi

Gi+1
and ȳ ∈

G
Gi+1

while⇐⇒ [x̄, ȳ] = Gi+1

hence : [Gi,G] ≤ Gi+1.

• ⇐) suppose :

[Gi,G] ≤ Gi+1 (2.1)

Let x ∈ Gi+1 and 1 ∈ G, we have :

Gi+1 6 Gi⇒ x ∈ Gi

moreover; according to (2.1)⇒ [x,g] = x−11−1x1 ∈ Gi+1⇒ 1
−1x1 ∈ Gi+1

hence Gi+1 � G

And hence [x,g] ∈ Gi+1⇐⇒ [x̄, 1̄] = Gi+1⇐⇒ x̄1̄ = 1̄x̄

hence
Gi

Gi+1
6 Z

( G
Gi+1

)
24
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2.2.2 Nilpotence

Definition 2.2.3 A group G is nilpotent if G have a central series.

Proposition 2.2.2 Every nilpotent group is soluble.

Proof. lf G is nilpotent group⇒ G have a central series is normal series in all quotients are :

Gi

Gi+1
6 Z

( G
Gi+1

)
.

While all quotients abelien hence G is soluble.

2.2.3 Descending central series

G being a group, let :

γ1(G) = G, γ2(G) = [G,G] = G′, γ3(G) = [γ2(G),G]

In general :

γk+1(G) = [γk(G),G] ∀k ∈ N∗.

By recurrence on k, we prove that :

γk+1(G) ≤ γk(G), ∀k ∈ N∗

For k = 1, we have⇒ γ2(G) = [G,G] = G′ ⇒ G′ � G, for k ≥ 1 we have γk+1(G) is engender

the elements of the form [x,y];(such that : y ∈ γk(G), x ∈ G)

It is enough to show :

z−1[x, y]z ∈ γk+1(G), for z ∈ G
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Then :

z−1[x, y]z = [z−1yz, z−1xz] ∈ γk+1(G)

Hence : γk(G) � G, for k1

Moreover the series (γk(G))k≥1 is descending for inclusion, infact for x ∈ G, y ∈ γk(G) we have :

[x,y] = y−1(x−1yx) ∈ γk(G),

hence γk(G) ≤ γk+1(G) ∀k ∈ N∗

Thus, for all group G, we define the descending chain of subgroups :

G = γ1 ≥ γ2 ≥ . . . ≥ γk ≥ γk+1 ≥ . . . . (2.2)

Definition 2.2.4 A group G has a descending central serie of length n ( n ≥ 1 in N), if the

descending chain (2.2) is written :

G = γ1 > γ2 > . . . > γn > γn+1 >= (e). (2.3)

In this case, the group G is nilpotent.

Definition 2.2.5 Let G be a group H 6 G, H is said to be characteristic if : ∀ f ∈ Aut(G) :

f (H) = H and we denoted H < G.

( f ∈ Aut(G)ie : f : G −→ G isomorphism).

2.2.4 Ascending central series

G being a group, let Z0 = (e) , Z1 = (G).

We know that Z1 is characteristic in G, hence the unique subgroup Z2 of G, containing Z1, such

that
Z2

Z1
= Z

( G
Z1

)
, is characteristic in G.

Step by step, we define for all i ∈ N, the subgroup Zi+1 such that:
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Zi+1

Zi
= Z

( G
Zi

)
.

And Zi+1 is characteristic in G.

Thus we determine an ascending chain of subgroups of G :

(e) = Z0 6 Z1 6 · · · 6 Zi 6 Zi+1 6 · · ·

In which, for all i ∈ N, we have Zi < G, so Zi C G and Zi+1 is the largest subgroup of G

containing Z, such that:

[Zi+1,G] 6 Zi.

If there is an integer s > 0 such that Zs = G the series is written:

(e) = Z0 6 Z1 6 · · · 6 Zs−1 6 Zs = G.

and from above, the chain is a central sequence of G.

Moreover, if G , (e) and if s is the smallest positive integer such that Zs = G, then for all

i(0 6 i 6 s − 1) we have Zi < Zi+1, infact Zi = Zi+1 implies Z j = Zi whatever j > i.

Definition 2.2.6 A group G is said to have an ascending central series of length s (s > 1), if

the ascending chain is written:

(e) = Z0 < Z1 < · · · < Zs−1 < Zs = G.

Then the group G is nilpotent.

Remark 2.2.1 The group G = (e) will be considered as having a descending (respectively,

ascending) central series of length 0.
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2.3 Conjugacy classes and centralizers

2.3.1 Conjugacy classes

Definition 2.3.1 Let G be a group, two elements x and h in G are conjugate when :

h = 1x1−1.

For all 1 ∈ G

If X is a nonempty set and g is an element of group G, the conjugacy class of X by G, denoted

X1 is the set :

X1 = 1X1−1 = {1x1−1, x ∈ X}.

Lemma 2.3.1 Conjugacy is an equivalence relation.

Proof.

i) Reflexive:Let h ∈ G, h = ehe−1, for all e ∈ G.

ii) Symetrice:

Suppose ∃ x ∈ G such that : h = 1x1−1
⇒ 1−1h = x1−1

⇒ 1−1h1 = x1−11⇒ 1−1h1 = x

So x = 1−1h1 ; ∀1, h ∈ G.

iii) Transitive:

Suppose ∃ x, y ∈ G such that : h = 1x1−1 and x = lyl−1; ∀h, l, y, x ∈ G

h = 1x1−1
⇒ h = 1lyl−11−1

⇒ h = 1ly(1l)−1

Remark 2.3.1 If H is a subgroup of G, all conjugacy classes of H; H = xHx−1 is a subgroup of

G.
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2.3.2 Centralizers

The centralizer of x in G, for all x ∈ G :

CG(x) = {1 ∈ G, 1x = x1}.

Hence |G : CG(x)| = the cardinlety of the conjgacy class of x. Also {x} is a conjugcy class if and

only if x belongs in the center of G.

2.3.3 Normalizers

NG(x) = {1 ∈ G, 1x1−1 = x}.

Is the normalizers of x in G.

Theorem 2.3.2 Let H be a subgroup of group G, we have :

H � G⇔ NG(H) = G.

Proposition 2.3.1 Let G be a group :

1) For all subgroup H of G, we have H � NG(H).

2) If H and K are two subgroup of G and hence H ≤ K, then :

H � K =⇒ K ≤ NG(H).

3) K ≤ NG(H) =⇒ HK ≤ G and H � HK.

Proof.

1) We remark that the definition of NG(H) implies H ⊆ NG(H), then :

x ∈ NG(H)⇐⇒ xHx−1 = H
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hence H � NG(H).

2) If H ≤ k ≤ G, then :

H � K =⇒ kHk−1 = H, ∀k ∈ K.

hence k ≤ NG(H).

3) We have k ≤ NG(H); consider h ∈ H and k ∈ K, we have k ∈ NG(H) and hence

k−1
∈ NG(H), then k−1Hk = H, we deduce that there exists h′ ∈ H such that k−1Hk = h′,

hence hk = kh′, which implies HK ⊆ KH.

In a smilar way, we show that HK ⊆ KH, so Hk is subgroup of G

H ⊆ NG(H) and K ⊆ NG(H) implies HK ⊆ NG(H), Then by 1) H is normal in NG(H),

which is a subgroup of HK, is normal in HK.

Notation 2.3.1 For all H ≤ G, NG(H) is the largest subgroup of G in which H is normal.

2.4 Groups with finite conjugacy classes

Definition 2.4.1 A torsion group or a periodic group is a group in which every element has a

finite order. The exponent of such a group, if there exists is the least common multiple of the

orders of the elements. The exponent exists for any finite group and it divides the order of the

group.

Remark 2.4.1 A torsion-free group is a group whose the only element of finite order is the

identity.
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2.4.1 FC-element

Definition 2.4.2 An element g of a group G is called an FC-element if it has only a finite

number of conjugates in G, that is to say if |G : CG(1)| is finite. It is a basic fact that the

FC-element always form a subgroup.

Proposition 2.4.1 In any group G the FC-elements form a characteristic subgroup.

Proof. Let g and h be FC-elements of G.

Then CG(1) and CG(h) have finite index, which implies that CG(1) a CG(h) has finite index. But

obviously CG(1h−1) ≥ CG(1) a CG(h), so CG(1h−1) has finite index and (1h−1) is an FC-element.

Thus the FC-elements form a subgroup. If β ∈ AutG, then CG(1β) = CG(1)β, from which it

follows that CG(1)β has finite index. Hence 1β is an FC-element.

2.4.2 FC-group

Definition 2.4.3 A group G is called an FC-group if it equals its FC-center, that is every

conjugacy class of G is finite.

In particular all abelian groups and all finite groups are FC-groups.

Proposition 2.4.2

1) In any group G a finite normal subset consisting of element of finite order generates a

finite normal subgroup.

2) A torsion group G is an FC-group if and only if each finite subset is contained in a finite

normal subgroup.

Proof.

1) Let X = {x1, x2, · · · , xn} be the normal subset and let H = 〈X〉. Obviously H is normal in

G: we have to prove that it is finite.
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If 1 , h ∈ H, then h = xm1
α1
· · · xmr

αr where 1 ≤ αi ≤ n. In general there will be many such

expressions for h, among them some of shortest length, say r.

Furthermore among these expressions of shortest length there is one which appears first in

the lexicographic ordering of r-tuples: this is the ordering in which (α1, . . . , αr) precedes

(α′1, . . . , α
′

r) if αi = α
′

i for i < s and αs < α
′

s for some s ≤ r. Denote this first expression by

h = y1y2 · · · yr where yi = xmi
αi

.

Suppose that αi = α j where i < j. Moving y j to the left we obtain

h = y1 · · · yi−1(yiy j)yy j

j+1 · · · y
y j

j−1y j+1 · · · yr,

an expression of length less than r. Consequently the αi are all different.

Now assume that αi > αi+1; then

h = y1 · · · yi−1yi+1yyi+1

i yi+2 · · · yr.

But this expression of length r precedes y1y2 · · · yr in the ordering of r-tuples.

Hence α1 < α2 < · · · < αr. It follows that there are at most
∏n

i=1|xi| possibilities for h.

2) Let G be an FC-group and let F be a finite subset of G. The set of conjugates of elements

of F in G is a finite normal subset. By proposition (2.4.2) it generates a finite normal

subgroup. Conversely, if G has the property in question and x ∈ G, then x ∈ F C G for

some finite F. All conjugates of x belong to F, so there are only finitely many of them.
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CHAPTER 3

THE CLASS OF MINIMAX GROUPS IS

COUNTABLY RECOGNIZABLE

Countably recognizable classes of groups were introduced by Baer [1]. Baer produced

many interesting examples of countably recognizable group classes, and later many other

discovered countably recognizable group classes see for instance [3, 9, 10, 13, 4, 5] . On the

other hand, certain important group classes are not countably recognizable; for example the

class of free groups (see [8]) and of the class of groups which are embeddable into direct products

of finite groups [4].

3.1 Free groups

Definition 3.1.1 Let F be a group, X a nonempty set, and σ : X → F a function. Then F,

or more exactly (F,σ), is said to be free on X if to each function σ from X to a group G there

corresponds a unique homomorphism β : F→ G such that α = βoσ.
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A group which is free on some set is called a free group.

The function σ : X → F is necessarily injective. For suppose that σ(x1) = σ(x2) and x1 , x2:

let G be a group with at least two distinct elements 11 and 12 and choose a function α : X→ G

such that α(x1) = 11 and α(x2) = 12. Then β(σ(x1)) = β(σ(x2)), whence α(x1) = α(x2) and

11 = 12, a contradiction. Clearly F is also free on Imσ, the inclusion map Im σ→ F taking the

place of σ. Hence a free group is always free on a subset: in this case the commutativity of the

diagram says that the restriction of β to X is α, so that β is the unique extension of α to F.

Another consequence of the definition is that Im σ generates F. Since this will follow from our

construction of free groups, we need not prove it now [12].

3.1.1 Constructing free groups

Proposition 3.1.1 If X is a nonempty set, there exists a group F and a function σ : X → F

such that (F, σ) is free on X and F = < Im σ >.

Proof. Choose a set disjoint from X with the same cardinality: for notational reasons we shall

denote this by X−1 = {x−1
|x ∈ X} where of course X−1 is merely a symbol. By a word in X is

meant a finite sequence of symbols from X ∪ X−1 , written for convenience in the form :

w = xε1
1 · · · x

εr
r

xi ∈ X, εi = 1 or εi = −1 , r ≥ 0: in case r = 0 the sequence is empty and w is the empty word,

which will be written 1. Of course two words are to be considered equal if and only if they have

the same elements in corresponding positions.

Remark 3.1.1 The product of two words w = xε1
1 · · · x

εr
r and v = yn1

1 · · · y
ns
s is formed by

juxtaposition: thus

wv = xε1
1 · · · x

εr
r yn1

1 · · · y
ns
s

with the convention that w1 = w = 1w. The inverse of w is the word w−1 = x−εr
1 · · · x

−ε1
r and

1−1 = 1 .
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3.1.2 Reduced words

Definition 3.1.2 Let us examine the construction just described with a view to obtaining a

convenient description of the elements of the free group F.

A word w in X is called reduced if it contains no pair of consecutive symbols of the form xx−1

or x−1x , (x ∈ X). By convention the empty word is reduced. If w is an arbitrary word, we can

delete from w all consecutive pairs xx−1 or x−1x to obtain an equivalent word. By repeating this

procedure a finite number of times we shall eventually reach a reduced word which is equivalent

to w. Thus each equivalence class of words contains a reduced word. The important point to

establish is that there is just one reduced word in a class.

3.1.3 Rank of groups

Definition 3.1.3 The rank of a group G, denoted rank(G) can refer to the smallest cardinality

of a generating set for G, that is:

rank(G) = min{|X| : X ⊆ G, 〈X〉 = G}

If G is a finitely generated group, then the rank of G is a non negative integer.

The rank of a group is also often defined in such a way as to ensure subgroups have rank less

than or equal to the whole group.

3.1.4 Example rank of groups

• For a non trivial group G, we have rank(G) = 1 if and only if G is a cyclic group.

The trivial group 1 has rank(1) = 0, since the minimal generating set of 1 is the

empty set.

• If X is a set and G = F(X) is the free group with free basis X then:

rank(G) = |X|.
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• If a group H is a homomorphic image of a group G then:

rank(H) ≤ rank(G)

• For a free abelian group Zn we have rank(Zn = n).

3.2 The class of minimax groups is countably recogniz-

able

In his paper Francesco de Giovanni and Marco Trombetti proved that the class of minimax

groups is countably recognizable.

Definition 3.2.1 A group class X is said to be countably recognizable if, whenever all countable

subgroups of a group G belong to X, then G itself is an X-group.

Definition 3.2.2 If X is a class of groups, a group G is said to be minimal non-X if it is not an

X -group or an X-critical (G < X) but all its proper subgroups belong to X.

3.2.1 Minimal and maximal condition

Definition 3.2.3 Recall that a group G satisfies the minimal condition on subgroups if there are

no infinite descending chains of subgroups, and G satisfies the maximal condition on subgroups

if it admits no infinite ascending chains of subgroups. It is almost obvious that both the class

of groups satisfying the minimal condition and that of groups satisfying the maximal condition

on subgroups are countably recognizable [6].

Definition 3.2.4 A group G is said to satisfy the weak minimal condition on subgroups if it

has no infinite descending chains of subgroups [6] :

X1 > X2 > · · · > Xn > · · ·
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such that the index |Xn : Xn+1| is infinite for all n. The weak maximal condition on subgroups

is defined replacing descending chains by ascending chains.

3.2.2 Minimax groups

Definition 3.2.5 A group G is called minimax if it has a series of finite length :

{1} = G0 < G1 < · · · < Gn = G

each of whose factors satisfies either the minimal or the maximal condition on subgroups. The

structure of soluble minimax groups has been described by Robinson (see [11] Part 2, Chapter

10).

Remark 3.2.1

1) The class of soluble groups of finite rank is countably recognizable, and all soluble groups

of finite rank are countable, it follows that any group whose countable subgroups are

soluble and minimax is countable, and so also minimax.

2) The class of soluble minimax groups is countably recognizable. However, the situation is

much more complicated in the insoluble case.

3) It was independently proved by Baer [2] and Zaicev [14] that for soluble groups the weak

minimal condition, the weak maximal condition and the property of being minimax are

equivalent. It turns out that also the class of groups satisfying the weak minimal condi-

tion and that of group satisfying the weak maximal condition on subgroups are countably

recognizable.

Most of our notation can be found in [11].

Corollary 3.2.1 It is clear that minimal non-X groups are countable for every countably recog-

nizable group class X. Thus it follows from the above theorem that any minimal non-minimax

group is countable [11].
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Theorem 3.2.2 The class of minimax groups is countably recognizable.

Lemma 3.2.1 Let G be a group, and let X be a subgroup of G.

(a) If Y is a countable subgroup of G and Y ≤ XG,k, for some positive integer k, then there

exists a countable subgroup U of G such that Y ≤ XU,k .

(b) If X , XG,k for some positive integer k, then there exists a countable subgroup U of G

such that X , XU,k .

Recall that if X is a class of groups, the residual of a group G with respect to X is the intersection

of all normal subgroups N of G such that
G
N

belongs to X [6].

Lemma 3.2.2 Let G be a σ-minimax group for some σ = (σ1, . . . , σn), where n ≥ 2 and σ1 = ∨.

Then G contains a normal subgroup N satisfying the minimal condition and such that the factor

group
G
N

is (σ2, . . . , σn)-minimax [6].

Proof. Let :

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G.

be a σ-series of G. As the statement is obvious if n = 2, we may suppose n ≥ 3. It can be assumed

by induction on n that Gn−1 has a normal subgroup K with the minimal condition and such

that
Gn−1

K
is σ′-minimax, where σ′ = (σ2, . . . , σn−1) . As K contains the residual R of Gn−1 with

respect to the class of σ′-minimax groups, it follows that also the group
Gn−1

R
is σ′-minimax.

Clearly, R is a normal subgroup of G and
G
R

is a (σ2, . . . , σn)-minimax group, and so the proof

is complete.

Next lemma is the crucial point in the proof of our theorem.

Lemma 3.2.3 Let G be a group whose countable subgroups are σ-minimax for a fixed minimax

type σ = (σ1, . . . , σn). Then G is minimax [6].
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Proof. Assume for a contradiction that the statement is false, and choose a counterex-

ample for which the minimax type σ has shortest length n. Then n > 1, because the

class of groups with the minimal condition and that of groups satisfying the maximal

condition are countably recognizable.

Put σ′ = (σ2, · · · , σn), and suppose first σ1 = ∨. Let C be the set of all countable

subgroups of G, and for each element X of C denote by X0 the residual of X with

respect to class of σ′-minimax groups. Write

G0 =
⋃
X∈C

X0

.

If X and Y are arbitrary elements of C, we have

〈X0,Y0〉 ≤ 〈X,Y〉0

and hence G0 is a subgroup of G, which is obviously normal. Let H be any countable

subgroup of G0, and for each element h of H choose a countable subgroup X(h) of

G such that h belongs to X(h)0. Then

K = 〈X(h) | h ∈ H〉

is a countable subgroup of G and

H ≤ 〈X(h)0 | h ∈ H〉 ≤ K0.

Moreover, since K is σ-minimax, it follows from Lemma (3.2.2) that K0 satisfies the mini-

mal condition on subgroups, and hence also H has the minimal condition. Therefore G0

satisfies the minimal condition on subgroups. Let V/G0 be any countable subgroup

of G0, and let W be a countable subgroup of G such that V = G0W. ThenV/G0 is a
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homomorphic image of W/W0, and so it is σ′-minimax group by Lemma (3.2.2) It fol-

lows now from the minimal assumption on n that the factor group G/G0 is minimax,

so that G itself is minimax, and this contradiction shows that σ1 = ∧.

Let K be any countable subgroup of G, and let ε(K) be the set of all σ-subgroups

of K. Clearly, ε(K) is countable, because all its elements are finitely generated. For

each element E ofε(K), we will define a suitable countable subgroup U1(E) of G

containing K.

If E is not subnormal in G of defect at most n − 1, it follows from part (b) of Lemma (3.2.1)

that there exists a countable subgroup V of G containing K such that EV,n−1 , E,

and in this case we put U1(E) = V. Suppose now that E is subnormal in G of defect

at most n − 1, so that EG,n−1 , E. As the group G is not minimax, there is a

non-negative integer i < n − 1 such that EG,i/EG,i+1 is not minimax, and so the

minimal assumption on n yields that EG,i contains a countable subgroup X such that

XEG,i+1/EG,i+1 is not σ′-minimax. In this situation, part (a) of Lemma (3.2.1) can be

applied to obtain a countable subgroup W containing K such that X lies in EW,i. Note

that the group EW,i/EW,i+1 is not σ′-minimax, because it admits a section isomorphic

to XEG,i+1/EG,i+1. In this second case, we put U1(E) = W.

As the subgroup

U1 = 〈U1(E)|E ∈ ε(K)〉

is clearly countable, the above argument can be iterated to construt an ascending

sequence (Un)n∈N of countable subgroups of G. Then

U∞ =
⋃
n∈N

Un

is a countable subgroup of G, so that it is σ-minimax and we may consider an element

E∞ in the set ε(U∞). In particular, E∞ is a finitely generated subgroup of U∞,

and hence it is contained in Um for some positive integer m. Moreover, E∞ is subnormal
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in U∞ of defect ≤ n − 1, and so it follows from the definition of Um+1 that E∞

must be even subnormal in G of defect at most n − 1. Therefore the group

EUm+1(E∞),i
∞ /EUm+1(E∞),i+1

∞

is not σ′-minimax for some i, which is impossible because E∞ belongs to the set

ε(Um+1(E∞)). This last contradiction completes the proof of the lemma.

Proof. (proof of theorem 3.2.2) Denote by ∨ and ∧ the minimal and the maximal condition on

subgroups, respectively, and for a positive integer n let σ = (σ2, . . . , σn) be any n-tuple whose

entries belong to the set {∨,∧}. We shall say that a group G is minimax of type σ (or σ-minimax)

if it has a σ-series, i.e. a finite series :

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G

of length n such that the factor group
Gi

Gi−1
satisfies the condition σi for each positive integer

i ≤ n . Clearly, σ-minimax groups are minimax and every minimax group is σ-minimax for

some σ, but for a minimax group the minimax type is not uniquely determined. Note also that

any abelian minimax group is (∧,∨)-minimax.We point out finally that the class of σ-minimax

groups is closed with respect to subgroups and homomorphic images, and that if H and K are

normal subgroups of a group G such that both
G
H

and
G
k

are σ-minimax, then also the factor

group
G

H ∩ K
is σ-minimax.

Let G be a minimax group of type σ = (σ1, . . . , σn) . A subnormal subgroup X of G is called a

σ-subgroup if it satisfies σ1 and there exists a series :

X = X1 ≤ · · · ≤ Xn = G

such that
Xi

Xi−1
satisfies σi for each i = 2, . . ., n. Of course, a normal subgroup N of a group

G is a σ-subgroup if and only if it satisfies σ1 and the factor group
G
N

is σ′-minimax, where

σ′ = (σ2, · · · , σn).

Let G be a group, and let X be a subgroup of G. Recall that the series of normal closures {XG,n
}n∈N0

of X in G is defined by putting XG,0 = G and
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XG,n+1 = XXG,n

for each non-negative integer n. In particular, X ≤ XG,n for all n, and XG,1 = XG, the normal

closure of X in G. Note that X is subnormal in G of defect at most k if and only if XG,k = X. The

following result has been proved in [5].

Let G be a group whose countable subgroups are minimax, and assume for a contradiction that

G is not minimax. Then it follows from Lemma (3.2.3) that for each minimax type σ there exists

a countable subgroup Gσ of G which is not σ-minimax. As the set Σ of all minimax types is

obviously countable, the subgroup

G∞ = 〈Gσ|σ ∈ Σ〉

is countable and it cannot be minimax. This contradiction proves the theorem.

The last result of the paper shows that also the weak minimal and the weak maximal conditions

can be detected from the behaviour of countable subgroups.

Proposition 3.2.1 The class of groups satisfying the weak minimal condition and that of groups

satisfying the weak maximal condition are countably recognizable.

Proof. Let G be a group whose countable subgroups satisfy the weak minimal contradiction,

and assume for a contradiction that G admits an infinite descending chain of subgroups

X1 > X2 > · · · > Xn > · · ·

such that the index |Xn : Xn+1| is infinite for all positive integers n. Then for each n we can

choose a countably infinite subset Un of Xn such that uXn+1 , vXn+1 whenever u and v are

elements of Un and u , v. Then :

U = 〈Un|n ∈N〉

is a countable subgroup of G and Un lies in U ∩ Xn for all n. It follows that :

U ∩ X1 > U ∩ X2 > · · · > U ∩ Xn > · · ·
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is an infinite descending chain of subgroups of U and the index |U∩Xn : U∩Xn+1| is infinite for

each n. This contradiction shows that the class of groups satisfying the weak minimal condition

is countably recognizable. A similar argument proves that also the class of groups satisfying

the weak maximal condition is countably recognizable.
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CONCLUSION

In this work we are interested in the class of minimax groups and we have seen that this

class is countably recognizable and also we have seen that the class of groups satisfying the weak

maximal and minimal conditions are countably recognizable this property is very important as

it helps us to deduce properties of classes of groups by showing theme in countable subgroups of

the group with out going to the whole group.
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