الجمهورية الجزائرية الديمقر اطية الشعبية

Populaire et Démocratique Algérienne République وزارة التعليم العالى والبحث العلمي

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Centre Universitaire Abdelhafid Boussouf-Mila

Institut des Sciences et de Technologie Département de Génie Civil et Hydraulique

N°Ref:.....

Projet de Fin d'Etude préparée vue de l'obtention du diplôme de Master

Spécialité: Structure

Dimensionnement et calcul d'un bâtiment (R+5) a usage multiple

Réalisé par: CHANDARLI BRAHAM AYA DJOUAL RYANE

Soutenu Devant le jury:

Dr. RABEHI Moustefa Président

Dr. BRAHIMI Abdelkader Examinateur

Dr. ABADA Rofia Examinatrice

Dr. TIOUA Tahar Promoteur

Année universitaire: 2021/2022

Nous tenons à exprimer nos profondes gratitudes Mr.Taher Tioua pour son suivie et ses conseils.

Nous tenons à remercier tous les enseignants de GENIE CIVIL qui ont contribué à notre formation.

Un gros merci également à nos familles pour leurs soutiens aussi bien moral que financier et pour leurs sacrifices.

Enfin, nous tenons à remercier également les membres de jury qui me feront l'honneur de juger mon travail.

MERCI.

Dédicace :

Je dédie ce travail à:

Mes très chers parents.

Mes très chers frères.

Toute ma famille.

Tous mes amis.

Toute la promotion 2021/2022.

Dédicace :

Je dédie ce travail à:

Mes très chers parents.

Mon très cher frère.

Mes très chères sœurs.

Et mon neveu Anes.

Toute ma famille.

Tous mes amis.

Toute la promotion 2021/2022

Résumé:

Ce projet présente une étude détaillée d'un bâtiment à usage d'habitation et commercial Constitué d'un rez-de-chaussée plus cinq étages, implanté à la wilaya de MILA. Cette région est classée en zone sismique IIa. Selon le RPA99 Version 2003. En utilisant les nouveaux règlements de calcul et vérifications du béton armé (RPA99 V2003 et B.A.E.L91 modifié 99), cette étude se compose de cinq parties :

La première partie est consacré à la description générale du projet avec une présentation des caractéristiques des matériaux, La deuxième partie le pré dimensionnement de la structure et la descente des charges. La troisième partie a pour objectif l'étude des éléments secondaires (acrotère, escaliers balcon, et plancher).

L'étude dynamique de la structure a été entamée dans la quatrième partie par logiciel ETABS afin de déterminer les différentes sollicitations dues aux chargements (charges permanentes, d'exploitation et charge sismique).

En fin l'étude des éléments résistants de la structure (poteaux, poutres, voiles, radier général) .et calculé dans la dernière partie l étude de fondation .

Mots clés: Bâtiment, Béton armé, ETABS 2013, RPA 99 modifié 2003, BAEL 91 modifié 99.

Abstract:

This Project presents a detailed study of a building for residential use and commercial Consisting of a ground floor plus five floors, located in the wilaya of MILA. This region is classified as seismic zone IIa. According to RPA99 Version 2003.

Using the new reinforced concrete design and verification regulations (RPA99 V2003 and B.A.E.L91 modified 99), this study consists of five parts:

The first part is devoted to the general description of the project with a presentation of the characteristics of the materials, The second part the pre-dimensioning of the structure and the descent of the loads. The third part aims to study the secondary elements (parapet, balcony stairs, and floor).

The dynamic study of the structure was started in the fourth part by ETABS software to determine the various stresses due to the loads (permanent, operating and seismic loads).

Finally, the study of the resistant elements of the structure (posts, beams, sails, general raft) and calculated in the last part the study of foundation.

Keywords: Building, Reinforced concrete, ETABS 2013, RPA 99 modified 2003, BAEL 91modified 99.

الملخص:

يقدم هذا المشروع دراسة تفصيلية لمبنى للاستخدام السكني وتجاري مكون من طابق أرضي بالإضافة إلى خمسة طوابق ويقع بولاية ميلة. تم تصنيف هذه المنطقة على أنها المنطقة الزلزالية IIa. وفقًا لإصدار PPA99.

استخدام لوائح التحقق والتصميم الجديد للخرسانة المسلحة (RPA99 V2003 و B.A.E.L91 معدل (99) ، تتكون هذه الدراسة من خمسة أجزاء:

الجزء الأول مخصص للوصف العام للمشروع بامتداد عرض خصائص المواد ، الجزء الثاني: التحجيم المسبق للهيكل ونزول الأحمال. الجزء الثالث يهدف إلى دراسة العناصر الثانوية (الحاجز ، سلم الشرفة ، الأرضية).

بدأت الدراسة الديناميكية للهيكل في الجزء الرابع من قبل برنامج ETABS لتحديد الضغوط المختلفة بسبب الأحمال (الأحمال الدائمة والتشغيلية والزلزالية).

أخيرًا دراسة العناصر المقاومة للهيكل (أعمدة ، عوارض ، أشرعة ، طوافة عامة) وتم حسابها في الجزء الأخير دراسة الأساس.

الكلمات المفتاحية: بناء ، خرسانة مسلحة ، ETABS 2013 ، و RPA معدل 2003 ، 19 BAEL و RPA معدل 2003 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : بناء ، خرسانة مسلحة ، و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاحية : و 2013 ، 19 BAEL و الكلمات المفتاح : و 2013 ، 19 BAEL و الكلمات المفتاح : و 2013 ، 19 BAEL و الكلمات المفتاح : و 2013 ، 19 BAEL و الكلمات المفتاح : و 2013 ، 19 BAEL و الكلمات المفتاح : و 2013 ، 19 BAEL و الكلمات المفتاح : و 2013 ، 19 BAEL و الكلمات المفتاح : و 2013 ، 19 BAEL و الكلمات المفتاح : و 2013 ، 19 BAEL و الكلمات المفتاح : و 2013 ، 19 BAEL و

Sommaire

SOMMAIRE

Remerciement	
Dédicace	II
Résumé	V
Sommaire	VII
Liste des figures	VII
Listes de tableaux	VIII
Notation	VIIIII
Les plans	XVI
Introduction générale	2
Chapitre I: Présentation de l'ouvrage	4
I.1 Introduction	4
I.2. Présentation de l'ouvrage	4
I.3. Caractéristiques géométriques de la structure	4
I.4. Les données du site	4
I.5. Hypothèses de calcul.	5
I.6. Caractéristiques mécaniques des matériaux	5
I.6.1. Introduction.	5
I.6.2. Le Béton.	5
I.6.2.1 Résistance du béton à la compression.	6
I.6.2.2 Résistance du béton à la traction.	6
I.6.2.3 Résistance minimale du béton.	7
I.6.2.4 Contrainte limite.	7
I.6.2.5 Modules de déformation longitudinale	9
I.6.2.6 Coefficient de Poisson.	10
I.6.3 L'acier	10
I.6.3.1 Caractéristiques mécaniques	10
I.6.3.2 Contrainte limite.	10
I.6.3.3 Protection des armatures.	11
Chapitre II : Pré-dimension des éléments et descente des charges	14
II.1 Introduction	14
II.2. Pré dimensionnement des planchers	14
II.2.1. Plancher à corps creux	14

II.2.2. Les poutrelles	15
II.2.3. Les dalles pleines (les balcons)	16
II.3. Les poutres.	17
II.3.1. Poutres principales porteuses (sens transversale)	17
II.3.2. Poutres secondaires (non porteuses)	18
II.3.3. poutre palière	18
II.4. les poteaux.	19
II.4.1. Evaluation des charges	20
II.4.1.1. Les charges permanentes.	20
II.4.1.2. La charge d'exploitations.	21
II.4.2. Descente de charges.	21
II.4.2.1. Loi de dégression des charges.	22
II.4.2.2. Poteau intermédiaire	22
II.4.2.3. Descente de charges du Poteau intermédiaire	23
II.4.3. Vérification des poteaux au flambement	25
II.5. Les voile	26
Chapitre III : Calcul des éléments secondaires	29
III.1. Introduction	29
III.2 calcul de l'acrotère	29
III.2.1 Introduction	29
III.2.2 Evaluation des Charges	30
III.2.3 Calcul des sollicitations	30
III.2.4. Calcul de Ferraillage	30
III.2.5. Vérification au séisme	35
III.3 calcul les dalles pleines des balcons	36
III.3.1 Introduction	36
II.3.2 Définition de l'épaisseur (e)	36
III.3.3 Evaluation des charges	36
III.3.3.1 Combinaison des charges	37
III.3.4 Sollicitation de calcul	37
III.3.4.1 Calcul du ferraillage	38

III.3.4.2 Vérification de l'effort tranchant	39
III.3.4.3 Vérification à l'ELS	39
III.3.4.4 Vérification des contraintes	39
III.4 les escaliers	45
III.4.1 Terminologie	45
III.4.2 Schéma statique	45
III.4.3 Pré dimensionnement	46
III.4.3.1 Dimensionnement de la paillasse	46
III.4.3.2 Evaluation des charges Volée	47
III.4.4 Calcul des moments et les efforts tranchants	49
III.4.5 Calcul de ferraillage	51
III.4.5.1 Armatures longitudinales	51
III.4.5.2 Armature de répartition	52
III.4.7 Vérification de la flèche	53
III.5 Calcul de la poutre palière	55
III.5.1 Introduction.	55
III.5.2 Pré dimensionnement	56
III.5.3 Evaluation des charges	56
III.5.4 calcul de la sollicitation	57
III.5.4.1 Ferraillages de la poutre palière à la flexion	57
III.5.4.2 Calcul de la poutre palière à la torsion	59
III.6 Calcul des plancher	61
III.6.1 Introduction	61
III.6.2 Calcul des poutrelles	62
III.6.3. Les différents Types des plancher	63
III.6.4. Choix de la méthode de calcul	64
III.6.4.1 Vérification des conditions de la méthode forfaitaire	64
III.6.4.2 Principe de méthode de Caquot minoré	64
III.6.4.3 Ferraillage des poutrelles (terrasse inaccessible)	67
III.6.4.4 Ferraillage des poutrelles (Etage courante + RDC)	72
III.6.4.5 Ferraillage de la table de compression	76
CHAPITRE IV: Etude sismique	80

IV.1. Introduction	80
IV.2. Objectif de l'étude sismique	80
IV.3. Méthode de calcul sismique	80
IV.3.1. Description de logiciel	80
IV.3.2. Modélisation.	80
IV.3.2.1. Etape de la modélisation.	81
IV.3.2.2. Dimensionnement des éléments principaux de la structure	83
IV.3.2.3. Donnée de spectre de réponse	83
IV.3.2.4. Choix la disposition des voiles	85
IV.3.3. Résultat de l'analyse dynamique par ETABS	87
IV.3.4. Résultante des forces sismiques de calcul	89
IV.3.5. Excentricité accidentelle	92
IV.3.5.1. Caractéristiques géométriques et massiques de la structure	92
IV.3.5.2. Déplacements latéraux inter- étages	93
IV.3.6. Justification vis à vis de l'effet P- Δ	93
IV.3.7. Vérifications des sollicitations normales	94
IV.3.8. Justification du système de contreventement constitué par des voiles porteurs en béton armé	95 95
Chapitre V : Calcul des éléments principaux	97
V.1. Introduction	97
V.2. Ferraillage des poutres	97
V.2.1. Calcul des Armatures longitudinales	98 101
V.2.3. Calcul de l'espacement	101
V.2.4. Vérifications	102
V.2.4.1. Vérification de la contrainte tangente	102
V.2.4.2. Vérification à l'ELS	103
V.2.4.3. Vérification de la compression du béton	104
V.2.4.4. Vérification de la flèche V.3. Schéma de ferraillage	10 ²
V.3. Etude des poteaux	105
V.3.1. Armatures longitudinales	106
V.3.2. La section d'acier maximale	112

V.3.3. Les armatures transversales	112
V.3.4. Vérifications	114
V.3.4.1. Vérification à l'état limite ultime de stabilité de forme	114
V.3.4.2. Vérification aux sollicitations tangentielles	115
V.4. Ferraillage des voiles	116
V.4.1 Ferraillage du voile plein	116
V.4.1.1 Armature vertical	116
V.4.1.2 Armature horizontal	117
V.4.2 Vérification des contraintes de cisaillement	119
Chapitre VI : Etude de l'infrastructure	124
VI.1 Introduction	124
VI.2 Justification pour le choix de type de fondation	124
VI.2.1Combinaisons de calcul	124
VI.2.2Vérification de la semelle isolée	124
VI.2.3Vérification de la semelle filante	125
VI.2.4Calcul de Ferraillage	127
VI.3 poutre de rigidité	127
VI.3.1 Armatures transversales	129
VI.3.2 Armatures de peau	130
VI.3.3 Schéma de ferraillage	130
VI.4 L'étude des longrines	131
VI.4.1 Pré dimensionnement	131
VI.4.2 Ferraillage de la longrine	131
	133
VI.4.3 Schéma de ferraillage	135

LISTE DES FIGURES

Chapitre I : Présentation de l'ouvrage et caractéristique des matériaux	04
Figure I.1: Diagramme contraintes déformations du béton à l'ELU	7
Figure I.2: Diagramme contrainte déformation du béton à l'ELS	9
Figure I.3: Diagramme contrainte déformation de calcul de l'acier `a l'ELU	11
Chapitre II : Pré-Dimensionnement et descente de charges	14
Figure II.1: Coupe d'un plancher à corps creux	15
Figure II.2 : Schéma d'une poutrelle	16
Chapitre III : Calcul des éléments secondaires	29
Figure III.1: Coupe sur l'acrotère	29
Figure III.2 : Schéma statique de l'acrotère	30
Figure III.3 : section transversale de l'acrotère	31
Figure III.4 : Le schéma de ferraillage de l'acrotère	35
Figure III.5: Schéma statique du balcon TYPE01	37
Figure III.6 : Schéma de ferraillage de balcon	44
Figure III.7: exemple d'un escalier	45
Figure III.8: Dimensions des éléments des escaliers	46
Figure III.9: Schéma statique et charges de l'escalier étudié à l'ELU en KN	48
Figure III.10: Schéma statique et charges de l'escalier étudié à l'ELS en KN	49
Figure III.11 : Diagramme des moments a l'ELU et ELS en appuis et sur travée	51
Figure III.12 : poutre palière	56
Figure III.13 : schéma statique de poutre palier	57
Figure III.14 : schéma statique de la poutre palière	60
Figure III.15: Schéma de ferraillage des escaliers	61
Figure III.16: Schéma de ferraillage de la poutre palière	61
Figure III.17: Les différents Types des plancher	64
Figure III.18 : Disposition constructive des armatures de la dalle de compression	77
Figure III.19: Disposition constructive des armatures dans la poutrelle (terrasse)	78
Figure III.20 : Disposition constructive des armatures dans la poutrelle	78
(RDC+étage courante)	

Chapitre IV : étude sismique	80
Figure IV.1 : données du spectre de réponse	83
Figure IV.2 : la vue en 3 D.	84
Figure IV.3: La vue en plan.	85
Figure IV.4 : Disposition des voiles. 2D.	86
Figure IV.5: Disposition des voiles. 3D	87
Figure IV.6: Résultat DE mode01	88
Figure IV.7: Résultat DE mode	88
Figure IV.8: Résultat DE mode03	89
Chapitre V : Calcul des éléments principaux	97
Figure V.1: Schéma de ferraillage de la poutre principale	105
Figure V.2: Schéma de ferraillage de la poutre secondaire	105
Figure V.3 : Schéma de ferraillage des poteaux RDC+ETAGE	115/116
Figure V.4 : Dimensions du voile calculé	117
Figure V.5 : diagramme des contraintes	118
Figure V.6 : schéma de ferraillage des viols	121/122
Chapitre VI : étude de l'infrastructure	124
Figure VI.1 : la distribution des charges ponctuelle sur la poutre	128
Figure VI.2:Coupe de la semelle filante	128
Figure VI.3: Schéma de ferraillage de semelle filante	130
Figure VI.4 : Schéma de ferraillage de poutre de rigidité en appui et sur travée	131
Figure VI.5: Schéma de ferraillage de La longrine	133

LISTE DES TABLEAUX

Chapitre I : Présentation de l'ouvrage et caractéristique des matériaux	04
Tableau I.1 : Les résistances caractéristiques du béton à 28 jours	08
Tableau I.2 : quelques exemples d'aciers	10
Chapitre II : Pré-Dimensionnement et descente de charges	14
Tableau II.1: charge de plancher terrasse	20
Tableau II.2: charge de plancher étage courant	20
Tableau II.3 : charge de la dalle pleine (balcon)	21
Tableau II.4: charge de mur extérieur	21
Tableau II.5: charge de mur intérieur	21
Tableau II.6: Descente de charges du Poteau intermédiaire	23
Chapitre III : Calcul des éléments secondaires	29
Tableau III.1: charge de balcon terrasse	36
Tableau III.2: Combinaison des charges	37
Tableau III.3: section de ferraillage des balcons type 1	38
Tableau III.4: section de ferraillage des balcons type 2	41
Tableau III.5 : Ferraillage des dalles pleines sur 3 appuis continus	42
Tableau III.6 : Vérification des contraintes à ELS	44
Tableau III.7: charge de palier	47
Tableau III.8: charge de volée	47
Tableau III.9: Les sollicitations max	50
Tableau III.10: Ferraillage des escaliers	51
Tableau III.11 : Vérification des contraintes à ELS	53
Tableau III.12 : résultats sollicitation du calcul	57
Tableau III.13 : Ferraillage de la poutre palière à la flexion	58
Tableau III.14 : Vérification des contraintes à ELS	59
Tableau III.15. Les chargements sur les poutrelles	63
Tableau III.16: Moment aux appuis intermédiaires (poutrelle type1-terrasse	65
inaccessible	
Tableau III.17: Moment aux appuis de rive (poutrelle type1terrasse inaccessible.	66
Tableau III.18 : Moment en travée (poutrelle type1 terrasse inaccessible)	66

Tableau III.19: Moment sur appuis (poutrelle type1 terrasse inaccessible)	66
Tableau III.20 : Moment en travée (poutrelle type1 terrasse inaccessible)	66
Tableau III.21: Efforts tranchants (poutrelle type1 terrasse inaccessible)	67
Tableau III.22: sollicitation max du calcul	67
Tableau III.23: ferraillage des poutrelles (terrasse inaccessible) sur appui et	68
travée	
Tableau III.24: vérification la contraint de compression du béton	69
Tableau III.25: vérification la contraint de traction de l'acier	70
Tableau III.26: Moment aux appuis de rive (poutrelle type1 RDC et étages	70
courant)	
Tableau III.27: Moment sur appuis (poutrelle type1 RDC et étage courant)	70
Tableau III.28: Moment sur travées (poutrelle type1 RDC et étage courant)	71
Tableau III.29: Moment en travée (poutrelle type1 RDC et étage courant)	71
Tableau III.30: Efforts tranchants (poutrelle type1 RDC et étage courant)	71
Tableau III.31: sollicitation max du calcul	71
Tableau III.32: ferraillage des poutrelles (Etage courante + RDC) en travée	72
Tableau III.33: vérification la contraint de compression du béton	74
Chapitre IV : étude sismique	80
Tableau IV.1 : Dimensionnement des éléments principaux de la structure	83
Tableau IV.2 : période et facture de participation massique du modèle	87
Tableau IV.3 : Valeurs du coefficient d'amortissement suivant le système	90
structurel	
Tableau IV.4: V dynamique	91
Tableau IV.5: centre de masse et centre de torsion de chaque étage	92
Tableau IV.6: Résultats du déplacement selon (X) et (Y)	93
Tableau IV.7: Justification vis-à-vis de l'effet P-Δ sens (X)	93
Tableau IV.8: Justification vis-à-vis de l'effet P-Δ sens (Y)	94
Chapitre V : Calcul des éléments principaux	97
Tableau V.1: Sollicitations de calcul (Poutres principales)	97
Tableau V.2: Sollicitations de calcul (Poutres secondaires)	97
Tableau V.3: récapitulatif des sections d'armatures longitudinales	99
Tableau V.4: récapitulatif de la poutre secondaire	100
Tableau V.5: récapitulatif des sections d'armatures longitudinales	101

LISTE DES TABLEAUX

Tableau V.6: calcul de l'espacement des armatures transversales	102
Tableau V.7: Résultat de calcul les armatures	102
transversales	
Tableau V.8: calcul de la contrainte tangentielle	103
Tableau V.9: résultats de calcul de vérifications à l'ELS	103
Tableau V.10: Vérification de la compression du béton.	104
Tableau V.11: Caractéristiques mécaniques des matériaux	106
Tableau V.12: sollicitation (M, N,)	106
	107
Tableau V.13: Caractéristiques mécaniques des matériaux	
Tableau V.14: Ferraillage longitudinal des poteaux	111
Tableau V.15: Sections des armatures transversales	113
Tableau V.16: vérification au flambement	115
Tableau V.17: Vérification aux sollicitations tangentielles	115
Tableau V.18 : Sollicitations de calcul (voile plein)	118
Tableau V.19 : Résultats du ferraillage vertical voiles	119
Tableau V.20 : Résultats du ferraillage vertical voiles	121
Chapitre VI : étude de l'infrastructure	124
Tableau VI.1 : Charge due sur la semelle	125
Tableau VI.1 : Charge due sur la semene	128
Tableau VI 3 : résultat de Calcul de Ferraillage	129

NOTATION

La signification des principales notations est la suivante :

Notations en majuscules :

A: Coefficient d'accélération de zone, Coefficient numérique en fonction de l'angle de frottement,

As: Aire d'une section d'acier,

At.: Section d'armatures transversales,

B: Aire D'une section de béton,

D: Diamètre,

E: Module d'élasticité longitudinale,

Eb: Module de déformation longitudinale du béton,

Ei: Module de déformation instantanée (Eij à l'âge de j jours),

Es: Module d'élasticité de l'acier,

Ev: Module de déformation différé (Evj à l'âge de j jours), Force ou action en général,

G: Action permanente, module d'élasticité transversale,

Q: Charges d'exploitations,

I: Moment d'inertie,

L: Longueur ou portée,

Lf: Longueur de flambement.

M: Moment en général, moment de flexion le plus souvent,

Mg: Moment fléchissant développé par les charges permanentes,

Mu: Moment de calcul ultime,

Mq: Moment fléchissant développé par les charges d'exploitations,

Mser: Moment de calcul de service,

Mt: Moment en travée,

Ma: Moment sur appuis,

N: Effort normal,

St: Espacement des armatures transversales,

T: Effort Tranchant, période,

Vo: Effort tranchant a la base,

E.L.U: Etat limite ultime,

E.L.S: Etat limite service,

 L_x : Distance entre de deux poutrelles,

Ly: Distance entre nus d'appuis dans le sens de disposition des poutrelles,

T₁ T₂: Périodes caractéristiques associées à la catégorie du site,

R: Coefficient de comportement global,

V: Effort tranchant,

W: Poids de la structure.

Notations en minuscules

a: Dimension longitudinale,

b: Dimension transversale (largeur ou épaisseur d'une section),

d : Distance du barycentre des armatures tendues à la fibre extrême la plus comprimée,

d': Distance du barycentre des armatures comprimée à la fibre extrême la plus comprimée,

fe: Limite d'élasticité de l'acier,

fcj: Résistance caractéristique à la compression du béton âge de j jours,

f_{ij}: Résistance caractéristique à la traction du béton âge de j jours,

fc28, ft28: Grandeurs précédentes avec j = 28 jours,

h: Hauteur totale d'une section de béton armé,

i: Rayon de giration d'une section,

j: Nombre de jours,

k: Coefficient en général,

1: Longueur ou portée (on utilise aussi L),

n: Coefficient d'équivalence acier-béton; grandeur exprimée par un nombre entier,

s: Espacement des armatures en générales,

st: Espacement des armatures transversales,

x : Coordonnée en général, abscisse en particulier,

y: Coordonnée, parallèlement au plan moyen, à partir de l'axe central d'inertie,

ys: Coefficient de sécurité dans l'acier,

γь: Coefficient de sécurité dans le béton,

єьс: Raccourcissement relatif du béton comprimé,

ε: Déformation relative,

εs: Allongement relatif de l'acier tendu,

ε's: Raccourcissement relatif de l'acier comprimé,

η: Coefficient de fissuration relatif à une armature,

v: Coefficient de poisson, coefficient sans dimension,

ρ: Rapport de deux dimensions ; en particulier rapport de l'aire d'acier à l'aire de béton,

σ: Contrainte normale en général,

λ: Élancement,

τ: Contrainte tangente (de cisaillement),

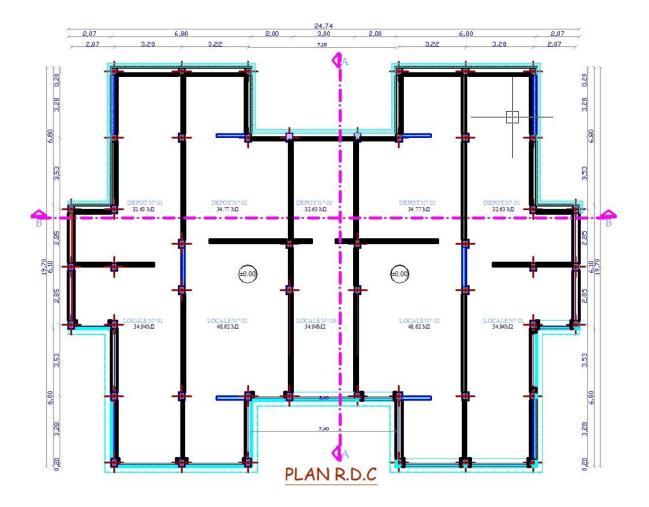
σ_{bc}: Contrainte de compression,

 σ_{ts} et σ_{sc} : Contrainte de traction, de compression dans l'acier, également notées σ_s et σ'_s ,

σs: Contrainte de traction admissible de l'acier,

σω: Contrainte de compression admissible du béton,

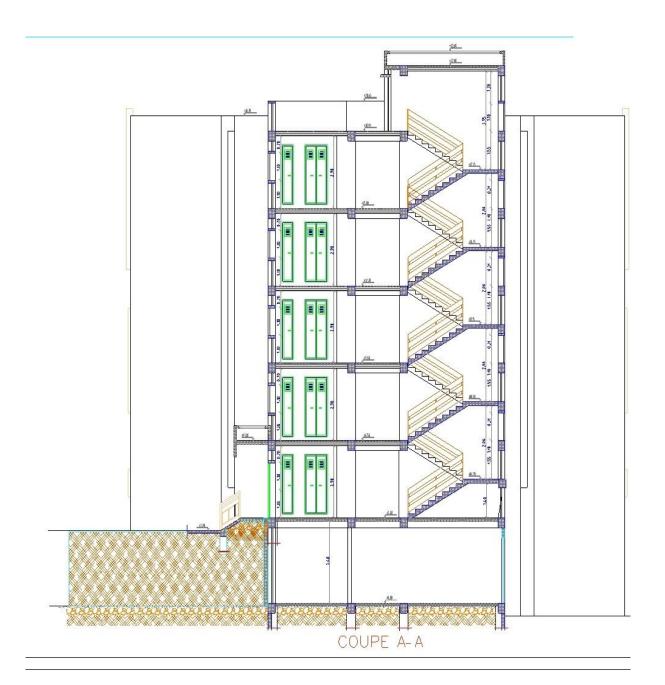
β: Coefficient de pondération,


6sol: Contrainte du sol,

ξ: Pourcentage d'amortissement critique,

CT: Coefficient qui dépend du système de contreventement,

β: Coefficient de pondération,



COUPE B-B

INTRODUCTION GENERALE:

L'étude des structures est une étape clef et un passage obligé dans l'acte de bâtir. Cette étude vise à mettre en application les connaissances acquises durant le cycle d'études en génie civil à travers l'étude d'un ouvrage en béton armé.

Dans le cadre de ce projet de fin d'étude, nous avons procédé au calcul d'un bâtiment comportant un **RDC** + **05** étages (R+5), dont le système de contreventement mixte est assuré par des **voiles** et des **Portiques Autostable** avec une justification de l'interaction portiques—voiles.

Après un pré dimensionnement des éléments structuraux et une descende de charges , une étude dynamique est effectuée pour trouver les caractéristiques dynamiques du bâtiment et calculer les efforts engendrés par les différentes sollicitations normales et accidentelles.

Dans cette étude, on a utilisé le logiciel de calcul par éléments finis ETABS 2013 particulièrement efficace dans la modélisation des bâtiments à plusieurs étages.

Il nous a permis non seulement la détermination des caractéristiques dynamiques de la structure, mais aussi les efforts internes qui sollicitent chaque élément de la structure. Les efforts engendrés dans le bâtiment, sont ensuite utilisés pour ferrailler les éléments résistants suivant les combinaisons et les dispositions constructives exigées par la réglementation algérienne dans le domaine du bâtiment à savoir les Règles Parasismiques Algériennes "RPA99/Version 2003" et les Règles de Conception et de Calcul des Structures en Béton Armé "CBA 93".

CHAPITRE I: PRESENTATION DE L'OUVRAGE

I.1. Introduction:

Toute étude de projet d'un bâtiment dont la structure est en béton armé, a pour but d'assurer la stabilité et la résistance des bâtiments afin d'assurer la sécurité du bâtiment.

Cette étude il comporte trois grandes parties :

- Le pré dimensionnement et le calcul des éléments secondaires.
- L'étude dynamique du bâtiment.
- Le ferraillage des éléments principaux (poteaux, poutres, voiles, fondations).

I.2. Présentation de l'ouvrage :

L'ouvrage à étudier est un bâtiment composé d'un rez-de-chaussée et cinq étages à usage multiple (habitation 5 étages et commerce au niveau RDC) comportent chacun quatre appartements. Il est implanté au niveau de la commune d'Ahmed Rachdi la wilaya de Mila.

- la configuration du bâtiment présente une régularité en plan et en élévation.
- La structure du bâtiment est mixte (voiles portiques) en béton armé
- Les planchers sont constitués par des dalles en corps creux assurant une grande rigidité et une fonction d'isolation acoustique et thermique.
- ➤ La cage d'escalier est droite, monte de RDC jusqu'au la terrasse, il est constitué de deux volées semblables et un palier de repos pour chaque étages.
- ➤ Les façades sont réalisées en double cloison par des éléments de briques comportant des ouvertures pour fenêtres à certains endroits.

I.3. Caractéristiques géométriques de la structure :

Les caractéristiques géométriques de la structure sont :

- La longueur en plan **24.74m**.
- La largeur en plan 19.70m.
- La Hauteur de RDC **3.40m**.
- La Hauteur d'étage courant **3.10m.**
- La Hauteur totale du bâtiment (sans acrotère) 18.90m.

Nous présentons dans les figures 1.1, 1.2, 1.3 respectivement une vue en plan du niveau RDC, une vue en plan des étages courants, et une vue en 3D de bâtiments.

I.4. Les données du site :

Le bâtiment est implanté dans une zone classée par le RPA 99/version 2003 comme :

- ➤ Une zone de moyenne sismicité (**Zone IIa**).
- L'ouvrage appartient au **groupe d'usage 2.**
- Le site est considéré comme meuble (S3).

Contrainte admissible du sol $\overline{\sigma} = 2,00$ bars.(rapport de sol)

I.5. Hypothèses de calcul:

Les hypothèses de calcul adoptées pour cette étude sont :

Les principales hypothèses du calcul des sections en BA soumises a la flexion simple aux ELS sont les suivantes :

- Les sections planes restent planes,
- ➤ Il n'y a pas de glissement à l'interface béton armatures,
- Le béton et l'acier sont considères comme des matériaux élastiques,
- ➤ Le béton tendu est néglige,
- L'aire des aciers n'est pas déduite de celle du béton,
- L'aire des aciers est concentrée en son centre de gravite,
- Le coefficient d'équivalence n = Es = E j est fixe forfaitairement a n = 15.

I.6. Caractéristiques mécaniques des matériaux :

I.6.1. Introduction:

Le béton et l'acier utilisés dans la construction de cet ouvrage seront choisis conformément aux règles techniques de conception, et de calcul des ouvrages en béton armé CBA93, ainsi que le règlement parasismique Algérien RPA 99/version2003.

I.6.2. Le Béton :

Le béton est un matériau constitué par le mélange, dans des proportions convenables de ciment, de granulats (sables et gravier) et de l'eau et éventuellement de produits d'addition (adjuvant).

Le matériau ainsi obtenu sera coulé et son durcissement aura les qualités suivantes :

- La résistance mécanique, essentiellement résistance à la compression simple, et pour certains usages spéciaux, la résistance à la traction.
- La résistance aux agents agressifs, eau de mer, acides, etc.,
- Les déformations instantanées et surtout différées, qui l'on souhaite généralement la plus faible possible.
- La maniabilité au moment de la mise en œuvre, que peut être définie comme l'aptitude du béton à remplir parfaitement le moule qui lui est offert sans ségrégation.
- L'on peut enfin rechercher certaines qualités spéciales, telles que la masse spécifique, aussi élevée que possible (béton lourd) ou aussi faible que possible (béton léger).

La composition courante d' 1m3 de béton est la suivante :

> 350 kg de ciment de CPA 325.

- ightharpoonup 400 kg de sable $D_s < 5$ mm.
- > 800 kg de gravillons 3/8 et 15/25.
- > 175 L d'eau de gâchage.

Le béton obtenu aura une masse volumique qui varie entre $2200~{\rm Kg/m^3}$ et $2500~{\rm Kg/m^3}$

I.6.2.1 Résistance du béton à la compression :

Dans les constructions courantes, le béton est défini, du point de vue mécanique, par sa résistance caractéristique à la compression (à 28 jours d'âge noté " f_{c28} ") déterminée par essai sur éprouvettes cylindriques de 16 cm de diamètre et 32 cm de hauteur.

Selon le **C.B.A 93, A2.1.1.1** : Avant durcissement total à j jours tel que $j \le 60$ jours, la résistance à la compression est :

$$\begin{cases} f_{cj} = \frac{j}{4,76+0,83j} f_{c28} \text{ Pour } f_{c28} \le 40 \text{ MPa.} \\ et \\ f_{cj} = \frac{j}{1.4+0,95j} f_{c28} \text{ Pour } f_{c28} > 40 \text{ MPa.} \end{cases}$$

Pour : j > 60 jours, $f_{cj} = 1.1$ f_{c28}

Pour un dosage courant de $350~\text{Kg/m}^3$ de ciment CPA325, la caractéristique en compression à 28 jours est estimée à 25 MPa (f_{c28} = 25~MPa).

I.6.2.2 Résistance du béton à la traction :

Selon le **C.B.A 93, A2.1.1.2,** la résistance caractéristique à la traction du béton à l'âge de j jours est conventionnellement définit par la relation :

$$f_{tj} = 0.6 + 0.06 f_{cj}$$
 (en MPa)

Cette formule étant valable pour les valeurs : $f_{ci} \le 60 \text{ MPa}$

Pour :
$$f_{cj} > 60 \text{ MPa}$$
 , $f_{tj} = f_{cj}^{2/3}$

I.6.2.3 Résistance minimale du béton : (C.B.A 93, A2.1.1.4)

La résistance caractéristique minimale f_{c28} doit être de 15 MPa quand on utilise des aciers de haute adhérence et de 12MPa lorsque l'on utilise des aciers lisses.

I.6.2.4 Contrainte limite:

a) Etat limite ultime:

contrainte ultime de compression :

Pour le calcul à l'E.L.U, on adopte le diagramme parabole- rectangle suivant :

$$f_{bu} = \frac{0.85. f_{cj}}{\theta. \gamma_b}$$

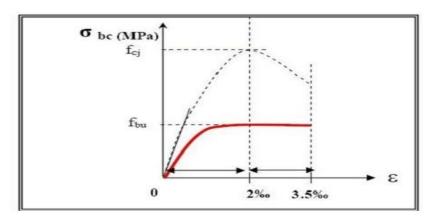


Figure I.1: Diagramme contraintes déformations du béton à l'ELU (CBA93 A.4.3.4.1)

f_{bu}: Contrainte ultime du béton en compression.

γ_h : Coefficient de sécurité.

 γ_b = 1.5 pour les combinaisons normales et 1.15 pour les combinaisons accidentelles.

0 : Coefficient qui dépend de la durée d'application du chargement. Il est fixé à **1** lorsque la durée probable d'application de la combinaison d'actions considérée est supérieure à 24 h, **0.9** lorsque cette durée est comprise entre 1 h et 24 h, et à **0.85** lorsqu'elle set inférieure à 1 h.

 f_{bu} =14,2 MPa, pour une situation durable.

f_{bu} =18,5 MPa, pour une situation accidentelle.

Résistance caractéristique		Résistance de calcul f _{bc} en MPa	
à 28 jours en MPa		$(pour \theta = 1)$	
à la compression	à la traction	Situations durables	Situations
$f_{ m c28}$	$f_{ m t28}$	ou transitoires	accidentelles
16	1.56	9.1	11.8
18	1.68	10.2	13.3
20	1.80	11.3	14.8
25	2.10	14.2	18.5
30	2.40	17.0	22.2
40	3.00	22.7	29.6
50	3.60	28.3	37.0
60	4.20	34.0	44.3

Tableau I.1: Les résistances caractéristiques du béton à 28 jours

ightharpoonup contrainte ultime de cisaillement : (CBA93, A.5.1.2.1.1) dans le cas ou les armatures d'âme sont droites (c'est-à-dire perpendiculaire à la fibre moyenne) La contrainte ultime de cisaillement est limitée par : $\tau_u \leq \overline{\tau}_u$

 $\overline{\tau}_u = min \ (0.20 \ \frac{f_{cj}}{\gamma_b} \ et \ 5 \ MPa)$, cas normal (fissuration peu nuisible)

 $\overline{\tau}_u$ = min (0.15 $\frac{f_{cj}}{\gamma_b}$ et 4 MPa), cas où la fissuration est préjudiciable, ou très préjudiciable

b) Etat limite de service :

Les déformations nécessaires pour atteindre l'ELS sont relativement faibles et on suppose donc que le béton reste dans le domaine élastique. On adopte donc la loi de Hooke de l'élasticité pour décrire le comportement du béton à l'ELS, avec pour des charges de longue durée $E_b = E_{ij}$ et v = 0,2 (coefficient de poisson)

La résistance mécanique du béton tendu est négligée. De plus, on adopte en général une valeur forfaitaire pour le module de Young du béton égale à 1/15 de celle de l'acier.

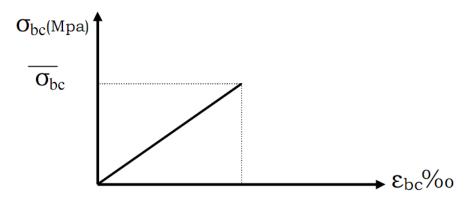


Figure I.2: Diagramme contrainte déformation du béton à l'ELS.

La contrainte limite de service en compression du béton est limitée par (C.B.A93 A4.5.2):

$$\sigma_{bc} \leq \overline{\sigma}_{bc}$$

Avec:

$$\overline{\sigma}_{bc} = 0.6 f_{c28}$$
.

I.6.2.5 Modules de déformation longitudinale : (C.B.A 93, A2.1.2)

Nous distinguons les deux valeurs du module de Young instantané $\boldsymbol{E_{ij}}$ et différé $\boldsymbol{E_{vj}}$.

Le module de Young instantané est utilisé pour les calculs sous chargement instantané de durée inférieure à 24 heures. Pour des chargements de longue durée (cas courant), on utilisera le module de Young différé, qui prend en compte artificiellement les déformations de fluage du béton. Celles-ci représentent approximativement deux fois les déformations instantanées. Le module de Young différé est pris égal à trois fois le module instantané:

$$E_{ij} = 3. E_{vj}$$
,

le Module instantané : pour les charges appliques avant 24h.

$$E_{ij} = 11000.\sqrt[3]{f_{cj}}$$
,

Le module différé : pour les charges de long de durée.

$$E_{vj} = 3700. \sqrt[3]{f_{cj}}$$
,

Dans notre cas on a : $f_{c28} = 25 \text{ MPa}$.

Donc:

$$E_{i28} = 32164,20 \text{ MPa}$$

 $E_{v28} = 10818,87 \text{ MPa}$

I.6.2.6 Coefficient de Poisson : (C.B.A 93, A2.1.3)

La déformation longitudinale est toujours accompagnée d'une déformation transve- sale, le coefficient de poisson v par définition, est le rapport entre la déformation transversale et la déformation longitudinale.

v = 0.0 dans le calcul des sollicitations à l'ELU (béton fissuré).

v=0,2 dans le calcul des déformations à l'ELS.

I.6.3. L'acier :

L'acier est un alliage de fer et de carbone en faible pourcentage, son rôle est d'absorber les efforts de traction, de cisaillement et de torsion, on distingue deux types d'aciers :

- Aciers doux ou mi-durs pour 0.15 à 0.25 % de carbone.
- Aciers durs pour 0.25 à 0.40 ½ de carbone.

Le module d'élasticité longitudinal de l'acier est pris égale à :

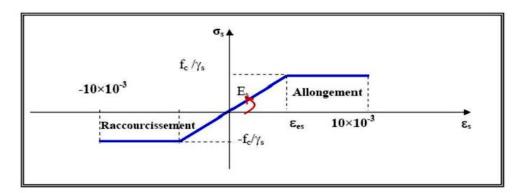
$E_s = 200\ 000\ MPa$.

Le tableau suivant nous donne quelques exemples d'aciers.

Туре	Nuance	Limite élastique fe (Mpa)	Ees‰
Barre HA	FeE40	400	1,74
Rond lisse	FeE22	215	0,935
	FeE24	235	1,02
Treillis	Ø ≤6mm	520	2,261

Tableau I.2: quelques exemples d'aciers.

I.6.3.1 Caractéristiques mécaniques :


Pour notre projet on prend des barres à haute adhérence (**HA**).FeE40, correspondant à des limites d'élasticité de **400 MPa** et pour les armatures transversales est un rond lisse FeE24(**RL**) correspondant à des limites d'élasticité de **235 MPa**

Le module d'élasticité longitudinale de l'acier est égale à : Es = 200000 Mpa

I.6.3.2 Contrainte limite:

E.L.U:

Pour le calcul on utilise le digramme contrainte-déformation de la figure (1.6)

Figure I.3: Diagramme contrainte déformation de calcul de l'acier `a l'ELU (C.B.A 93 A.2.2.2)

La contrainte limite des aciers est donnée par la formule suivante : $\sigma_s = \frac{f_e}{\gamma_s}$

$$\gamma_s = 1$$
 Pour les situations accidentelles. $\gamma_s = 1,15$ Pour le cas général.

> E.L.S:

Pour l'état limite d'ouverture des fissures, la contrainte des armatures est limitée à :

- o Fissuration non préjudiciable : Aucune vérification n'est à effectuer.
- Fissuration préjudiciable : $\sigma_{st} \le \overline{\sigma}_{st} = \min\left(\frac{2}{3} f_e; 110\sqrt{\eta. f_{tj}}\right)$ MPa (C.B.A A.4.5.3.3)
- o Fissurations très préjudiciables : $\sigma_{st} \le \overline{\sigma}_{st} = \min \left(\frac{1}{2} f_e; 90\sqrt{\eta. f_{tj}} \right) MPa$ (C.B.A.4.5.3.4)

I.6.3.3 Protection des armatures (Art A.7-2 4 BAEL91) :

Dans le but d'avoir un bétonnage correct et prémunir les armatures des effets intempéries et des agents agressifs. On doit veiller à ce que l'enrobage (C) des armatures soit conforme aux prescriptions suivantes :

- $ightharpoonup C \ge 5 cm$: Pour les éléments exposés à la mer, aux embruns ou aux brouillards salins ainsi que pour les éléments exposés aux atmosphères très agressives.
- ➤ C ≥3cm : Pour les éléments situés au contacte d'un liquide (réservoir, tuyaux, canalisations)
- ➤ C≥1cm: Pour les parois situées dans des locaux non exposés aux condensations.

CHAPITRE II: PREDIMENSIONNEMENT DES ELEMENTS STRUCTUREUX.

II.1. Introduction:

Le pré dimensionnement a pour but "le pré calcul "des sections des différents éléments résistants. Il sera fait selon les règles du CBA 93 et le RPA99/version2003, pour arriver à déterminer une épaisseur économique afin d'éviter un surplus d'acier et du béton.

Pour ce faire, nous commençons le pré-dimensionnement du sommet vers la base :

- Les planches ;
- Les poutres ;
- Les poteaux ;
- Les voiles ;

II.2. Pré dimensionnement des planchers :

Le plancher est une séparation entre les niveaux qui transmet les charges et les surcharges qui lui sont directement appliquées aux éléments porteurs tout en assurant des fonctions de confort comme l'isolation phonique, thermique et l'étanchéité des niveaux extrêmes.

Pour le bâtiment étudié, deux types de planchers vont être utilisés :

- Plancher à corps creux en partie courante;
- Dalle pleine pour les balcons et cage d'escalier

II.2.1. Plancher à corps creux :

Ce type de plancher est constitué de poutrelles préfabriquées en béton armé espacées de 65 cm, des corps creux en béton expansé (hourdis) et une table de compression de faible épaisseur en béton armé par un treillis soudé.

L'épaisseur du plancher **h** est obtenue par la formule empirique suivante :

$$\frac{L}{25} \le h \le \frac{L}{20}$$

L: La plus grande portée, ici $L=330\ cm$. Ce qui nous donne un plancher constitué de hourdis de 16 cm et une dalle de compression de 4 cm.

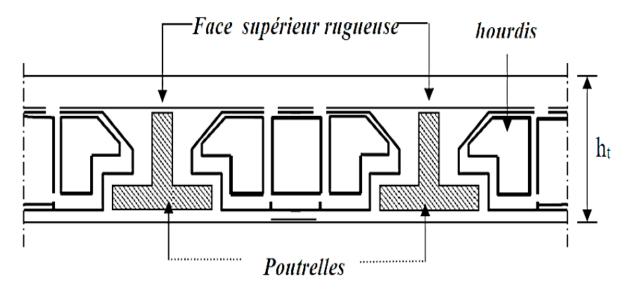


Figure II.1: Coupe d'un plancher à corps creux.

II.2.2. Les poutrelles :

Les nervures sont en béton armé, coulées sur place, et reposant sur des poutres principales ou des voiles. La section transversale des nervures est assimilée à une section en (T). La disposition des poutrelles se fait selon deux critères :

- ➤ Sont disposées parallèlement à la plus petite portée (sens porteur, le plancher travaillant dans un seul sens).
- ➤ Si les poutres dans les deux sens sont égales alors on choisit le sens ou on a plus d'appuis (critère de continuité) car les appuis soulagent les moments en travée et diminuent la flèche.

La largeur de la dalle de compression b à prendre est définie par :

$$\frac{b1-b0}{2} \leq \min \frac{Lx}{2} ; \frac{ly}{10}$$

- **b0** : Largeur de la nervure.
- Lx : Distance entre nus des deux poutrelles.
- Ly : Distance entre nus d'appuis de la travée minimale des poutrelles.

On a: b0 est compris entre 0.4ht et 0.6ht sachant que $\mathbf{ht} = \mathbf{20}$ cm

$$b0 = 10$$

 $Lx = 65-b0 = 55 \text{ cm},$
 $Ly = 330 \text{ cm}.$
 $b1 \le \min(\frac{Lx}{2}; \frac{ly}{10}) \Rightarrow b1 \le \min(\frac{55}{2}; \frac{330}{10})$

 $\rightarrow b1 \le \min(27.5;33)$

Soit: $b1 = 27.5 \text{ cm } b \le 2 \times b1 + b0 = 2 \times 27.5 + 10 = 65 \text{ cm}$

Soit : b = 65 cm

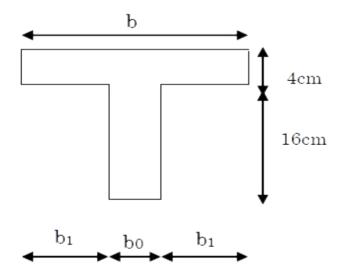


Figure II.2 : Schéma d'une poutrelle.

II.2.3. Les dalles pleines (les balcons):

Ce type de plancher va être utilisé pour les balcons, sont des éléments horizontaux d'épaisseur mince en béton armée coulés sur place.

- > l'épaisseur doit vérifier deux conditions :
- La condition de résistance, donnée en fonction de la nature des appuis sur lesquels repose la dalle, dans notre cas les dalles sont sur deux à trois appuis :

$$\frac{L}{35} \le h \le \frac{L}{30}$$

Ici, L = 330 cm.

• Conditions supplémentaires dues à l'incendie, pour résister :

$$\binom{7\text{cm pour 1 heure de coupe } - \text{feu}}{11\text{cm pour 2 heures de coupe } - \text{feu}}$$

Pour satisfaire à ces conditions, nous adoptons l'épaisseur suivante :

II.3. Les poutres :

Les poutres de notre bâtiment sont des éléments en béton arme de section rectangulaire elles sont susceptibles de transmettre aux poteaux les efforts dus aux chargements vertical ramenés par les planchers.

Les poutres seront pré dimensionnées selon les formules empiriques données par CBA93 et vérifiées par la suite selon le **RPA99** (v2003).

II.3.1. Poutres principales porteuses (sens transversale):

D'après le CBA93:

 $L/15 \le h_t \le L/10$ h_t : hauteur de la poutre.

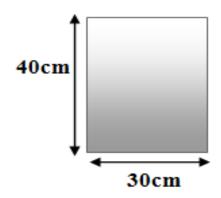
 $0.3h_t \le b \le 0.7h_t$ **b**: largeur de la poutre.

Avec:

L : portée maximale de poutre.

Nous avons : L = 5,20m.

$$\begin{cases} L/15 = 520/15 = 34,66cm \\ L/10 = 520/10 = 52cm \end{cases}$$
 34,66cm \leq ht \leq 52cm.


On prend h=40 cm.

$$\begin{cases} 0.3h_t = 0.3 \times 40 = 12 \text{ cm} \\ 0.7h_t = 0.7 \times 40 = 28 \text{ cm} \end{cases}$$
 12 cm \leq b \leq 28 cm.

On prend b=30cm

Les dimensions des poutres doivent respecter l'article 7.5.1 de RPA99/V2003 suivant

$$b \ge 20 \text{ cm.}$$
 $\Rightarrow b = 30 \text{cm} > 20 \text{cm}$ wérifie.
 $h \ge 30 \text{ cm.}$ $\Rightarrow h = 40 \text{cm} > 30 \text{cm}$ vérifie.
 $h/b \le 4$ $\Rightarrow 40/30 = 1,33 < 4$ vérifie.

ht

II.3.2. Poutres secondaires (non porteuses) :

D après le CBA93:

 $L/15\,\leq\,h_t\leq L/10$

 $\mathbf{h_t}$: hauteur de la poutre.

 $0.3h_t \le b \le 0.7h_t$

b : largeur de la poutre.

Avec : L : portée maximale de poutre.

Nous avons : L = 3.30m.

$$\begin{cases} L/15 = 330/15 = 22 \text{ cm} \\ L/10 = 330/10 = 33 \text{ cm}. \end{cases}$$
 22 cm \leq **ht** \leq **33 cm**.

On prend h=35 cm.

$$\begin{cases} 0.3 \text{ht} = 0.3 \times 35 = 10.5 \text{ cm} \\ 0.7 \text{ht} = 0.7 \times 35 = 24.5 \text{cm} \end{cases}$$
 10.50 cm \le \text{ht} \le 24.5 cm

On prend b=30 cm.

Les dimensions des poutres doivent respecter l'article 7.5.1 de RPA99/V2003 suivant :

$$b \ge 20 \text{ cm.}$$
 $\Rightarrow b = 30 \text{ cm} > 20 \text{ cm}$ vérifie.
 $h \ge 30 \text{ cm.}$ $\Rightarrow h = 35 \text{ cm} > 30 \text{ cm}$ vérifie.
 $h/b \le 4$ $\Rightarrow 35/30 = 1,16 < 4$ vérifie.

II.3.3. poutre palière :

Les dimensions de la poutre sont :

 $L/15\,\leq\,h\leq L/10$

On a : L=330cm alors : $22cm \le h \le 33cm$.

On prend: h=35cm.

La largeur de poutre : $0.3h \le b \le 0.8h$. donc : $10.5cm \le b \le 28cm$

On adopte: b= 30cm.

> Poutres principales: $(b \times h) = (30 \times 40) \text{ cm}^2$

Poutres secondaires : $(b \times h) = (30 \times 35) \text{ cm}^2$

Poutre palière : $(b \times h) = (30 \times 35) \text{ cm}^2$

II.4. les poteaux :

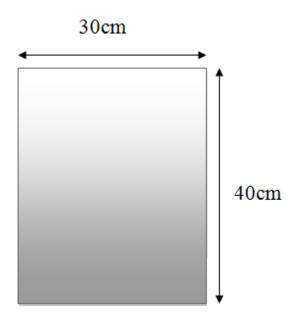
Les poteaux sont des éléments structuraux chargés de transmettre les charges verticales aux fondations et du contreventement total ou partiel du bâtiment.

❖ D'après les conditions de RPA 99/V 2003 Art 7.4.1

La zone séismique est IIa, donc il faut vérifier les trois conditions suivante :

✓ Min (b; h)
$$\geq \frac{h_e}{20}$$
(1)

$$\checkmark \frac{1}{4} < \frac{b}{h} < 4 \dots (2)$$


✓ Min (b; h)
$$\geq$$
 25cm ... (3)

b=30cm, On propose : h=40cm

• La vérification: (RPA99 /V2003-art-7.4.1)

Min (b; h) = Min (30; 40) = 30
•
$$\frac{h_e}{20} = \frac{340-40}{20} = 15$$
30 > 15.....CV (1)

o les trois conditions signalées si-haut sont vérifiées donc les dimensions des poteaux rectangulaires sont: b = 30 cm, h = 40 cm

II.4.1. Evaluation des charges :

II.4.1.1. Les charges permanentes :

Plancher terrasse:

Tableau II.1: charge de plancher terrasse

N	Composants de plancher corps	e (m)	P (kg / m ³)	G (kg/m²)
	creux			
1	Protection gravillon	0,05	1500	85
2	Etanchéité multicouche	0,05 1500 0,02 600 0,04 2200 0,04 400 / / / 0,02 1000		12
3	Forme de pente	0,04	2200	220
4	Isolation thermique en liège	0,04	400	16
5	Plancher à corps creux (16+4)	/	/	280
6	Enduit en plâtre	0,02	1000	20
	Charge total			$G = 633 \text{ kg/m}^2$

❖ La charge permanente totale pour le plancher terrasse accessible a corps creux est :

 $G=6.33KN/m^2$

***** Etage courant :

Tableau II.2: charge de plancher étage courant.

N	Composants de plancher	E(m)	$\rho(kg/m^3)$	G kg/m ²)
	dalle pleine			
1	carrelage	0.02	2200	44
2	Mortier de pose	0.02	2000	40
3	Lit de sable	0.02	1800	36
4	Plancher dalle pleine	/	/	280
5	Enduit en plâtre	0.02	1300	26
6	Cloisons légères	/	/	75
	Charg	e total		G=5.01 kg/m ²

❖ La charge permanente totale pour l'étage courant à corps creux est :

 $G=5.01KN/m^2$

Dalle plaine (balcon):

Tableau II.3: charge de la dalle pleine (balco

N	Composants de plancher	posants de plancher $e(m)$ $\rho(kg/m^3)$		G (kg/m²)
	corps creux			
1	carrelage	0.02	2000	40
2	Mortier de pose	0.02 2000		40
3	Lit de sable	0.02 2000 0.02 1800		36
4	Plancher dalle pleine	ancher dalle pleine 0.15 2500		375
	Charg	e total		G=495 kg/m ²

- ❖ La charge permanente totale pour la dalle pleine est : G = 495 Kg/m²
- **❖** Mur extérieur (double parois en briques creuses) :

Tableau II.4: charge de mur extérieur.

N	Composants de plancher corps	e (m)	P (kg / m ³)	G (kg/m²)
	creux			
1	Enduit de ciment	0,02	1800	36
2	Brique creuse	0,15	900	135
3	Brique creuse	0,10	900	90
4	Enduit en plâtre	0,02	1000	20
	Charge totale			$G = 281 \text{ Kg/m}^2$

❖ La charge permanente totale qu'on a est :

 $G=2.81KN/m^2$

Tableau II.5: charge de mur intérieur.

N	Composants de plancher corps	e (m)	$P (kg / m^3)$	G (kg/m²)
	creux			
1	Enduit de ciment	0,02	1800	36
2	Brique creuse	0,10	900	90
3	2 Enduit en plâtre	0,02	2*1000	40
	Charge totale			$G = 166 \text{ Kg/m}^2$

[❖] La charge permanente totale de mur intérieur est : G = 166 Kg/m²

II.4.1.2. La charge d'exploitations :

- La charge d'exploitation à prendre dans le cas d'un plancher terrasse inaccessible est
 Q=1 KN/m².
- o La charge d'exploitation à prendre pour l'étage courant est Q=1.5 KN/m2.
- o La charge d'exploitation à prendre pour les balcons est Q=3.5 KN/m2.
- La charge d'exploitation des escaliers est Q = 2.5KN/m2.

II.4.2. Descente de charges :

La descente de charge est le chemin suivi par les différentes actions (charges et surcharges) du niveau le plus haut de la structure jusqu'au niveau le plus bas avant sa transmission au sol. On

effectuera la descente de charges pour le poteau le plus sollicité et qui a souvent la plus grande surface afférente.

II.4.2.1. Loi de dégression des charges (DTR.B.C2.2.art.6.3)

Soit **Qo** la surcharge d'exploitation sur la terrasse couvrant le bâtiment.

Qo, Q1Qn sont les charges d'exploitation respectivement des planchers d'étage 1,2....n numéroté à partir du sommet du bâtiment.

Q à chaque niveau est déterminé comme suit :

Sous la terrasse......Qo.

Sur le dernier étage......Qo+Q1.

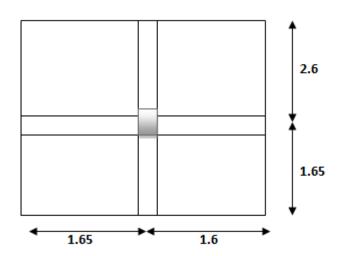
Sur l'étage immédiatement inférieurQ0+0.95 (Q1+Q2).

Sur l'étage immédiatement inférieur......Qo+0.9 (Q1+Q2+Q3).

Pour
$$n \ge 5 \dots Q_0 + (3+n)/2 \cdot n(Q_1 + Q_2 + \dots + Q_n)$$
.

Lorsque la charge d'exploitation est la même (comme notre cas) pour tous les étages, la loi de dégression ci-dessus est équivalente à la règle usuelle dans laquelle les charges d'exploitation de chaque étage sont réduites dans les proportions indiquées ci-dessous :

Pour le dernier étageQ


Pour l'étage immédiatement inférieur.....0.90 Q

Pour l'étage immédiatement inférieur.....0.80 Q

II.4.2.2. Poteau intermédiaire :

La surface afférente pour la charge Permanente :

$$S=(\frac{3.30}{2}+\frac{3.20}{2})(\frac{3.30}{2}+\frac{5.50}{2})=13.81=14 \text{ m}^2$$

II.4.2.3. Descente de charges du Poteau intermédiaire :

Tableau II.6: Descente de charges du Poteau intermédiaire.

section	étage	L'élément	G (kN)	Q (l	kN)	
		Plancher : 6,33*14	88,62	/		
0 - 0	La	Pp: 25*0,30*0,40*4,25	12,75	/		
	terrasse	Ps: 25*0,30*0,35*3,25	8,53	/		
		Surcharge:	/	14	1	14
total		/	109,90			14
		Revenant: 0-0	109,90			14
1 - 1	Etage	Plancher courant: 5,01*14	70,14	/		
	courant	Pp: 25*0,30*0,40*4,25	12,75	/		
		Ps: 25*0,30*0,35*3,25	8,53	/		
		Poteau: 25*0,30*0,40*(3,10-0,4)	8,10	/		
		Surcharge:	/	21	1	21
total		/	209,42			35
		Revenant: 1-1	209,42			35
2 - 2	Etage	Plancher courant: 5,01*14	70,14	/		
	courant	Pp: 25*0,30*0,40*4,25	12,75	/		
		Ps: 25*0,30*0,35*3,25	8,53	/		
		Poteau: 25*0,30*0,40*(3,10-0,4)	8,10	/		
		Surcharge:	/	21	0.9	18.90
total		/	308,94			53.90
		Revenant: 2-2	308,94			53.90
3 - 3	Etage	Plancher courant : 5,01*14	70,14	/		
	courant	Pp: 25*0,30*0,40*4,25	12,75	/		
		Ps: 25*0,30*0,35*3,25	8,53	/		
		Poteau: 25*0,30*0,40*(3,10-0,4)	8,10	/		
		Surcharge:	/	21	0.8	16.80
total		/	408,46			70.70
		Revenant : 3-3	408,46			70.70
4 - 4	Etage	Plancher courant : 5,01*14	70,14	/		
	courant	Pp: 25*0,30*0,40*4,25	12,75	/		
		Ps: 25*0,30*0,35*3,25	8,53	/		
		Poteau: 25*0,30*0,40*(3,10-0,4)	8,10	/		
		Surcharge:	/	21	0.7	14.70
total		/	507,98			85.40
		Revenant: 4-4	507,98			85.40
5 - 5	Etage	Plancher courant : 5,01*14	70,14	/		
	courant	Pp: 25*0,30*0,40*4,25	12,75	/		
		Ps: 25*0,30*0,35*3,25	8,53	/		
		Poteau: 25*0,30*0,40*(3,10-0,4)	8,10	/		
		Surcharge:	/	21	0.6	12.60
total		/	607,50			98
6 - 6	Etage	Revenant: 5-5	607,50			98
	courant	Poteau: 25*0,30*0,40*(3,40-0,40)	9,00	/		
		surcharge		21	0.5	10.5
total		/	616,50			108.5

Combinaison des charges :

o ELU:

Nu = 1,35 G + 1,5 Q

 $\mathbf{Nu} = (1,35*616,50) + (1,50*108.5)$

Nu = 995.02 KN

Selon le **CBA93** (art.13.8.1.1) on doit majorer pour les poteaux intermédiaire l'effort de compression ultime Nu a 10% telle que :

Nu =1.1* 995.02 =1094.52 KN

o ELS:

Nser = G + Q

Nser = 616.50 + 108.5

Nser = 725 KN

Vérification:

L'effort ultime Nu supporté par un poteau quelconque doit satisfaire la condition suivante :

$$Br \ge \frac{k \times Nu \times \beta}{\frac{fbc}{0.9} + 0.85(\frac{fe}{vs}) \times \frac{A}{B}}$$

Tel que:

B_r: Section réduite de béton obtenue en retirant 1cm d'épaisseur sur toute la périphérique du poteau.

$$fbc$$
: 0.85 $\left(\frac{fc28}{\gamma b}\right) \approx 14.2MPA$

fe:Limite d'élasticité de l'acier utilise = 400MPA

 $\gamma b = 1.5$

 $\gamma s = 1.15$

A: section d'aciers comprimés.

B: section du béton. $\frac{A}{B_r} = 1\%$

 β : coefficient de correction dépendant de l'élancement mécanique λ des poteaux qui prend les valeurs $\beta = 1 + 0$, $2(\frac{\lambda}{35})^2$

K=1 car moins de la moitié des charges est appliquée avant 90 jours.

Nu : effort ultime évalué par combinaison des charges et surcharges appliquées (le tableau récapitulatif relatif aux charges et surcharges retenues pour la descente de charges sera détaillé dans le chapitre suivant.

$$Br \ge \frac{1 \times Nu \times 1.122}{\frac{14.2}{0.9} + 0.85(\frac{400}{1.15}) \times \frac{1}{100}}$$

$$Br=30\times40=1200\text{cm}^2 > Br = 0.059Nu = 645.7cm^2 \dots \text{CV}$$

II.4.3. Vérification des poteaux au flambement :

Lorsque un poteau élance est soumise a un effort de compression, il se produit un phénomène d'instabilité transversale c'est le flambement :

Cette instabilité dépend de :

- ✓ La langueur de flambement
- ✓ La section (caractéristique géométriques)
- ✓ La nature des appuis

Le non flambement, consiste à vérifier la condition suivante :

$$\lambda = \frac{l_f}{i} \le 50$$

Avec:

 λ : Élancement du poteau ;

 l_f : Longueur de flambement; $(I_f = 0,7. l_0)$

l₀ : l' hauteur de poteau (l'hauteur libre d'étage)

i: Rayon de giration de la section transversale $(\mathbf{i} = \sqrt{\frac{I}{B}})$

 $\bf B$: aire de la section transversale du Poteau ($\bf B=\bf b.h$)

I: Moment d'inertie de la section transversale dans le plan de flambement

$$(\mathbf{I} = \frac{hb^3}{12})$$

b: petit coté du poteau

h: grand coté du poteau

Dans notre projet touts les poteaux sont rectangulaires donc :

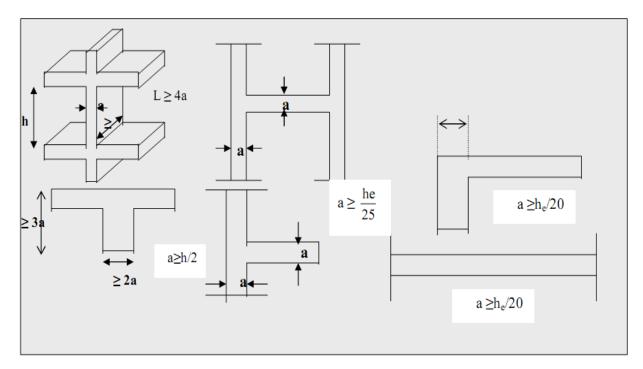
•
$$i = \sqrt{\frac{I}{B}} = \sqrt{\frac{\frac{hb^3}{12}}{b.h}} = \sqrt{\frac{b^2}{12}} = \frac{b}{\sqrt{12}}$$

•
$$\lambda = \frac{l_f}{i} = \frac{0.7 \cdot l_0}{i} = \frac{0.7 \cdot l_0 \cdot \sqrt{12}}{b} \le 50$$

• $\lambda = \frac{l_f \cdot \sqrt{12}}{b} = \frac{0.7 \times 340 \times \sqrt{12}}{30} = 27.48 < 50$ (pas de risque de flambement).

II.5. Les voile :

Les voiles sont des éléments résistants de type plan dont la capacité de reprendre les efforts horizontaux est très importante vu la grande inertie de leurs sections horizontales. Le pré dimensionnement des voiles se fait par des formules empiriques sur les dimensions minimales en fonction de la hauteur d'étage **he** et les conditions d'abouts du voile (conditions de rigidité des extrémités) :


D'après l'article 7.7.1 de RPA 99/Version2003.

Sont considérés comme voiles les éléments satisfaisants la condition L > 4a telle que :

L : longueur de voile

a : épaisseur de voile.

L'épaisseur minimale du voile est de15 cm, de plus l'épaisseur doit être déterminée en fonction de la hauteur libre d'étage **he** et des conditions de rigidité aux extrémités selon les formules suivantes :

CHAPITRE II: PREDIMENSIONNEMENT DES ELEMENTS STRUCTUREUX.

Dans notre cas:

Sens longitudinal he = 3,05 m

Sens transversal he = 3,05 m

$$\begin{cases} a \ge h/25 = 300/25 = 13.63 \text{ cm} & \Rightarrow a \ge 13.63 \text{ cm} \\ a \ge h/22 = 305/22 = 13,86 \text{ cm} & \Rightarrow a \ge 13.86 \text{ cm} \\ a \ge \max (e_{min}, h_e/25, h_e/22, h_e/20) \\ a \ge \max (15.00; 13.63; 13.86) \text{ cm}. \end{cases}$$

Donc on adopte:

a = 20 cm

Il nous reste à vérifier les exigences du RPA 99 version 2003 concernant le rapport entre la longueur et l'épaisseur des voiles :

- Sens longitudinal : Lmin = $170 \text{ cm} > 4 \text{ a} = 4 \times 20 = 80 \text{ cm}$ (**Vérifié**).
- > Sens transversal: Lmin = 270 cm > 80 cm. (Vérifié).

CHAPITRE III: CALCUL DES ELEMENTS SECONDAIRE

III.1. Introduction:

Les éléments secondaires sont les éléments qui n'ont pas une fonction porteuse ou de contreventement. Ce sont des éléments en maçonnerie comme les cloisons et les murs de façade.

Le calcul des éléments secondaires se fait généralement sous l'action des charges permanentes et des surcharges d'exploitations dont le détail est donne dans le chapitre N°2. Cependant, certains doivent être vérifiés sous l'action de la charge sismique (la composante verticale ou horizontale) comme ils doivent répondre aux dispositions constructives de la réglementation parasismique.

Dans le présent chapitre, on va aborder le calcul des éléments secondaires suivants :

- L'acrotère ;
- Les dalles pleines des balcons ;
- Les escaliers :
- Les planchers à corps creux (poutrelles et table de compression);

III.2 calcul de l'acrotère :

III.2.1 Introduction:

L'acrotère est un élément non structural contournant le sommet du bâtiment conçu pour la protection de la ligne conjonctif entre lui même et la forme de pente contre l'infiltration des eaux pluviales.

Il est réalisé en béton armé. Soumis à son poids propre et à une surcharge horizontale due à la main courante. Il est assimilé à une console encastrée au plancher terrasse. La section la plus dangereuse se trouve au niveau de l'encastrement. Le calcul se fera en flexion composée dans la section d'encastrement pour une bande de 1 m linéaire. La fissuration est considérée comme préjudiciable car l'acrotère est soumis aux intempéries.

Les dimensions de l'acrotère sont données dans la figure. 3.1.

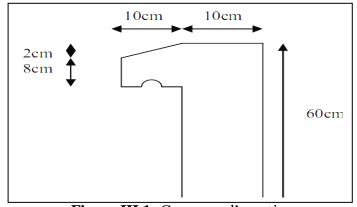


Figure III.1: Coupe sur l'acrotère.

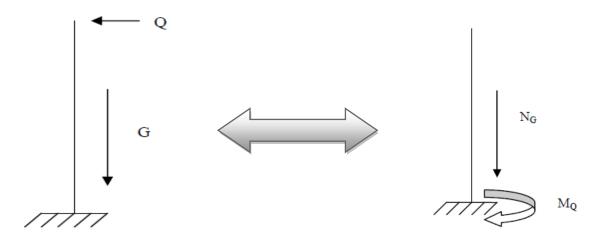


Figure III.2 : Schéma statique de l'acrotère.

III.2.2 Evaluation des Charges:

Effort normal dû au poids propre(G):

 $G = \rho.s$

 ρ : Masse volumique du béton = $25KN/m^3$

S : Section longitudinale de l'acrotère.

$$S = 0.6.0, 1 + \frac{(0.1 + 0.05).0, 1}{2} = 0.0675 m^2$$

 $G = 25 \times 0,0675 = 1,69$ KN/ml.

Effort horizontal dû à la main courante : Q =1 KN/ml

III.2.3 Calcul des sollicitations :

t Etat limite ultime (E.L.U) :

G : effort qui stabilise l'acrotère donc il n'y a pas de majoration de la charge permanente.

 \triangleright Effort normal de compression dû à G : Nu = 1,35×1,69 = 2,28 KN/ml

Moment de renversement dû à Q : $\mathbf{Mu} = 1,5 \times 1 \times 0,6 = 0,9$ KN.m 3.2.3.2 Etat limite de service (E.L.S) :

➤ Effort normal de compression dû à G : Ns = 1,69 KN/ml

Moment de renversement dû à Q : $Ms = 1 \times 1 \times 0,6 = 0,6$ KN.m

III.2.4. Calcul de Ferraillage:

- Le calcul de l'acrotère se fait pour une bande unitaire c'est-à-dire de 1m de largeur.
- La fissuration est considérée comme préjudiciable, en plus l'élément est exposé aux intempéries donc l'enrobage (c) est pris égale à 2cm.
- ➤ Il consiste à l'étude d'une section rectangulaire soumise à la flexic : composée.

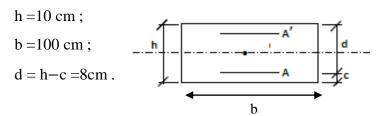


Figure III.3 : section transversale de l'acrotère.

> Calcul de l'excentricité :

Selon l'article A.4.3.5CBA93, en adoptant une excentricité totale de calcul :

$$e = e_1 + e_2$$

 e_1 : Excentricité (dite du premier ordre) de la résultante des contraintes normales, y compris l'excentricité additionnelle définie ci-dessous

$$e_1 = \frac{\mathbf{M}\mathbf{u}}{\mathbf{N}\mathbf{u}} + e_a$$

 e_a : Excentricité additionnelle.

 e_2 : Excentricité dus aux effets du second ordre, liés à la déformation de la structure.

$$e_1 = \frac{\text{Mu}}{\text{Nu}} = \frac{0.9}{2.28} = 0.394 \text{m} = 39.4 \text{cm}$$

$$\frac{h}{6} = \frac{0.1}{6} = 0.016$$
m = **1.6cm**

 $e_1 = 39,4cm > \frac{h}{6} = 1,6cm \Rightarrow$ la section est **partiellement comprimée**, elle sera calculée en flexion simple sous l'effet d'un moment fictif (\mathbf{M}_{fic}) puis on se ramène à la flexion composée.

Calcul de flexion simple :

Moment fictif (M_{fic}) :

$$M_{fic} = M_u + N_u.y$$

y : la distance entre le centre de gravité de la section transversale de l'acrotère et le centre de gravité des armature tendue.

$$y = d - \frac{h}{2} = 8 - \frac{10}{2} = 8 - 5 = 3 \text{ cm}$$

$$M_{\text{fic}} = 0.9 + (2.28 \times 0.03) = 0.968 \text{ KN.m}$$

$$\mu_{fic} = \frac{M_{fic}}{b.d^2.f_{bu}} = \frac{0,968}{1\times80^2\times14,2} \times 1000 = 0,0106 \text{ (moment réduite fictif)}$$

 $\mu_{fic} = 0.0106 < \mu_{AB} = 0.186$ (le μ_{AB} est une le signe de référence) \Rightarrow section simplement armé ,donc $\triangle s=0$ (les armatures comprimées ne sont pas nécessaires)

$$\alpha_{\text{fic}} = 1, 25. (1 - \sqrt{(1 - 2\mu)}) = 1, 25(1 - \sqrt{(1 - 2 \times 0.0106)}) = 0.013$$

$$\beta_{\rm fic} = 1 - 0.4 \alpha_{\rm fic} = 1 - 0.4 \times 0.013 = 0.995$$

$$A_{sfic} = \frac{M_{fic}}{\beta.d.\sigma s} = \frac{0.968 \times 1000}{0.995 \times 8 \times 348} = 0.35 cm^2$$

 $A_{\rm sfic} = 0.35 \text{ cm}^2$

donc les armatures au flexion composé As sont :

$$A_s = A_{sfic} - \frac{N_u}{\sigma s} = 0.35 - \frac{2.28.10}{348} = 0.35 - 0.065 = 0.285 \text{ cm}^2$$

As = 0.285 cm 2

Condition de non fragilité (CBA93 A 4.2.1):

 $As_{calc} \geq A_{min}$

$$A_{min}$$
= 0,23.b.d. f_{128}/f_e = 0,23×100×8×2,1/400 = **0.966** cm²

Donc on adopte un ferraillage de l'acrotère : $As_{adopté} = 4T8 = 2,01 \text{ cm}^2$

> Espacement des barres :

$$s_t \le \min (3 h_t, 33 cm)$$

$$s_t \le min (3.10 cm, 33 cm) = 30 cm$$

soit : $S_t = 25$ cm

> les Armatures de répartition :

$$A_r = \frac{As_{adopt\acute{e}}}{4} = \frac{2.01}{4} = 0.50 \text{ cm}^2$$

Soit: pour chaque 25cm.

Alors : $A_r = 3T8 = 1,51 \text{ cm}^2$

➤ Vérification de l'effort tranchant (CBA93 A.5.1.2.1.1)

On doit vérifier : $\tau_{\mathbf{u}} \leq \overline{\tau}_{\mathbf{u}}$

 τ_u : contrainte de cisaillement ultime de calcule.

 $\overline{\tau}_u$: Contrainte de cisaillement ultime admissible.

Nous avons une fissuration préjudiciable, d'où :

$$\overline{\tau}_u = \min(0.15 \frac{f_{c28}}{\gamma_b}; 4 \text{ Mpa})$$

$$0.15 \frac{f_{c28}}{\gamma_b} = 0.15 \times \frac{25}{1.5} = 2.5 \text{ Mpa}$$

$$\overline{\tau}_{\mathbf{u}} = \min(2.5; 4 \text{ Map}) = 2.5 \text{ Mpa}$$
 $\tau_{\mathbf{u}} = \frac{v_{\mathbf{u}}}{bd}$

v_u : l'effort tranchant ultime a la base de l'acrotère

$$\mathbf{v_u} = 1.5.\mathbf{Q} = 1.5 \times 1 = 1.5 \ \mathbf{KN}$$

$$au_{\rm u=} \frac{1.5}{1 \times 80} = 0.019 \; {\rm MPa}$$

$$au_u = extstyle{0}$$
, 019 Mpa $\leq \overline{ au}_u = extstyle{2}$,5 MpaCV

Donc les armature transversale ne sont pas nécessaire (pas de risque de cisaillement)

Vérification des contraintes à ELS :

l'acrotère est exposé aux intempéries, donc la fissuration est considérée comme préjudiciable.

Pour le béton :
$$\sigma_{bc} \le \overline{\sigma}_{bc} = 0.6. f_{c28} = 0.6. 25 = 15 Mpa (C.B.A93 A4.5.2).$$

Pour l'acier :
$$\sigma_{st} \le \overline{\sigma}_{st} = \min\left(\frac{2}{3}f_e; 110\sqrt{\eta.f_{tj}}\right)$$
 MPa (C.B.A A.4.5.3.3).

$$\frac{2}{3}$$
 f_e = $\frac{2}{3}$ ×400 =**266.66MPA**

$$1110\sqrt{\eta.\,f_{tj}} = 110\sqrt{1,6\times2,1} = \textbf{201,63 Mpa}$$

$$\overline{\sigma}_{st}$$
 = min {266.66MPA ;201.63MPA} donc : $\overline{\sigma}_{st}$ = 201,63 Mpa

Calcul σ_{bc} et σ_{st} :

$$\sigma_{bc} = k.y_{ser}$$

$$\sigma_{\rm st} = 15.k \, (d-y_{\rm ser})$$

K : coefficient angulaire de contrainte

$$\mathbf{k} = \frac{M_{ser}}{I}$$

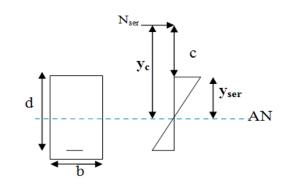
I : le moment d'inertie de la section homogène réduit

$$\mathbf{I} = \frac{\text{b.y3}_{\text{ser}}}{3} + 15 \left[A_{\text{s}} (d-y_{\text{ser}})^2 + A_{\text{s}}' (y_{\text{ser}} - d')^2 \right]$$

y_{ser}: distance entre l'axe neutre et le fibre la plus comprimée (superieur)

Les données sont :

$$N_{ser} = 1.69 \text{ KN}$$


$$M_{ser} = 0.9 \text{ KNm}$$

$$\lambda s=0$$

As=
$$4\phi 8 = 2$$
, 01 cm²

$$b = 100 \text{ cm}$$

$$d = 8 \text{ cm}$$

• Détermination de y_c (distance entre le centre de pression et l'axe neutre de la section) En écrivant le bilan des efforts appliqués à la section on à :

${y_c}^3 + p.y_c + q = 0$ [pratique du BAEL 91cours avec exercices corrigés. page 112]

y_c est la solution de l'équation

$$p = -3c^2 - 90As'(c-d')/b + 90As (d-c)/b$$

et

$$q = -2c^3 - 90As'(c-d')^2/b - 90As(d-c)^2/b$$

c: distance de centre de pression à la fibre supérieure

$$c = d - e_A$$

$$e_{A} = d - \frac{h}{2} + e_{s}$$

on a :
$$e_s = \frac{M_{ser}}{N_{ser}} = \frac{0.6}{1.69} = 0.355m = 35.5cm$$

$$e_A = 8 - \frac{10}{2} + 35,5 = 38,5 \text{ cm}$$

$$c = 8 - 38.5 = -30.5$$
 cm

On aura:

$$P = -3(-30^2) - 0 + 90.2,01(8+30)/100 = -2631,26 \text{ cm}^2$$

$$q = -2(-30^3) + 0 - 90.2,01(8+30)^2 = 51387,8 \text{ cm}^2$$

Et l'équation deviendra:

$$y_c^3 + -2631,26y_c +51387,8 = 0$$

la résolution de cette équation est obtenue par la méthode suivant :

$$\Delta = q^2 + 4p^3/27 = (51387,8)^2 + 4(-2631,26)^3/27 = -58198516,37$$

$$\Delta = -58198516, 37 < 0 \implies \cos \varphi = 3q. \sqrt{\frac{-3}{p}} / 2p = 3q. \sqrt{\frac{-3}{-2631,16}} / 2.(-2631,16) = 0.989$$

$$\cos \varphi = -0.989 = > \varphi = 171.55^{\circ}$$

$$\delta = 2. \sqrt{\frac{-p}{3}} = 2. \sqrt{\frac{2631,26}{3}} = 59, 23$$

$$\mathbf{y_{c1}} = \delta \cos \frac{\varphi}{3} = 59,23 \cos \frac{171,55}{3} = 32,09 \text{ cm}$$

$$y_{c2} = \delta \cos(\frac{\varphi}{3} + 120^{0}) = 59, 23 \cos(\frac{171,55}{3} + 120^{0}) = -59,15 \text{ cm}$$

$$\mathbf{y}_{c3} = \delta\cos\phi(\frac{\phi}{3} + \mathbf{240^0}) = \delta59,23\cos\phi(\frac{171,55}{3} + \mathbf{240^0}) = \mathbf{27,05cm}$$

puis:

$$\mathbf{y}_{\text{ser}} = \mathbf{y}_{c} + \mathbf{c}$$

(représente la distance du centre de pression à l'axe neutre a fibre superieur de la section.)

le calcul de y_c s'effectue dans le cas $\Delta < 0$, on choisie les trois solutions $y_{c_1}, y_{c_2}, y_{c_3}$ celle qui donne $0 < y_{ser} < d$

donc on prend : $y_{c1} = 32,09$ cm

$$y_{ser}$$
= 32,09-30,5 = 1,59 cm

$$\mathbf{I} = \frac{\text{b.y3}_{\text{ser}}}{3} + 15[A_s (d-y_{\text{ser}})^2 + A_s' (y_{\text{ser}} - d')^2] = \frac{100.1,59^3}{3} + 15[2,01(8-1,59)^2 + 0] = 13572,79 \text{ cm}^4$$

$$k = \frac{M_{ser}}{I} = \frac{0.6.100}{1372.79} = 0.044 \text{ KN/cm}^3$$

$$\sigma_{bc} = k.y_{ser} = 0.044.1, 59.10 = 0.7 \text{ Mpa} < \overline{\sigma}_{bc} = 15 \text{Mpa} \dots \text{CV}$$

$$\sigma_{st} = 15.k(d-y_{ser}) = 15.0,044(8-1,59).10 = 4,23 \text{ Mpa} < \overline{\sigma}_{st} = 201,63 \text{ Mpa}.....CV$$

III.2.5. Vérification au séisme :

Selon **RPA99** /**V2003** (article 6.2.3), l'acrotère est classé comme un élément non structurel, doit résister à un effort sismique donnée par :

$$F_p = 4. C_p. A.W_p$$

Il faut que : $F_p < 1.5 V_u$

Fp: forces horizontales de calcul agissant sur l'acrotère

A : Coefficient d'accélération de zone obtenu dans le tableau 4.1(RPA99/V2003.page34) pour la zone et le groupe d'usage appropriés.

La structure est installée dans une zone IIa(moyenne sismicité) avec groupe d'usage 2.

Donc : A = 0.15

Cp: Facteur de force horizontale variant entre 0.3 et 0.8, voir tableau 6.1(RPA99/V2003.page 55)

$$Cp = 0.8$$

Wp: Poids propre de l'acrotère

 $W_p = 1.69KN$

$$Fp = 4 \cdot 0.15 \cdot 1.69 \cdot 0.8 = 0.81 \text{ KN}$$

$$V_u = 1.5 \text{ KN}$$

$$Fp = 0.81KN < Vu = 1.5KN....CV$$

Alors l'acrotère est stable vis-à-vis de l'effet sismique.

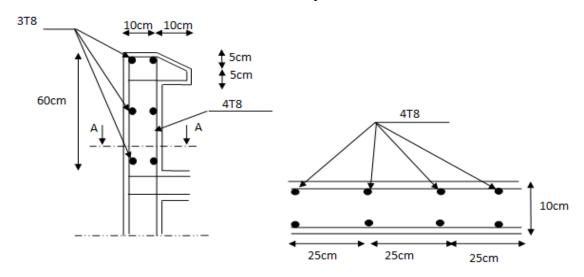


Figure III.4 : Le schéma de ferraillage de l'acrotère

III.3 calcul les dalles pleines des balcons :

III.3.1 Introduction:

CHAPITRE III:

Ce type de plancher a été adopté pour les parties de plancher en console. En fonction de la portée et du nombre d'appuis. Pour ce bâtiment, on distingue 4 types de dalles pleines:

- **Type 1** : porté en console de 1,10 m sur 3 appuis continus ;
- Type 2 : porté en console de 2.50 m sur 3 appuis continus ;

III.3.2 Définition de l'épaisseur (e) :

o condition relative aux dalles reposant sur 03 appuis :

$$\begin{split} \frac{L_{max}}{35} & \leq e \leq \frac{L_{max}}{30} \\ & ici: L_{max} = 330 \text{ cm} \Longrightarrow \quad \frac{3.30}{35} \leq e \leq \frac{330}{30} \\ & 9.42 \leq e \leq 11.....(1) \end{split}$$

On prend: e = 15 cm

o condition relative aux balcons:

$$e \ge \frac{L_{max}}{20}$$
 ici : $L_{max} = 250 \text{ cm} \implies e \ge \frac{250}{20} = 12,5....(2)$

On prend: e = 15 cm

III.3.3 Evaluation des charges :

& Balcon terrasse:

Tableau III.1: charge de balcon terrasse

N	Composants de plancher	e (m)	ρ (kg/m³)	G (kg/m²)
	corps creux			
1	Couche de protection	0.05	2200	10
2	Étanchéité multicouche	0.02	2000	12
3	Isolation thermique	0.04	1800	4
4	dalle pleine	0.15	2500	375
5	Ecran pour vapeur	0.02	1200	22
6	Forme de pente	0.02	2200	22
	Charg	G=591kg/m ²		

Donc : $G = 5.91 \text{ KN/m}^2$; $Q = 1.00 \text{ KN/m}^2$

Poids propre de garde corps (l'acrotère) : 1,69 KN/m

Pour une bande de 1 m de largeur :

Page 36

G = 5,91 KN/ml; Q = 1.00 KN/ml; P = 1,69 KN/ml.

A Balcon étage courant:

- \circ G = 4,91 KN/m²
- \circ Q = 3.5 KN/m²
- \circ **P**=14 \times 0,25 \times (3,1 0,15) = **10,33 KN/m²**

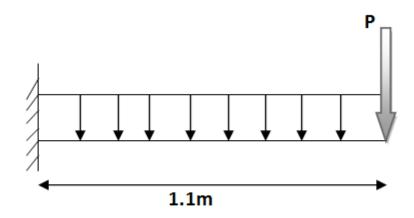


Figure III.5: Schéma statique du balcon TYPE01.

III.3.3.1 Combinaison des charges :

Tableau III.2: Combinaison des charges

Balcon	G (KN/M)	Q (KN/M)	P (KN/M)	1.35G+1.5Q	1.35P	G+Q	P
				(KN/M)	(KN/M)	(KN/M)	(KN/M)
terrasse	5.91	1.00	1.69	9.48	2.28	6.91	1.69
courant	4.91	3.5	10.33	11.88	13.95	8.41	10.33

III.3.4 Sollicitation de calcul:

> TYPE 01 : terrasse inaccessible :

ELU:

$$\mathbf{Qu} = 1,35 \times (5.91) + 1,5 \times (1.00) = 9,47 \text{ KN/m2}$$

$$Pu = 1,35 \times 1,69 = 2,28 \text{ KN}$$
.

$$Mu = \frac{ql^2}{2} + PU \times L$$

$$MU = (9,47) \times 1,1^2/2 + 2,28 \times 1,1 = 8.8 \text{KN.m}$$

$$Vu = 9.47 \times 1,1 + 2,28 = 12,70 \text{ KN}.$$

ELS:

$$qser = 5.91 + 1 = 6.91 \text{ KN}$$

$$Mser = \frac{ql^2}{2} + Pserx L$$

$$Mser=6,03KN.m$$

$$Vser = 6.91 X 1,1 +1,69 = 8,32 KN$$

III.3.4.1 Calcul du ferraillage:

$$MU = 8.8KN.m$$

$$b = 100 \text{ cm}$$
; $h = 15 \text{ cm}$; $d = 0.9x h = 0.9x 15 = 13.5 \text{ cm}$

$$\sigma s = 0.85 \times \frac{fc28}{1.5} = 14.17$$

$$\mu = \frac{Mu}{bd2\sigma bc} = 9.47/1*0.135^2*14.17$$

$$\mu = 0.043 < \mu 1 = 0.186 \rightarrow \text{pivot A } \epsilon \text{s} = 10 \% \text{ (pas d'acier comprimé)}$$

$$\sigma s = 348 \, mpa$$

$$\alpha = 1.25 \text{ x} (1 - \sqrt{1 - 2\mu}) = 1.25 \times (1 - \sqrt{1 - 2X0.043}) = 0.0625$$

$$\beta = 1 - 0.4\alpha = 1 - 0.4 \times 0.0625 = 0.975$$

$$As = \frac{Mu}{\alpha\beta\sigma s} = \frac{8.8}{0.0625*0.975*348} = 5.03 \text{ cm}2$$

Condition de non fragilité :

$$As \ge 0.23 \times b \times d \times ft28/fe$$

$$As \ge 0.23 \times 100 \times 13.5 \times 2.1/400 = 1.63 \text{cm}^2$$

On adopte : $5 \text{ HA } 12 = 5,65 \text{ cm}^2$

Tableau III.3: section de ferraillage des balcons type 1

L	b	d	μ	α	β	As	Asmin	As adpt
110	100	13.50	0.043	0.062	0.97	5.03	1.63	5.65

✓ Espacement des armatures longitudinales :

$$e = 100/5 = 20 \text{ cm}$$

$$e = 20 \text{ cm} \le 33 \text{ cm} \dots (c \text{ v})$$

III.3.4.2 Vérification de l'effort tranchant :

Les armatures transversales ne sont pas nécessaires si la condition ci-dessous est vérifiée.

$$Tu = \frac{Tmax}{b.d} \le \tau \bar{u} = \min(0.15fc28/1.5; 4)$$

Tumax = 16,82 KN

$$\tau u = \frac{12,70 \times 10^{-3}}{1000 \times 135} = 0.194$$
Mpa

 $\tau \bar{u} = 2.5 mpa$

$$\tau u = 0.914 \text{ Mpa} < \tau = 2.5 \text{ Mpa} \dots \text{cv}$$

Armatures de répartition :

$$Ar = As/4 = 5.65/4 = 1.41 \text{ cm}$$

on prend:

$$Ar = 5 \text{ HA } 10 = 3,83 \text{ cm} 2$$

Espacement des armatures de répartition:

 $e \le min (4h; 45cm)$

 $e \le 45cm$

On prend:

e = 20cm

$$e = 20cm < 45cm(cv)$$

III.3.4.3 Vérification à l'ELS:

$$Ms = 6.03KN.m$$
; $As = 5.65 cm^2$; $As'=0$

III.3.4.4 Vérification des contraintes :

Il faut vérifier les deux conditions :

La contrainte dans le béton comprimé : $\sigma b \le \sigma \bar{b}$

La contrainte dans l'acier tendu : $\sigma \leq \sigma s$

Position de l'axe neutre:

$$\frac{b}{2}.y^2 + \eta Asc(y - c') - \eta Ast(d - y) = 0$$

$$50y^2 - 15 \times 5,65 (13.5-y) = 0$$

$$\rightarrow$$
 y = 4,01 cm

Moment d'inertie :

$$I = \frac{b}{3}y^3 + \eta Asc(y - d')^2 + \eta Ast(d - y)^2$$

$$I = 100/34,013 + 15 \times 5,65(13.5 - 4,01)^{2}$$

$$\rightarrow$$
 I = 9781,97cm⁴

Calcul de la contrainte dans le béton comprimé :

$$\sigma b = (Mser/I)$$
. y = 2.47Mpa

$$\sigma \bar{b} = 0.6 \text{fc} 28 = 15 \text{MPa}$$
 $\sigma b = 2.47 \text{ MPa} \le \sigma \bar{b} = 15 \text{ MPa} \dots \dots \dots (c v)$

Calcul la contrainte dans l'acier tendu :

$$\sigma s = 15 \frac{Msermax}{I}.(d - y) = 87.84MPA$$

 σ s= min (2/3 fe; 110 $\sqrt{\eta}$ × ft28)(Fissuration prédicable)

$$\eta = 1.6$$

 σ_S =240 MPA

$$\sigma s = 87.8 \text{ MPA} < \sigma s = 240 \text{ Mpa (CV)}$$

> TYPE 02 : terrasse inaccessible :

Calcul Des Sollicitations:

ELU:

$$qu = 1.35 \times (5.91) + 1.5 \times (1) = 9.47 \text{ KN/m}_2$$

$$pu = 1,35 \times 1,69 = 2,28 \text{ KN}$$
.

$$Mu = \frac{ql^2}{2} + P_U \times L$$

$$MU=(9.47)\times2,5^{2}/2+2,28\times2,5=35.29$$
kn.m

$$V_U = q_u x L + P_U$$

$$V_u = 9.47 \times 2.5 + 2.28 = 25.95 \text{kn}$$

ELS:

$$q_{ser} = 5.91 + 1 = 6.91 \text{ KN}$$

$$Mser = \frac{ql^2}{2} + P_{ser} X L$$

$$M_{SER} = 28.81 \text{KN.m}$$

Calcul du ferraillage:

$$MU = 35,29KN.m$$

$$b = 100 \text{ cm}$$
; $h = 15 \text{ cm}$; $d = 0.9x h = 0.9x 15 = 13.5 \text{ cm}$

$$\sigma s = 0.85 \times \frac{fc28}{1.5} = 14.17$$

$$\mu = \frac{Mu}{hd2\sigma hc} = 35.29/1*0.135^2*14.17$$

$$\mu$$
 = 0,025 < $\mu1$ = 0,186 \rightarrow pivot A ϵs =10 % (pas d'acier comprimé)

$$\sigma s = 348mpa$$

$$\alpha = 1,25 \times (1 - \sqrt{1 - 2\mu}) = 1,25 \times (1 - \sqrt{1 - 2X0,025}) = 0,037$$

$$\beta = 1 - 0,4\alpha = 1 - 0,4 \times 0,037 = 0,98$$

$$As = \frac{Mu}{\alpha\beta\sigma s} = \frac{35.29}{0.037 * 0.98 * 348} = 2.74 \text{cm}2$$

✓ Condition de non fragilité :

$$As \ge 0.23 \times b \times d \times ft28/fe$$

$$As \ge 0.23 \times 100 \times 13.5 \times 2.1/400 = 1.63 \text{cm}^2$$

On adopte : $5 \text{ HA } 12 = 5,85 \text{ cm}^2$

Tableau III.4: section de ferraillage des balcons type 2

L	b	d		a	R	(cm	(cmAsmin	As (cm
			μ α β	P	As ₂)	2)	adopté 2)	
250	100	135	0.025	0.037	0.98	2.74	1.63	5.85

Espacement des armatures longitudinales :

e ≤ min (3h;33 cm)

e≤ 33 cm

$$e = 100/5 = 20 \text{ cm}$$

$$e = 20 \text{ cm} \le 33 \text{ cm} \dots (c \text{ v})$$

Vérification de l'effort tranchant :

Les armatures transversales ne sont pas nécessaires si la condition ci-dessous est vérifiée.

$$Tu = \frac{Tmax}{h.d} \le \tau \bar{u} = \min(0.15fc28/1.5; 4)$$

Tumax = 25,95 KN

$$\tau u = 25,95 \times 103/1000 \times 135 = 0.13$$
Mpa

 $\tau \bar{u} = 2.5 mpa$

$$\tau u = 1.92 \text{Mpa} < \tau \overline{\overline{u}} = 2.5 \text{ Mpa} \dots \text{cv}$$

Armatures de répartition :

$$Ar = As/4 = 2.74/4 = 0.68 \text{ cm}^2$$

on prend:

$$Ar = 5 HA 8 = 2,74 cm^2$$

Espacement des armatures de répartition:

$$e \le min (4h; 45cm)$$

 $e \le 45cm$

On prend:

$$e = 20cm$$

$$e = 20cm < 45cm(cv)$$

Vérification à l'ELS:

$$Ms = 28.28KN.m$$
; $As = 2,61 cm^2$; $As'=0$

Vérification des contraintes :

Il faut vérifier les deux conditions :

La contrainte dans le béton comprimé : $\sigma b \le \sigma \bar{b}$

La contrainte dans l'acier tendu : $\sigma \leq \sigma s$

Position de l'axe neutre:

b/
$$2.y^2 + \eta Asc(y - c') - \eta Ast(d - y) = 0$$

$$50y^2 - 15 \times 2,74 (13.5-y) = 0 \rightarrow y = 5,50 \text{ cm}$$

Moment d'inertie :

$$I = b / 3y3 + \eta Asc(y - d')^2 + \eta Ast(d - y)^2$$

$$I = 100/35,503 + 15 \times 2,74(13.5 - 5,50)^2 \rightarrow I = 17650.87 \text{cm}4$$

Calcul de la contrainte dans le béton comprimé :

$$\sigma b = (Mas/I) \cdot y = 6.74 \text{ mpa}$$

$$\sigma^{\bar{b}} = 0.6 \text{fc} 28 = 15 \text{MPa}$$

$$\sigma b = 6.74 \text{ MPa} \le \sigma^{\overline{-}} \overline{b} = 15 \text{ MPa} \dots \dots \dots (cv)$$

Calcul la contrainte dans l'acier tendu :

$$\sigma s = 15 \frac{Msermax}{I}.(d-y) = 22.80mpa$$

 σ s= min (2 3 fe; 110 $\sqrt{\eta}$ × ft28) (Fissuration prédicable)

$$\eta = 1.6$$

$$\sigma s = 240 \text{ Mpa}$$

$$\sigma s = 22.80 \text{Mpa} < \sigma \bar{s} = 240 \text{ Mpa} \dots \dots (CV)$$

❖ ferraillage:

Tableau III.5: Ferraillage des dalles pleines sur 3 appuis continus

			As (supérieure)		As (inferieure)	
sens	Position	Moment à	As calcul As adopte		As calcul	As
		ELU (KN.m)				adopte
Type 01 Y	appui	-7.27	2.17 cm^2	6T10 =	/	/
				4,71 cm ²		
Type 01 X	travée	1.58	/	/	2,17cm ²	6T10=

CHAPITRE III:

						4,71 cm ²
Type 02Y	appui	-53,3	6.35 cm ²	7T12=	/	/
				4,71 cm ²		
Type 02X	travée	10.82	/	/	2,17cm ²	6T10=
						4,71 cm ²

Nous allons adopter le même ferraillage, avec :

- 7T12/ml dans le sens X comme armatures supérieures, les armatures parallèles à (X-X).
- 3T10/ml dans le sens X comme armatures inférieures, les armatures parallèles au sens (X-X).
- 6T10/ml dans le sens Y comme armatures supérieures, les armatures parallèles à (Y-Y).
 - > Espacement des barres :

$$s_t \le \min (3 h_t, 33 cm)$$

$$s_t \le min (3.10 cm, 33 cm) = 30 cm$$

on adopt:
$$S_t = 20 \text{ cm}$$

> les Armatures de répartition :

$$A_r = \frac{As_{adopt\acute{e}}}{4} = \frac{7,92}{4} = 1,98 \text{ cm}^2$$

Donc: $A_r = 5T8 = 2,51 \text{ cm}^2$ pour chaque 20cm.

Vérification de l'effort tranchant (CBA93 A.5.1.2.1.1)

On doit vérifier : $\tau_{\mathbf{u}} \leq \overline{\tau}_{\mathbf{u}}$

 $\tau_{\boldsymbol{u}}$: contrainte de cisaillement ultime de calcule .

 $\overline{\tau}_u$: contrainte de cisaillement ultime admissible.

Nous avons une fissuration préjudiciable, d'où:

$$\overline{\tau}_u = 2.5 \text{ Mpa}$$

$$\tau_{u} = \frac{v_{u}}{hd}$$

v_u: l'effort tranchant ultime

$$v_{u} = 49.73 \text{ KN}$$

$$au_{\mathbf{u}} = \frac{49.73}{1 \times 130} = \mathbf{0.38MPa}$$

$$\tau_u = 0$$
, 17 Mpa $\leq \overline{\tau}_u = 2$,5 MpaCV

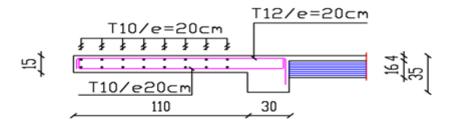
Donc les armature transversale ne sont pas nécessaire (pas de risque de cisaillement)

✓ Vérification des contraintes à ELS :

La fissuration étant peu nuisible, donc il n'y a pas de vérification à faire sur l'état de l'ouverture des fissures, les vérifications se limitent à l'état limite de compression du béton ; on doit vérifier que : $\sigma_{bc} \leq \overline{\sigma}_{bc} = 15 \text{Mpa}$ (C.B.A93 A4.5.2)

$$\sigma_{bc} = k.y$$

$$k = \frac{M_{ser}}{I}$$


$$y = \frac{-15.A_s}{b} + \frac{\sqrt{(15.A_s)^2 - (30.d.A_s)}}{b}$$

$$I = \frac{b.y^3}{3} + 15[15.(d-y)^2]$$

Tableau III.6: Vérification des contraintes à ELS.

sens	Position	Momen	b	d	A_s	Y	I	k	σ_{bc}	$\overline{\sigma}_{bc}$	obs
		t à ELS	(cm)	(cm)	(cm ²)	(cm)	(cm ⁴)		Mpa	Mpa	
		(KN.m)									
X	Appui	-20,25	100	13	7,92	4,49	11620,78	1,74	7,38	15	CV
X	Travée	4,06	100	13	2,36	2,70	4411,68	0,92	2,49	15	CV
Y	Appui	-14,16	100	13	4,71	3,64	7797,23	1,81	6,61	15	CV
Y	Travée	2.25	100	13	1.11	1.31	2213.37	0.42	1.23	15	CV

Coff Ferr BALCON TYP:1

Coff Ferr BALCON TYP:2

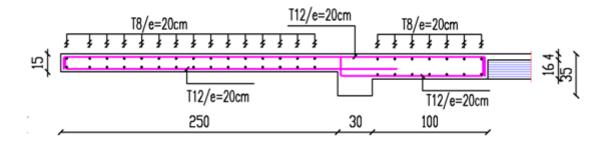


Figure III.6 : Schéma de ferraillage de balcon.

III.4 les escaliers :

Un escalier est un ouvrage qui permet l'accès a tous les niveaux d'une construction il est constitue de gradins dalle inclinée (volées) avec des dalle horizontales (paliers) coulées sur place notre bâtiment est compose d une cage d escalier.

III.4.1 Terminologie:

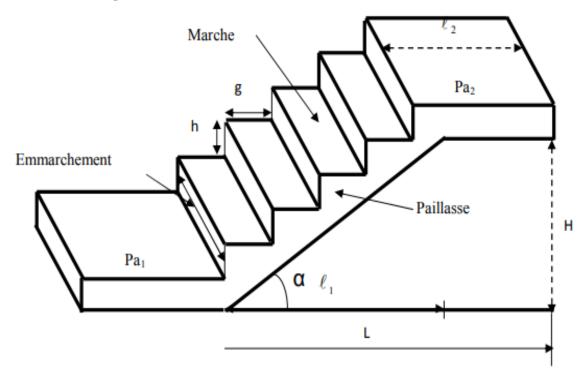


Figure III.7: exemple d'un escalier.

- \triangleright La marche notée « m = n 1 » est la surface plane sur laquelle se pose le pied.
- ➤ La contre marche notée « n » est la partie verticale entre deux marches consécutives, sa hauteur « h» est la différence de niveau entre deux marches successives.
- Le giron « g » est la distance en plan séparant deux contres marches successives.
- ➤ La volée est la partie de l'escalier comprise entre deux paliers de repos, sa longueur projetée est « 11 ».
- La paillasse d'épaisseur « ep » est la dalle en béton armé incorporant les marches et les contres marches.
- L'emmarchement « E » représente la largeur de la marche.
- La montée « H » représente la différence de niveau entre deux paliers consécutifs.

III.4.2 Schéma statique :

Dans notre cas la poutre est sur deux appuis simples, comme montre les schémas ci-dessous :

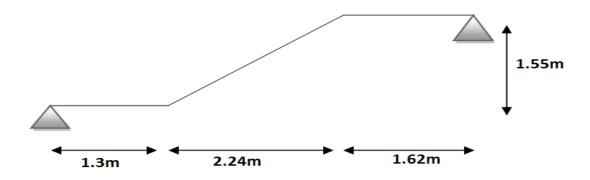


Figure III.8: Dimensions des éléments des escaliers

III.4.3 Pré dimensionnement :

On a H = 1.55m = 155cm

Prenons h=17cm hauteur de contre marche

Chercherons n : nombre de contre marche ;

g: giron

$$n = \frac{H}{h} = \frac{155}{17} = 9$$

- ✓ Donc nombre de contre marche : n=9
- ✓ Nombre de marche n-1 = 8

$$g = \frac{240}{8} = 30cm$$

g=30cm

D'âpres la relation empirique de **BLONDEL** : $59cm \le 2h + g \le 66cm$.

✓ Vérification de la loi de BLONDEL :

 $2h + g = 64cm \le 66cm$ condition est vérifiée.

III.4.3.1 Dimensionnement de la paillasse:

 $\frac{L}{30} \leq e \leq \frac{L}{20}$; L: longueur du palier et de la paillasse.

L': Longueur en plan de la volée.

 $H = n \times h = 1.55 \text{ m}$

$$tan \alpha = \frac{H}{l} = \frac{155}{240} = 0.645 \Rightarrow \alpha = 32.85^{\circ}$$

La longueur de la paillasse est : L'= (155.cos32.85°)=2.85m.

L= 285+162=447m

$$\frac{447}{30} \le e \le \frac{447}{20} \Rightarrow 14.9 \le e \le 22.35$$

On adopter: $e_p = 20$ cm.

- Détermination des charges et surcharges :
- a) Charge permanente:
 - ***** Evaluation des charges palier :

Tableau III.7: charge de palier

Matériaux	Epaisseur (cm)	D (kg / m ³)	G (kg/m ²)
carrelage	2	2200	44
Mortier de pose	2	2000	40
Lit de sable	2	1800	36
Dalle en BA	20	2500	500
Enduit de ciment	2	2000	40
		Total	$G = 660 \text{ kg/m}^2$

III.4.3.2 Evaluation des charges Volée :

Tableau III.8: charge de volée

Matériaux	Epaisseur (cm)	D (kg / m ³)	G (kg / m ²)
carrelage	2	2200	44
Mortier de pose	2	2000	40
Lit de sable	3	1800	54
Marche	17	2200	$(0,17/2) \times 2200 = 187$
Paillasse	20	2500	$(2500 \times 0,20) / \cos 32,85 = 595,17$
Enduit de ciment	2	2000	40
Gardes corps	/	/	20
		Total	$G = 980,17 \text{ kg/m}^2$

❖ Charges d'exploitations:(DTR B.C 2.2/Art 7.1)

• Palier 2.50KN/m²

• Volée 2.50KN/m²

Combinaison de charges:

→ à L'ELU :

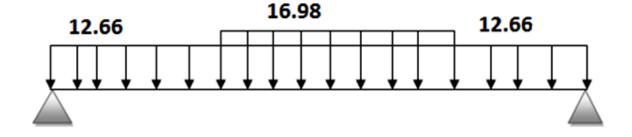
Palier : $qu = (1.35 \times G + 1.5Q) \times 1 = (1.35 \times 6.60 + 1.5 \times 2.5) \times 1 = 12.66 \text{ KN/ml.}$

Volée : $qu = (1.35 \times G + 1.5Q) \times 1 = (1.35 \times 9.80 + 1.5 \times 2.5) \times 1 = 16.98 \text{ KN/ml.}$

Qu eq =
$$\frac{16.45 + 38.03 + 12}{5.16}$$
 = 14.49 KN

➤ à L'ELS:

Palier: qs = G + Q = 6.60 + 2.5 = 9.1 KN/ml.


Volée : qs = G + Q = 9.80 + 2.5 = 12.301 KN/m

Qu eq =
$$\frac{1.3 * 9.1 + 12.3 * 2.24 + 9.1 * 1.62}{5.16}$$
 = 10.48KN

♦ Remarque :

le calcul sera effectué pour un seul niveau dont les résultats seront généralisés pour l'ensemble des escaliers.

Le chargement peut être lu sur une poutre équivalente comme suit :

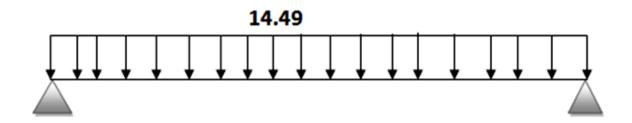
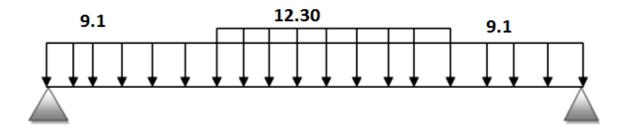



Figure III.9: Schéma statique et charges de l'escalier étudié à l'ELU en KN.

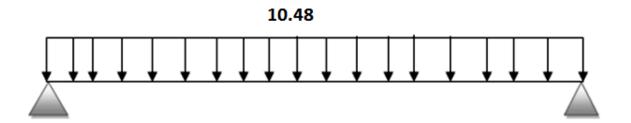


Figure III.10: Schéma statique et charges de l'escalier étudié à l'ELS en KN.

III.4.4 Calcul des moments et les efforts tranchants :

Calcul les réactions :

ELU:

$$\Sigma F/y = RA + RB = Qu \times l = 14.5 \times 5.2 = 75.5 KN$$

$$\sum M/A = 0$$

 $R_1 = 39.17 \text{ KN}$

 $R_2 = 38.55 \text{ KN}$

***** Effort tranchants

Pour $0 \le X \le 5.16$:

$$T(x) = R_A - q_{ul} * X = 39.17 - 14.49 * X$$

$$T(X) = 0 => X = RA/qul = 39.17/14.49 = 2.7m$$

$$M(X) = RA*X - qul(X2/2) = 39.17 * X - 14.49 (X^2/2)$$

$$X=0$$
 $M=0$

> ELS

• Réaction :

$$\sum F/y = RA + RB = Qu \times l = 10.48 \times 5.2 = 54.49 KN$$

$$\sum M/A = 0$$

$$R_1 = 28.28 \text{ KN}$$

$$R_2 = 27.82 \text{ KN}$$

• Efforts tranchants :

pour $0 \le X \le 5.16$:

$$T(x) = R_A - q_{ul} * X = 28.28 - 10.49 * X$$

$$T(X) = 0 => X = RA/qul = 28.28/10.48=2.6m$$

$$M(X) = RA*X - qul(X2/2) = 28.28 * X - 10.48 (X^2/2)$$

$$X=0$$
 $M=0$

$$X=2.7....M=40.06KN.M.....=Mmax$$

Sollicitation max:

Tableau III.9: Les sollicitations max

	Moment(KN.m)		Effort tranchant(KN)
	Travée	Appui	
ELU	55.41	0	39.17
ELS	40.06	0	28.28

♦ Remarque:

A fin de tenir compte des semi encastrements aux extrémités, on porte une correction pour le moment $\mathbf{M}_{\mathbf{u}}^{\mathbf{max}}$ au niveau des appuis et en travée.

- En appui (1): **M1= 0.3 M**^{max}

- En travées : $Mt = 0.75 M^{max}$

- En appui (2): $M2 = M_2^{max}$

Donc les résultats sera :

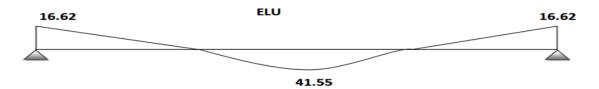
Moment (KN.m):

> ELU:

Travée: M=41.55 KN.M

Appuis : M= 16.62 MN.M

> ELS:


Travée: M=30.04 KN.M

Appuis : M= 12.01MN.M

Effort tranchant (KN):

■ ELU: N=39.17 KN

■ ELS: N =28.28 KN

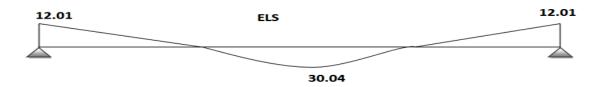


Figure III.11: Diagramme des moments a l'ELU et ELS en appuis et sur travée

III.4.5 Calcul de ferraillage:

Le calcul se fait en flexion simple pour une bande de 1 mètre, la fissuration est considérée peu nuisible.

III.4.5.1 Armatures longitudinales:

Le Ferraillage est en ELU.

Avec:

$$A_s = \frac{M_u}{\beta.d.\sigma s} \; , \quad \beta = 1 - 0.4\alpha \; , \quad \alpha = 1.25(1 - \sqrt{(1 - 2\mu)} \;) \; , \quad \mu = \frac{M_u}{b.d^2.\mathbf{f_{bu}}}$$

Si $\mu < \mu_{AB} = 0.186$ (le μ_{AB} est une le signe de référence) \Rightarrow section simplement armé ,donc \hat{As} =0 (les armatures comprimées ne sont pas nécessaires)

Avec:

 $\sigma_s = 348 \text{ MPa}.$

 $f_{bu} = 14,2 \text{ MPa}.$

Tableau III.10: Ferraillage des escaliers

section	M _u (KN.m)	b(cm)	d(cm)	μ	α	β	$A_s(cm^2)$	A _s adopté
								(cm ²)

appui	30,88	100	18	0,0786	0,102	0,958	4,69	5T12=5,65
travée	77,20	100	18	0,0460	0,058	0,976	2,69	4T10=3,14

Condition non fragilité: A_s > A_{min}

Avec:

$$f_{t28} = 2.1 \text{ MPa}$$

$$f_e = 400 \text{ MPa}$$

$$\mathbf{A_{min}} = 0.23 \text{bd} \frac{f_{128}}{f_e} = 0.23 \times 100 \times 18 \times \frac{2.1}{400} = 2.17 \text{ cm}^2$$

- As appui = $5,65 \text{ cm}2 > \text{Amin} = 2,17 \text{ cm}^2$CV

III.4.5.2 Armature de répartition :

$$Ar = \frac{A_s}{4}$$

- Sur appui : Ar = $\frac{A_s}{4} = \frac{5,65}{4} = 1,41$ cm2. on adopte 2T10 = 1,57cm2
- Sur travée : $A_r = \frac{A_s}{4} = \frac{3,14}{4} = 0,79 \text{ cm}^2$. on adopte $2T10 = 1,57\text{cm}^2$

Espacement des barres:

 $St \le min(3h; 33cm)$

Avec:h=16cm

$$3h=3\times16=48cm \Rightarrow St \leq min(48; 33cm)=33cm$$

Armatures longitudinales : soit St = 20 cm

Armatures de répartition : soit St = 20cm

• Vérification de l'effort tranchant (CBA93 A.5.1.2.1.1)

On doit vérifier : $\tau_{\rm u} \leq \overline{\tau}_{\rm u}$

 τ_u : contrainte de cisaillement ultime de calcule .

 $\overline{\tau}_u$: Contrainte de cisaillement ultime admissible.

Nous avons une fissuration peu nuisible, d'où:

$$\overline{\tau}_u = \min (0.20 \frac{f_{c28}}{\gamma_b}; 5 \text{ Mpa})$$

$$0.20 \frac{f_{c28}}{\gamma_b} = 0.20 \times \frac{25}{1.5} = 3.33 \text{ Mpa}$$

$$\overline{\tau}_{u} = \min(3.33; 5 \text{ Map}) = 3.33 \text{ Mpa}$$

$$\tau_{u} = \frac{V_{u}^{max}}{hd}$$

 V_{ii}^{max} : l'effort tranchant ultime max.

$$\tau_{u} = \frac{39,17 \times 10^{3}}{1000 \times 180} = 2,17 \text{ MPa.}$$

$$\tau_u$$
 = 2,17 MPa $<$ $\overline{\tau}_u$ = 3,33 MPaCV

 Donc les armatures transversales ne sont pas nécessaires (pas de risque de cisaillement)

III.4.6 Vérification des contraintes à ELS:

La fissuration étant peu nuisible, donc il n'y a pas de vérification à faire sur l'état de l'ouverture des fissures, les vérifications se limitent à l'état limite de compression du béton ; on doit vérifier que : $\sigma_{bc} \leq \overline{\sigma}_{bc} = 15 \text{Mpa}$ (C.B.A93 A4.5.2)

$$\begin{aligned} & \sigma_{bc} = \text{k.y} \\ & k = \frac{M_{ser}}{I} \\ & y = \frac{-15.A_s}{b} + \frac{\sqrt{(15.A_s)^2 - (30.d.A_s)}}{b} \text{ (position de l'axe neutre)} \\ & I = \frac{b.y^3}{3} + 15[15.(d-y)^2] \end{aligned}$$

Tableau III.11: Vérification des contraintes à ELS.

section	Momen	b	d	A_s	Y	I	k	σ_{bc}	$\overline{\sigma}_{bc}$	obs
	t à ELS	(cm)	(cm)	(cm ²)	(cm)	(cm ⁴)		Mpa	Mpa	
	(KN.m)									
Appui	12,01	100	18	5,65	4,097	10603,71	1,51	1,13	15	CV
Travée	30,04	100	18	3,14	3,190	6585,98	1,34	4,50	15	CV

III.4.7 Vérification de la flèche :

Conditions de non vérification de la flèche :(CBA93 B.6.5.2)

$$\begin{array}{ll} \frac{h}{l} \geq \frac{1}{16} & \Longrightarrow & \frac{20}{577} = 0.034 < \frac{1}{16} = 0,0625 \dots CNV \quad (1) \\ \frac{h}{l} \geq \frac{M_t}{10M_0} \Longrightarrow & \frac{20}{577} = 0.034 < \frac{0.75M_0}{10M_0} = 0.075 \dots CNV \quad (2) \\ \frac{A_S}{bd} \leq \frac{4.2}{f_P} \Longrightarrow & \frac{3.14}{100 \times 18} = 0,0017 < \frac{4.2}{400} = 0.01 \dots CV \quad (3) \end{array}$$

Les conditions (1) et (2) ne sont pas vérifiées, donc le calcul de la flèche est nécessaire.

Il faut vérifier que : $\Delta f_t \leq \overline{f}$

Avec:

$$\overline{f} = \frac{L}{1000} + 0.5 \text{ cm}$$
; **pour** $L \ge 5m$

$$\overline{f} = \frac{L}{500}$$
; $pour L \le 5m$

$$\overline{f} = \frac{L}{250}$$
 ; si *la portée de consol L* $\leq 2m$

Dans notre cas on a:

L =5,77 m < 5 m
$$\Longrightarrow \overline{f} = \frac{577}{1000} + 0.50 = 1.07$$
 cm.

Calcul de flèche total (Δf_t) :(CBA93 6.5.2)

$$\Delta \boldsymbol{f}_t = f_{gv} - f_{ii} + f_{pi} - f_{gi}$$

 $f_{\rm gv}$: Fleche différée due aux charges permanentes totales.

 f_{ji} : La flèche due à l'ensemble des charges appliquées au moment de la mise en ouvre des cloisons.

 $f_{\rm pi}$: Flèche instantanée due aux charges permanentes et d'exploitation

 $f_{\rm gi}$: Flèche instantanée due aux charges permanentes instantanées

$$f_{\rm i} = \frac{\rm M.L^2}{\rm 10.E_i.I_{fi}}$$
 (flèche instantanée).

$$f_{\rm v} = \frac{{
m M.L^2}}{{
m 10.E_v.I_{fv}}}$$
 (flèche différée).

$$L = 5,77 \text{ m}$$

❖ Pour la charge :

Permanente G : G = 6,60 KN/ml , $M_{ser} = 0,75 \times 9,53 = 7,14 \text{KN.m}$ (la valure 8,29 KN.m , obtenu lorsque le paillasse et le palier chargée par G)

Permanente G + **exploitation Q** : G+Q=11,52KN/ml , $M_{ser}=0,75\times11,52=8,64KN.m$ (la valeur 11,24KN.m ,obtenu lorsque le paillasse et le palier chargée par G+Q)

$$E_i = 11000.\sqrt[3]{f_{c28}} = 32164,20 \text{ MPa (Module d'élasticité instantanée)}$$

$$E_{v} = 3700. \sqrt[3]{f_{c28}}$$
 10818,87 MPa (**Module d'élasticité** différée)

$$I_{fi} = 1, 1. \frac{I_0}{_{1+\lambda_i.u}} \quad \text{, (Moment d'inertie fictif instantanée)}.$$

$$I_{\text{fv}} = 1, 1. \frac{I_0}{1 + \lambda_{v.u}}$$
, (Moment d'inertie fictif différée).

$$I_0 = \frac{bh^3}{12} + bh \left(\frac{h}{2} - y_g\right)^2 + 15A_s (d - y_g)^2 , (Moment d'inertie de la section homogène par rapport à centre de gravité y_g).$$

$$y_g = \frac{\frac{bh^2}{2} + 15A_s.d}{bh + 15A_s} = \frac{\frac{100 \times 20^2}{2} + 15 \times 3,14 \times 14}{\frac{2}{100 \times 20 + 15 \times 3,14}} = 7,32 \text{ cm}.$$

$$I_0 = \frac{100 \times 20^3}{12} + 100 \times 16 \left(\frac{20}{2} - 8,17 \right)^2 + 15 \times 3,14 (14 - 8,17)^2 = 34650,45 \text{ cm}^4$$

$$\lambda_i = \frac{0.05f_{t28}}{(2+3\frac{b0}{b})\rho}$$
; dans notre cas b₀=b=100cm

$$f_{t28} = 2.1 \text{ MPa}.$$

$$\rho = \frac{A_S}{hd} = \frac{3,14}{100 \times 18} = 0,0017$$
, (taux d'Armature)

$$\lambda_{\rm v} = \frac{2}{5} \lambda_{\rm i}$$

$$\lambda_i = \frac{0.05 \times 2.1}{\left(2 + 3\frac{100}{100}\right)0.0022} = 9.54$$

$$\lambda_{\rm v} = \frac{2}{5} \times 9,54 = 3,82$$

$$u = 1 - \frac{1,75.f_{t28}}{4\rho\sigma_s + f_{t28}}$$

$$\sigma_s = \frac{15.M}{I} \, (\text{d-y}) \quad \text{, (contrainte dans l'acier)}$$

$$y = \frac{-15.A_s}{b} + \frac{\sqrt{(15.A_s)^2 - (30.d.A_s)}}{b} = \frac{-15 \times 3,14}{100} + \frac{\sqrt{(15 \times 3,14)^2 - (30 \times 18 \times 3,14)}}{100} = 3,05 \text{cm. (position de}$$

l'axe neutre)

$$I = \frac{b.y^3}{3} + 15[15.(d - y)^2] = \frac{100.3,05^3}{3} + 15[15.(18 - 3,05)^2] = 6470,43\text{cm}^4, \text{(moment also only of the properties)}$$

d'inertie quadratique)

❖ Pour la charge Permanente :G = 6,6KN/ml

$$\sigma_{\rm s} = \frac{15 \times 6,23 \times 10^3}{6585.95} (18-3,05) = 153,38 \text{ MPa}$$

$$u = 1 - \frac{1,75 \times 2,1}{4 \times 0,0017 \times 153,38 + 2,1} = -0,075$$

$$I_{fi} = 1, 1. \frac{35780, 45}{1 + 9.54 \times (-0.075)} = 103575, 38 \text{ cm}^4$$

$$I_{\text{fv}} = 1, 1. \frac{34650, 45}{1+3.82 \times (-0.075)} = 52563, 12 \text{ cm}^4$$

$$f_{gi} = \frac{\text{M.L}^2}{10.\text{E}_{i}.\text{I}_{fi}} = \frac{6,23 \times 5,16^2 \times 10^8}{10 \times 32164,2 \times 103575,38} = 0,31 \text{mm}$$

$$f_{\rm gv} = \frac{\text{M.L}^2}{10.\text{E}_{\rm v}.\text{I}_{\rm fv}} = \frac{6,23 \times 5,16^2 \times 10^8}{10 \times 10721,4 \times 52563,12} = 2,63 \text{ mm}$$

Pour la charge : Permanente :G+Q =11,53KN/ml

$$\sigma_{\rm s} = \frac{15 \times 8,43 \times 10^3}{6585,95} (18-3,19) = 209,43 \text{ MPa}$$

$$u = 1 - \frac{1,75 \times 2,1}{4 \times 0,0017 \times 209,43 + 2,1} = 0,0520$$

$$I_{fi} = 1, 1. \frac{35780, 45}{1 + 9,54 \times 0,0625} = 24599, 05 \text{ cm}^4$$

$$f_{\text{pi}} = \frac{\text{M.L}^2}{10.\text{E}_{\text{i}}.\text{I}_{\text{fi}}} = \frac{8,64 \times 5,77^2 \times 10^8}{10 \times 32164,2 \times 103575,38} = 3,56 \text{mm}$$

$$\Delta f_t = f_{gv} - f_{ji} + f_{pi} - f_{gi} = 3,56 - 0 + 2,63 - 0,31 = 5,88 \text{mm} < \overline{f} = 10,7 \text{ mm} \dots \text{CV}$$

III.5 Calcul de la poutre palière :

III.5.1 Introduction:

La poutre palière est considérée encastrée à ses deux extrémités dans les poteaux ; c'est une poutre de section rectangulaire.

La poutre palière est calculée aux sollicitations de flexion et de torsion.

Le moment d'appui des escaliers provoque un moment de torsion ; ce dernier atteint sa valeur maximale au niveau des appuis.

III.5.2 Pré dimensionnement :

$$\frac{L}{15} \le h \le \frac{L}{10}$$

$$L = 3.30m \Longrightarrow \frac{330}{15} = 22cm \le h \le \frac{330}{10} = 33cm$$

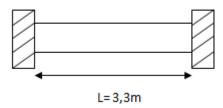


Figure III.12: poutre palière.

En suivant de l'article 7.5.1 de l'RPA99/2003, la poutre doivent respecter les dimensions ciaprès

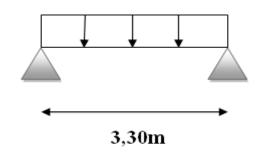
- $b \ge 20$ cm , on prend b = 30cm
- $h \ge 30 \text{cm}$, on prend h = 40 cm
- $\frac{b}{h} \le 4$, $\frac{40}{30} = 1,33 < 4 \dots CV$

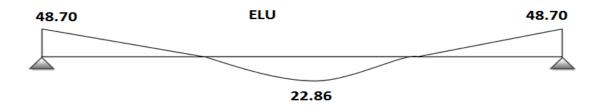
Donc on adopte une section de 30x40 [cm]²

III.5.3 Evaluation des charges :

- Poids propre de la poutre : $0.30m \times 0.4m \times 25KN/m^3 = 3KN/m$
- Réaction des escaliers :

ELU: 39.17KN/ml


ELS: 28,28 KN/ml


***** Charge:

ELU:
$$qu = 1.35 \times 3 + 39,17 = 43,22KN/M$$

ELS:
$$qs = 3 + 28,28 = 31,28 \text{ KN/M}$$

III.5.4 calcul de la sollicitation:

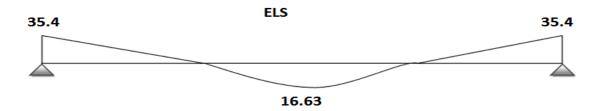


Figure III.13 : schéma statique de poutre palier.

Le tableau suivant résume le résultat précédant :

Tableau III.12: résultats sollicitation du calcul

	R (KN)	M (KN.m)	T (KN)	
		Travée	appui	
ELU	65,20	22,86	48,70	65,20
ELS	59,20	16,63	35,42	59,20

III.5.4.1 Ferraillages de la poutre palière à la flexion :

La fissuration est considère comme peu préjudiciable donc le Ferraillage est en ELU.

Avec:

$$A_s = \frac{\text{M}_u}{\text{\beta.d.}\sigma s} \; , \quad \beta = 1 - 0.4\alpha \; , \; \; \alpha = 1.25(1 - \sqrt{(1 - 2\mu)} \;) \; , \; \; \mu = \frac{\text{M}_u}{\text{b.d}^2.f_{\textbf{bu}}}$$

Si $\mu < \mu_{AB} = 0.186$ (le μ_{AB} est une le signe de référence) \Rightarrow section simplement armé, donc $\mathring{As}=0$ (les armaures comprimées ne sont pas nécessaires), Avec : $\sigma_s = 348$ MPa.

 $f_{bu} = 14,2 \text{ MPa}.$

Tableau III.13 : Ferraillage de la poutre palière à la flexion.

section	M _u (KN.m)	b(cm)	d(cm)	μ	α	β	$A_s(cm^2)$	A _s adopté
								(cm ²)
appui	48,70	30	38	0,0791	0,103	0,958	3,84	3T14=4,62
travée	22,86	30	38	0,0371	0,047	0,981	1,76	3T14=4.62

Condition non fragilité : $A_s > A_{min}$

Avec:

$$f_{t28} = 2.1 \text{ MPa}$$

$$f_e = 400 \text{ MPa}$$

$$\mathbf{A_{min}} = 0.23bd \frac{f_{t_{28}}}{f_e} = 0.23 \times 30 \times 38 \times \frac{2.1}{400} = 1.37 \text{ cm}^2$$

$$A_{\text{s appui}} = 4,62 \text{ cm}^2 > A_{\text{min}} = 1,37 \text{ cm}^2 \dots \text{CV}$$

$$A_{\text{s trav\'ee}} = 4.62 \text{ cm}^2 > A_{\text{min}} = 1,37 \text{ cm}^2 \dots \text{CV}$$

a) Vérification de l'effort tranchant (CBA93 A.5.1.2.1.1)

On doit vérifier : $\tau_u \leq \overline{\tau}_u$

 $\tau_{u\,:}$ contrainte de cisaillement ultime de calcule .

 $\overline{\tau}_u$: Contrainte de cisaillement ultime admissible.

Nous avons une fissuration peu nuisible, d'où:

$$\overline{\tau}_u = \min (0.20 \ \frac{f_{c28}}{\gamma_b}; 5 \ \text{Mpa})$$

$$0.20 \frac{f_{c28}}{\gamma_b} = 0.20 \times \frac{25}{1.5} = 3.33 \text{ Mpa}$$

$$\overline{\tau}_{u} = \min (3,33 ; 5 \text{ Map}) = 3,33 \text{ Mpa}$$

$$\tau_u = \frac{v_u}{bd}$$

 V_u : l'effort tranchant ultime max.

$$\tau_{u} = \frac{94,26 \times 10^3}{300 \times 380} = 0,83 \text{ MPa}.$$

$$\tau_{\rm u}$$
 = 0,83 MPa < $\overline{\tau}_{\rm u}$ = 3,33 MPaCV

Donc les armatures transversales ne sont pas nécessaire (pas de risque de cisaillement)

• Espacement des armatures transversales :

A partir des conditions de **C.B.A 93 (art A.5.1.2.2)** les armatures transversales doivent respectées les conditions suivantes :

$$St \le min (0.9d; 40cm) = min (0.9 \times 38; 40cm) = 34.2cm$$

On adopte : St = 25cm

• Section minimale d'armature d'âme(At):

$$\begin{split} &\frac{A_t f_e}{b s_t} \geq max(\frac{\tau_u}{2} \text{ ; 0,4MPa)} \\ &\frac{\tau_u}{2} = \frac{0,83}{2} = 0,415 \text{ Mpa} \\ &\text{Donc}: \frac{A_t f_e}{b.s_t} \geq 0,415 \Longrightarrow A_t = \frac{0,415.b.s_t}{f_e} = \frac{0,415 \times 300 \times 250}{400} \times 10^{-2} = 0,77 \text{ cm}^2 \end{split}$$

On adopte : $278 = 1, cm^2$

b) Vérification des contraintes à ELS :

La fissuration étant peu nuisible, donc il n'y a pas de vérification à faire sur l'état de l'ouverture des fissures, les vérifications se limitent à l'état limite de compression du béton ; on doit vérifier que : $\sigma_{bc} \leq \overline{\sigma}_{bc} = 15 \text{Mpa}$ (C.B.A93 A4.5.2)

$$\sigma_{bc} = k.y$$

$$k = \frac{M_{ser}}{I}$$

$$y = \frac{-15.A_s}{b} + \frac{\sqrt{(15.A_s)^2 - (30.d.A_s)}}{b} \text{ (position de l'axe neutre)}$$

$$I = \frac{b.y^3}{2} + 15[15.(d-y)^2]$$

Tableau III.14: Vérification des contraintes à ELS.

section	Moment	b	d	A_s	Y	I	k	σ_{bc}	$\overline{\sigma}_{bc}$	obs
	à ELS	(cm)	(cm)	(cm ²)	(cm)	(cm ⁴)		Mpa	Mpa	
	(KN.m)									
Appui	35,42	30	38	4,52	11,04	62735,58	0,56	6,23	15	CV
Travée	16,63	30	38	2,26	8,20	35618,22	0,46	3,83	15	CV

c) Vérification de la flèche :

Conditions de non vérification de la flèche :(CBA93 B.6.5.1)

$$\frac{h}{l} \ge \frac{1}{16} \implies \frac{40}{310} = 0,129 > \frac{1}{16} = 0,0625 \dots CV (1)$$

$$\frac{h}{l} \ge \frac{M_t}{10M_0} \implies \frac{40}{310} = 0,129 > \frac{0,75M_0}{10M_0} = 0,075 \dots CV (2)$$

$$\frac{A_S}{bd} \le \frac{4,2}{f_e} \implies \frac{2,26}{30 \times 38} = 0,002 < \frac{4,2}{400} = 0,01 \dots CV (3)$$

⇒ La vérification de la flèche n'est pas nécessaire

III.5.4.2 Calcul de la poutre palière à la torsion:

\bigstar Moment de torsion(M_{tor}):

La poutre palière est soumise à deux moments de torsion de palier et de paillasse.

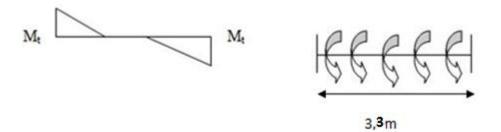


Figure III.14 : schéma statique de la poutre palière.

$$M_{tor} = \frac{1}{2} M_{appui} = \frac{1}{2} \times 48,70 = 24,35 \text{ KN. m}$$

contrainte tangentielle de torsion :

$$\tau_u = \frac{M_t}{2.\Omega.b_0}$$
 Avec:

$$\Omega = (\boldsymbol{h} - \boldsymbol{b0})(\boldsymbol{b} - \boldsymbol{b0})$$
, aire du contour à mi-épaisseur

 $b_0 = \frac{b}{6}$ épaisseur de la section creuse

$$b_0 = \frac{30}{6} = 5$$
cm

$$\Omega = (\mathbf{h} - \mathbf{b0})(\mathbf{b} - \mathbf{b0}) = (400 - 50)(300 - 50) = 87500 \text{mm}^2$$

$$\tau_{\rm u} = \frac{24,35 \times 10^3}{2 \times 87500 \times 50} = 0,0028 \text{ MPa}$$

D'après le (BAEL 91article 5.4.3)

On doit vérifier que :

$$\tau_{u_{tor}}^2 + \!\! \tau_{u_{flex}}^2 < \overline{\tau}_u^2 = 3,33^2 = 11,08$$
 Mpa.

Détermination des armatures :

\triangleright Armatures longitudinales (A₁):

$$A_l \geq \frac{M_{tor}.\gamma_s.\mu}{2.\Omega.f_e} \ , \ Avec: \textbf{\textit{U}} = \textbf{\textit{2}} \times [(\textbf{\textit{b}} - \textbf{\textit{b0}}) + (\textbf{\textit{h}} - \textbf{\textit{b0}})]$$

$$\mu = \mathbf{2} \times [(30-5) + (40-5)] = 120 \text{cm}$$
, (périmètre de l'aire Ω de la section efficace)

$$A_l \ge \frac{24,35 \times 10^5 \times 1,15 \times 120}{2 \times 87500 \times 400} = 4,80 \text{ cm}^2$$

Soit : $4T16 = 6,16cm^2$

> Armatures transversales :

$$\left[\frac{A_{t}}{S_{t}}.\frac{f_{e}}{\gamma_{s}}\right] \ge \frac{M_{tor}}{2.\Omega} \Longrightarrow A_{t} \ge \frac{M_{tor}.S_{t}.\gamma_{s}}{2.\Omega.f_{e}} = \frac{24,35 \times 10^{5} \times 25 \times 1,15}{2 \times 87500 \times 400} = 1,00 \text{ cm}^{2}$$

On adopte: $A = 3T8 = 1,51cm^2$

▶ les armatures totale : (flexion+ torsion):

Pour les armatures longitudinales :

• Flexion:

- appui : 3T14- travée : 3T14

• **Torsion**: **4T14**

Pour les armatures transversales on adopte un trois cadres de T8.

Exemple de ferraillage des escaliers :

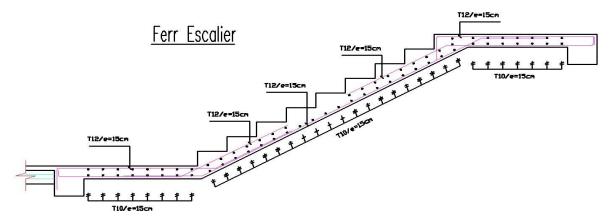


Figure III.15: Schéma de ferraillage des escaliers.

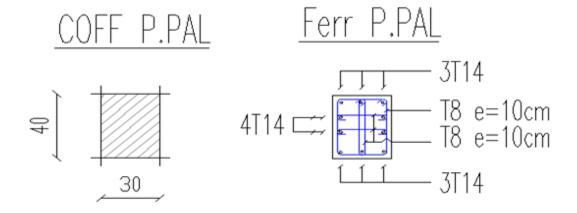


Figure III.16: Schéma de ferraillage de la poutre palière.

III.6 Calcul des plancher:

III.6.1 Introduction:

Nous avons adopté comme plancher pour notre bâtiment un plancher en corps creux qui a pour avantages :

- une bonne isolation phonique et thermique.

- plus léger que la dalle pleine, ce qui implique une diminution du poids total de la structure et par conséquent un facteur prépondérant en terme d'économie.

III.6.2 Calcul des poutrelles :

Le ferraillage des poutrelles se fera en deux étapes :

1ere étape : avant le coulage de la table de compression.

2éme étape : après le coulage de la dalle de compression.

➤ 1ère étape : (avant le coulage) :

La poutrelle est soumise à son poids propre et au poids du corps creux, ainsi qu'à la charge d'exploitation due au personnel sur chantier.

Cette étape correspond à l'avant coulage du béton. La poutrelle se calcule comme une Poutre travaillant isostatiquement.

- (On utilise des poutres préfabriquées sur chantier).
- poids propre de la poutrelle : $0.12 \times 0.04 \times 25 = 0.12 \text{ kn/ml}$
- poids propre du corps creux : $0.65 \times 0.95 = 0.618$ kn/ml

$$G = 0,738$$
kn/ml

-Surcharge d'exploitation du chantier : $0,65 \times 1 = 0,65$ kn/ml

$$Q = 0,65$$
kn/ml

***** Combinaisons:

A l'E.L.U: Pu =
$$1.35G+1.5Q \rightarrow Pu = (1,35 \times 0,738) + (1,5 \times 0,65) \rightarrow Pu = 1,97kn/ml$$

A l'E.L.S:
$$P_{ser} = G + Q \rightarrow P_{ser} = 0.738 + 0.65 \rightarrow P_{ser} = 1.39 kn/ml$$

• Le moment maximum isostatique, est donné par :

 $M_{\text{max}} = PL^2/8$ (dans notre cas $L_{\text{max}} = 3.30 \text{ m}$)

D'ou:

à l'E.L.U:
$$Mu = PuL^2/8 \rightarrow Mu = 4.99 \text{ KN.m}$$

à l'E.L.S:
$$M_{ser}$$
= PserL²/8 \rightarrow M_{ser} = 3,52 KN.m

L'effort tranchant maximum est donné par :

Tu max =
$$P_u$$
.L/2 \rightarrow Tu = 4,43 KN

$$T_{ser}max = P_{ser}.L/2 \rightarrow T_{ser} = 3,13 \text{ KN.}$$

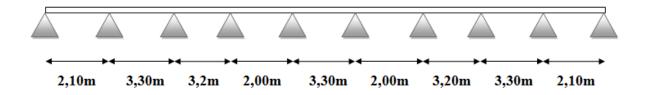
Les poutrelles ne sont pas exposées aux intempéries, le calcul se fera à l'E.L.U car la fissuration est jugée peu nuisible.

***** Ferraillage:

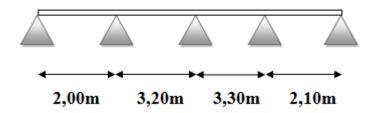
Ces éléments de constructions travaillent souvent à la flexion simple pour laquelle on ferle calcul :

$$\mu$$
= Mu / (b.d².f_{bu}) = 4,99 × 10³ / [12×(0.9×20)²×14.2] = 2,26

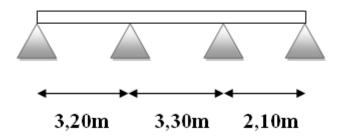
 μ =2,26 > μ c = 0,392 d'ou les armatures comprimées sont nécessaire afin d'équilibrer le moment M. Mais on est limitée par la section du béton (12×4 cm²), Il est donc impératif de prévoir des étais pour que la poutrelle supporte les charges avant le durcissement de la table de compression.


> 2eme étape : (après le coulage) :

Après le coulage de table de compression, les poutrelles supportant les planchers (G, Q) à charges d'exploitations modérées, les charges et surcharges en jeu sont données dans les tableaux suivants :


Т	Tableau III.15. Les chargements sur les poutrelles.									
	G	Q	EI	ELU		LS				
DESIGNATION			1.35G	1.35G+1.5Q		+Q				
	(KN/m²)	(KN/m²)	pu	qu	Ps	qs				
				0.65× pu		0.65× pu				
			(KN/m ²)	(KN/m ²)	(KN/m ²)	(KN/m²)				
Terrasse	6.33	1	10.04	6.62	7.33	4.10				
inaccessible (16+4)										
Habitation (du	5.01	1.50	9.01	5.04	6.51	3.64				
RDC au 5eme)										

III.6.3. Les différents Types des plancher :


Type 01:

Type 02:

Type 03:

Type 04:

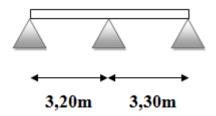


Figure III.17: Les différents Types des plancher.

III.6.4. Choix de la méthode de calcul:

III.6.4.1 Vérification des conditions de la méthode forfaitaire :

 La charge d'exploitation est au plus égale à deux fois la charge permanente ou 5kN/m²

$$Q=1.5 \le max(2G;5KN) = 12.66 KN CV$$

• Les portées consécutives (Li, Li+1) "i ont un rapport compris entre 0 ,85 et 1, 25.

$$0.8 \leq \frac{Li}{Li+1} \leq 1.25$$

$$\frac{210}{330} = 0.63 < 0.8 \dots \dots \dots \dots CNV$$

 Donc on adoptera pour le calcul des poutrelles, la méthode dite : Méthode de CAQUOT minorée.

III.6.4.2 Principe de méthode de Caquot minoré :

Cette méthode d' « ALBERT CAQUOT », repose sur la méthode des « trois moments », le principe consiste à calculer les moments de flexion selon la démarche suivante :

Le moment maximal en travée s'obtient en chargeant la travée concernée (1.35G+1.5Q) et en déchargeant les 2 travées voisines (1.35G).

$$Mt = \frac{qx}{2}(1-x) + Mw\left(1 - \frac{x}{l}\right) + Me(\frac{x}{l})$$

$$X = \frac{1}{2} + \frac{Me - Mw}{ql}$$

q: la charge permanente à l'ELU

x: abscisse de la valeur max du moment en travée.

Le moment maximal sur un appui (i) s'obtient en chargeant les 2 travées l'encadrant

$$Ma = -\frac{qw \times L'w^3 + qe \times L'e^3}{8.5(L'w + L'e)}$$

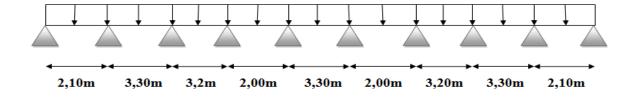
Avec:

L' = L pour une travée de rive.

L' = 0,8L pour une travée intermédiaire.

qw: charge permanente à gauche de l'appui.

qe: charge permanente à droite de l'appui.


Effort trancchant :

$$Ve = \frac{ql}{2} + \frac{Me - Mw}{L}$$

$$Vw = -\frac{ql}{2} + \frac{Me - Mw}{L}$$

Schéma statique:

 Type 01 : terrasse inaccissble : poutre sur 3 appuis toutes les travées sont chargées

♦ Remarque:

Nous avons calculé les sollicitations sur 05 travée et compte tenu de la symétrie que représente le type en question nous sommes en mesure d'en tirer profit et déduire toues les sollicitations pour les 04 travées droites.

Tableau III.16: Moment aux appuis intermédiaires (poutrelle type1-terrasse inaccessible.

Appuis	ELU	ELS	Longueur fictives		Moments (KN.m)	
intermédiair	q'g=q'd	q'g=q'd	l'g	l'd	ELU	ELS
e						

В	4.69	3.40	2.64	2.64	-3.21	-2.33
С	4.69	3.40	2.56	2.56	-3.71	-2.70
D	4.69	3.40	1.60	1.60	-2.75	-2.00
E	4.69	3.40	2.64	2.64	-2.90	-2.11

Tableau III.17: Moment aux appuis de rive (poutrelle type1terrasse inaccessible.

Appuis	Langueur	La charge		Mome	ents M0	Moments aux		
rive	de la travée	transmi	transmise (q) (KN.)		N.m) appuis (1		(KN.m)	
	(1)	ELU	ELS	ELU	ULS	ELU	ELS	
A-A'	2.10	4.69	3.40	0.98	0.69	-0.38	-0.28	

Tableau III.18: Moment en travée (poutrelle type1 terrasse inaccessible).

Travées	X0 (1	m)	Moments en tra	Moments en travée Mt (KN.m)		
	ELU	ELS	ELU	ELS		
AB	0.76	0.76	0.98	0.69		
BC	1.28	1.28	0.63	0.42		
CD	1.36	1.36	0.61	0.41		
DE	0.78	0.78	1.33	1.46		
EF	1.32	1.32	1.18	2.11		

Tableau III.19: Moment sur appuis (poutrelle type1 terrasse inaccessible).

CAS			ELU (KN.m)			ELS (KN.m)					
	A	В	C	D	E	F	A	В	C	D	E	F
Cas 1	-0.38	-3.21	-3.71	-2.75	-2.90	-2.90	-0.28	-2.33	-2.70	-2.00	-2.11	-2.11
Cas 2	-0.38	-2.77	-3.32	-2.65	-2.81	-2.81	-0.27	-2.03	-2.43	-1.93	-2.04	-2.04
Cas 3	-0.30	-2.99	-3.36	-2.30	-2.43	-2.43	-0.22	-2.18	-2.45	-1.69	-1.79	-1.79
Mamax	-0.38	-3.21	-3.71	-2.75	-2.90	-2.90	-0.28	-2.33	-2.70	-2.00	-2.11	-2.11

Tableau III.20 : Moment en travée (poutrelle type1 terrasse inaccessible).

Moment sur travées

CAS	ELU (KN.m)					ELS (KN.m)				
	AB	AB BC CD DE EF					BC	CD	DE	EF
Cas 1	0.98	0.63	0.61	1.33	1.18	0.69	0.42	0.40	1.46	0.85

Cas 2	1.20	0.20	0.83	1.53	1.27	0.82	0.50	0.56	0.99	0.92
Cas 3	0.42	0.94	0.26	0.87	0.81	0.48	0.64	0.85	1.18	0.61
Mamax	1.20	0.94	0.83	1.53	1.27	0.82	0.64	0.85	1.46	0.92

Tableau III.21: Efforts tranchants (poutrelle type1 terrasse inaccessible)

Travées	Efforts trancl	Efforts tranchants (KN)							
AB	VA= 3.58	VB= -6.26							
BC	VB= 6.01	VC= -6.37							
CD	VC= 6.96	VD=-5.04							
DE	VD= 3.60	VE= -3.90							
EF	VE= 6.19	VF= -6.19							

Sollicitation max:

Tableau III.22: sollicitation max du calcul

TERRASSES	ELU	ELS
INACCESSIBLE		
Ma max (KN.M	3.71	2.70
Mt max (KN. m)	1.20	0.98
T max (KN)	6.96	4.62

III.6.4.3 Ferraillage des poutrelles (terrasse inaccessible):

En travées :

M max = 3, 71 kn.m
$$\sigma_b = 14$$
, 2 Mpa

Le moment reprise par la table de compression :

$$M_r = b. h_0. (d - \frac{h_0}{2}). \sigma_b \Rightarrow M_r = 0,65.0, 04. (0,18 - \frac{0,04}{2}). 14,2. 10^3 = 59 \text{ kn.m}$$

 $\Rightarrow M_r > M \text{ max}$

Donc L'axe neutre tombe dans la table de compression, la section en Té sera calculée comme une section rectangulaire de largeur b = 65cm et de hauteur h=20cm.

$$\begin{split} \mu &= \frac{\text{M max}}{\text{b.d}^2.\sigma_b} = \frac{3.71 \times 10^3}{65 \times 18^2 \times 14.2} = 0,\, 014 < \mu_{AB} = 0,186 \, \Rightarrow (A_s` = 0) \Rightarrow \text{pivout A} \\ \alpha &= 1,\, 25(1 - \sqrt{1 - 2\mu} \,\,) \Rightarrow \alpha = 0,017 \\ \beta &= 1 - 0.4 \,\, \alpha \Rightarrow \beta = 0.99 \\ Z &= \beta.\, d \Rightarrow Z = 0,\, 99 \times 18 = 17,82 \,\, \text{cm} \end{split}$$

$$A_s = \frac{M \text{ max}}{7.75} = \frac{3.71 \times 10^3}{0.1782 \times 348} \Rightarrow A_s = 0,59 \text{ cm}^2$$

> Condition de non fragilité :

A min = 0, 23.b.d.
$$\frac{ft_{28}}{fe}$$
 = 1, 41cm²

On adopte: $3 \text{ HA } 10 \text{ (A}_s = 2, 36 \text{ cm}^2 \text{)}.$

En appuis :

Le moment est négatif, la table de compression est tendue, la section en té sera calculée comme une section rectangulaire de largeur 12 cm et de hauteur h=20cm.

M max = 1, 27 KN.m

$$\begin{split} \mu &= \frac{\text{M max}}{\text{b.d}^2.\sigma_b} = \frac{1.20 \times 10^3}{65 \times 18^2 \times 14.2} = 0.0045 < \mu_{AB} = 0,186 \implies (A_s` = 0) \Rightarrow \text{pivout A} \\ \alpha &= 1, \ 25(1 - \sqrt{1 - 2\mu}\) \Rightarrow \alpha = 0,006 \\ \beta &= \ 1 - 0,4 \ \alpha \Rightarrow \beta = 0,99 \\ Z &= \ \beta. \ d \Rightarrow Z = 0, \ 99 \times 18 = 17,82 \ \text{cm} \\ A_s &= \frac{\text{M max}}{\text{Z.}\sigma s} = \frac{3.71 \times 10^3}{0,1782 \times 348} \Rightarrow \ \textbf{A_s} = \textbf{0, 59 cm}^2 \end{split}$$

> Condition de non fragilité :

A min = 0, 23.b.d.
$$\frac{ft_{28}}{fe}$$
 = 1, 41cm²

Tableau III.23: ferraillage des poutrelles (terrasse inaccessible) sur appui et travee.

	M	μ	α	Z	$\sigma_{\rm s}$	As	As min	choix	As
	max			(cm)	(Mpa)	(cm ²)	(cm^2)		adopté
	(kn.m)								(cm ²)
Travée	3.71	0,014	0,017	17,82	348	0.58	1,41	3HA10	2,36
appuis	1.20	0,0045	0,006	17,82	348	0.59	0,26	1HA12	1.13

Donc les armateurs transversaux ne sont pas nécessaires.

Les armateurs transversaux : (art. A.7.2.2 / BAEL91)

On remarque bien que les conditions sont vérifiées donc les armatures transversales ne sont pas nécessaires, mais la disposition constructive est nécessaire.

$$\emptyset \le \min (h/35, b_0/10, \emptyset \text{ longitudinale}) = (5,7; 12; 12) \text{mm}$$

On adopte : $1\emptyset 8 = 8 \text{ mm}$

Les armatures transversales sont réalisées par un étrier de $\Phi 8$

• Espacement : (Art. A .5 .1. 22. BAEL 91)

$$S_t \le Min (0.9d; 40 cm) = 18 cm.$$

on Adopte : $S_t = 15$ cm En zone courante.

 $S_t = 10 \text{ cm}$ En zone nodale.

Vérification des contraintes à ELS :

Des deux vérifications ci dessus on conclut que les contraintes dans le béton sont vérifiées.

> contrainte limite de compression du béton est: d'après le BAEL91 Article [A.4.5,

2]

$$\overline{\sigma_{bc}} = 0.6 f_{ci} = 0.6 f_{c28} = 0.6 \times 25 \Longrightarrow \overline{\sigma_{bc}} = 15 MPa$$

> contrainte limite de traction de l'acier: BAEL91 Article [A.4.5, 32], en fissuration

préjudiciable:
$$\overline{\sigma_s} = \min \left\{ \frac{2}{3} f_e; \max \left(0.5 f_e; 110 \sqrt{\eta f_{tj}} \right) \right\} = 266.66 MPa$$

> calcul des contraintes:

la contrainte étant soumis à un moment M_{ser}, la contrainte a une distance x de l'axe neutre est:

$$\sigma(x) = \frac{M_{ser}}{I} x$$
, on pose $k = \frac{M_{ser}}{I}$ et on a:

la contrainte limite dans le béton comprimé $(x = y) \Rightarrow \sigma_{bc} = k y$

La position de l'axe neutre: $b y^2 + 30 A_s y - 30 d A_s = 0$, dont la solution est:

$$y = \frac{15 A_s}{b} \left[\sqrt{1 + \frac{bd}{7.5 A_s}} - 1 \right]$$

On calcul le moment d'inertie: $I = \frac{b y^3}{3} + 15 [A_s (d - y)^2]$

$$\sigma_s = 15k(d-y)$$

La vérification des contraintes à L'ELS donnée dans les tableaux suivants.

Tableau III.24: vérification la contraint de compression du béton

section	M _{ser}	b	d	As	У	I	σ_s	$\overline{\sigma_{bc}}$	obs
	(n.m)	(cm)	(cm)	(cm2)	(cm)	(cm4)	(Mpa)	(Mpa)	
appui	2700	12	18	2,67	7,65	5422,2	14,1	15	cv
travée	980	65	18	2,36	3,92	8323,1	3,58	15	CV

section	M _{ser}	b	d	As	y	I (cm4)	σ_s	$\overline{\sigma_s}$	obs
	(n.m)	(cm)	(cm)	(cm2)	(cm)		(Mpa)	(Mpa)	
appui	2700	12	18	2,67	7,65	5422,24	286,4	348	CV
travée	980	65	18	2,36	3,92	8323,03	192,9	348	CV

Tableau III.25: vérification la contraint de traction de l'acier

Schémas statiques:

Type 01 RDC + étage courant : toutes les travées sont chargé

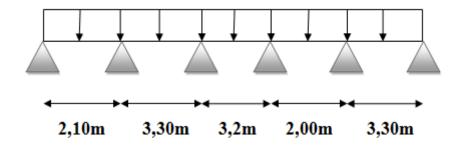


Tableau III.26: Moment aux appuis de rive (poutrelle type1 RDC et étages courant).

Appuis	Langueur	La charge		Momen	nts M0	Moments aux		
rive	de la	transmise (q)		(KN	l.m)	appuis (KN.m)		
	travée (l)	ELU	ELU ELS		ELS	ELU	ELS	
A- A'	2.10	4.40	3.15	0.84	0.70	-0.36	-0.18	

Tableau III.27: Moment sur appuis (poutrelle type1 RDC et étage courant).

CAS			ELU (KN.m)			ELS (KN.m)					
	A	В	C	D	E	F	A	В	C	D	E	F
Cas 1	-0.36	-2.99	-3.47	-2.59	-2.72	-2.72	-0.18	-2.14	-2.49	-1.85	-1.95	-1.95
Cas 2	-0.36	-2.35	-2.89	-2.89	-2.80	-2.80	-0.18	-1.71	-2.10	-1.71	-1.85	-1.85
Cas 3	-0.16	-2.68	-2.94	-1.90	-2.57	-2.57	-0.09	-1.93	-2.13	-1.39	-1.65	-1.65
Mamax	-0.36	-2.99	-3.47	-2.89	-2.80	-2.80	-0.18	-2.14	-2.49	-1.85	-1.95	-1.95

Tableau III.28: Moment sur travées (poutrelle type1 RDC et étage courant).

CAS		E	LU (KN.	m)		ELS (KN.m)					
	AB	BC	CD	DE	EF	AB	BC	CD	DE	EF	
Cas 1	0.84	1.53	0.67	1.25	1.11	0.70	0.30	0.46	0.89	0.77	
Cas 2	1.16	0.53	0.75	1.79	1.25	0.85	0.033	0.63	1.16	0.87	
Cas 3	0.46	0.01	0.068	0.81	0.02	0.38	0.046	0.58	0.75	0.04	
Mamax	1.16	1.53	0.75	1.25	1.25	0.85	0.30	0.63	1.16	0.87	

Tableau III.29: Moment en travée (poutrelle type 1 RDC et étage courant).

Travées	X0	(m)	Moments en tr	ravée Mt (KN.m)
	ELU	ELS	ELU	ELS
AB	0.76	0.76	0.98	0.69
ВС	1.28	1.28	0.63	0.42
CD	1.36	1.36	0.61	0.41
DE	0.78	0.78	1.33	1.46
EF	1.32	1.32	1.18	2.11

Tableau III.30: Efforts tranchants (poutrelle type1 RDC et étage courant).

Travées	Efforts tranch	Efforts tranchants (KN)							
AB	VA= 1.81	VB=-5.43							
BC	VB= 5.62	VC= -5.98							
CD	VC= 5.97	VD= -5.29							
DE	VD= 3.44	VE= -3.60							
EF	VE= 5.80	VF= -5.80							

Sollicitation max:

Tableau III.31: sollicitation max du calcul

L`étage courante +RDC	ELU	ELS 2.49 0.87	
Ma max (KN. m)	3.47	2.49	
Mt max (KN. m)	1.53	0.87	
T max (KN)	5.97	5.72	

III.6.4.4 Ferraillage des poutrelles (Etage courante + RDC):

> En travée :

M max = 3.47 kn.m
$$\sigma_b = 14, 2 \text{ Mpa}$$

Le moment reprise par la table de compression

$$M_r = b. h_0. (d - \frac{h_0}{2}). \sigma_b \Rightarrow M_r = 0.65 \times 0, 04 \times (0.18 - \frac{0.04}{2}). 14.2. 10^3 = 59 \text{ kn.m}$$

 $\Rightarrow M_r > M \text{ max}$

Donc l'axe neutre tombe dans la table de compression, la section en Té sera calculée comme une section rectangulaire de largeur b=65cm et de hauteur h=20cm.

$$\begin{split} \mu &= \frac{\text{M max}}{\text{b.d}^2.\sigma_b} = \frac{3.47 \times 10^3}{65 \times 18^2 \times 14.2} = 0,\, 013 < \mu_c = 0,186 \, \Rightarrow (A_s` = 0) \Rightarrow \text{pivout A} \\ \alpha &= 1,\, 25(1 - \sqrt{1 - 2\mu} \,\,) \Rightarrow \alpha = 0,016 \\ \beta &= 1 - 0,4 \,\, \alpha \Rightarrow \beta = 0,99 \\ Z &= \beta.\, d \Rightarrow Z = 0,\, 99 \times 18 = 17,82 \,\, \text{cm} \\ A_s &= \frac{\text{M max}}{7.\sigma s} = \frac{3.47 \times 10^3}{0.1782 \times 348} \Rightarrow A_s = \textbf{0.59 cm}^2 \end{split}$$

Condition de non fragilities:

A min = 0, 23.b.d.
$$\frac{ft_{28}}{fe}$$
 = 1, 61cm²

On adopte:
$$3HA10 (A_s = 2, 36 \text{ cm}^2)$$

> Sur appui:

Le moment est négatif, la table de compression est tendue, la section en té sera calculée comme une section rectangulaire de largeur 12 cm et de hauteur h=20cm.

M max = 1.53 kn.m

$$\begin{split} \mu &= \frac{\text{M max}}{\text{b.d}^2.\sigma_b} = \frac{1.53 \times 10^3}{65 \times 18^2 \times 14,2} = 0,\, 0013 < \mu_c = 0,186 \, \Rightarrow (A_s \, \dot{} = 0) \, \Rightarrow \text{pivout A} \\ \alpha &= 1,\, 25(1 - \sqrt{1 - 2\mu} \, \,) \Rightarrow \alpha = 0,016 \\ \beta &= 1 - 0,4 \, \alpha \Rightarrow \beta = 0,99 \\ Z &= \beta.\, d \Rightarrow Z = 0,\, 99 \times 18 = 17,82 \, \text{cm} \\ A_s &= \frac{\text{M max}}{Z.\sigma s} = \frac{3.47 \times 10^3}{0,1782 \times 348} \Rightarrow \textbf{A_s} = \textbf{0.59 cm}^2 \end{split}$$

Tableau III.32: ferraillage des poutrelles (Etage courante + RDC) en travée

M max	μ	α	Z	$\sigma_{\rm s}$	As	As min	choix	As
(KN.			(cm)	(Mpa)	(cm ²)	(cm ²)		adopté
m)								(cm ²)

appuie	1.53	0,013	0,016	17,82	348	0.59	1.62	1HA12	1.13
travée	9,00	0,013	0,016	17,82	348	0.59	1,41	3НА10	2,36

■ Vérification de l'effort tranchant : (CBA93 A.5.1.2.1.1)

On doit vérifier :
$$\tau_{\bf u} \le \overline{\tau_{\bf u}}$$

 $\tau_{\bf u} = \frac{\text{T max}}{\text{b} \times \text{d}} < \overline{\tau_{\bf u}} = \min{(0, 15 \frac{fc_{28}}{\gamma b}, 4 \text{ Mpa})}.$
 $\tau_{\bf u} = \frac{5.97 \times 10^3}{120 \times 180} = 0,27 \text{ Mpa} < \overline{\tau_{\bf u}} = 2,5 \text{ Mpa} \dots$ CV

Donc les armateurs transversaux ne sont pas nécessaires.

Les armateurs transversaux : (art. A.7.2.2 / BAEL91)

On remarque bien que les conditions sont vérifiées donc les armatures transversales ne sont pas nécessaires, mais la disposition constructive est nécessaire $\emptyset \le \min(h/35, b_0/10, \emptyset \text{ longitudinale}) = (5,7; 12; 12) \text{mm}$.

On adopt :108 = 8 mm

Les armatures transversales sont réalisées par un étrier de $\Phi 8$

• Espacement : (Art. A .5 .1. 22. BAEL 91)

$$S_t \le Min (0.9d; 40 cm) = 18 cm.$$

On adeopt : $S_t = 15$ cm (En zone courante).

 $S_t = 10$ cm (En zone nodale).

Vérification des contraintes à ELS :

Des deux vérifications ci dessus on conclut que les contraintes dans le béton sont vérifiées.

• contrainte limite de compression du béton est: d'après le BAEL91 Article [A.4.5, 2]

$$\overline{\sigma_{bc}} = 0.6 f_{ci} = 0.6 f_{c28} = 0.6 \times 25 \Rightarrow \overline{\sigma_{bc}} = 15 MPa$$

• contrainte limite de traction de l'acier: BAEL91 Article [A.4.5, 32], en

fissuration préjudiciable:
$$\overline{\sigma_s} = \min \left\{ \frac{2}{3} f_e; \max \left(0.5 f_e; 110 \sqrt{\eta f_{tj}} \right) \right\} = 266.66 MPa$$

calcul des contraintes: la contrainte étant soumis à un moment M_{ser} , la contrainte à une distance x de l'axe neutre est: $\sigma(x) = \frac{M_{ser}}{I}x$, on pose $k = \frac{M_{ser}}{I}$ et on a:

la contrainte limite dans le béton comprimé $(x = y) \Rightarrow \sigma_{bc} = k y$

La position de l'axe neutre: $by^2 + 30A_sy - 30dA_s = 0$, dont la solution est:

$$y = \frac{15 A_s}{b} \left[\sqrt{1 + \frac{bd}{7.5 A_s}} - 1 \right]$$

On calcul le moment d'inertie: $I = \frac{b y^3}{3} + 15 [A_s (d - y)^2]$

$$\sigma_s = 15k(d-y)$$

La vérification des contraintes à L'ELS donnée dans les tableaux suivants.

Tableau III.33: vérification la contraint de compression du béton

section	Mser	b	d	As	X	I	σ_s	$\overline{\sigma_{bc}}$	obs
	KN.m	(cm)	(cm)	(cm2)	(cm)	(cm4)	(Mpa)	(Mpa)	
appui	8640	12	18	2,26	7,65	5422,24	12,186	15	CV
travée	6500	65	18	2,36	3,92	8323,03	3,06	15	CV

Vérification de la flèche:

Condition de non vérification de la flèche:

1.
$$\frac{A_s}{bd} \le \frac{4.2}{f_a} \Rightarrow \frac{2.36}{65 \times 18} = 0.002 < \frac{4.2}{400} = 0.010 \dots CV$$

2.
$$\frac{h}{l} \ge \frac{1}{16} \Rightarrow \frac{20}{450} = 0.04 < \frac{1}{16} = 0.06 \dots CNV$$

3.
$$\frac{h}{l} \ge \frac{M_t}{10 \times M_0} \Rightarrow 0.04 < \frac{0.7M_0}{10M_0} = 0.07 \dots CNV$$

Donc la vérification de la flèche est nécessaire

Évaluation de la flèche

$$f_i = \frac{M l^2}{10 E_i \; I_{fi}} \qquad \qquad f_v = \frac{M l^2}{10 E_v \; I_{fv}} \label{eq:fv}$$

Calcule de (I_{fi}; I_{fv}):

$$I_{fi} = \frac{1,1 \times I_0}{(1+\mu \times \lambda_i)} \qquad I_{fv} = \frac{1,1 \times I_0}{(1+\mu \times \lambda_v)} \qquad \rho = \frac{A_s}{bd} = 0,002$$

$$\lambda_i = \frac{0,05 f_{t28}}{(2+3\frac{b_0}{b}) \times \rho} = \frac{0,05 \times 2,1}{\left(2+(3 \times \frac{0,04}{0,65})\right)0,002} = 24,03$$

$$\lambda_v = \frac{2}{5}\lambda_i = 9,61$$

$$\mu = 1 - \frac{_{1,75 \times f_{t28}}}{_{(4 \times \rho \times \sigma_s)f_{t28}}} = 1 - \frac{_{1,75 \times 2,1}}{_{(4 \times 0,002 \times 348) + 2,1}} = 0,752$$

$$\begin{split} &\sigma_{s} = \frac{M_{ser}}{d\times\beta\times A_{s}} = \frac{3.47\times10^{6}}{180\times0.98\times2.36\times10^{2}} \Rightarrow \ \sigma_{s} = 83,35 \ \text{Mpa} \\ &y_{G} = \frac{\frac{b\times h^{2}}{2} + \eta dA_{s}}{bh + \eta A_{s}} = \frac{(\frac{65\times20^{2}}{2}) + (15\times18\times2.36)}{(65\times20) + (15\times2.36)} = 10,21 \ \text{cm} \\ &I_{0} = \frac{b\times h^{3}}{12} + \ bh(\frac{h}{2} - \ y_{G})^{2} + \ \eta A_{s} \ (d - y_{G})^{2} \\ &I_{0} = \frac{65\times20^{3}}{12} + \ (65\times20)\times(10-10,21)^{2} + (15\times2,36)\times(18-10,21)^{2} \\ &I_{0} = 4,55\times10^{4} \ \text{cm}^{4}...... \ \text{Done:} \\ &I_{fi} = \frac{1,1\times4,55\times10^{4}}{1+(24,03\times0,752)} = \ 2,62\times10^{3} \ \text{cm}^{4} \\ &I_{fv} = \frac{1,1\times4,55\times10^{4}}{1+(9,61\times0,752)} = 6,08\times10^{3} \ \text{cm}^{4} \\ &E_{i} = 11000\sqrt[3]{f_{c28}} = 32164,2 \ \text{Mpa} \\ &E_{v} = 3700\sqrt[3]{f_{c28}} = 10818,87 \ \text{Mpa} \end{split}$$

Calcule des contraintes correspondront à chaque cas :

• Charge permanentes :

$$\begin{split} G &= 6,\,33 \text{ KN /m}^2 \qquad L = 3,\,3m \\ M_0 &= \frac{G \times L^2}{8} = 8.61 \text{ Kn.m} \qquad \begin{cases} M_a = 0,\,4M_0 = 3,\,44 \text{ Kn.m} \\ M_t = 0,7M_0 = 6,02 \text{ Kn.m} \end{cases} \\ \frac{by^2}{2} + \eta \, A_s \, (y - d) = 0 \ \Rightarrow \, 65y^2 \, + \, 70,8 \, y - \, 1274,4 = 0 \\ \Rightarrow y^2 \, + \, 1,09 \, y - \, 19,6 = 0 \\ \Rightarrow y = 3,91 \text{ cm} \\ I &= \frac{bx^3}{3} + \eta \, A_s \, (x - d)^2 \Rightarrow I = \left(\frac{65 \times 3,91^3}{3}\right) + \left((15 \, \times \, 2,36\right) \times (18 - 3,91)^2\right) \\ \Rightarrow I = 8,\,32 \times 10^3 \text{cm}^4. \end{split}$$
 Donc:
$$\begin{cases} \sigma_b = 5,26 \, Mpa \, . \\ \sigma_s = 83,35 \, Mpa \, . \end{cases}$$

• Charge d`exploitations:

$$Q = 1 \text{ Kn/m}^2 \qquad L = 3,3 \text{ m}$$

$$M_0 = \frac{Q \times L^2}{8} = 1, 36 \text{ Kn.m} \qquad \begin{cases} M_a = 0, 4M_0 = 0.54 \text{ Kn.m} \\ M_t = 0,7M_0 = 0.95 \text{ Kn.m} \end{cases}$$

$$y = 3, 91 \text{ cm}$$

$$I = 8,32 \times 10^3 \text{cm}^4$$
.

Donc: $\sigma_b = 0.832 Mpa$.

$$\sigma_{\rm s} = 44,96 \, Mpa$$
.

Calculs de μ :

Charge permanentes
$$\Rightarrow \mu = 1 - (\frac{1,75 \times 2,1}{(4 \times 0,002 \times 282,48) + 2,1}) = 0,157$$

Charge d'exploitations $\Rightarrow \mu = 0$

• Flèche due aux charges permanentes différées(fgv) :

$$I_{\text{fv}} = \frac{{}_{1,1 \times I_0}}{{}_{1+(0,4\mu \times \lambda_v)}} = \frac{{}_{1,1 \times 8,32 \times 10^3}}{{}_{1+(0,4 \times 0,157 \times 9,61)}} = 5.7 \times 10^3 \text{cm}^4$$

$$f_{gv} = \frac{\text{Ml}^2}{_{10E_v}\,I_{fv}} = \frac{_{11,2\times3,3^2\times10^{12}}}{_{10\times10818,87\times5,7\times10^3\times10^4}} \Rightarrow f_{gv} = 19,60~mm~.$$

• Flèche due aux charges permanentes instantanées (fgl) :

$$I_{fI} = \frac{{}_{1,1\times I_0}}{{}_{1+(\mu\times\lambda_I)}} = \frac{{}_{1,1\times 8,32\times 10^3}}{{}_{1+(0,157\times 24,03)}} = 1,92\times 10^2 cm^4$$

$$f_{gI} = \frac{\text{Ml}^2}{\text{10E}_I \, I_{fI}} = \frac{\text{11,2} \times \text{3.3}^2 \times \text{10}^{12}}{\text{10} \times \text{32164,2} \times \text{1,92} \times \text{10}^3 \times \text{10}^4} \Rightarrow f_{gI} = 19,56 \ mm \ .$$

• Flèche due aux surcharges (f_{QI}) :

$$\mu = 0$$

$$I_{\text{fI}} = \frac{1.1 \times I_0}{1 + (\mu \times \lambda_1)} = \frac{1.1I_0}{1} = 1, 1 \times 8.32 \times 10^3 \Rightarrow I_{\text{fI}} = 9.15 \times 10^3 \text{ cm}^4$$

$$f_{QI} = \frac{Ml^2}{10E_I I_{fl}} = \frac{1,77 \times 3.3^2 \times 10^{12}}{10 \times 32164,2 \times 9,15 \times 10^3 \times 10^4} \Rightarrow f_{QI} = 0.69 \text{ mm.}$$

o La flèche totale:

$$f_{T=} f_{gv} - f_{gI} + f_{QI}$$

$$f_{T} = 19,60 - 19,56 + 0.69 \Rightarrow f_{T} = 0.73 \text{ mm}$$
.

o La flèche admissible :

$$\overline{f} = \frac{L}{500} = \frac{3300}{500} \Rightarrow \overline{f} = 6.6 \text{ mm}.$$

III.6.4. 5 Ferraillage de la table de compression :

La table de compression doit être armée d'un quadrillage de barres dont les uniensions des mailles ne doivent pas dépasser :

20 cm pour les armatures perpendiculaires aux nervures

30 cm pour les armatures parallèles aux nervures

Les sections des armatures doivent normalement satisfaites aux conditions suivantes :

$$50cm \le Ln \le 80cm \dots \dots A \ge \frac{4L_n}{f_p}$$

Dans notre cas : Ln = 65cm et fe = 400MPa

$$A \ge \frac{4 \times 65}{400} = 0,65$$
cm²

On adopte : $AS \perp = 5\%6 = 1.41cm^2$ avec un espacement ST = 15cm

■ Armatures de répartition :

$$AS0 = \frac{A_{S\perp}}{2} = \frac{1,41}{2} = 0,705 \text{cm}^2.$$

 $AS \perp = 0.705 cm^2$.

On adopte : $AS \perp = 5 \emptyset 6 = 1$. $41cm^2$ avec un espacement ST = 15cm.

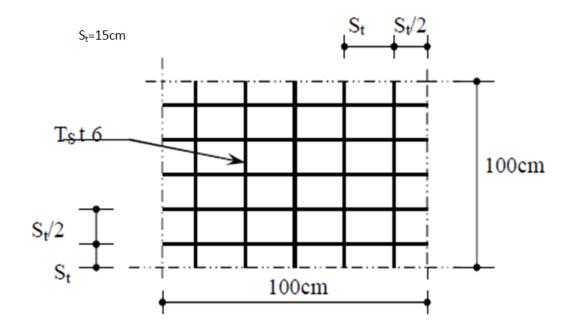
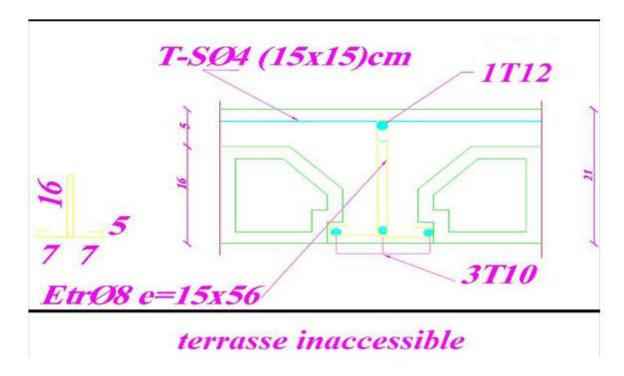
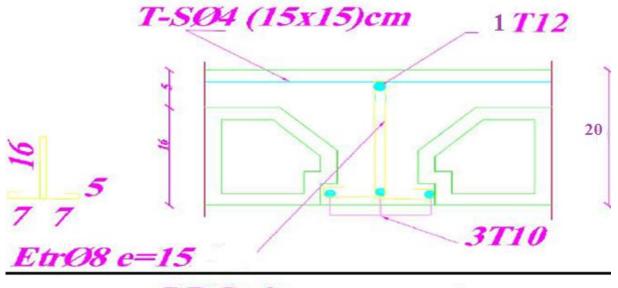




Figure III.18 : Disposition constructive des armatures de la dalle de compression

Figure III.19 : Disposition constructive des armatures dans la poutrelle (terrasse)

RDC+étage courante

Figure III.20 : Disposition constructive des armatures dans la poutrelle (RDC+étage courante)

CHAPITRE IV: ETUDE SISMIQUE.

IV.1. Introduction:

Parmi les catastrophes naturelles qui frappent la surface de la Terre, les séismes sont sans doute celles qui ont les effets les plus dévastateurs en milieu urbain. Face à ce danger, et à son imprévisibilité, il est nécessaire de construire des ouvrages capables de résister à de tels phénomènes, afin d'assurer une protection au moins acceptable des vies humaines, d'où l'émergence de la construction parasismique. Cette dernière repose généralement sur une étude dynamique des constructions de ferments.

IV.2. Objectif de l étude sismique :

Le but premier de l'étude dynamique de la structure est de déterminer les propriétés dynamiques spécifiques de la structure lors de ses vibrations. Une telle étude de notre structure telle qu'elle est souvent très complexe, c'est pourquoi on fait souvent appel à des modèles qui permettent de simplifier suffisamment les problèmes pour en permettre l'analyse.

IV.3. Méthode de calcul sismique :

D'après le RPA 99/2003 [3], Le calcul des forces sismiques peut être mené suivant trois méthodes :

- La méthode statique équivalente.
- La méthode d'analyse modale spectrale.
- La méthode d'analyse dynamique par accélérogrammes.

IV.3.1. Description de logiciel:

ETABS : Extended Three Dimensional Analyses of Building System, (ETABS) est un logiciel de calcul et de conception d'ouvrages d'art particulièrement adopté pour les bâtiments et les ouvrages de génie civil.

il permet dans un même environnement la captation graphique des ouvrages avec une bibliothèque d'éléments autorisant l'approche du comportement de ce type d'ouvrages.

il offre de nombreuses possibilités d'analyse des efforts statiques et dynamiques avec des compléments de conception et facilite l'interprétation des résultats et la mise en forme des notes de calcul et des rapports explicatifs.

il permet également de réaliser les étapes de modélisation de manière globale.

IV.3.2. Modélisation:

La modélisation revient à représenter un problème physique possédant un nombre de degré de liberté (DDL) infini par un modèle ayant un nombre de DDL fini, et qui reflète avec une bonne précision les paramètres du système d'origine à savoir : la masse, la rigidité et l'amortissement.

En d'autres termes, La modélisation est la recherche d'un mécanisme simplifié qui nous rapproche le plus possible du comportement réel de la structure, en tenant compte le plus correctement possible de la masse et de la rigidité de tous les éléments de la structure.

L'étude de cette structure est basée sur les résultats d'une modélisation en trois dimensions à l'aide du logiciel ETABS.

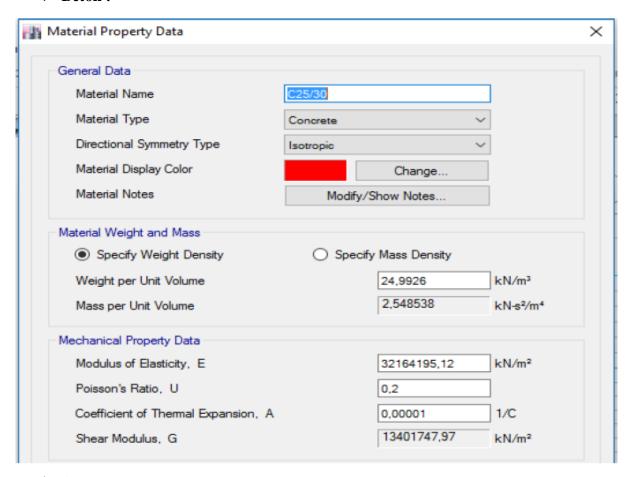
✓ Critère de classification :

- Classification de la zone : **zone IIa**
- Classification de l'ouvrage selon leur importance : Groupe 2
- Classification du site : S3
- Classification de l'ouvrage selon leur configuration : **Régularité en plan et en élévation**
- Classification du système de contreventement : **Structure en béton armé** catégorie de structure type de contreventement : **Mixte portiques/voiles par interaction**

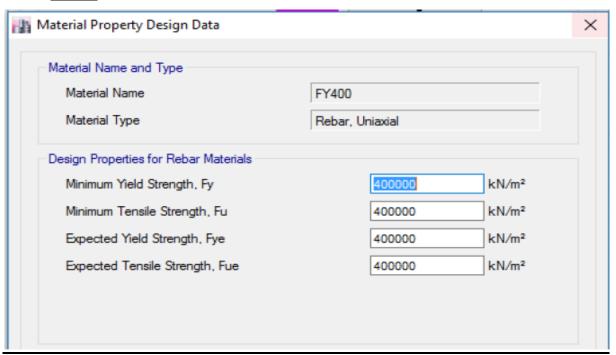
✓ Hypothèse de calcule :

- Règlement : RPA99 version 2003
- Bâtiment : groupe d'usage 2
- Béton ordinaire : fc28 = 25 MPa
- Acier feE400

IV.3.2.1. Etape de la modélisation :


La modélisation sur ETABS consiste en les étapes suivantes :

- Initialiser le modèle (unités, grilles, niveaux).
- Définir la géométrie du modèle ;
- Définir les paramètres de l'analyse (matériaux, sections ... etc) et les assigner aux éléments ;
- Spécifier les conditions aux limites (appuis et diaphragmes) ;
- Définir les cas de charge (Statique et dynamique) et les appliquer aux éléments ;
- Spécifier les options d'analyse (options de l'analyse modale) ;
- Exécuter l'analyse et apporter des corrections au modèle s'il y a lieu ;
- Exploiter les résultats d'analyse (visualisation graphique, listes, exportation des résultats ... etc.)


✓ Donnée de base :

Caractéristiques de matériaux :

* Béton:

* Acier:

IV.3.2.2. Dimensionnement des éléments principaux de la structure :

Tableau IV.1: Dimensionnement des éléments principaux de la structure.

Eléments	poteau	poutres	nervure	palier	paillasse	voile	balcon	
		principales	secondaires					
dimension	30×40	30×40	30×35	16+4	20	20	20	15

- Les dimensions en plan : voir les plans.
- Les dimensions en élévation : Hauteur des étages = 3,10 m.
- Hauteur de RDC = 3,40 m.

Combinaisons des charges et Combinaisons sismique :

- **ELU**: 1.35G+1.5Q
- **ELS**: G+Q
- G+0.2Q
- G+Q+Ex
- G+Q+Ey
- 0.8G+Ey
- 0.8G+Ey

IV.3.2.3. Donnée de spectre de réponse :

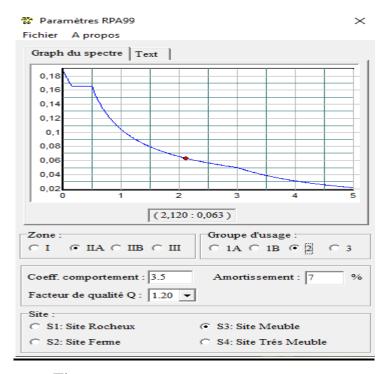


Figure IV.1 : Données du spectre de réponse.

> Présentation de la vue de la structure :

La modalisation de notre structure à partir du logiciel ETABS 2013 nous a donné la vue suivante :

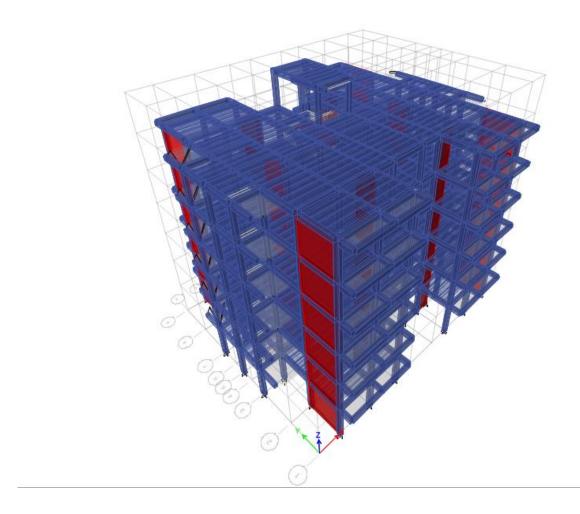


Figure IV.2: La vue en 3 D

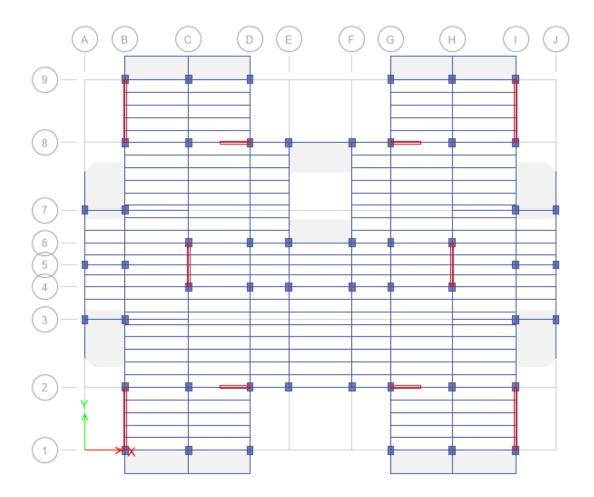


Figure IV.3: La vue en plan

IV.3.2.4. Choix la disposition des voiles :

Dans cette partie, nous allons examiner l'analyse du comportement dynamique de plusieurs variantes afin d'aboutir à une meilleure conception parasismique, dans ce volet, nous ramènerons à comparer les périodes propres des différentes variantes aux valeurs obtenues en appliquant les formules empiriques du (RPA99/V2003).

En premier lieu, le choix d'une variante est basé sur le fait d'avoir des mouvements de translations pour le premier et deuxième mode et pour le troisième mode un mouvement de torsion avec un faible coefficient de participation modale. Lors de la recherche d'une meilleure disposition de voiles, nous essayons au mieux de réduire la distance entre le centre de masses et de rigidité cela afin d'avoir un moment de torsion, dû à l'action horizontale qui peu sollicité la structure, le plus faible possible. La disposition des voiles doit remplir certaines conditions :

- Le nombre doit être suffisamment grand pour assurer une rigidité suffisante
- Tout en restant dans le domaine économique.

- S'assurer d'un écart minimal.
- Répartition homogène des masses et de la dureté.
- Après plusieurs simulations de positionnement des voiles, nous avons choisi une variable pour laquelle sur l'instantané des résultats Satisfait. Cette structure proposée est illustrée dans la figure :

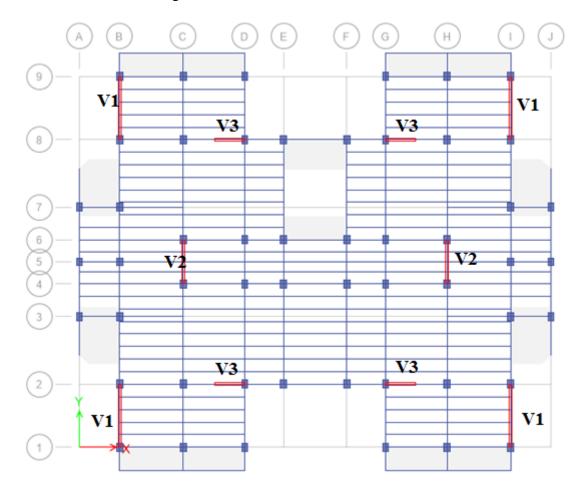


Figure IV.4: Disposition des voiles. 2D

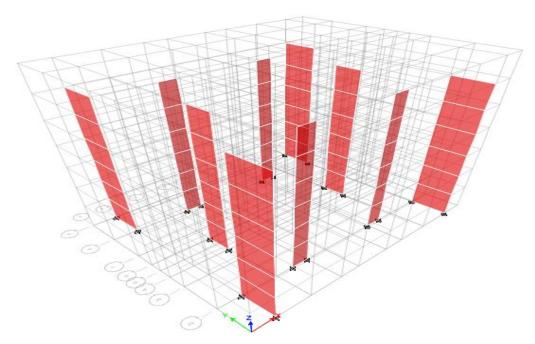


Figure IV.5: Disposition des voiles. 3D

IV.3.3. Résultat de l'analyse dynamique par ETABS :

Le tableau ci-dessous présente les facteurs de participation massique de chaque modèle.

Tableau IV.2 : période et facture de participation massique du modèle.

Mode	Période	UX	UY	UZ	Sum UX	Sum UY	Sum UZ	RX	RY	RZ
1	0.653662	78.3167	0	0	78.3167	0	0	0.0001	99.3077	0.1634
2	0.459962	0	71.9388	0	78.3168	71.9388	0	98.7484	0.0001	0.0001
3	0.433294	0.2035	0.0001	0	78.5203	71.9389	0	0.0001	0.2676	71.9786
4	0.200459	11.3834	0.0001	0	89.9037	71.939	0	0.0001	0.0052	0.0065
5	0.150929	0.8089	0	0	90.7126	71.939	0	0	0.0376	0.1602
6	0.135856	0	2.6696	0	90.7127	74.6087	0	0.1249	0	0.0002
7	0.116999	0	0.0092	0	90.7127	74.6178	0	0.001	0.0004	0.6465
8	0.107565	0.0025	15.9918	0	90.7151	90.6096	0	0.8464	0.0003	0.0127
9	0.104506	0.0811	0.0063	0	90.7963	90.6159	0	0.0003	0.003	17.3945
10	0.100305	4.6563	0.0093	0	95.4526	90.6252	0	0.0004	0.311	0.1646
11	0.062195	2.6461	0.0002	0	98.0987	90.6254	0	0	0.03	0.0007
12	0.049605	0	6.0939	0	98.0987	96.7193	0	0.2359	0	0.0003

❖ La structure passe par trois modes (02 modes de translation suivant x et y et 01 mode de rotation). Comme notre structure est composée de (**R+5**), les modes sont comme

suit:

➤ Mode 1 : translation suivant X

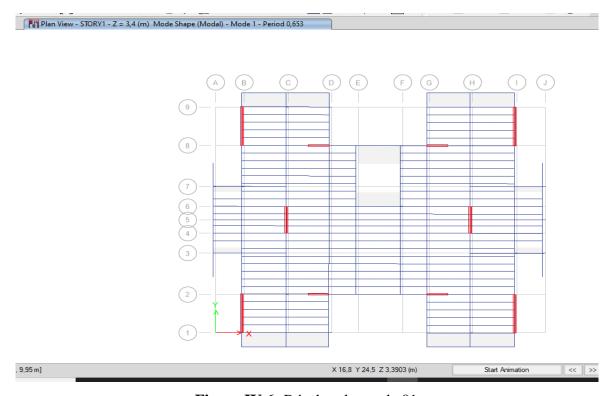


Figure IV.6: Résultat de mode 01

➤ Mode2: translation suivant Y

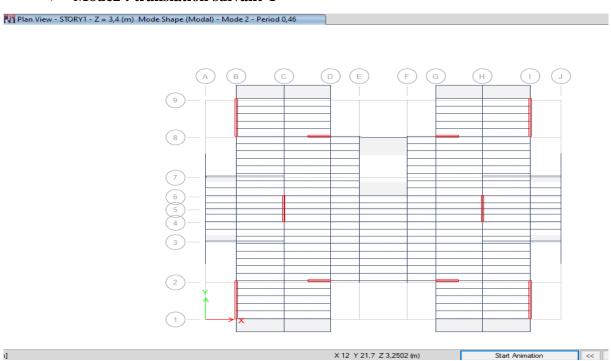


Figure IV.7: Résultat de mode 02

➤ **Mode 3** : rotation suivant Z

Plan View - STORY1 - Z = 3,4 (m) Mode Shape (Modal) - Mode 3 - Period 0,433

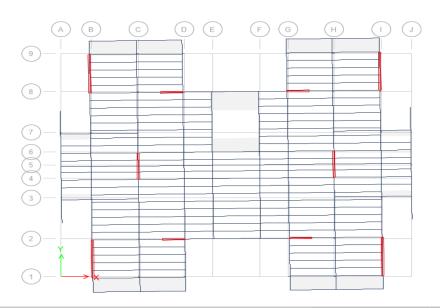


Figure IV.8: Résultat de mode 03

✓ Nombre des modes à considérer (article 4.3.4 RPA99 v 2003):

Pour les structures représentées par des motifs plans dans deux directions Orthogonal, le nombre de modes de vibration à tenir dans chacun des deux modes Les directions d'excitation doivent être les suivantes :

Le taux de participation massive a atteint les 90% de la masse totale dans les deux directions à partir du 8ème mode donc en prend 08 modes.

IV.3.4. Résultante des forces sismiques de calcul (Article 4.3.6 RPA99v 2003) :

Le produit des forces sismiques à la base VtO (V dynamique) obtenu par L'ensemble des valeurs typiques ne doit pas être inférieur à 80% de En raison des forces sismiques déterminées par la méthode statique équivalente V (V statique) pour la valeur de la période de base donnée par la formule démodée appropriée [3] :

$$V = \frac{A.\,D.\,Q}{R}.\,W$$

A : coefficient d'accélération donné par le Tableau 4-1 des règles RPA99/2003 en fonction de la zone sismique et du groupe d'usage du bâtiment [3].
 A=0.15

 D: facteur d'amplification dynamique moyen, fonction de la catégorie du site, du facteur de Coefficient d'amortissement (h) et de la période fondamentale de la structure T, Ce coefficient est donné par :

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta (T_2/T)^{\frac{2}{3}} & T_2 \le T \le 3.0s \\ 2.5\eta (T_2/3.0)^{\frac{2}{3}} (3.0/T)^{\frac{5}{3}} & T \ge 3.0s \end{cases}$$

T2 : période caractéristique, associée à la catégorie du site et donnée par le tableau 4.7

- $\eta\,$: facteur de correction d'amortissement donné par la formule :

$$\eta = \sqrt{7/(2+\xi)} \ge 0.7$$

- ξ (%) est le coefficient d'amortissement critique fonction du matériau constitutif, du type de Structure et de l'importance des remplissages.
- ξ est donné par le **Tableau** (4-7) des règles **RPA** présenté ci-après.

Tableau IV.3: Valeurs du coefficient d'amortissement suivant le système structurel [3].

Remplissage	Portio	Voile/mure	
	Béton arme	Béton arme/	
			maçonnerie
Leger	6	4	10
dense	7	5	

$$\eta {=} (7/(2{+}\xi))^{0.5} \, {=} 0.882 \ {>} 0.7$$
 ; on prend : $\pmb{\xi} {=} \pmb{7} \%$

➤ Période fondamentale 5.8.1 théorique (RPA Art 4.2.4) :

Les périodes calculées à partir des méthodes numériques ne doivent pas dépassant celles estimées à partir des formules empiriques conformes de plus de 30 %. La formule empirique à utiliser selon le cas est la suivante [3] :

$$T = CT \times \text{hn } \frac{3}{4}$$
$$T = 0.09 \text{ hn } / \sqrt{D}$$

 h_n = 18.90 m : Hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier Niveau n. $T = C_T .h_N 3/4 = 0.05x (18.90)3/4 = 0.453 S$

CT = 0,05 : Coefficient fonction du système de contreventement, du type de remplissage cas 03 et donné par le tableau 4-6 du RPA99/2003 [3].

D: La dimension du bâtiment mesurée à sa base dans la direction de calcul considéré

$$Dx = 24.74 \text{ m} = Tx = 0.09x18.90/\sqrt{24.74} = 0.341 \text{ sec}$$

Dy = 19.70 m => Ty =
$$0.09x18.90/\sqrt{24.74} = 0.365sec$$

Donc:

$$T = min(T_x; T_y; T) = Min(0.365; 0.341; 0.453).$$

Estimation empirique de la période fondamentale :

On a: Temp = 0.341s

Avec: T2 (S2) = 0.4s

Donc : D = $2.5\eta \ 0 \le T \le T2 \dots D = 2.2$

- R: facteur de comportement dépendant du type du système de contreventement de la structure. Système portique contreventée par des voiles porteur Tableau V.3 RPA99 sur a : R = 3.5
- Q: facteur de qualité, dépendant de la qualité du système structurel (régularité en plan, en élévation, contrôle de la qualité des matériaux.....etc.).
 Q = 1,2
- o W: poids total de la structure

$$W = \sum_{i=1}^{n} W_i \qquad \text{avec} \quad W_{i=} W_{Gi} + \beta W_{Qi}$$

β : Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation et donné par le tableau 4.5 (RPA99/Version2003).

A partir de l'ETABS : W=G+0.2Q= 31246.69 KN.

Alors:
$$V = \frac{0.15 \times 2.2 \times 1.2}{3.5} \cdot 31246.69$$

Donc: $V_{STA} = 3535.33 \text{ KN}$

▶ V dynamique (ETABS) :

Tableau IV.4: V dynamique.

V dynamique x	V dynamique y			
2836.28 KN	3215.47 KN			

Selon RPA99/2003 (art 4.3.6) :

0,8 V statique < V dynamique

$$0.8Vs = 2828.27kN$$

✓ Donc la condition est vérifiée.

IV.3.5. Excentricité accidentelle (Art 4.3.7 de RPA) :

IV.3.5.1. Caractéristiques géométriques et massiques de la structure :

***** Centre de masse

Le centre de masse est le point d'application des résultats des charges Horizontal (vent, tremblement de terre). La détermination du centre de masse dépend de Calcul des centres de masse pour chaque élément de la structure (bulbe, poteaux, poutres, planchers, escaliers, voiles, balcons, travaux de construction extérieurs) [3].Les coordonnées du centre de masse sont données par :

$$XG = \frac{\sum MiXi}{\sum Mi}$$
 ; $YG = \frac{\sum MiYi}{\sum Mi}$

Mi: masse de l'élément i.

Xi Yi: Coordonnées du C D G de l'élément (i) par rapport au repère global.

Centre de rigidité (torsion): Est le point par lequel passe la résultante des réactions des éléments participant dans la rigidité.

Note : Lorsque le centre de masse et de rigidité sont confondus. Les efforts extérieurs ne provoquent que des mouvements de translation. En revanche, lorsqu'il y a une excentricité entre eux il y a des mouvements de translation et rotation.

> Effet de la torsion accidentelle:

En plus l'excentricité calculée, une excentricité (additionnelle) égale à ± 0.05 L (L : étant la dimension du plancher perpendiculaire à la direction de l'action sismique doit être appliquée au niveau du plancher considéré et suivant chaque direction.

❖ Sens X : L=24.80m......0.05L=1.24m.

❖ Sens Y: L=21.70m.....0.05L=1.08m.

Tableau IV.5: centre de masse et centre de torsion de chaque étage.

STORY	XCM	XCR	XCM-	YCM	YCR	YCM-
	ACM	ACR	XCR	YCM	ICK	YCR
STORY1	12.25	12.24	0.01	9.61	9.94	-0.33
STORY2	12.25	12.24	0.01	9.61	10.12	-0.51
STORY3	12.25	12.24	0.01	9.61	10.22	-0.94
STORY4	12.25	12.24	0.01	9.61	10.29	-0.68
STORY5	12.25	12.23	0.02	9.61	10.33	-0.72
STORY6	12.205	12.231	-0.026	9.75	10.34	-0.59
STORY6-	12.25	12.24	0.01	13.13	13.21	-0.08

CV	Ly	5%	<	XCM-XCR
CV	Ly	10%	<	XCM-XCR
CV	LX	5%	<	YCM-YCR
		CV	6 LX	YCM-YCR < 10%

IV.3.5.2. Déplacements latéraux inter- étages :

Tableau IV.6: Résultats du déplacement selon (X) et (Y).

		\$	Sens x-	X	Sens y-y			
nive	hk	δk	R	Δk		Δk	1%hk	obs
aux	m			(m)	$\delta \mathbf{k}$	(m)		
5	3.10	0.0192	3.5	0.0015	0.0131	0.0020	0.0310	CV
4	3.10	0.0177	3.5	0.0019	0.0111	0.0020	0.0310	CV
3	3.10	0.0158	3.5	0.0025	0.0091	0.0022	0.0310	CV
2	3.10	0.0133	3.5	0.0034	0.0069	0.0023	0.0310	CV
1	3.10	0.0099	3.5	0.0038	0.0046	0.0021	0.0310	CV
	3.10	0.0061	3.5	0.0038	0.0025	0.0016	0.0310	CV
RDc	3.40	0.0023	3.5	0.0023	0.0009	0.0009	0.0340	CV

IV.3.6. Justification vis à vis de l'effet P- Δ (Art 5.9 RPA99) :

Les effets de deuxième ordre (ou l'effet de $P-\Delta$) peuvent être déshabillés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$\theta = P_k \cdot \Delta_k / V_k \cdot h_k \le 0.1$

Avec:

- **Pk**: Poids total de la structure et des charges d'exploitation associées au-dessus du niveau « k »
- VK : Effort tranchant d'étage au niveau « k ».
- ΔK : Déplacement relatif du niveau « k » par rapport au niveau « k-»

Tableau IV.7: Justification vis à vis de l'effet P- Δ sens (X).

niveaux	Δk	Vk	hk	θ	observation	pk
6	0.0192	49.18	22.00	0.00328	OUI	184.83
5	0.0177	675.60	18.9	0.00501	OUI	3615.08
4	0.0158	1383.55	15.8	0.00384	OUI	5314.86
3	0.0133	1958.57	12.7	0.00284	OUI	5314.86
2	0.0099	2400.78	9.6	0.00228	OUI	5314.18

1	0.0061	2696.82	6.5	0.00185	OUI	5313.11
RDC	0.0023	2836.28	3.4	0.00128	OUI	5351.08

Vk hk θ observation niveaux $\Delta \mathbf{k}$ pk **OUI** 6 0.0131 70.95 22.00 0.00155 184.83 5 0.0111 862.39 18.9 0.00246 **OUI** 3615.08 4 0.0091 1712.09 15.8 0.00179 **OUI** 5314.86 3 0.0069 2336.13 12.7 0.00124 **OUI** 5314.86 0.00092 2 0.0046 2782.75 9.6 **OUI** 5314.18 1 0.0025 3072.21 6.5 0.00067 **OUI** 5313.11

3.4

Tableau IV.8: Justification vis à vis de l'effet P- Δ sens (Y).

La condition est satisfaite à tous les niveaux, donc selon l'article 5.9 RPA99 les effets du 2 ordre sont négligés [3].

0.00044

OUI

5351.08

IV.3.7. Vérifications des sollicitations normales (Art 7.4.3 RPA99) :

3215.46

Dans le but d'éviter ou de limiter le risque de rupture fragile sous sollicitation d'ensemble dues au séisme, (Article 7.4.3.1) [3] exige de vérifier l'effort normal de compression de calcul qui est limité par la condition suivante :

$$v = \frac{N_d}{B_c.f_{c28}} \le 0.30$$

RDC

Avec.

Bc: air de la section transversale du poteau considéré.

0.0009

Nd: effort normal de compression de calcul sous combinaisons accidentelles (sismique). Selon le CBA, dans le chapitre B.8.2 [4], (combinaisons d'actions à considérer) dans le l'Article B.8.2.2 (Poteaux soumis aux charges dues à la pesanteur et au séisme), il y a ce qui suit : "Les combinaisons d'action à considérer sont celles données par le DTR. BC 2.48 auxquelles il y a lieu de se référer. Donc pour un ouvrage avec des voiles (mixtes) G+Q+Ex,y; G+Q-Ex,y

0.8G+Ex, y; 0.8G-Ex, y

$$v = \frac{N_d}{B_c \cdot f_{c28}} \le 0.30 = \frac{865.77 * 10}{1200 * 25} = 0.289 < 0.30 \dots CV$$

IV.3.8. Justification du système de contreventement constitué par des voiles porteurs en béton armé :

On doit vérifier que les portiques doivent reprendre les sollicitations redevances aux charges verticales au moins 25% de l'effort tranchant de l'étage, et les voiles reprennent au plus 20% des sollicitations dues aux charges

Verticales (Art 3.4 cas 4.a RPA99) [3].

- > P total =31246.69 KN
- > P totale voile = 7990.101 KN

DONC: % voile = 25.57 % > 20%CNV

IV.4. Conclusions:

Toutes les conditions de RPA 99/2003 [3] sont vérifiées donc notre structure et parasismique.

CHAPITRE V: CALCUL DES ELEMENTS PRINCIPAUX.

V.1. Introduction:

Le ferraillage des éléments résistants devra être conforme aux règlements envigueur en l'occurrence le CBA 93 [1] et le RPA99 version 2003 [3].

Nous allons étudier le ferraillage des éléments structuraux, Notre structure est composée essentiellement de trois élémentsstructuraux à savoir :

- Poutres
- Poteaux
- Voiles

V.2. Ferraillage des poutres :

Les poutres sont soumises à des moments fléchissant, des efforts tranchants et des efforts normaux, l'effet de ces derniers est négligé et les poutres seront étudiées en flexion simple selon les dispositions des règles **BAEL91** [2], et les exigences du **RPA99(version2003)** [3].

Les poutres sont ferraillées en flexion simple en tenant compte des combinaisons suivantes :

- **1,35G+1.5Q**(E.L.U)
- **G+Q**.....(E.L.S)
- $\mathbf{G} + \mathbf{Q} \pm \mathbf{E}$ (selon RPA99)
- $0.8G \pm E$(selon RPA99)

• Sollicitations du calcul :

Les résultats sont obtenus à l'aide du logiciel ETABS 2013 :

a) Poutre principale (30×40) :

Tableau V.1: Sollicitations de calcul (Poutres principales).

	Combinaison	Mmax (KN.m)
En travée	ELU	61.15
Sur appui	G + Q - EY	- 100,84

b) Poutre secondaire (30×35) :

Tableau V.2: Sollicitations de calcul (Poutres secondaires).

	Combinaison	M _{max} (KN.m)
En travée	ELU	29.49
Sur appui	G + Q - EY	-45.88

V.2.1. Calcul des Armatures longitudinales :

a) Prescriptions de calcul du ferraillage longitudinal :

❖ Pourcentage des aciers d'après Art 7.5.2.1 RPA99 :

a) La longueur minimale de recouvrement est 40Ø en zone Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0,5% en toute section [3]

$$\rightarrow$$
 Amin = 0.5%.(b × h).

- Pour les poutres principales (30×40) : Amin= 6.00 cm².
- o Pour les poutres secondaires (35 \times 30) : Amin = 5.25 cm.
- b) Le pourcentage total maximum des aciers longitudinaux est de [3]:
 - o 4% en zone courante.
 - o 6% en zone de recouvrement.
- c) Pour les poutres principales (30×40) :
 - \circ 4 % en zone courante ⇒ A_{max}= 48 cm²
 - \circ 6 % en zone de recouvrement ⇒ $A_{max} = 72 \text{ cm}^2$
- d) Pour les poutres secondaires (30×35) :
 - \circ 4 % en zone courante \Rightarrow A_{max}= 42 cm²
 - \circ 6 % en zone de recouvrement \Rightarrow A_{max} = 63 cm²
- e) L'ancrage des armatures longitudinales supérieures et inférieures dans lespoteaux de rive et d'angle doit être effectué, avec des crochets à 90° [3].
- f) On doit avoir un espacement maximum de 10 cm entre deux cadres et unminimum de trois cadres par nœud.

• Exemple de ferraillage :

> Poutre principale :

> en travée :

Mt max = 61.15 KN.m (Selon la combinaison ELU)

$$h = 40cm$$
; $b = 30 cm$; $d = 0.9 \times h = 36 cm$; $fc25 = 25MPa$; $\gamma b = 1.5$; $6bc = 14.16 MPa$;

fe =
$$400$$
MPa; γ s = 1,15; δ s = 348 MPa

$$\mu = \frac{Mu}{\text{ob.b.d}^2} = \frac{61.15 \times 10^6}{14,16 \times 300 \times 360^2} = 0.111$$

$$\alpha = 1.25 \times (1 - \sqrt{1 - 2}\mu) \rightarrow \alpha = 0.147$$

$$Z = d (1 - 0.4\alpha) = 338.83 \text{ mm}$$

$$6s = \frac{fe}{vs} = 348 MPa$$

As =
$$\frac{Mu}{6s \times Z} = \frac{61.15 \times 10^6}{348 \times 338.83} = 5.18 \text{ cm}^2$$

On adopte: $3HA14 + 3HA12 = 4,62 + 3,39 = 8,01 \text{ cm}^2$

> en appui :

 $M_{a max} = -100.84 KN.m$

$$\mu = \frac{Mu}{\text{ph. h. d}^2} = \frac{100.84 \times 10^6}{14,16 \times 300 \times 360^2} = 0.183$$

$$\mu > 0.186$$
 et $\mu < \mu 1 = 0.392 \rightarrow$ A' = 0

Donc:

$$\alpha = 1.25 \times (1 - \sqrt{1 - 2}\mu) \rightarrow \alpha = 0.254$$

$$Z = d (1 - 0.4\alpha) = 323.42 \text{ mm}$$

As =
$$\frac{Mu}{6s \times Z} = \frac{100.84 \times 10^6}{348 \times 323.42} = 8.95 \text{ cm}^2$$

On adopte : $6HA14 = 9,24 \text{ cm}^2$

✓ Tableau récapitulatif de la poutre principale :

Tableau V.3: récapitulatif de la poutre principale.

Section	Mu	μ	α	Z	Ast	A	Choix des armatures
		-		(mm)		adopté	
Travée	61.15	0.111	0.147	338.83	5.18	8.01	3HA14fil + 3HA12
Appuis	- 100.84	0.183	0.254	323.42	8.95	9.24	3HA14fil + 3HA14 chap

✓ Condition de non fragilité : (BAEL 91 A.4.2.1)

$${\rm Amin} \geq 0.23 \times b \times d \times \frac{ft28}{fe} \ \to \ {\rm Amin} \geq 0.23 \times 300 \times 360 \times \frac{2.1}{400} = 1.30 \ {\rm cm^2}$$

$$\rightarrow$$
 As $>$ Amin CV

Armatures minimales: (RPA.V2003, A.7.5.2.1)

Amin=
$$0.5\%(b \times h) = 0.5\%(30 \times 40) = 6 \text{ cm}^2$$

Armatures maximales : (RPA.V2003, A.7.5.2.1)

Zone courante : Amax = $4\%(b \times h) = 48 \text{ cm}^2$

Zone de recouvrement : Amax = $6\%(b \times h) = 72cm^2$

Calcul de ferraillage transversal:

Les armatures transversales des poutres sont calculées à laide de la formule (BAEL91)

$$\emptyset t \le \min(\frac{h}{35}; \frac{b}{10}; \emptyset I) \to \emptyset t \le \min(\frac{40}{35}; \frac{30}{10}; 1,4) \to \emptyset t \le \min(1,14; 3; 1,4)$$

 $\emptyset t = 1,14$ donc en prend $\emptyset t = 8$ mm

• Calcul de l'espacement :

Selon **RPA/2003**:

$$St \le min(1201; h/4) \rightarrow St = min(12 \times 1,4; 40/4) = 10 \text{ cm} \implies St = 10 \text{ cm}$$

En dehors de la zone nodale : $St \le h/2 = 40/2 = 20$ cm

$$St = 10 \text{ cm zone nodale}$$

St = 15 cm zone courante

La section minimale des armatures transversales :

$$A_t = 0.003 \times S_t \times b = 0.003 \times 15 \times 30 = 1,35 \text{ cm}^2$$

$$\rightarrow$$
 At = 4T8 = 2.01 cm² (un cadre et un étrier).

La langueur minimale de recouvrement :

$$Lr = 50 \times \emptyset I = 50 \times 1,4 = 70 \text{ cm}.$$

> Poutre secondaire :

Tableau récapitulatif de la poutre secondaire :

En suivant les étapes précédentes, on obtient le tableau suivant :

Tableau V.4: récapitulatif de la poutre secondaire.

Section	Mu	μ	α	Z	Ast	A adopté	Choix des armatures
				(mm)			
Travée	29,49	0 ,069	0,089	303,78	2 ,78	3,39	3HA12 fil
Appuis	-45,88	0,108	0,143	296,98	4,43	5.65	3HA12 fil + 2HA12 chap

Condition de non fragilité : (BAEL 91 A.4.2.1)

$$Amin \ge 0.23 \times b \times d \times \frac{ft28}{fe} \rightarrow Amin \ge 0.23 \times 300 \times 315 \times \frac{2.1}{400} = 1.14 \text{ cm}^2$$

$$\rightarrow$$
 As $>$ Amin CV

Armatures minimales: (RPA.V2003, A.7.5.2.1)

Amin=
$$0.5\%(b \times h) = 0.5\%(30 \times 35) = 5,25 \text{ cm}^2$$

Armatures maximales: (RPA.V2003, A.7.5.2.1)

Zone courante : Amax = $4\%(b \times h) = 42 \text{ cm}^2$

Zone de recouvrement : Amax = $6\%(b \times h) = 63cm^2$

V.2.2. Calcul de ferraillage transversal :

Les armatures transversales des poutres sont calculées à laide de la formule (BAEL91)

$$\emptyset t \le \min(\frac{h}{35}; \frac{b}{10}; \emptyset I) \to \emptyset t \le \min(\frac{35}{35}; \frac{30}{10}; 1,2) \to \emptyset t \le \min(1; 3; 1,2)$$

Øt = 1 donc en prend Øt =8 mm

V.2.3. Calcul de l'espacement :

Selon RPA/2003:

$$St \le min(12\emptyset 1; h/4) \rightarrow St = min(12 \times 1,2; 35/4)$$

St = 10 cm

En dehors de la zone nodale : $St \le h/2 = 35/2 = 17,5$ cm

St = 10 cm zone nodale

St = 15 cm zone courante

La section minimale des armatures transversales :

$$A_t = 0.003 \times St \times b = 0.003 \times 15 \times 30 = 1,35 \text{ cm}^2$$

 \rightarrow A_t = 4T8 = 2.01 cm² (un cadre et un étrier).

La langueur minimale de recouvrement :

$$Lr = 50 \times Øl = 50 \times 1,2 = 60 \text{ cm}.$$

Tableau V.5: récapitulatif des sections d'armatures longitudinales.

Section	Position	As (cm ²)	As' (cm²)	A _{CNF} (cm ²)	A _{minRPA} (cm ²)	A _{maxRPA} (cm2)	As _{adp} (cm2)	Choix des barres
Poutre Principale (30x40)	Travée	5.18	0	1.30	6	48	8.01	3HA14 fil + 3HA12
	Appui	8.95	0	1.30	6	48	9,24	3HA14fil + 3HA14 chap
Poutre secondaire	Travée	2 ,78	0	1.14	5,25	42	3,39	3HA12 fil
(30x35)	Appui	4,43	0	1.14	5,25	42	5.65	3HA12 fil + 2HA12 chap

		Poutre principale (30x40)	Poutre secondaire (30x40)	On adopte St	
СВА	St	≤33,3 cm	≤29,7 cm	Zone nodale	Zone courante
	St zone nodale	≤10 cm	≤10 cm		
RPA	St zone courante	≤20 cm	≤17,5 cm	10 cm	15 cm

Tableau V.6: calcul de l'espacement des armatures transversales.

Tableau V.7: Résultat de calcul les armatures transversales.

	As (CBA)	As adopté
Poutre principale	$1,35 \text{ cm}^2$	$4\emptyset 8 = 2,01 \text{ cm}^2$
Poutre secondaire	$1,35 \text{ cm}^2$	$4\emptyset 8 = 2,01 \text{ cm}^2$

V.2.4. Vérifications :

V.2.4.1. Vérification de la contrainte tangente :

Poutres principales :

$$\mathbf{\tau u} = \frac{V0}{b \times d} = \frac{109,57}{300 \times 360} = 1.01 \text{ MPa}$$

 τ_u : Doit vérifier la condition

 $\tau_{\rm u} \le \tau = \min\left(\frac{0.2fc28}{\gamma_{\rm b}}; 5~MPa\right) = 3,33{\rm MPa}$ (Fissuration peu nuisible).

 $1.01 \le 3{,}33$ pas de risque de cisaillement.

Disposition constructives:

L'article (A.5.1.2.2) de C.B.A nous donne :

✓ Espacement St des cours d'armatures transversales :

 $S_t \le \min (0.9d; 40cm) [1].$

✓ Section minimale At des cours d'armatures transversales [1]

$$\frac{At \, fe}{b \times d} \ge 0.4 \, \text{MPa} \rightarrow \frac{2.01 \times 400}{30 \times 36} \ge 0.4 \rightarrow 0.7 \ge 0.4.......CV$$

Poutres secondaires :

$$\tau \mathbf{u} = \frac{V0}{b \times d} = \frac{171.83}{300 \times 360} = 1.59 \text{ MPa} \rightarrow 1.59 \le 3,33$$

Section	Vmax(KN)	τu (MPa)	τ _u (MPa)	τ u ≤τ _u
Poutre principale	109.57	1.01	3.33	CV
Poutre secondaire	171.83	1.59	3.33	CV

Tableau V.8: Calcul de la contrainte tangentielle.

V.2.4.2. Vérification à l'ELS:

Après avoir fait le calcul du ferraillage longitudinal des poutres à l'ELU, ilest nécessaire de faire une vérification à l'état limite de service.

- ✓ Les contraintes sont calculées à l'E LS sous le moment (Mser).
- ✓ La fissuration est considérée peu nuisible donc pas de limitation des contraintes de traction de l'acier.
- ✓ La contrainte du béton est limitée par : $6\overline{bc} = 0.6$ fc28 = 15 MPa
- ✓ Les poutres sont calculées en flexion simple, et pour calculer la contrainte σ_{bc} de chaque poutre il faut suivre les étapes suivantes :

Calcul de la position de l'axe neutre : $\frac{b}{y^2}$ + η A'_{sc} (y-c') - η A_{st} (d - y)=0

Calcul du moment d'inertie : $I = \frac{by3}{3} + \eta A'_{sc} (y-c') - \eta A_{st} (d-y)=0$

Avec:

- As: Section d'armatures tendue

- A's: Section d'armatures comprimées

- n: Coefficient d'équivalence n=15

> Calcul des contraintes :

$$6bc = \frac{Mser}{I} y$$

Avec:

M_{ser} Sont obtenus à l'aide du logiciel ETABS.

Les résultats des vérifications sont présentés dans les tableaux ci-après :

Tableau V.9: résultats de calcul de vérifications à l'ELS

Section	Positio n	M _{ser} (KN.m	A _s (cm ²	y (cm)	I (cm ⁴)	б _{bc} (MPa)	б ьс (MPa	δ _{bc} ≤δ bc
Poutre	Travée	55.60	8.01	13.44	85427.92	8.74	15	CV
principale	Appui	70.49	9,24	14.19	94501.13	10.58	15	CV
Poutre	Travée	26.29	3,39	8.77	33017.06	6.98	15	CV
secondair e	Appui	32.00	5.65	10.81	48911.58	7.07	15	CV

V.2.4.3. Vérification de la compression du béton :

$$T_{\text{max}} \le 0.4 \times b \times a \times \text{fc28/}\gamma b$$

Tableau V.10: Vérification de la compression du béton.

Section	Tmax (KN)	$0.4 \times b \times a \times fc28/\gamma b$	Vérification
PP (30×40)	109.57	8000	Oui
PS (30×35)	171.83	7000	Oui

V.2.4.4. Vérification de la flèche : (CBA article E.6.5.1)

La vérification de la flèche n'est pas nécessaire si les conditions suivantes sont vérifiées :

✓ Poutre principale (30×40) :

On a: h = 0.40 m et I = 4.9 m

$$\frac{h}{L} \ge \frac{1}{16} \to \frac{0.4}{4.9} \ge \frac{1}{16} \to 0.08 \ge 0.06 \dots \dots CV$$

$$\frac{h}{L} \ge \frac{1}{10} \times \frac{Mt}{M0} \to \frac{0.4}{4.9} \ge \frac{1}{10} \times \frac{55.6}{70.49} \to 0.08 \ge 0.07 \dots CV$$

$$\frac{As}{b \times d} \le \frac{4.2}{fe} \to \frac{6.88}{30 \times 36} \le \frac{4.2}{400} \to 0.006 \le 0.01 \dots \dots CV$$

✓ Poutre secondaire (30×35) :

On a: h = 0.35 m et I = 3.3 m

$$\frac{h}{L} \ge \frac{1}{16} \to 0.10 \ge 0.06 \dots \dots \dots CV$$

$$\frac{h}{L} \ge \frac{1}{10} \times \frac{Mt}{M0} \to \frac{0.35}{3.3} \ge \frac{1}{10} \times \frac{26.29}{32} \to 0.10 \ge 0.08 \dots \dots \dots CV$$

$$\frac{As}{b \times d} \le \frac{4.2}{fe} \to \frac{3.39}{30 \times 31.5} \le \frac{4.2}{400} \to 0.003 \le 0.01 \dots \dots CV$$

V.3. Schéma de ferraillage :

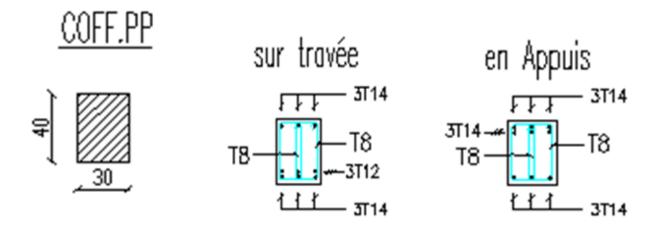


Figure V.1: Schéma de ferraillage de la poutre principale

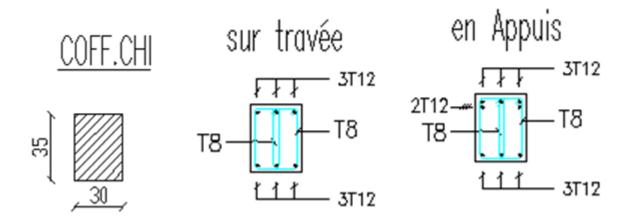


Figure V.2: Schéma de ferraillage de la poutre secondaire.

V.3. Etude des poteaux :

Les poteaux sont soumis à des efforts normaux et à des moments fléchissant, donc le calcul se fait à la flexion composée selon les combinaisons les plus défavorables, et les prescriptions du RPA99/2003 [3].

Les Combinaisons utilisées Sont :

- > Selon CBA.93:
 - G + Q (ELS)
 - 1,35G + 1,5Q (ELU)
- > Selon RPA 99 (situation accidentelle):
 - $G + Q \pm E$
 - $0.8G \pm E$

Tableau V.11: Caractéristiques mécaniques des matériaux.

	γ_{b}	$\mathbf{Y_{S}}$	Fc ₂₈	$\sigma_{ m b}$	Fe	$\sigma_{ m s}$
Situation Accidentelle	1.15	1.0	25	18.48	400	400

V.3.1. Armatures longitudinales:

La section d'acier sera calculée pour différentes combinaisons d'efforts internes :

N_{max}: M_{correspondant} Et M_{max}: N_{correspondant}

Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.

Pourcentage minimal de RPA: 0,8% en zone lla [3]:

Poteaux de section (30x40) : $0.8\% \times 30 \times 40 = 9.6 \text{ cm}^2$

Condition de non fragilité :

$$Asmin = 0.23 \times b \times d \times \frac{ft28}{fe} = 0.23 \times 30 \times 36 \times \frac{2.1}{400} = 1.30 \ cm^2$$

Pourcentage maximal de RPA:

• 4% en zone courante : As = $4\% \times (30 \times 40) = 48 \text{ cm}^2$

• 6% en zone recouvrement : As = 6% \times (30 \times **40**) = 72 cm²

• Le diamètre minimum est : 12 mm

• La longueur minimale des recouvrements est de : 40 φ en zone I et II

• La distance entre les barres verticales dans une face du poteau ne doit pas dépasser 25 cm en zone I et II.

> Résultat des sollicitations :

Les efforts (M, N) obtenus avec le logiciel ETABS 2013 pour les poteaux sont donnés dans les tableaux suivants :

Tableau V.12: sollicitation (M, N,).

	N _{max}	M _{corr}	nature	N _{min}	M _{corr}	nature	M _{max}	N _{corr}	nature
	N	М		N	М		N	М	
	(KN)	(KN.m)		(KN)	(KN.m)		(KN)	(KN.m)	
RDC+1er	865.77	5.92	G+Q-EY	145.35	25.72	0.8G+EX	661.47	-69.2	G+Q-EX
2eme+3eme	556.58	-8.72	G+Q-EY	190.40	32.19	0.8G+EX	469.93	68.25	G+Q-EX
4eme+5eme +6eme	256.67	-9.37	G+Q-EY	107.43	11.37	0.8G+EX	176.51	-50.81	G+Q-EX

 $Vu = 82.29 \overline{KN}.$

Tableau V.13: Caractéristiques mécaniques des matériaux.

	AS max (I	RPA) (cm ²)				choix	
As(cm ²) calculé	zone courante	zone de recouvrement	As _{min} (cm ²) (RPA)	As _{min} (cm ²) (CNF)	As (cm ²) adopté	des barres	
6,22	48	72	9,6	1,30	12,32	6,22	

> Exemple de calcule :

a) 1er cas: $N_{max} \Rightarrow M_{corr}$

 $N_{max} = 865.77 \text{ kN}$

 $M_{corr} = 05.92 \text{ KN.m}$

• Calcule de l'excentricité :

 $e = e_0 + e_2 + e_a$

e₀: excentricité de la résultante.

*e*₁: excentricités global du premier ordre.

 e_2 : excentricités due aux effets du second ordre lié à la déformation de la structure.

 e_a : excentricités accidentelle traduisant les imperfections géométriques initiales.

• calcul l'excentricité de la résultante :

$$e0 = \frac{Mcorr}{Nmax} = \frac{5.92}{865.77} = 0.0068 m = 0.68 cm$$

• calcul l'excentricité accidentelle :

$$e_a = \max \left(2 \text{ cm}; \frac{1}{250} \right) = \max(2 \text{ cm}; 1.24 \text{ cm}) = 2 \text{ cm} = 0.02 \text{ m}$$

L: langueur de la pièce.

$$e_1 = e_0 + e_a = 0.0068 + 0.02 = 0.0268 \text{ m}$$

• calcul l'excentricité due aux effets du second ordre :

$$\frac{lf}{h} \le max(15; 20\frac{e1}{h})$$

lf: Longueur de flambement du poteau.

$$lf = 0.7 \ l = 0.7 \times 3.10 = 2.17 \ m$$

$$\frac{2.17}{0.40} \le max\left(15; 20\frac{0.0268}{0.40}\right) \to 5.425 \le \max(15; 1.340)$$

$$\rightarrow$$
 5.425 ≤ 15CV

Donc les effets du second ordre peuvent être considérés d'une manière forfaitaire :

$$M_G = 21.93 \text{ KN.m}$$

$$M_Q = 5.53 \text{ KN.m}$$

e2 =
$$\frac{3lf^2}{10^4h}$$
(2 + $\alpha\emptyset$) = $\frac{3 \times 2.17^2}{10^4 \times 0.4}$ (2 + 0.79 × 2) = 0.012 m

 \emptyset : Généralement on prend $\emptyset = 2$

$$\alpha = \frac{MG}{MG + MQ} = \frac{21.93}{21.93 + 5.53} = 0.799$$

Donc:

$$e_T = e_1 + e_2 = 0.0268 + 0.012 = 0.0388 \text{ m} = 3.88 \text{ cm}$$

$$e_T = 3.88 < \frac{h}{2} = \frac{40}{2} = 20 \ cm$$
CV

$$M_{corrigée} = N \times e_T = 865.77 \times 0.0388 = 33.592 \text{ KN.m}$$

Le centre de pression et à l'intérieur de la section il faut vérifier la condition suivante :

$$N_U (d - d') - M_U \le (0.337 - 0.81 \frac{d'}{h}) \times b \times h^2 \times f_{bu}$$

$$M_U = N_U (d - \frac{h}{2} + e_T) = 865.77 (0.36 - \frac{0.40}{2} + 0.0388) = 172.115 \text{ KN.m}$$

$$865.77 \times (0.36 - 0.03) - 172.115 \le (0.337 - 0.81 \frac{0.03}{0.4}) \times 0.30 \times 0.40^2 \times 14.2 \times 10^3$$

Donc : La section est partiellement ou entièrement comprimée. La méthode de calcul se fait par assimilation à la flexion simple.

$$\mu = \frac{\textit{Mu}}{\textit{b.d}^{2} \textit{fbc}} = \frac{172.115 \times 10^{6}}{300 \times 360^{2} \times 14.2} = 0.311$$

$$0.186 < \mu = 0.311 < \mu 1 = 0.392 \rightarrow A' = 0$$

Donc:

$$\alpha = 1.25 \times (1 - \sqrt{1 - 2}\mu) \rightarrow \alpha = 0.483$$

$$Z = d (1 - 0.4\alpha) = 290.45 \text{ mm}$$

A1 =
$$\frac{Mu}{6s \times Z}$$
 = $\frac{172.115 \times 10^6}{348 \times 290.45}$ = 14.81 cm²

A2 = A1
$$-\frac{Nu}{6s}$$
 = 1481 $-\frac{865.77 \times 10^3}{348}$ = -683.85 mm² = -6.84 cm²

→ La section non ferraillé résiste aux efforts appliqués donc on applique un ferraillage minimale Amin (BAEL) = $\frac{B*ft28}{fe} = \frac{1200*2.10}{400} = 6.30 \text{ cm}^2$

Amin (RPA) =
$$08\%0 \times B = 0.008 \times 1200 = 9.60 \text{ cm}^2$$

b) 2 eme cas: $N_{min} \Rightarrow M_{corr}$

 $N_{max} = 145.35 \text{ kN}$

M_{corr}=25.72 kN.M

• Calcul l'excentricité de la résultante :

$$eg = \frac{Mcorr}{Nmax} = \frac{25.72}{145.35} = 0.1769 m = 17.69 cm$$

$$\mathbf{eg} \le \frac{h}{2} = \frac{40}{2} = 20 \text{ cm}.$$

Le centre de pression et à l'intérieur de la section Il faut vérifier la condition suivante :

$$N_U (d - d') - M_U \le (0.337 - 0.81 \frac{d'}{h}) \times b \times h^2 \times f_{bu}$$

$$M_U = M + N_U (d - \frac{h}{2}) = 25.72 - 145.35(0.36 - 0.20) = 2.464 \text{ kn.m}$$

$$-145.35 (0.36 - 0.03) + 2.464 \le (0.337 - 0.81 \frac{0.03}{0.4}) \times 0.30 \times 0.40^2 \times 14.2 \times 103$$

Donc la section est entièrement tendue N traction et e entre les armatures :

A1=
$$\frac{NU\times e2}{(d-d')\sigma st}$$
 et A2= $\frac{NU\times e1}{(d-d')\sigma st}$

$$e1 = \frac{h}{2} - d' + eg$$
 et $e_2 = (d - d') - e1$

$$A1 = \frac{-145.35 \times -1.69}{(0.36 - 0.03)348} = 1.86 \text{ cm}^2$$

$$A2 = \frac{-145.35 \times 34.69}{(0.36 - 0.03)348} = 3.81 \text{ cm}^2$$

$$As = A1+A2 = 1.86 + 3.81 = 5.67 \text{ cm}^2$$

Amin (BAEL) =
$$\frac{B \times ft28}{fe}$$
 = $\frac{1200 \times 2.10}{400}$ = 6.30 cm²

Amin (RPA) =
$$08\% \times B = 0.008 \times 1200 = 9.60 \text{ cm}^2$$

A = Max (As, Amin (BAEL), Amin (RPA))

on prend : $A = 9.60 \text{ cm}^2$

c) 3eme cas: $N_{corr} \Rightarrow M_{max}$

$$N_{corr} = 661.47 \text{ kN}$$
 (compression)

 $M_{max} = 069.20 \text{ kN.m}$

Calcule de l'excentricité:

$$e = e_0 + e_2 + e_a$$

Avec:

e₀: Excentricités de la résultante.

e 2 : Excentricités due aux effets du second ordre lié à la déformation de la structure.

e_a: Excentricités additionnelle traduisant les imperfections géométriques initiales.

• Calcul l'excentricité de la résultante :

$$e0 = \frac{Mcorr}{Nmax} = \frac{69.20}{661.47} = 0.1046 m = 10.46 cm$$

• calcul l'excentricité accidentelle :

$$e_a = \max \left(2 \text{ cm}; \frac{1}{250} \right) = \max(2 \text{ cm}; 1.24 \text{ cm}) = 2 \text{ cm} = 0.02 \text{ m}$$

L: langueur de la pièce.

$$e_1 = e_0 + e_a = 0.1046 + 0.02 = 0.1246 \text{ m}$$

• calcul l'excentricité due aux effets du second ordre :

$$\frac{lf}{h} \le \max(15; 20 \frac{e1}{h})$$

lf: Longueur de flambement du poteau.

$$lf = 0.7 l = 0.7 \times 3.10 = 2.17 m$$

$$\frac{2.17}{0.40} \le \max\left(15; 20 \frac{0.1246}{0.40}\right) \to 5.425 \le \max(15; 6.23)$$

$$\rightarrow$$
 5.425 ≤ 15CV

Donc les effets du second ordre peuvent être considérés d'une manière forfaitaire :

MG = 10.12 KN.m

MQ = 2.20 KN.m

e2 =
$$\frac{3lf^2}{10^4h}$$
(2 + $\alpha\emptyset$) = $\frac{3 \times 2.17^2}{10^4 \times 0.4}$ (2 + 0.79 × 2) = 0.012 m

 \emptyset : Généralement on prend \emptyset = 2

$$\alpha = \frac{MG}{MG + MQ} = \frac{10.12}{10.12 + 2.20} = 0.821$$

Donc:

$$eT = e1 + e2 = 0.1246 + 0.012 = 0.1366 m = 13.66 cm$$

eT = 13.66
$$< \frac{h}{2} = \frac{40}{2} = 20 \text{ cm}$$
.....CV

$$M_{corrigée} = N \times eT = 661.47 \times 0.1366 = 90.36 \text{ KN.m}$$

Le centre de pression et à l'intérieur de la section il faut vérifier la condition suivante :

Nu (d – d') – Mu
$$\leq$$
 (0.337 – 0.81 $\frac{d'}{h}$) \times b \times h² \times fbu

Mu = Nu (d -
$$\frac{h}{2}$$
 + eT) = 661.47 (0.36 - $\frac{0.40}{2}$ + 0.1366) = 196.192 KN.m

$$166.47 \times (0.36 - 0.03) - 196.192 \leq (0.337 - 0.81 \frac{0.03}{0.4}) \times 0.30 \times 0.40^{2} \times 14.2 \times 10^{3}$$

Donc : La section est partiellement ou entièrement comprimée. La méthode de calcul se fait par assimilation à la flexion simple.

$$\mu = \frac{Mu}{b \cdot d^2 fbc} = \frac{196.192 \times 106}{300 \times 360^2 \times 14.2} = 0.355$$

$$0.186 < \mu = 0.355 < \mu 1 = 0.392 \rightarrow A' = 0$$

Donc:

$$\alpha = 1.25 \times (1 - \sqrt{1 - 2}\mu) \rightarrow \alpha = 0.578$$

$$Z = d (1 - 0.4\alpha) = 276.81 \text{ mm}$$

$$A1 = \frac{Mu}{6s \times Z} = \frac{196.192 \times 104}{400 \times 276.81} = 18.42 \text{ cm}^2$$

$$A2 = A1 - \frac{Nu}{6s} = 1842 - \frac{661.47 \times 103}{400} = 188.32 \text{ mm}^2 = 1.883 \text{ cm}^2$$

La section non ferraillé résiste aux efforts appliqués donc on applique un ferraillage minimale

Amin (BAEL) =
$$\frac{B \times ft28}{fe}$$
 = $\frac{1200 \times 2.10}{400}$ = 6.30 cm²

Amin (RPA) =
$$08\% \times B = 0.008 \times 1200 = 9.60 \text{ cm}^2$$

$$\rightarrow$$
 As = max (A cas1; A cas2; A cas3)

Tableau V.14: Ferraillage longitudinal des poteaux.

Poteau	Section (cm²)	As (cm²)	A adpt (cm²)	Choix d'armature
(30×40)	1600	18.42	20.11	10HA16

V.3.2. La section d'acier maximale :

Selon BAEL91mod 99:

$$A_{max} = 5\% \times b \times h = 5\% \times 30 \times 40 = 60 \text{ cm}^2 > As \dots CV$$

Selon RPA99/Version2003:

En zone courante:

$$A_{max} = 4\% \times b \times h = 4\% \times 30 \times 40 = 48 \text{ cm}^2 > \text{As} \dots \text{CV}$$

En zone recouvrement:

$$A_{max} = 6\% \times b \times h = 6\% \times 30 \times 40 = 72 \text{ cm}^2 > As \dots CV$$

Armatures finales:

$$A_f = max (A_{calculée}; A_{BAEL}; A_{RPA}) = 20.11 cm^2$$

V.3.3. Les armatures transversales

$$\frac{A_t}{t} = \frac{\rho V_u}{h_1 \times f_e}$$

 $V_u = 82.29 \text{ KN}$

 $h_1 = 60 \text{ cm}$

 $f_e = 400 MPa$

 ρ : Coefficient correcteur qui tient compte du mode de rupture par effort tranchant tel que :

$$\rho = 2.5 \text{ si } \lambda g \ge 5 , \rho = 3.75 \text{ si } \lambda g < 5$$

λ_g est l'élancement géométrique du poteau :

$$\lambda_g = \left(\frac{l_f}{a} \text{ ou } \frac{l_f}{b}\right)$$

$$\lambda_g = (7.23 \ ou \ 5.42 \) = 7.23 > 5$$

$$\rho = 2.5$$

t: espacement entre les armatures transversales telle que :

> zone nodale :

t≤ Min (10 \varnothing _I, 15cm) en zone IIa

t ≤ min (10×1.4, 15cm)

 $t \le 14 \text{ cm} \rightarrow t = 10 \text{ cm}$

> zone courante :

t'≤ 15 \emptyset _I en zone lla

 $t' \le 21 \text{ cm} \rightarrow t = 15 \text{ cm}$

$$A_t = 10 \times \frac{2.5 \times 82.29 \times 10^3}{400 \times 400} = 1.28 \text{ cm}^2$$

La quantité d'armatures transversales minimales :

$$\lambda_g \ge 5$$
: $A_{min} = 0.3\%$ (t×b₁) $\rightarrow A_{min} = 0.9$ cm²

 $A_t = max (A_t; At_{min}) = 1.28 cm^2 donc on adopte 6T8 = 3.02 cm^2$

Tableau V.15: Sections des armatures transversales.

Section (cm ²)	30*40
Φ _{min} (cm)	1,4
l _f (cm)	2.17
λg	7.48
Vu (KN)	82.29
lr (cm)	60
t zone nodale (cm)	10
t zone courante (cm)	15
ρ	2.5
At (cm²)	1.28
At _{min} (cm ²)	0.9
At _{adop} (cm ²)	6HA8=3.02

 $[\]checkmark$ on adopte pour tous les étages : 6T8 = 3.06 cm².

Conformément aux règles du RPA 99/03 et au BAEL 91, le diamètre des armatures transversales doit être supérieur au tiers du maximum des diamètres des armatures longitudinales.

$$ightharpoonup \phi t \geq \frac{\phi Imax}{3} = \frac{16}{3} \to 8 > =5.33...$$
 Cv.

V.3.4. Vérifications :

V.3.4.1. Vérification à l'état limite ultime de stabilité de forme :

Les poteaux sont soumis à la flexion composée, pour cela, D'après (*Article B.8.4.1.P156*) [6], il nous exige de les justifier vis-à-vis l'état limite ultime de stabilité de forme. La relation à vérifier est la suivante :

Les poteaux ont le même élancement, avec une longueur de $l_0 = 3.06$ m et un effort normal égal à 865.77 KN.

On doit vérifier;

Nu
$$\leq \overline{N} = \propto \left[\frac{Br \times fc28}{0.9 \times \gamma b} + A \frac{fe}{\gamma s} \right]$$
 CBA 93(Article B.8.4.1) [2]

 α : est un coefficient fonction de l'élancement mécanique λ .

$$\lambda = \max(\lambda x; \lambda y) \text{ avec } \lambda = \sqrt{12} \times \frac{\text{If}}{\text{b}} \qquad .$$

$$Lf = 0.7 \times Lo \qquad \Rightarrow Lf = 0.7 \times 306 = 214.2 \text{cm}$$

$$\lambda = \sqrt{12} \times \frac{214.2}{30} = 24.71 \quad \Rightarrow \quad \lambda = 24.71 < 50$$

$$\Rightarrow \alpha = \frac{0.85}{1 + 0.2\left(\frac{\lambda}{25}\right)^2} = \frac{0.85}{1 + 0.2\left(\frac{24.71}{25}\right)^2} = 0.77$$

B_r: est la section réduite du poteau obtenue en déduisant de sa section réelle 1 cm d'épaisseur sur tout son périphérique.

$$B_r = (h-2) (b-2) = 0.1046 \text{ m}^2$$

$$yb = 1.50$$
 ; $ys = 1.15 \rightarrow As = 20.11 \text{ cm}^2$

$$\overline{N} = 0.77 \times \left[\frac{0.1046 \times 10^6 \times 25}{0.9 \times 1.5} + 2011 \times \frac{400}{1.15} \right] = 2030.11 \text{KN}$$

 $N_U = 865.77 \text{ KN} < \overline{N}$.

✓ Donc pas de risque de flambement.

Tableau V.16: vérification au flambement.

Poteau	N _u (KN)	Lf (cm)	α	λ	A (mm²)	B _r (mm²)	N̄ (KN)	Condition
30x40	865.77	214.2	0.77	24.71	2011	1046	2030.11	CV

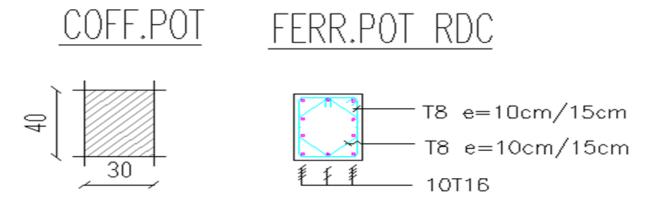
V.3.4.2. Vérification aux sollicitations tangentielles :

La contrainte de cisaillement conventionnelle de calcul dans le béton τ_{bu} sous combinaison sismique doit être inférieure ou égale à la valeur limite suivante :

$$\overline{\tau_{bu}} = \rho_d \times f_{c28}$$

Telle que:

$$\rho_{d} = \begin{cases} 0.075 & \text{si } \lambda_{g} \geq 5 \\ 0.04 & \text{si } \lambda_{g} < 5 \end{cases}$$
 RPA 99 (Article 7.4.3.2) [3]


$$\tau_{bu} = \frac{V_u}{b_0 \times d}$$

Les résultats sont résumés dans le tableau suivant :

Tableau.V.17: Vérification aux sollicitations tangentielles.

Section	lf	λg	ρd	d	Vu	τ	$ au_{adm}$	observ
(cm²)	(m)			(cm)	(KN)	(MPa)	(MPa)	ation
30*40	2.14	7.23	0.075	36	82.29	0,76	1,875	vérifiée

Du tableau ci-dessus on remarque que la condition exigée par le RPA99/2003 sur les sollicitations tangentielles est vérifiée pour tous les étages.

FERR.POT ETAGE

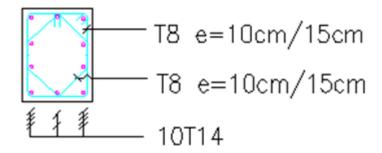


Figure V.3: Schéma de ferraillage des poteaux RDC+ ETAGE

V.4. Ferraillage des voiles :

Les voiles sont soumis à des forces verticales « charges permanentes et surcharges d'exploitations » et à des forces horizontales « séisme ».

Le ferraillage des voiles s'effectuera selon le règlement CBA.93 [1] et les vérifications selon le règlement parasismique Algérien RPA 99/version 2003 [3]. Le voile est sollicité à la flexion composée avec effort tranchant.

Les sollicitations émises dans le voile sont :

- Moment fléchissant et effort tranchant provoqués par l'action du séisme.
- Effort normal dû à la combinaison des charges permanentes ; d'exploitations et la charge sismique.

On devra disposer les armatures suivantes :

- ✓ Armatures verticales.
- ✓ Armatures horizontales.
- ✓ Armatures transversales.

V.4.1 Ferraillage du voile plein:

V.4.1.1 Armature vertical:

Le ferraillage vertical sera disposé de telle sorte qu'il pourra reprendre les contraintes induites par la flexion composée, en tenant compte des prescriptions composées par le RPA 99(Art 7.7.4.1) et décrites ci-dessous [3] :

- L'effort de traction produit dans une partie du voile doit être repris en totalité par les armatures dont le pourcentage minimal est de 0,2% de la section horizontale de béton tendu
- Les barres verticales des zones extrêmes devaient être raccrochées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur du voile.
- A chaque extrémité du voile (trumeau) l'espacement des barres doit être réduit de moitié sur 1/10 de la longueur de voile, cet espacement est au plus 15 cm (le ferraillage vertical doit être symétrique en raison de changement de signe du moment).
- Si des efforts importants de compression subis sur l'extrémité, les barres verticales doivent respecter les conditions imposées aux poteaux.
- Les barres du dernier niveau doivent être munies de crochets à la partie supérieure. Toutes les autres barres n'ont pas de crochets (jonction par recouvrement).

V.4.1.2 Armature horizontal:

- Les aciers horizontaux seront disposés perpendiculairement aux faces du voile.
- Elles doivent être munies de crochets à (135°) ayant une longueur de 10 Ø RPA99/2003 (art. 7.7.4.2) [3].
- Dans le cas où il existe des serres de rigidité. Les barres horizontales pouvoir être ancrées sans crochets si les dimensions des serres permettent la réalisation d'un ancrage droit.

Combinaisons:

Selon le règlement parasismique algérien (**RPA 99 version 2003**) les combinaisons réussies pour les voiles sont les suivantes [3] :

- $G + Q \pm E$
- $0.8 \text{ G} \pm \text{E}$
- ✓ Exemple d application :

A : voile plein : On va choisir le voile plein le plus sollicité.

> Sens y-y:

Avec:

L=2.90m;
$$e = 0.20$$
; $A = 0.20*2.90 = 0.58m^2$; $I = e*I^3/12 = 0.40m$

V=L / 2 = 1.45m

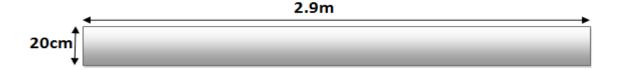


Figure V.4 : Dimensions du voile calculé.

• Détermination des sollicitations :

D'après l'ETABS:

Tableau V.18 : Sollicitations de calcul (voile plein).

$G + Q \pm E$ (situation accidentelle)						
N (T)	M (T.M)	Vu (kn)				
112.25	105.9	670.80				

$$\mathbf{6} = \frac{N}{A} + \frac{M.V}{I} = 571.29 \text{ t/m}^2$$

$$\textbf{6} = \frac{N}{A} - \frac{M.\,V}{I} = -184.23 \; t/m^2$$

61 et 62 sont de signes différents, donc la section du voile est partiellement comprimée.

On calcule la longueur de la zone de traction :

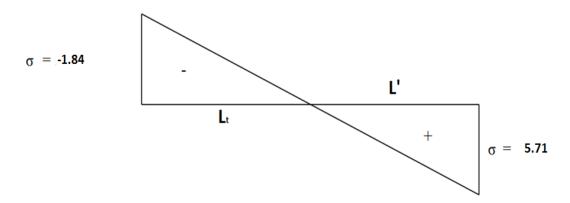


Figure V.5: diagramme des contraintes

\$ Longueur de la zone tendue :

$$Lt = L\left(\frac{62}{62 + 61}\right) = 2.1m$$

❖ Force de traction :

$$\mathbf{Ft} = \frac{\mathbf{6}_{B}}{2} \mathbf{Lt}. \, \mathbf{e} = 125.27 \, \mathbf{t}$$

Section d'armature :

$$Ar = \frac{Ft}{6\pi} = 31.31 \ cm^2$$

бs = 400 MPa (situation accidentelle)

❖ Armature minimale du RPA99/version 2003 :

Dans la zone tendue : D'après le RPA99 (Art 7.7.4.1) [3] : ARPA = 0,2%.e.Lt = 8.4 cm²

Dans la zone courante : D'après le RPA99 (Art 7.7.4.3) : Amin= 0,1%.e.L = 5.8cm²

Le pourcentage minimal sur toute la section du voile (RPA99 Art7.7.4.3) : Amin=0,15%.e.L = $8.7~\rm cm^2$

Donc : As=31.31cm²

Service Espacement:

- St \leq (1.5e; 30) cm;
- Soit : St = 20cm Dans la zone courante. ;
- Sa = St/2= 10 cm dans la zone d'environ

Choix des barres :

A adopter : As adp = $14HA12 = 15.83 \text{ cm}^2$

Remarque:

Cette section d'armature concerne la cote de la zone tendue. Il faut mettre la même section de ferraillage dans l'autre cote de la section.

Nous avons trois 3 types des voiles et avec la même méthode on obtenu les résultats :

	Type1	Type 2	Type 3
Effort normal (t)	112.25	92.3	63.7
Moments flexion (t.m)	105.9	46.20	52.10
б1 (t/m2)	571.29	626.82	1024.94
62 (t/m2)	-184.23	-141.03	-569.94
Lt(m).	2.1	1.5	0.89
Effort de traction Ft(t).	125.27	97.22	92.21
As	31.31	24.22	22.4
Av	15.09	12.11	11.01
ARPA = 0,2%.e.Lt	8.4	6	3.65
Amin= 0.1%.e.L (cm2).	5.8	3	1.78
Amin= 0,15%.e.L	8.7	5.7	4.2
st	15	15	10
Choix de barres (Par nappe)	14HA12	11HA12	10HA12
A ADAPTE	15.83	12.44	11.31

***** Ferraillage horizontal des voiles :

Voile plein:

V.4.2 Vérification des contraintes de cisaillement

Les données sont citées dans l'exemple précédent :

$$\tau u = 1.4 \frac{T}{e.d} = \frac{670.80}{0.2 \times 0.9 \times 2.9} \times 10^3 = 1799.08 mm^2 = 1.799 cm^2$$

 $\bar{\tau}u = 0.2 \text{fc} 28 = 0.2 \times 25 = 5 \text{ MPA}$

 $τu = 1.799 \text{ MPa} \le \overline{τ}u = 5 \text{ MPa} \dots CV.$

Calcul de la section des armatures horizontales :

Calcul de la section des armatures horizontales :

Dans notre cas d'une flexion composée avec N, effort de compression) :

$$K=\frac{1+3\sigma}{fc28}$$

Avec:

$$\mathbf{6} = \frac{N}{A} = 1122.22 \times \frac{10^3}{2900 \times 200} = 1.93 \text{ MPA}$$

Donc: K= 0.27

Espacement:

D'après l'article (7.7.4.3 des RPA99/Version2003) l'espacement des barres doit être [3]

 $St \le (1,5e; 30)$ cm

Soit : St = 15 cm

ys = 1 (situation accidentelle)

$$\frac{At}{St. e} \ge \frac{\gamma s(\tau u - 0.3 \times ftj \times k)}{0.9 \times fe}$$

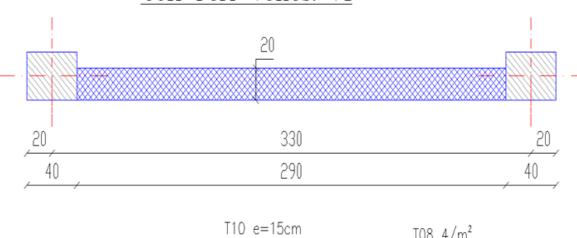
$$At \ge \frac{St \times e \times \gamma s(\tau u - 0.3 \times ftj \times k)}{0.9 \times fe}$$

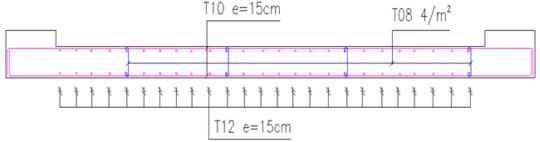
$$At \ge \frac{150 \times 200 \times 1. (1.799 - 0.3 \times 2.1 \times 0.3)}{0.9 \times 400}$$

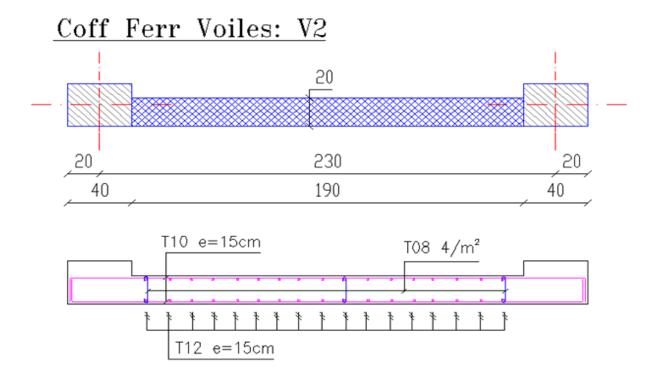
$$At \ge 178.60 = 1.78$$

Armatures transversales minimales At_{min}:

A min = 0.15%. e. h = 3 cm^2 ; Globalement dans la section des voiles.


A min = 0.1%. e. h = 2 cm^2 ; Dans les sections courantes.


Donc:


Tableau V.20: Résultats du ferraillage vertical voiles

Voile	T	τu	τū	τu≤τ ū	б	k	St	At	A min	Choix des
										barrs
										(NAPPE)
1	670.80	1.79	5	CV	1.93	0.28	15	1.34	3	5T10
2	433.2	1.77	5	CV	2.24	0.28	15	3.43	3	5T10
3	321.4	1.78	5	CV	2.4	0.32	15	1.32	3	5T10

Coff Ferr Voiles: V3

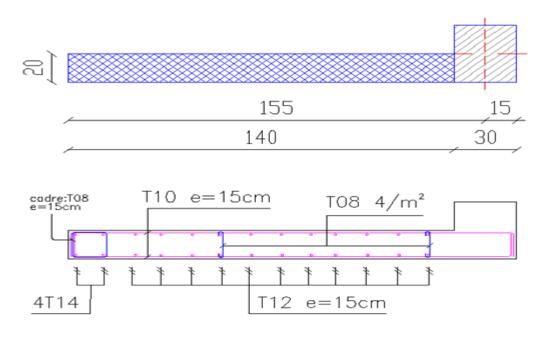


Figure V.6 : schéma de ferraillage des viols

CHAPITRE VI: ETUDE DE L'INFRASTRUCTURE

VI.1 Introduction:

L'infrastructure est un ensemble d'éléments qui ont pour objectif d'assurer la transmission des charges et surcharges au sol provenant de la superstructure. Cette transmission se fait soit directement au sol (Fondations superficielles : semelles ou des radiers), soit indirects (Fondations profondes : pieux par exemple). Donc c'est une fête essentielle de l'ouvrage sa bonne conception et réalisation pour une assise rigide et assure une bonne répartition des charges.

VI.2 Justification pour le choix de type de fondation :

Le choix de type de fondations est en fonction de plusieurs paramètres qui sont :

Les caractéristiques de sol.

Type de la structure

La charge transmise au sol

L'aspect économique.

VI.2.1Combinaisons de calcul:

D'après le RPA 99/V2003 (Article10.1.4.1), [3]

Les fondations superficielles sont dimensionnées selon les combinaisons d'actions suivantes :

D'après le DTR BC 2.33.1 [7] :
$$\begin{cases} 1.35G + 1.5Q \\ G + Q \end{cases}$$

D'après le RPA99 :
$$\begin{cases} G + Q \pm E \\ 0.8 G + E \end{cases}$$
 (Art. 10.1.4.1) [3]

VI.2.2Vérification de la semelle isolée

Nous allons procéder à une première vérification soit :

$$\frac{N}{S} \le \sigma_{sol}$$

Avec;

N: L'effort normal transmis à la base obtenu par le logiciel « Etabs » (poteau le plus sollicité),

N = 785.95 KN

S: Surface d'appuis de la semelle,= $A \times B$

σsol: Contrainte admissible du sol, $σ_{sol} = 2bars$

Nous avons une semelle rectangulaire, donc on doit satisfaire la condition d'homothétie :

$$\frac{A}{a} = \frac{B}{b} \Longrightarrow A = \frac{a}{b}B$$

Avec,

a, b : dimensions du poteau à la base.

$$B \ge \sqrt{\frac{b}{a} \times \frac{N}{\sigma_{sol}}} \Longrightarrow \sqrt{\frac{0.40}{0.30} \times \frac{785.95}{200}} = 2.28m$$

On constate qu'il y'aura un chevauchement entre les semelles isolées, car l'entre-axe minimal des poteaux est de 2 m, ce qui revient à dire que les semelles isolées ne conviennent pas à notre cas.

VI.2.3Vérification de la semelle filante:

On suppose que la force axiale empêchant la superstructure vers les fondations est appliquée au centre de gravité (C.D.G) des fondations. Nous devons vérifier la condition suivante :

$$\frac{N}{Ss} \ge \sigma_{\text{sol}} \rightarrow Ss \ge \frac{N}{\sigma_{\text{sol}}}$$

Avec:

σsol : contrainte des sols **Ss** : surface de la fondation

N: effort normale applique sur la fondation

Choix type de fondation:

Dans notre projet, nous indiquerons en premier lieu des semelles filantes. Pour cela, nous allons procéder à une première vérification telle que :

$$\frac{Ss}{St}$$
 < 50%

St: la surface totale du bâtiment

Ss: la surface des semelles

> Exemple de calcul :

• Détermination de la charge totale transmise par les poteaux :

Tableau VI.1: Charge due sur la semelle.

Filante	Nser(kn)	L(m)	σ_{sol}	S(m ²)	B(m)	L/B >
			(kn/m²)			5
1	723.54	6.1	200	3.61	0.844	cv
2	2161.50	19.7	200	10.807	0.548	cv
3	2760.33	19.7	200	13.801	0.700	cv
4	3997.53	19.7	200	19.987	1.146	cv
5	846.37	13.1	200	4.231	0.323	cv

6	851.13	13.1	200	4.255	0.324	cv
7	3606.73	19.7	200	18.033	1.102	Cv
8	2411.39	19.7	200	12.05	0.612	Cv
9	2131.98	19.7	200	10.659	0.541	Cv
10	746.21	6.1	200	3.731	0.611	cv

Note: On va prendre une valeur de B =1.4 m

 $Ss = 101.16m^2$

Avec: $St = 24.74 \times 19.70 = 487.37m^2$

On doit vérifie cette condition:

$$\frac{\mathbf{Ss}}{\mathbf{St}} < 50\%$$

$$\frac{175.87}{487.37} = 0.20 = 20\% < 50\% \dots \dots CV$$

Donc on est dans le cas d'une semelle filante.

• Calcul de la hauteur de la semelle:

h = d + 0.05

Avec: d=B-b/4

$$h \ge \frac{B-b}{4} + 0.05 \text{ cm}$$
 $\Rightarrow h \ge \frac{1.4 - 0.40}{4} + 0.05 = 0.30 \text{ m}$

On prend: h=45cm

d: hauteur utile

b: cotédu Poteau

• Vérification du poinçonnement:

Qu
$$\leq 0.045 \times h \times uc \times \frac{fc28}{\gamma b}$$
 CBA (Article A.5.2.4.2)

Qu: Poteau le plus défavorable à l'ELU

$$u_c = (a + b + 2xh) \times 2$$

$$u_c = (0.30 + 0.40 + 2x0.40) \text{ x} = 3 \text{ m}$$

$$Q_u=1017.63 \text{ kn} \le 0.045 \times 0.4 \times 3 \times \frac{25}{1.5} = 900 \text{ KN}..... \text{CNV}$$

Pour éviter le poinçonnement on va augmenter la hauteur de la semelle, on va prendre h=0.45 m.

$$u_c$$
=(0.30+ 0.40+ 2x0.45) x2=3.2m
Q_u=1017.63 kn \leq 1080 kn.....Cv

• Vérification au renversement:

Selon le RPA99 (article 10.1.5) on doit vérifier que : $e = \frac{M}{N} < \frac{B}{4}$

Donc il n'Ya pas de risque de renversement

VI.2.4 Calcul de Ferraillage:

❖Ferraillage principal:

Avec:

Nu= effort amené par l'ouvrage sur la semelle

A=largeur de la semelle

d= hauteur de la semelle moins l'enrobage

Fe= Limite élastique de l'acier

$$\mathbf{As} = \frac{3997.53(140 - 30)}{8 \times 350 \times 348} = 10.82cm^2$$

Choix d'armature : 10HA12 As=11.31 cm² \rightarrow St =15cm

❖ Ferraillage de répartition

Puisque il existe une poutre de rigidité dans ce sens qui reprend les différents Ni donc On met seulement des aciers de construction

$$A_r\!=\!\frac{\text{11.31}}{3}=3.77~\text{cm}^2$$

Choix d'armature : 4HA12 As= 4.52 cm² ⇒ St= 15cm

VI.3 poutre de rigidité :

Définition:

C'est une poutre disposé le long de la semelle .Elle est nécessaire pour reprendre les efforts ramenés par les poteaux et les répartir sur toute la semelle.

La poutre de rigidités est généralement noyée dans la semelle.

Calcul des sollicitations:

Les sollicitations (moment et effort tranchant) sont calculées à l'aide du logiciel ETABS.

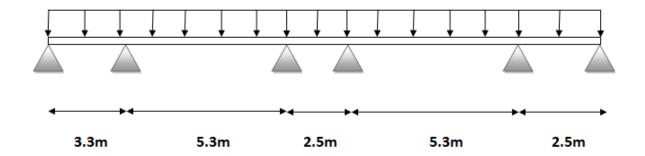


Figure VI.1: la distribution des charges ponctuelle sur la poutre.

Le calcul du ferraillage se fait comme étant une poutre en T renversé:

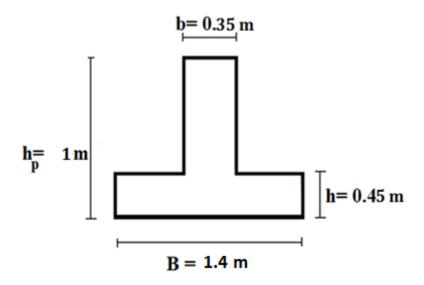


Figure VI.2: Coupe de la semelle filante.

 $B=1.4 m; \\ b_p=0.35 m; \\ h_p=1.0 m; \\ h=0.45m; \\ d=1\times h=0.9 m.$

Tableau VI.2: Résultats du moment maximal.

	ELU	ELS
Moment en travée (KN.m)	-435.17	-305.54
Moment en appui (KN.m)	592.09	415.28
Effort tranchant (KN)	730.01	512.35

	M (KN. m)	h	b	A _S (cm ²)	A _{min} (cm²)	Choix de ferraillage	A _{adopté} (cm²)
Travée	-435.17	1	0.35	12.01	3.91	3T16fil+3T16chap	12.06
Appui	592.09	1	0.35	11.84	3.91	3T16fil+3T16rend	12.06

Tableau VI.3 : résultat de Calcul de Ferraillage.

Condition de non fragilité : (BAEL91) [1]

Amin<Aadopté.....Vérifiée

VI.3.1 Armatures transversales:

D'aprèsleBAEL91:

 $\emptyset_t \le Min (h/35 ; b/10 ; \emptyset_l) cm [3]$

 $\Rightarrow \emptyset t = Min (100/35; 35/10; 1.2)$

On prend: Øt=8 mm

L'espacement:[3]

 $S_t \le L/10 \rightarrow On adopte: S_t = 20 cm.$

Vérification à L'ELS:

Entravée:

$$\alpha < \frac{\gamma - 1}{2} + \frac{fc28}{100}$$
 Avec: $\gamma = \frac{Mu}{Ms}$

$$\gamma = \frac{592}{415} = 1.42$$

$$\alpha < \frac{1.42 - 1}{2} + \frac{25}{100} = 0.46$$

Donc, il n'est pas nécessaire de vérifier la contrainte du béton: $\sigma_b \leq \sigma_{bc}$.

Vérification de l'effort de tranchant «cisaillement» [BAEL91]:

On doit vérifier que : $T_{\mathbf{u}} \leq \overline{T}_{\mathbf{u}}$

 $\overline{\tau}_{\rm u}$ = min (0.2fc28 / γb ; 5MPa).... (Fissuration non préjudiciable)

 $\overline{\tau}_{u} = \min (3.33; 4MPa) = 3.33MPa$

$$\tau_{\rm u} = \frac{V_u}{bd} = \frac{730.01 \times 10^3}{350 \times 900} = 2.31 \text{ MPa}$$

Les armatures transversales ne sont pas nécessaires.

VI.3.2 Armatures de peau

D'après le CBA (Art. A.7.3), on doit mettre des armatures de peau pour éviter tout risque de fissures, vue la hauteur de la section des nervures qui est importante.

$$\phi_t = 0.2\%(b_0 \times h) = 0.002 \times (35 \times 100) = 7.0 \text{cm}^2$$
Soit : A_p=2HA16+2HA14=7.10 cm²

VI.3.3 Schéma de ferraillage:

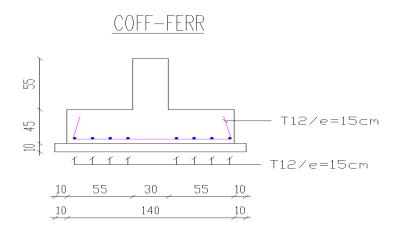
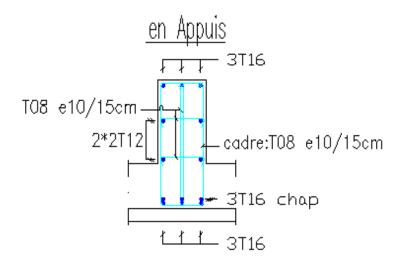



Figure VI.3: Schéma de ferraillage de semelle filante.

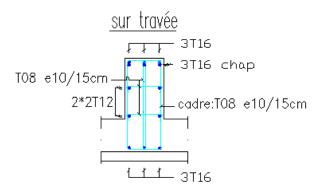


Figure VI.4 : Schéma de ferraillage de poutre de rigidité en appui et sur travée.

VI.4 L'étude des longrines :

Les longrines ont pourrôle:

Chainer les semelles entre elles.

Rigidifier l'infrastructure.

Empêcher le déplacement des semelles l'une par rapport à l'autre

VI.4.1 Pré dimensionnement:

D'après le règlement RPA 2003 (art 10.1.1)[3]

Les longrines auront des dimensions minimales :

 (25×30) cm²... sites de catégorie S₂, S₃

30×30) cm²... site de catégorie S₄

Notre site c'est ferme S3, Pour des raisons constructives nous adapterons une section de dimensions suivantes : (30×35) cm².

VI.4.2 Ferraillage de la longrine:

Les longrines doivent calculées pour résister à la traction sous l'action d'une forces est égale à :

$$F = \frac{N_U(max)}{\alpha} > 20KN$$

α: Coefficient fonction de la zone sismique et de la catégorie de site considérée. D'après l'article (RPA Article 10.1.1) [3] :

 $\alpha = 12$ (site S3, zone IIa),

Nu (max) : L'effort normal ultime du poteau le plus sollicité.

Nu (max): 996.57 KN

F = 996.57 / 12 = 83.04 KN > 20 KN.....CV

$$A_s = \frac{F}{\sigma_s} = \frac{83.06}{348} = 2.38cm^2$$

• Etat limite service

Si la fissuration est considérée comme préjudiciable

$$\sigma_{st} {\leq \overline{\sigma_{st}}} = min(\frac{2}{3}f_e, 110\sqrt{\eta f_{tj}}) {=} 201.63 \text{ MPa}$$

$$N_{ser} = 865.75 \text{KN}$$

$$\sigma_{ser} = \frac{\frac{N_{ser}}{\alpha}}{A_s} \le \sigma_a$$

$$A_{ser} = \frac{\frac{N_{ser}}{\alpha}}{\sigma_s} = \frac{865.75 \times 10^3}{\frac{12}{201.63}} = 3.57cm^2$$

Recommandation de RPA 99 v2003Article 10.1.1) [3]:

La section d'armature minimales donnée par RPA:

$$A_{min}=0.6\%\times b\times h$$

$$A_{min}=0.006\times30\times35=7.35cm^2$$

$$A_s = \max(A_u, A_{ser}, A_{min}) = 6.3 \text{cm}^2$$

Condition de non fragilité: (BAEL91)

$$A_{min} \ge 0.23 imes b imes d imes rac{ft28}{fe}$$
 / f_{t28} =0.6+0.06 f_{c28} =2.1 MPa

$$A_{min}\!\geq 0.23\times\!300\!\times\!315\!\times\!\!\frac{^{2.1}}{_{400}}\!\!=\!114.10mm^2$$

$$\Rightarrow$$
 A_{min} ≥ 1.14 cm²

$$A_{min} < A_{adopt\acute{e}} \rightarrow 1.14 < 6.79 \dots CV$$

L'espacement «e»:

$$S_t \leq \min(15\varphi l \ 20cm)$$

$$St \le ((15 \times 1.2; 20cm))$$

On prend: S_t=15 cm

Armatures transversales:

Calcul de la section minimale: CBA93l'art(A.5.1.2.2)

$$\frac{At.fe}{b.St} \le 0.4 Mpa$$

$$At \le 0.4 \times b \times St/fe \Rightarrow At \le 0.45 \text{ cm}^2$$

On adopte: 4T8 (A=2.01cm²)

VI.4.3 Schéma de ferraillage :

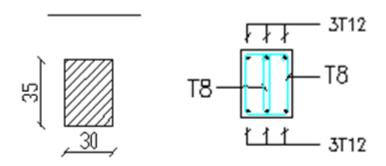


Figure VI.5: Schéma de ferraillage de La longrine.

CONCLUSION

Conclusion

Le but de notre étude était de voir le comportement sismique de la structure et l'influence de remplissage en maçonnerie sur la structure vis-à-vis l'action sismique.

Notre structure en (R+5) était dimensionnée selon les règlements RPA99/Version 2003 et le BAEL91

L'utilisation de ETABS facilité le choix de la disposition des voiles pour avoir un bon comportement dynamique de la structure, et donne des bons résultats sur la réponse à l'excitation dynamique (sollicitations, déplacements).

Les résultats obtenus par l'analyse non linéaire montrent que le remplissage en maçonnerie a une grande influence sur le comportement de la structure vis-à-vis l'action sismique.

Après l'étude des éléments porteurs, on a constaté que la majorité des poteaux sont ferraillés avec le minimum du RPA et cela est dû au surdimensionnement des poteaux, à l'existence des voiles et au fait que le RPA valorise la sécurité par rapport à l'économie. En fin nous espérons que notre modeste travail sera un bon guide pour les promotions futures.

CONCLUSTION Page 135

BIBLIOGRAPHIE

Règlements

- Règlement Parasismique Algérien (RPA 99 modifié 2003).
- ➤ Document technique réglementaire (D.T.R BC2.2), Charges permanentes et surcharges d'exploitation.
- ➤ Règles BAEL91 modifié 99
- Calcul des ouvrages en béton armé (CBA 93).

Cours:

- Béton arme
- Resistance des matériaux

Logiciels:

ETABS	Analyse des structures
AUTOCAD	Dessin
WORD	Traitement du texte.