République Algérienne Démocratique et Populaire

وزارة التعليم العالى والبحث العلمى

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Centre Universitaire BOUSSOOUF Abdelhafid -Mila

Institut des Sciences et Technologie Département de Génie Mécanique et Électromécanique

No	R	f																
Τ.4	116	.	•	•	•	•	•	٠	٠	•	•	•	•	٠	٠	•	٠	٠

Projet de Fin d'Etude préparé En vue de l'obtention du diplôme de MASTER

Spécialité : Électromécanique

Commande de la charge et la décharge de la batterie d'une installation photovoltaïque isolée

Réalisé par :

- **NECHAR RAFIKA**
- NAMOUS KHADIDJA

Soutenu devant le jury :

Président Dr. **B. MEHIMMEDETSI** Dr. **B. SMAANI Examinateur Promotrice** Dr. S.BOUCHEKOUF **H.GUENTRI** Invité Dr.

Année universitaire: 2021/2022

Dédicace

Je dédie ce travail à ceux qui ne peuvent être décrits avec des mots. A mon paradis sur terre, ma chère mère Bounaas Rafika •

À mon seul frère Nechar Tarek.

A tous les membres de la famille BOUNAAS et je n'oublie pas les enfants : AMINA, MOHAMADE ET ABD AL SAMADE, YAKOB, SAFA ET MARWA, YOSSEF, GHAYTH.

A tous mes amis et à tous ceux qui me sont chers.

Nechar Rafika.

ما اجمل ان يجود المرء بأغلى ما لديه و الاجمل ان يهدي الغالي للأغلى هي ذي ثمرة جهدي اجنيها اليوم هي هدية اهديها الي من ينافس الغيث في العطايا ... والدي الى من بسمتها غايتي وما تحت اقدامها جنتي ...امي الى من بسمتها غايتي وصديق ايامي ... زوجي الى رفيق روحي و سندي وصديق ايامي ... زوجي الى جميع اخوتي وأخواتي وأصدقائي الى صغار العائلة صهيب و جواد و لؤي الى كل افراد عائلتي الثانية

ناموس خديجة

Remerciement

Nous tenons à remercier tout premièrement Allah le tout puissant pour la volonté, la santé, le courage et la patience qu'il nous a donnés durant toutes ces longues années pour arriver au terme de ce travail.

Nous tenons à exprimer nos vifs remerciements très chaleureusement et notre sincère gratitude : A Notre promoteur Mme, **S.Bouchekouf**, pour son orientation, Ses conseils, et sa disponibilité à tout moment de besoin d'orientation.

Toutes nos reconnaissances pour vous. Mr, **H.Bouchenitfa** et **Mr. B.**Smaani, pour accepter d'examiner et de juger notre travail.

Nos sentiments de reconnaissance et nos remerciements vont également à Mr, **H.Guentri** pour ses conseils précieux, et sa disponibilité de nous avoir aidé et encouragé

À toute personne qui a participé de près ou de loin, directement ou indirectement à la réalisation de ce travail.

Que Dieu vous accorde, son aide, dans tous vos projets et activités.

قال رسول الله (صلى الله عليه وسلم) "من لا يشكر الناس لا يشكر الله"

الى من أعطى بدون مقابل الى من سقانا وروانا بعلمه ولم يبخل علينا بشيء لا بعلم ولا نصيحة

الأستاذ: قنطري حسين

أستاذنا الفاضل انت تشبه كثيرا الشمعة التي تحترق لتنير طريق الاخرين وتملا حياتهم املا من أجل الوصول الى الأسمى

مما لا شك فيه يا أستاذنا ان دورك في اتمام مذكرة تخرجنا في غاية الاهمية لذلك نحن نقدر جهودك المضنية ولك منا كل الشكر والعرفان والثناء والتقدير على المجهودات القيمة التي ساهمت في اثراء موضوع دراستنا

شكرا يا منارة العقول

: الطالبتين ناموس خديجة نشار رفيقة

برعاية الأستاذة: بوشقوف سلوى

Nomenclature

PV: Photovoltaïque.

GPV : Générateur photovoltaïque.

MPPT: Maximum Power Point tracking.

P&O: Perturbation et Observation.

DC: Courant Continu.

PI: contrôleur proportionnel intégral.

 N_p : modules parallèles.

N_s: modules séries.

C: condensateur (F).

R: résistance de charge (Ω) .

Rs: Résistance série (Ω) .

 \mathbf{Rp} : Résistance parallèle (Ω).

I : courant de cellule solaire (A).

 I_{ph} : Le photo-courant (A).

Is: saturation des cellules solaires du courant d'obscurité (A).

I_D: courant de diode (A).

Vpv: tension des cellules solaires (V).

q: la charge de l'électron (C).

k : le constant de Boltzmann (J/K).

Tc: la température effective de la cellule.

A: le facteur d'idéalité.

I_P: courant parallèle (A).

 V_b : tension de la batterie (V).

Nomenclature

Ibat: courant de la batterie (A).

 V_{dc} : tension de bus DC (V).

Lpv: inductance du convertisseur DC-DC du PV (H).

L_b: inductance du convertisseur DC-DC des batteries (H).

S1, S2 : commutateurs de convertisseur de batterie.

 α_b : Rapport cyclique de la commande du convertisseur DC-DC du la batterie.

Idc- ref : référence de courant du Bus continu (A).

Ibat-ref: référence de courant de la batterie (A).

V_{dc-ref}: tension de référence du Bus continu (V).

 I_{dc} : courant de charge (A).

K_{p-bat}, K_{i-bat}: Gains proportionnel et intégral du PI batterie.

 $K_{p\text{-dc}},\,K_{i\text{-dc}}$: Gains proportionnel et intégral du Bus DC

P_{bat}: puissance de la batterie.

 P_{dc} : puissance de la charge.

 P_{pv} : puissance de la Générateur photovoltaïque

Nomenclature	
Table des matières	
Liste des tableaux	
Liste des figures	
Introduction générale	1
Chapitre I: État de l'art de l'énergie et système photovoltaïqu	le
I. Introduction	4
II. Les énergies renouvelables :	4
III. L'énergie solaire :	5
III.1. Le rayonnement solaire :	6
III.1.1. Composants du rayonnement solaire :	6
III.1.2. Spectre du rayonnement solaire :	7
III.2. Les type d'énergies solaires :	7
III.2.1. L'énergie solaire thermique :	7
III.2.2. L'énergie solaire thermodynamique :	7
III.2.3. L'énergie solaire photovoltaïque :	8
IV. L'énergie solaire photovoltaïque :	8
IV.1. L'effet photovoltaïque :	8
V. Description des éléments d'un système de captage photovoltaïque :	9
V.1. La cellule photovoltaïque :	9
V.1.1. Constitution d'une cellule photovoltaïque :	9
V.1.2. Principe de fonctionnement :	10
V.2. Le module photovoltaïque :	11

VI. Système photovoltaïque :	13
VI.1. Générateur photovoltaïque :	13
VI.2. Batteries solaires :	14
VI.3. Les régulateurs :	14
VI.3.1. Le rôle d'un régulateur dans un système photovoltaïque :	14
VI.3.2. Les types des régulateurs de charge :	14
VI.3.3. Choix d'un régulateur solaire :	14
VI.4. Système de conversion :	15
VI.4.1. Le convertisseur continu-continu :	15
VII. Les types d'installations photovoltaïques	15
VII.1. Les installations sur site isolé :	15
VII.2. Les installations raccordées au réseau de distribution public :	16
VIII. Conclusion:	19
Chapitre II: Le stockage de l'énergie	
Chapitre II: Le stockage de l'énergie I. Introduction	21
•	
I. Introduction	21
I. Introduction II. Stockage de l'énergie :	21 22
I. Introduction II. Stockage de l'énergie : III. Description des technologies de stockage de l'énergie :	21 22 22 appelé
I. Introduction II. Stockage de l'énergie : III. Description des technologies de stockage de l'énergie : III.1. Le stockage hydraulique et Le stockage mécanique : III.1.1. Système de stockage par hydro-pompage (HPS : Hydro Pump Storage) a	21 22 22 appelé 22
I. Introduction II. Stockage de l'énergie : III. Description des technologies de stockage de l'énergie : III.1. Le stockage hydraulique et Le stockage mécanique : III.1.1. Système de stockage par hydro-pompage (HPS : Hydro Pump Storage) a aussi STEP (Stations de transfert d'énergie par pompage):	21 22 22 22 22 23
I. Introduction II. Stockage de l'énergie : III. Description des technologies de stockage de l'énergie : III. 1. Le stockage hydraulique et Le stockage mécanique : III. 1. Système de stockage par hydro-pompage (HPS : Hydro Pump Storage) a aussi STEP (Stations de transfert d'énergie par pompage): III. 1. 2. L'air comprimé (CAES: Compressed air energy storage) :	21 22 22 appelé 22 23
II. Stockage de l'énergie :	21 22 22 22 23 23 24
II. Stockage de l'énergie :	21 22 22 22 23 23 24 25

III.3.1. Hydrocarbure:	25
III.3.2. Biomasse:	26
III.3.3. Piles à combustible à hydrogène (fuel celles) :	26
III.4. Le stockage électrostatique :	27
III.4.1. Les piles à combustibles :	27
III.4.1.1. Différentes technologies :	28
III.4.2. Les batteries solaires :	28
III.4.2.1. Description d'une Batterie :	28
III.4.2.2. Rôle d'une batterie solaire :	29
III.4.2.3. Grandeurs caractéristiques des batteries solaires :	30
III.4.2.4. Principe de fonctionnement des batteries :	31
III.4.2.5. Différents types de batteries :	32
IV. Conclusion	35
Chapitre III : Modélisation de la commande de la batterie dans un système	
photovoltaïque	
Introduction:	37
Partie I	37
I. Présentation de système :	37
II. Modélisation du générateur photovoltaïque (GPV) :	38
III. Principe de la recherche du point de puissance maximale (MPPT) :	39
III.1. différentes techniques de MPPT :	40
III.1.1. Méthode perturbation et observation (P&O):	40
IV. Modélisation d'une batterie par un circuit électrique équivalent :	42
IV.1. Modèles mathématiques des batteries :	43
V. Les convertisseurs DC-DC pour le système photovoltaïque :	44
V.1. Hacheur Boost:	44

V.1.1. Modèle mathématique équivalent :	44
V.2. Hacheur Buck_boost:	46
Partie II:	47
I. Schéma de contrôle proposé du système d'énergie PV :	47
II. Régulateur de Bus continu (DC bus) :	47
III. Commande de la batterie :	48
III.1. Calcul des paramètres $\mathbf{Kp} - \mathbf{bat}$ et $\mathbf{Ki} - \mathbf{bat}$:	49
III.2. Les paramètres $Kp - dc$ et Ki_dc	50
Conclusion	50
Chapitre IV: Modélisation de la commande de la batterie dans un système	!
photovoltaïque	
I. Introduction:	52
II. L'outil MATLAB/SIMULINK :	52
III. Simulation des résultats :	53
IV. Caractéristiques de la simulation :	55
IV.1. Caractéristiques d'un GPV :	55
IV.2. Caractéristiques du GPV avec l'hacheur Boost et la commande MPPT :	57
IV.3. Caractéristiques de la batterie :	58
IV.4. Caractéristiques de la charge pour le système global :	60
IV.5. Effet de la batterie sur la charge :	61
V. Conclusion:	63
Conclusion générale	65
Références Bibliographiques	68

Liste des tableaux

Liste des tableaux

Tableau IV.1: Paramètres du régulateur PI

Liste des figures

Liste des figures

Figure I.1 : Schéma de différentes énergies renouvelables	5
Figure I.2 : Source d'énergie solaire	6
Figure I.3: Composants du rayonnement solaire	6
Figure I.4 : Spectre du rayonnement solaire	7
Figure I.5 : Cellule solaire.	9
Figure I.6: Description d'une cellule.	10
Figure I.7 : Le principe de fonctionnement d'une cellule solaire	11
Figure I.8: Représentation d'un module photovoltaïque.	11
Figure I.9 : les différents types de module photovoltaïque.	12
Figure I.10 : Boite de dérivation.	12
Figure I.11: Les constitutions d'un système PV	13
Figure I.12: Installation sur site isolé.	16
Figure I.13 : Exemple des installations photovoltaïques.	16
Figure I.14 : L'injection d'énergie dans les réseaux	17
Figure I.15: Injection d'énergie.	18
Figure I.16: Injection d'énergie supplément dans le réseau	18
Figure II.1 : Stockage par HPS.	22
Figure II.2 : Stockage par air comprimé.	23
Figure II.3: Principe du volant d'inertie.	24
Figure II.4 : Principales techniques de stockage de l'énergie thermique	25
Figure II.5: « Principe du générateur H2-air »	28
Figure II.6 : Description de l'intérieur d'une batterie	29
Figure II.7 : Principe de fonctionnement d'une batterie	31
Figure II.8 : Schéma de la vue éclatée d'une batterie au plomb	33
Figure II.9: batteries acide/plomb.	33

Liste des figures

Figure II.10 : Caractéristiques des batteries au plomb.	33
Figure II.11: Batterie nickel-cadmium Ni-Cd.	34
Figure II.12 : Caractéristiques des batteries Ni-Cd.	34
Figure II.13: Batterie Ni-MH.	34
Figure II.14 : Caractéristiques des batteries Ni-MH.	34
Figure II.15: batteries lithium-ion (Li-Ion).	35
Figure II.16 : Caractéristiques des batteries (Li-Ion)	35
Figure III.1 : Schéma de principe de système PV avec stockage d'énergie	38
Figure III.2 : Modèle électrique de la cellule photovoltaïque.	39
Figure III.3 : Schéma synoptique du système PV par une commande MPPT	40
Figure III.4: Recherche du PPM par la méthode (P&O)	41
Figure III.5 : Algorithme de la méthode P&O	42
Figure III.6 : Modèle électrique d'une batterie.	43
Figure III.7 : Schéma électrique d'un hacheur Boost.	44
Figure III.8 : Schéma électrique d'un hacheur Boost fermé.	45
Figure III.9 : Schéma électrique d'un hacheur Boost ouvert.	45
Figure III.10 : Le modèle de circuit Buck_boost	46
Figure III.11 : Schéma de commande utilisant la structure PI	47
Figure III.12 : Schéma de bloc de fonction de transfert de la batterie (a) et système c	•
(b)	47
Figure III.13 : Boucle de régulation PI de la batterie.	49
Figure IV.1 : Bibliothèque SIMULINK	53
Figure IV.2 : Schéma bloc du système global.	54
Figure IV.3 : Eclairement de GPV.	55
Figure IV.4 : Caractéristique de la tension V(t) du GPV	55
Figure IV.5 : Caractéristique du courant I(t) du GPV.	56

Liste des figures

Figure IV.6 : Caractéristique de la puissance P(t) du GPV	56
Figure IV.7 : Caractéristique de la tension V(t) de la charge.	57
Figure IV.8 : Caractéristique du courant I(t) de la charge.	57
Figure IV.9 : Caractéristique de la puissance P(t) de la charge.	58
Figure IV.10 : Caractéristique de la tension V(t) de la batterie	58
Figure IV.11 : Caractéristique de courant I(t) de la batterie.	59
Figure IV.12 : Caractéristique de la puissance P(t) de la batterie.	59
Figure IV.13 : Caractéristique de la tension V(t) de la charge	60
Figure IV.14 : Caractéristique de courant I(t) de la charge.	60
Figure IV.15 : Caractéristique de la puissance P(t) de la charge.	61
Figure IV.16 : Schéma bloc de commande de la batterie.	61
Figure IV.17 : L'état de charge de la batterie.	62
Figure IV.18: La variation des puissances P(t).	62

Introduction générale

Introduction générale

L'énergie renouvelable est l'énergie produite à partir de ressources naturelles. L'énergie renouvelable implique des phénomènes naturels tels que la lumière du soleil, le vent, les marées et la chaleur géothermique. [1]

Aujourd'hui, l'énergie solaire rime avec écologie. Les technologies permettant de mettre à profit les rayons du soleil pour en faire de l'énergie, ont énormément évolué ces dernières années. Le soleil est une source infinie d'énergie et dont nous pouvons bénéficier en abondance. Et ce, pour très longtemps! Cette énergie passive est simplement captée par des panneaux solaires ou photovoltaïques. [2]

L'énergie photovoltaïque est l'un des enjeux de la politique énergétique du notre siècle, qui résulte de la transformation directe de la lumière du soleil en énergie électrique, au moyen d'une cellule photovoltaïque. S'il est vrai que l'énergie issue du soleil semble sans limites, il n'est pas possible de la puiser à toute heure de la journée ni durant toute l'année, ce qui limite le rachat du photovoltaïque. Au problème d'intermittence s'ajoute celui de la météo, souvent capricieuse, qui rend cette source d'énergie incertaine. D'où l'importance du stockage de l'énergie solaire pour couvrir les besoins énergétiques.

Les générateurs photovoltaïques, sont couplés généralement à un système de stockage assurant une disponibilité d'énergie de façon continu. La batterie est le principal élément dans un système photovoltaïque, par où transite l'énergie électrique fournie par le générateur.

Dans le cadre de ce travail nous allons présenter la modélisation et la simulation de la commande de l'état de charge d'une batterie couplé avec un système photovoltaïque. Nous utilisons le GPV comme source d'énergie, le Boost commandé par la MPPT pour l'étage d'adaptation, le Buck_boost comme étage d'interface entre la batterie et le DC bus. En assurant le contrôle de l'état de stockage de la batterie à travers un régulateur PI.

Ce manuscrit est constitué de quatre chapitres :

Le premier chapitre est consacré aux notions de base sur l'énergie solaire photovoltaïque, le principe et la constitution des cellules photovoltaïques ainsi le module et le panneau photovoltaïque. Nous allons également présenter les différents composants du système photovoltaïque aussi les types d'installations photovoltaïques.

Introduction générale

Avec **le deuxième chapitre**, nous allons prendre par étude le stockage de l'énergie avec ses différentes technologies, nous nous focalisons au stockage électrostatique et spécifiquement les batteries solaires.

Dans **le troisième chapitre**, nous allons faire la modélisation électrique et mathématique de notre système photovoltaïque munie de la commande de charge et la décharge de la batterie de stockage.

Dans **le quatrième chapitre**, nous présenterons les résultats de simulation par le logiciel MATLAB/SIMULINK de notre système prédéfini au-dessus et modélisé dans le chapitre précèdent.

Et finalement une conclusion générale récapitulera l'essentiel de ce travail.

Chapitre I:

État de l'art de l'énergie et système photovoltaïque

I. Introduction

On distingue plusieurs types de sources d'énergies renouvelables comme : l'énergie hydroélectrique, l'énergie géothermique, l'énergie éolienne et l'énergie solaire photovoltaïque.

L'énergie solaire photovoltaïque provient de la transformation d'une partie du rayonnement solaire en électricité, la conversion de cette énergie peut se faire grâce aux cellules photovoltaïques. Cela est basé sur un phénomène appelé effet photovoltaïque.

Dans ce chapitre nous exposons l'énergie solaire et plus précisément l'énergie solaire photovoltaïque, le phénomène de l'effet photovoltaïque, le principe et la constitution des cellules photovoltaïques ainsi le module photovoltaïque et le panneau photovoltaïque. Nous avons également expliqué les différents composants du système photovoltaïque aussi les types d'installations photovoltaïques.

II. Les énergies renouvelables :

Les énergies renouvelables sont des sources d'énergie dont le renouvellement naturel est assez rapide pour qu'elles puissent être considérées comme inépuisables et réutilisables, elles sont issues des éléments naturels : le soleil, le vent, les chutes d'eau, les marées, la chaleur de la terre, la croissance des végétaux... L'exploitation des énergies renouvelables n'engendre pas ou peu de déchets et d'émissions polluantes. Ce sont les énergies de l'avenir [3].

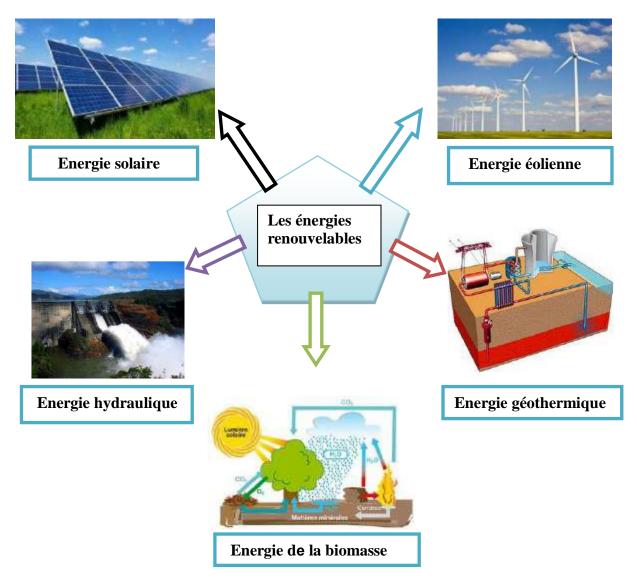


Figure I.1 : Schéma de différentes énergies renouvelables.[4]

III. L'énergie solaire :

L'énergie solaire est une source d'énergie qui est dépendante du soleil, cela signifie que la matière première est le soleil. Elle se place dans la catégorie des énergies renouvelables puisqu'on la considère comme inépuisable. On dit aussi que c'est une énergie 100% verte car sa production n'émet pas directement de CO2.

Grâce à cette énergie, il est possible de produire de l'électricité. Elle sera captée par des panneaux solaires ou des centrales thermiques. Ces installations captent les rayons produits par le soleil. Elles convertissent ensuite l'énergie du soleil en électricité [2].

Figure I.2 : Source d'énergie solaire.[4]

III.1. Le rayonnement solaire :

La lumière du soleil ou ce qu'on appelle le rayonnement solaire contient un certain nombre d'ondes électromagnétiques qui sont envoyées par le soleil sous la forme de faisceaux lumineux, où ces derniers contiennent des ondes qui peuvent être vues et certaines d'autres ne peuvent pas être vues, le spectre visible ayant une couleur allant du rouge au violet [5].

III.1.1. Composants du rayonnement solaire :

Les rayons solaires traversant l'atmosphère terrestre sont répartis en [6] :

- ➤ Rayonnement direct : Ce sont des rayons qui tombent directement sans avoir aucune barrière (nuages, bâtiments ...).
 - ➤ Rayonnement diffus : ce sont les rayons du soleil réfractés par les nuages.
- ➤ Rayonnement réfléchi : ce sont les rayons résultant de la réflexion de la lumière de solaire par les différents sols.

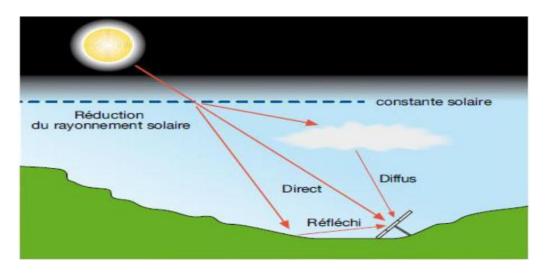
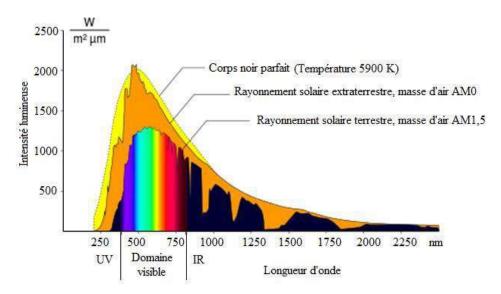



Figure I.3: Composants du rayonnement solaire. [6]

III.1.2. Spectre du rayonnement solaire :

Le spectre solaire fait référence à la distribution du rayonnement électromagnétique émis par le soleil en fonction de la longueur d'onde incidente sur la surface externe de l'atmosphère. Le rayonnement solaire atteignant la terre s'étend sur une gamme de longueurs d'onde allant de 250 nm (nanomètre) à environ 400 nm (Figure I.4) [7]. Une partie est réfléchie par l'atmosphère terrestre tandis que le reste est absorbé par la surface de la terre.

Figure I.4 : Spectre du rayonnement solaire. [8]

III.2. Les type d'énergies solaires :

Il existe plusieurs types d'énergie solaire :

III.2.1. L'énergie solaire thermique :

C'est la transformation de l'énergie solaire en chaleur. Les panneaux solaires thermiques contiennent des fluides caloporteurs. Une fois qu'ils sont chauffés par le soleil, les fluides commencent à chauffer le ballon d'eau chaude.

L'énergie solaire thermique sert aussi bien pour alimenter :

- Un chauffage solaire.
- Un chauffe-eau.[2].

III.2.2. L'énergie solaire thermodynamique :

L'énergie solaire thermodynamique est produite via des centrales solaires à concentration. Il s'agit d'un assemblage de miroirs contenant des fluides caloporteurs, couplés

à un générateur d'électricité solaire. À l'image des panneaux solaires thermiques, ce sont les miroirs qui transforment l'énergie collectée par les rayons du soleil, en chaleur.

Cette chaleur a une température très élevée. Elle peut aller de 250 à 800 degrés selon la technique employée. Cette chaleur sera convertie en électricité au moyen d'un turbo-alternateur [2].

III.2.3. L'énergie solaire photovoltaïque :

L'énergie solaire photovoltaïque est une énergie électrique produite à partir du rayonnement solaire. [9] Pour exploiter cette énergie, on doit concevoir des cellules photovoltaïques qui convertissent l'énergie lumineuse en électricité. Plus précisément, le principe est de transformer l'énergie portée par les photons dans la lumière, en électricité.

C'est là que rentre en jeu la cellule photovoltaïque : lorsqu'elle est exposée à la lumière, elle absorbe l'énergie des photons lumineux. Ces derniers génèrent un courant électrique continu.

Plusieurs cellules sont reliées entre elles pour constituer un module solaire photovoltaïque, et plusieurs modules sont regroupés pour former une installation solaire. [9]

IV. L'énergie solaire photovoltaïque :

IV.1. L'effet photovoltaïque:

Le terme « photovoltaïque » vient du Grec et qui signifie Lumière, il est composé de deux parties : « photos » (lumière) et du nom de famille du physicien italien (Alessandro Volta) qui inventa la pile électrique en 1800 et donna son nom à l'unité de mesure de la tension électrique, le volt [10]. L'effet photovoltaïque est un des effets photoélectriques. Il est mis en œuvre dans les cellules photovoltaïques pour produire de l'électricité à partir du rayonnement solaire. C'est le produit du choc des photons de la lumière sur un matériau semiconducteur qui transmet leur énergie aux électrons qui génèrent une tension électrique [10]. L'effet photovoltaïque est obtenu par absorption des photons dans un matériau semiconducteur qui génère alors des paires électrons-trous (excitation d'un électron de la bande de valence vers la bande de conduction) créant une tension ou un courant électrique. Plusieurs types de composants peuvent être créés à partir de ce principe. Ils sont appelés photodiodes, phototransistors ou des photopiles.

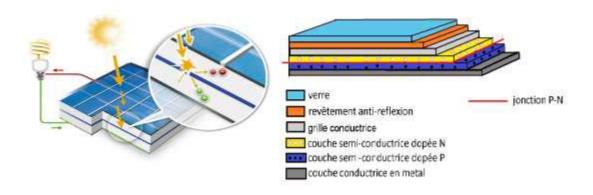
V. Description des éléments d'un système de captage photovoltaïque :

V.1. La cellule photovoltaïque :

C'est le seul moyen connu actuellement pour convertir directement la lumière en électricité. La cellule photovoltaïque constitue l'élément de base des panneaux solaires photovoltaïques. Elle s'agit d'un dispositif semi-conducteur à base de silicium délivrant une tension de l'ordre de 0,5 à 0,6V (voir figure I. 5). [11]

Figure I.5 : Cellule solaire.

V.1.1. Constitution d'une cellule photovoltaïque :


C'est l'élément de base qui grâce à lui la conservation est faite par l'assemblage de plusieurs cellules, on peut atteindre la puissance que l'on veut. Les photopiles ou cellules photovoltaïques sont des composants optoélectroniques qui transforment directement la lumière solaire en électricité. Elles sont réalisées à l'aide des matériaux semi-conducteurs ayant des propriétés intermédiaires entre conducteurs et isolants.

Le matériau de base est dans la plupart des cas le silicium. Selon le procédé de fabrication, on obtiendra des photopiles plus ou moins performantes, sous forme amorphe, poly cristalline ou monocristalline. D'autres matériaux sont utilisables : Arséniure de gallium (AsGa), Tellurure de cadmium (CdTe) [12].

Une cellule solaire sera obtenue en constituant une jonction de deux zones de type opposées (jonction PN). Au voisinage de la jonction, un champ électrique apparaît provoqué par le déséquilibre de charges. Il va contribuer à drainer les électrons qui auront été détachés par l'énergie des photons (grains de lumière) incidents. Pratiquement, la cellule PV est composée de plusieurs couches minces Figure (I.6) à savoir :

 Une couche "antireflet" sur la face avant dont le but est de faciliter au maximum la pénétration d'un maximum de photons à travers la surface et de réduire les pertes par réflexion.

- Une grille conductrice avant " collectrice des électrons " qui doit également être liée au silicium et ne pas être sensible à la corrosion.
- Une couche dopée N avec porteurs de charge libres négatifs (électrons).
- Une couche dopée P avec porteurs de charge positifs (trous).
- Une surface de contact conductrice en métal (collectrice des électrons), ayant une bonne conductivité ainsi qu'un bon accrochage sur le silicium.

Figure I.6 : Description d'une cellule.

V.1.2. Principe de fonctionnement :

Son principe de fonctionnement se résume comme suit :

Lorsque la cellule est exposée au rayonnement solaire, les photons d'énergie (Eph = hv) pénétrant dans la cellule solaire transmettent leur énergie aux atomes de la jonction. Si cette énergie est suffisamment élevée, elle peut faire passer les électrons de la bande de valence à la bande de conduction du matériau semi-conducteur et créer ainsi des paires «électron-trou». Les électrons (charges N) et les trous (charges P), sont alors maintenus séparés par un champ électrique qui constitue une barrière de potentiel.

Si une charge est placée aux bornes de la cellule, les électrons de la zone N rejoignent les trous de la zone P via la connexion extérieure, donnant naissance à une différence de potentiel et un courant électrique circule. Figure (I -7) [13].

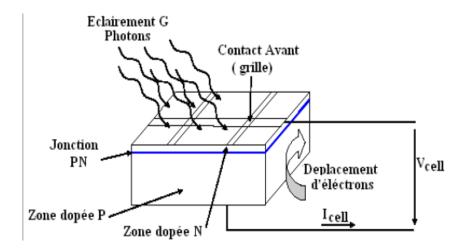


Figure I.7: Le principe de fonctionnement d'une cellule solaire. [14]

V.2. Le module photovoltaïque :

Afin d'augmenter la tension d'utilisation, les cellules PV sont connectées en série. La tension nominale du module est habituellement adaptée à la charge, les modules ont généralement 36 cellules. De plus, la fragilité des cellules au bris et à la corrosion exige une protection envers leur environnement et celles-ci sont généralement encapsulées sous verre ou sous composé plastique. Le tout est appelé un module photovoltaïque. [15]

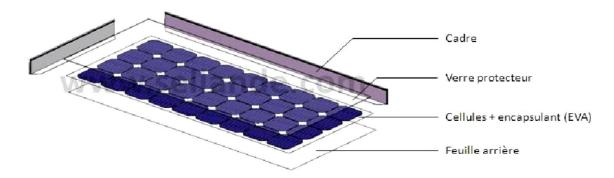


Figure I.8: Représentation d'un module photovoltaïque. [16]

Les modules peuvent également être connectés en série et en parallèle afin d'augmenter la tension et l'intensité d'utilisation. Toutefois, il importe de prendre quelques précautions car l'existence de cellules moins efficaces ou l'occlusion d'une ou plusieurs cellules (dues à de l'ombrage, de la poussière, etc.) peuvent endommager les cellules de façon permanente. [15]

Les modules photovoltaïques assurent les fonctions suivantes :

- Protection des cellules contre les agents atmosphériques.
- Protection mécanique et support.

- connexion électrique entre cellules et avec l'extérieur. [17]

Figure I.9 : les différents types de module photovoltaïque. [18]

V.3 Le panneau photovoltaïque :

Le panneau solaire ou (champ solaire) se compose de modules photovoltaïques interconnectés en série ou en parallèle afin de produire la puissance requise. Ces modules sont montés sur une armature métallique qui permet de supporter le champ solaire avec un angle d'inclinaison spécifique. [19]

Pour chaque panneau on peut avoir autant de sorties que de modules, ce que fait qu'on aura besoin de boit de dérivation figure(I.10) qui regroupe le tous, alors cette boite de dérivation fixée sur une structure du montage a comme rôle d'effectuer les connections entre les modules pour obtenir une puissance optimale en sortie. [20]

Figure I.10 : Boite de dérivation. [20]

VI. Système photovoltaïque :

Un système PV est un ensemble complet d'équipement PV pour transformer la lumière du soleil en électricité, généralement il se compose de cinq éléments principaux : le générateur PV, la batterie, le régulateur, le convertisseur et la charge.[21]

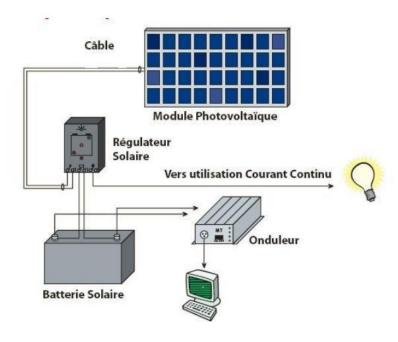


Figure I.11: Les constitutions d'un système PV. [21].

Par le mécanisme photovoltaïque, les panneaux PV transforment l'énergie solaire en courant continu (CC). Ce dernier peut être utilisé directement, soit sera converti en courant alternatif (CA) par l'onduleur. Le surplus d'énergie produit par le système est emmagasiné dans les accumulateurs (batteries). La charge et la décharge des batteries sont contrôlées par le régulateur qui assure la régulation entre la production, la consommation et le stockage. [21]

VI.1. Générateur photovoltaïque :

Les cellules solaires sont généralement associées en séries et en parallèle, puis encapsulées sous verre pour obtenir un module photovoltaïque. Un générateur PV est constitué de modules interconnectés pour former une unité produisant une puissance continue élevée compatible avec le matériel électrique usuel. Les modules PV sont habituellement branchés en série-parallèle pour augmenter la tension et l'intensité à la sortie du générateur.

Les modules interconnectés sont montés sur des supports métalliques et inclinés suivant l'angle désiré en fonction du lieu, cet ensemble est souvent désigné par champ de modules (Figure I.2) [22].

VI.2. Batteries solaires:

Les batteries solaires stockent l'énergie produite par les panneaux photovoltaïques afin d'assurer l'alimentation électrique en toutes circonstances (jour ou nuit, ciel dégagé ou couvert). Une batterie utilisée avec des panneaux solaires ou une éolienne est une batterie à décharge lente (appelée aussi batterie solaire). Ces batteries sont spécifiquement conçues pour les applications solaires ou éoliennes.

Son fonctionnement de base est identique à celui des autres types de batteries c'est à dire que l'énergie est stockée sous forme chimique. Des composants réagissent entre eux à l'intérieure, ce qui permet d'accumuler ou de restituer de l'électricité au moment voulu. Cependant, la façon dont on utilise les batteries solaires n'est pas la même, ce qui implique des technologies différentes. Par exemple, les batteries de voiture sont fortement sollicitées au démarrage, et se rechargent ensuite très vite. A l'inverse, les batteries solaires sont vidées lentement, sur de longues périodes, et sont parfois rechargées quelques jours après seulement.[23]

VI.3. Les régulateurs :

VI.3.1. Le rôle d'un régulateur dans un système photovoltaïque :

Le régulateur de charge ou contrôleur sert avant tout à contrôler la charge de la batterie et limiter sa décharge, Il existe plusieurs valeurs limites correspondant chacune à un type de protection différent (Surcharge, décharge profonde, température de fonctionnement, court-circuit et inversions de polarité ...etc.). Alors leurs fonctions sont primordiales, car elles ont un impact direct sur la durée de vie de la batterie [24].

VI.3.2. Les types des régulateurs de charge :

Deux types de régulateurs de charge sont disponibles :

- Le régulateur de charge solaire avec technologie PWM.
- Le régulateur de charge solaire avec technologie MPPT.

VI.3.3. Choix d'un régulateur solaire :

Le choix d'un régulateur solaire dépend de deux critères principaux :

- L'intensité maximale admissible par le circuit d'entrée et le circuit de sortie du régulateur doit être supérieure à l'intensité du courant produit par les panneaux. [25]

- La tension nominale correspondre à la tension entre les panneaux et la batterie photovoltaïque doit être 12, 24 ou 48 V.

VI.4. Système de conversion :

Un convertisseur d'énergie est un équipement que l'on dispose généralement soit entre le champ PV et la charge (sans stockage avec charge en continu, il portera le nom de convertisseur continu continue), soit entre la batterie et la charge (il sera alors appelé onduleur ou convertisseur continu alternatif).

L'onduleur est généralement associé un redresseur qui réalise la transformation du courant alternatif en courant continu et dont le rôle sera de charger les batteries et d'alimenter le circuit en continu de l'installation en cas de longue période sans soleil.[26]

VI.4.1. Le convertisseur continu-continu :

Un convertisseur DC-DC (hacheur) est un dispositif électrique qui permet de transformer une tension continue de valeur fixe en une tension continue réglable. Il est constitué de condensateur, d'inductance et d'un interrupteur qui peut être un transistor (pour faible puissance) ou un thyristor (pour grand puissance). Le rôle de ce convertisseur est de faire fonctionné les modules à leur point de puissance maximale quelques soient l'éclairement et la température pour délivrer cette puissance à l'utilisation. Donc il permet de contrôler la puissance électrique dans des circuits fonctionnant en courant continu avec une très grande souplesse et un rendement élevé.[27]

VII. Les types d'installations photovoltaïques

VII.1. Les installations sur site isolé :

Ce type de montage est adapté aux installations ne pouvant être raccordées au réseau. L'énergie produite doit être directement consommée et/ou stockée dans des accumulateurs pour permettre de répondre à la totalité des besoins. Les panneaux photovoltaïques produisent l'électricité en courant continu (voir figure I.12). [28]

Figure I.12: Installation sur site isolé.

Le régulateur optimise la charge et la décharge de la batterie suivant sa capacité et assure sa protection. L'onduleur transforme le courant continu en alternatif pour alimenter les récepteur AC. Les batteries sont chargées le jour pour pouvoir alimenter la nuit ou les jours de mauvais temps. Des récepteurs DC spécifiques sont utilisables. Ces appareils sont particulièrement économes (voir figure I.13). [28]

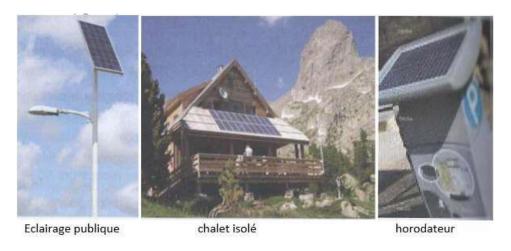


Figure I.13: Exemple des installations photovoltaïques.

VII.2. Les installations raccordées au réseau de distribution public :

Solution avec injection totale

Toute l'énergie électrique produite par les capteurs photovoltaïques est envoyée pour être revendue sur le réseau de distribution.

Cette solution est réalisée avec le raccordement au réseau public en deux points :

- Le raccordement du consommateur qui reste identique avec son compteur de consommation (on ne peut pas utiliser sa propre production),
- Le nouveau branchement permettant d'injecter l'intégralité de la production dans le réseau, dispose de deux compteurs :
 - > L'un pour la production,
 - L'autre pour la non-consommation (permet de vérifier qu'aucun soutirage frauduleux n'est réalisé). (Voir figure I.14) [29]

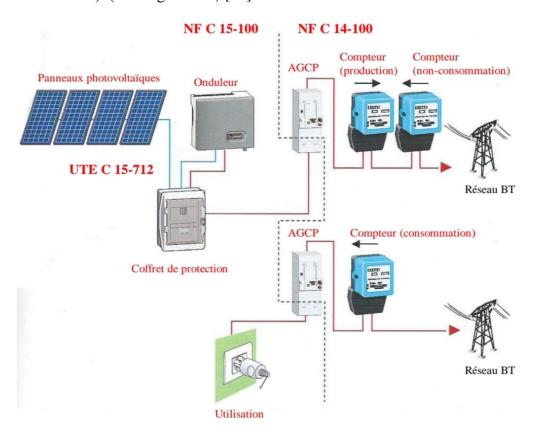


Figure I.14: L'injection d'énergie dans les réseaux.

En bleu: énergie électrique continue (DC).

En rouge : énergie électrique alternative (AC)

Figure I.15: Injection d'énergie.

• Solution avec injection de surplus

Cette solution est réalisée avec le raccordement au réseau public en un point : l'utilisateur consomme l'énergie qu'il produit avec le système solaire et l'excédent est injecté dans le réseau. Quand la production photovoltaïque est insuffisante, le réseau fournit l'énergie nécessaire. Un seul compteur supplémentaire est ajouté au compteur existant (voir figure I.16). [29]

Figure I.16: Injection d'énergie supplément dans le réseau.

En bleu: énergie électrique continue (DC).

En rouge : énergie électrique alternative (AC).

VIII. Conclusion:

Dans ce chapitre nous avons fait des descriptions générales sur l'énergie photovoltaïque, tous les éléments ont été introduit (cellule, module, panneau, champ PV), ainsi une présentation des constituons du système photovoltaïque afin de permettre une bonne compréhension du fonctionnement des systèmes PV.

Chapitre II:

Le stockage de l'énergie

I. Introduction

Le stockage de l'énergie dans les systèmes photovoltaïque est généralement assuré par des batteries et cela pour ses différents avantages. La batterie est le principal élément dans un système photovoltaïque, par où transite l'énergie électrique fournie par le générateur [30].

Dans ce chapitre, nous allons aborder les différents types de stockage d'énergie, le stockage mécanique, le stockage hydraulique, le stockage thermique, et enfin le stockage électrochimique. Nous l'avons consacré à l'étude, car il est considéré comme plus largement utilisé et dépend des batteries, qui sont un élément important pour stocker l'énergie .Nous avons pris par étude détaillée les batteries solaires, ses caractéristiques et leurs différents types.

II. Stockage de l'énergie :

La transition énergétique est engagée par les énergies renouvelables qui doivent s'intensifier dans les prochaines décennies. Certaines énergies renouvelables ont une production intermittente et fluctuante. Le stockage de l'énergie est une des solutions pour soutenir son développement et sa prospérité [31].

Le stockage de l'énergie est l'un des enjeux d'aujourd'hui, qu'il s'agisse de développer les ressources énergétiques ou d'en faciliter l'accès. Il permet d'ajuster la « production » et la «consommation » d'énergie et de réduire les pertes. L'énergie, stockée lorsqu'elle dépasse sa disponibilité, peut être restituée lorsqu'elle est la plus demandée. Face à la production intermittente ou fluctuante de certaines énergies, par exemple les énergies renouvelables, le procédé permet également de répondre à la demande continue et croissante de celle-ci. [32]

Le stockage de l'énergie concerne principalement le stockage de l'électricité et celui de la chaleur [33].

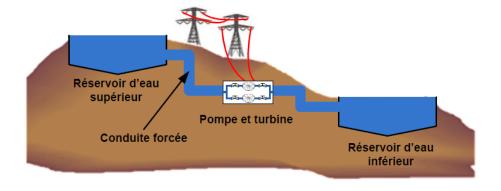
Les méthodes de stockage dépendent du type d'énergie. Les énergies fossiles (charbon, gaz, pétrole), sous forme de réservoirs à l'état naturel, ces derniers remplissent naturellement la fonction de réservoirs. Une fois extrait, il peut être facilement isolé, hébergé et techniquement transporté [34].

❖ Intérêt de stockage de l'énergie :

Le stockage d'énergie est un enjeu à la hauteur de la consommation d'énergie primordial pour les états, l'indépendance énergétique est stratégique et économiquement

essentielle. Pour les individus et les entreprises, une énergie disponible à la demande sans coupure inopinée est un confort et une commodité pour. La production d'énergie le stockage est essentiel. En réalité ce qu'on appelle couramment et économiquement production d'énergie n'est pas physiquement de la production, mais de la transformation (thermique...) en énergie directement utilisable pour un travail (électricité.....).[35]

III. Description des technologies de stockage de l'énergie :


III.1. Le stockage hydraulique et Le stockage mécanique :

Le stockage mécanique regroupe les moyens de stockage à grande échelle : le transfert d'énergie par pompage d'eau (HPS : Hydro Pump Storage) et la compression de l'air (CAES: Compressed air energy storage) ainsi que les volants d'inertie. Il inclut donc tout type de stockage d'énergie potentielle ou cinétique.[36]

III.1.1. Système de stockage par hydro-pompage (HPS : Hydro Pump Storage) appelé aussi STEP (Stations de transfert d'énergie par pompage):

Ce système utilise deux réservoirs d'eau à des hauteurs différentes. L'eau est pompée dans les périodes creuses du bas en haut (chargement). En cas de besoin d'électricité, l'eau passe du haut au bas et fait actionner une turbine liée à un générateur (déchargement) (voir Figure II.1). Pour le réservoir supérieur, des barrages peuvent être utilisés et pour le bas, des puits des mines ou des lacs-réservoirs peuvent être utilisés.

Cette technologie existe depuis longtemps, les premières applications en Italie et en Suisse remontent à 1890. À partir de 1933, les turbines/pompes réversibles étaient disponibles. La décharge dure de quelques heures à quelques jours (IEC). L'efficacité de cette technologie est de 70 % à 85 %.[36]

Figure II.1: Stockage par HPS.

Cette technologie est la plus connue en stockage à grande échelle avec 90 GW comme puissance installée dans le monde annuellement (Camara, 2011). L'avantage de cette technologie est sa grande durée de vie et la stabilité de son cycle. L'inconvénient est sa limitation géographique. En effet, il est indispensable de trouver un site géographique adapté permettant l'installation de deux bassins superposés, ce qui rend la construction de nouvelles HPS difficile et coûteuse (ENEA).

III.1.2. L'air comprimé (CAES: Compressed air energy storage) :

L'électricité est utilisée pour comprimer l'air et le stocker dans des cavités naturelles, des mines abandonnées ou des réservoirs (comme ceux de propane) (chargement). En cas de besoin de l'électricité, cet air est mélangé avec le gaz naturel pour faire actionner une turbine à gaz. La première unité commerciale avec une capacité de 290 MW a été opérationnelle en 1978 en Allemagne (IEC). Cette technologie a une efficacité de 45 % [36]

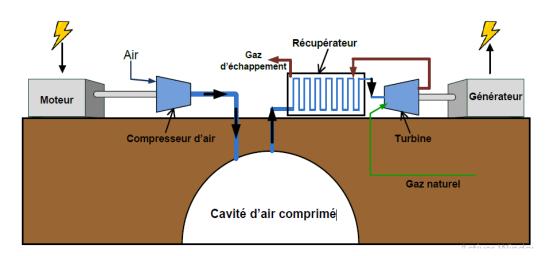


Figure II.2 : Stockage par air comprimé.

L'avantage de cette technologie est sa grande capacité. Son inconvénient est l'instabilité du cycle, ainsi que la limitation géographique des lieux. Un CAES adiabatique est en cours de développement. Il consiste à récupérer la chaleur dégagée pendant la compression de l'air et à la réutiliser pour son expansion. Ainsi, l'efficacité énergétique est améliorée et peut atteindre 70 %.

III.1.3. Volant d'inertie (FES: Flywheel Energy Storage):

Il fait appel à l'énergie cinétique (rotation du rotor). L'électricité est utilisée pour faire tourner le volant. Le chargement augmente quand la vitesse du volant est grande. Ce volant est lié à un appareil de transmission (moteur/générateur) qui assure la conversion entre

l'énergie électrique et celle mécanique. Pour le déchargement, l'opération est inversée, la vitesse est réduite en produisant l'électricité par le biais du même appareil de transmission.

Cette technologie existe depuis 1970. Les volants d'inertie les plus développés ont des rotors fabriqués avec des filaments de carbone à haute résistance, suspendus sur des paliers magnétiques, et tournant à une vitesse de 20 000 à 50 000 tours par minute dans une enceinte sous vide (IEC) (voir Figure 3).[36]

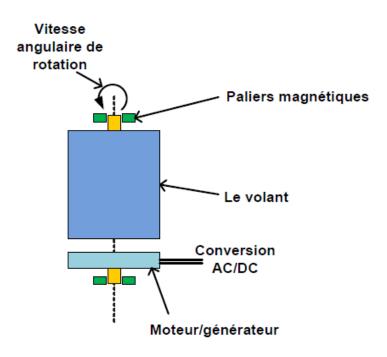
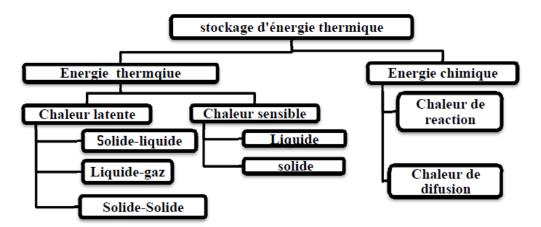


Figure II.3: Principe du volant d'inertie.

Les avantages des volants d'inertie sont la bonne stabilité du cycle, une longue durée de vie, peu d'entretien et une densité de puissance élevée. Toutefois, les volants ont un niveau élevé d'autodécharge à cause de la résistance de l'air pour les versions en air et les pertes par des frottements sur les paliers ou les roulements. Ils ont aussi un rendement en courant faible (Five minute guide). Des dispositifs commerciaux existent et sont proposés par « Beacon Power Systems».

III.2. Le stockage thermique :

Actuellement, le stockage thermique est peu exploité. Son usage devrait croître à l'occasion du développement des fermes solaires thermodynamiques.


III.2.1. Par chaleur sensible:

L'élévation de la température d'un matériau permet de stocker de l'énergie. Ce principe est entre autres, celui des chauffe-eau solaires : ils récupèrent la chaleur dans la journée pour la restituer ensuite, avec un rendement moyen de l'ordre de 40% pour les systèmes les plus récents. Les matériaux privilégies sont l'eau, l'huile de synthèse, la roche ou encore le béton.

Pour de grands volumes, la chaleur de capteurs solaires ou des rejets industriels peut être stockée dans le sous-sol. Le stockage géologique, pouvant être couplé à des opérations de géothermie, est encore assez peu répandu.[37]

III.2.2. Par chaleur latente:

Ce mode de stockage est basé sur l'énergie mise en jeu lorsqu'un matériau change d'état (par exemple solide-liquide). La transformation inverse permet de libérer l'énergie accumulée sous forme de chaleur ou de froid, avec un rendement d'environ 60%. Cette technique peut être appliquée dans les bâtiments, par l'intermédiaire des Matériaux à Changement de Phase (MCP). Incorporés aux parois, ils servent de régulateur thermique en fonction de la chaleur apportée par le soleil.[37]

Figure II.4: Principales techniques de stockage de l'énergie thermique. [35]

III.3. Le stockage chimique :

III.3.1. Hydrocarbure:

Les hydrocarbures liquides sont actuellement la forme dominante du stockage d'énergie en volume, notamment pour le secteur du transport. Les carburants proviennent des énergies fossiles et ont un rendement de 75% de la source à la pompe, le rendement source - électricité

étant souvent inférieur à 50%. Les biocarburants sont eux issus de la biomasse, avec un rendement de 70% de la biomasse à la pompe.[37]

III.3.2. Biomasse:

Tout combustible peut être considère comme un stock d'énergie sous forme chimique. En brulant, le compose dégage de l'énergie sous forme de chaleur qui peut être récupérée et valorisée. Le terme « biomasse » désigne l'ensemble des matières organiques pouvant devenir des sources d'énergie. Dans le cas des végétaux, elle est une forme de stockage de l'énergie solaire : les matières organiques sont issues du CO2 capte lors de la photosynthèse. Toutefois, ce processus de stockage d'énergie est long, de l'ordre de plusieurs mois, et d'un rendement faible. En effet, seul 1% des rayonnements solaires utilises lors de la photosynthèse est restitue sous la forme de biomasse.[37]

III.3.3. Piles à combustible à hydrogène (fuel celles) :

Le dihydrogène, habituellement appelé hydrogène, n'existe pas à l'état naturel mais est très abondant sur Terre sous forme atomique H (eau, hydrocarbures...). L'électrolyse, qui consiste à de composer la molécule d'eau en hydrogène et en dioxygène, nécessite de l'électricité (rentable si la production d'électricité présente elle-même un cout peu élevé). L'hydrogène a la faculté de restituer de l'énergie, ce qui en fait une forme particulièrement intéressante de stockage. Il peut être utilisé directement comme carburant de véhicules équipés de moteurs à combustion fonctionnant au gaz. Il peut aussi être stocké avant d'être reconverti en énergie par une pile à combustible pour des applications stationnaires fournissant soit de l'électricité (production connectée au réseau) soit de la chaleur (maisons).

Un des avantages de l'hydrogène est qu'il peut être produit à partir de toutes les sources d'énergie primaires (fossiles, EnR). Cependant, les systèmes électrolyseur hydrogène-pile à combustible ont un cout d'investissement encore élevé pour un rendement global - synthèse du dihydrogène et compression ou liquéfaction- faible. De plus, leur durée de vie s'avère encore insuffisante pour des applications connectées au réseau électrique. Cependant, le vecteur Hydrogène peut devenir compétitif pour des besoins à fort ratio énergie/puissance grâce au découplage naturel puissance (stack) énergies (réservoir), découplage que l'on retrouve dans les batteries redox. Par ailleurs, le "power to gas" - conversion de l'électricité en dihydrogène (électrolyse) ou en méthane (émanation) – mise en œuvre dans de nombreuses collectivités constitue une voie très prometteuse de stockage des surplus EnR.[37]

III.4. Le stockage électrostatique :

Le principe de stockage électrochimique et électrostatique repose sur la conversion de l'énergie chimique en énergie électrique, concerne principalement les batteries, piles et les accumulateurs.

III.4.1. Les piles à combustibles :

On parle de pile à combustible lorsqu'il y a consommation d'un élément (d'une ou des deux électrodes), ce qui rend le phénomène irréversible (électrode comburante et combustible). La charge de la pile est réalisée en remplaçant les éléments usés (électrode comburante) et le combustible. Il est cependant possible de remplacer une ou les deux électrodes par des gazes.

Les électrodes sont alors composées d'alliage inattaquable plongé dans l'électrolyte. Ce sont des concurrents sérieux pour les accumulateurs où la recharge s'effectue par inversion des phénomènes électrochimiques. A l'origine, ce sont des applications militaires. Elles remplacent les groupes électrogènes par des groupes ne laissant pas de signature thermique ou sonore. Des recherches sont en cours en vue de l'adapter au véhicule électrique. Ce sont soit des piles à combustible, soit des générateurs à recharge mécanique (Zn air ou Al-air).

Le gros avantage des piles à combustible est leur rendement énergétique élevé : 40 à 45% de l'énergie est transformée en électricité contre 30% pour un diesel ou turbine à gaz, 35% pour les centrales thermiques. Le système est également silencieux [38].

Remarque : Dans la dénomination de leur couple électrochimique, le suffixe air indique que l'on consomme à une électrode un gaz contenu dans l'air (oxygène) l'électrolyte est fixé sur une matrice poreuse pour éviter qu'il n'envahisse les pores des électrodes.

$$2H_2 + O_2 \rightarrow 2H_2O$$

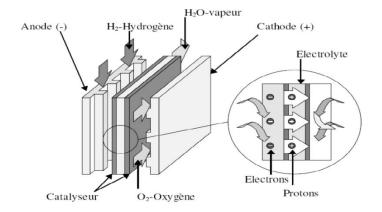


Figure II.5: « Principe du générateur H2-air » [39].

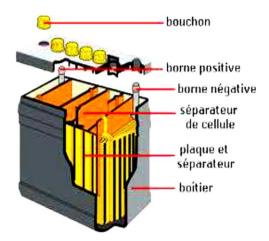
III.4.1.1. Différentes technologies :

Ces technologies sont généralement ordonnées selon cinq catégories, dites :

- > AFC (pile alcaline).
- > PEMFC (pile à membrane échangeuse de protons).
- ➤ PAFC (pile à acide phosphorique).
- > SOFC (pile à oxydes solides).
- ➤ MCFC (pile à carbonates fondus).

III.4.2. Les batteries solaires :

Les batteries solaires ont pour usage de stocker l'énergie produite par les panneaux photovoltaïque (PV) pour servir d'alimentation électrique. Les batteries utilisées par les panneaux solaires ou éolienne est appelée batteries a décharge lente.[40]


III.4.2.1. Description d'une Batterie :

Une batterie est un assemblage de plusieurs cellules, unités indépendantes et complètes possédant toutes les caractéristiques électrochimiques nécessaires au stockage. Leur assemblage au sein d'un module s'appelle batterie est uniquement destinée à disposer d'une tension plus relevée aux bornes du dispositif. Une cellule est constituée de trois éléments de base :

- une électrode positive (cathode),
- une électrode négative (anode),
- un électrolyte.

Globalement, l'objectif d'une cellule est de créer une différence de potentiel entre les deux électrodes liées à leurs matériaux constituants. L'électrolyte permet la migration des ions entre l'anode et la cathode tout en interdisant le transfert des électrons. Ceux-ci devront transiter au travers d'un circuit électrique qui est la charge.

En règle générale, une technologie de batterie est définie par le couple des matériaux d'électrodes. Au besoin, le type d'électrolyte peut également être précisé. [41]

Figure II.6 : Description de l'intérieur d'une batterie.[40]

III.4.2.2. Rôle d'une batterie solaire :

Le stockage d'énergie dans les systèmes photovoltaïques s'effectue exclusivement l'aide des batteries d'accumulateurs. [42]

Dans un système photovoltaïque, la batterie remplit trois fonctions importantes (le rôle):

a) Autonomie : Une batterie permet de répondre aux besoins de la charge en tout temps, même la nuit ou par temps nuageux.

de démarrage de 3 à 5 fois supérieur au courant d'utilisation.

b) Courant de surcharge: Une batterie permet de fournir un courant de surcharge pendant quelques instants, c'est-à-dire un courant plus élevé que celui que peut fournir le champ PV.
 Ceci est nécessaire pour faire démarrer les moteurs et les autres appareils requérant un courant

C) Stabilisation de la tension : Une batterie permet de fournir une tension constante, en éliminant les écarts de tension du champ PV et en permettant aux appareils un fonctionnement à une tension optimisée.

III.4.2.3. Grandeurs caractéristiques des batteries solaires :

a) Rendement faradique:

Le rendement faradique représente l'efficacité de la charge d'une batterie. Il est le rapport de la capacité de la batterie sur la quantité de charge fournie à la batterie lors de la charge complète. A cause des réactions secondaires à l'intérieur de la batterie, la quantité de charge fournie à la batterie n'est pas entièrement récupérable. Ainsi, le rendement faradique peut être inférieur à 100% et varie en fonction de la technologie de la batterie.

Par exemple, le rendement faradique est proche de 100% pour les batteries Li-ion et autour de 80~90% pour les batteries NiMH.

b) Etat de charge (SoC) et profondeur de décharge (DoD) :

L'état de charge (ou SoC pour « State of Charge » en anglais) est le rapport de la charge disponible en Ah sur la capacité de la batterie. Par exemple, quand la batterie est pleinement chargée, l'état de charge (SoC) vaut 100% et quand la batterie est complètement déchargée, le SoC vaut 0%. La définition du SoC n'est pas unique, parce que la capacité réelle ou la capacité nominale peuvent être utilisées au dénominateur dans la formule du SoC.

$$SoC = \frac{charge\ disponible\ en\ Ah}{capacit\'e\ de\ la\ batterie}$$

La profondeur de décharge (ou DoD pour « Depth of Discharge » en anglais) est aussi un indicateur de niveau de charge de la batterie. Son expression est donnée par :

$$DoD = 1 - SoC$$

c) Autodécharge des batteries

L'autodécharge se produit toujours, même si la batterie n'est connectée à rien. Le taux d'auto- décharge dépend de la température ambiante et du type de batterie. À des températures supérieures à 55°C, l'autodécharge est encore plus rapide. Ces températures peuvent être atteintes si la batterie est stockée dans un garage ou une remise lorsqu'il fait chaud. Une des idées reçues concernant le stockage des batteries est que, si on laisse une batterie sur un sol en béton, elle se déchargera rapidement. Cela était vrai il y a plus de trentecinq ans, lorsque les boîtiers de batterie étaient en caoutchouc dur. En raison de l'humidité du béton, ce type de batterie se déchargeait directement dans le sol en béton. Toutefois, les boîtiers des batteries modernes sont en plastique de polypropylène et peuvent être stockés sur du béton sans crainte d'autodécharge excessive.[43]

III.4.2.4. Principe de fonctionnement des batteries :

Deux électrodes plongeant dans un électrolyte constituent une chaine électrochimique. Des lames métalliques de nature différente peuvent jouer, par exemple, le rôle d'électrodes. La chaine électrochimique joue le rôle d'un générateur de courant par la conversion de l'énergie chimique en énergie électrique. C'est au niveau de ces électrodes que se passent les réactions électrochimiques.

Figure II.7: Principe de fonctionnement d'une batterie. [43]

On peut décrire en générale ces réactions comme suit [43] :

Au niveau de l'anode qui est l'électrode négative se fait la réaction de l'oxydation pendant la décharge et cela se caractérise par la formule suivante :

$$M_1 \rightarrow M_1^{n+} + ne^-$$

M1: étant l'espèce active de l'anode.

Les électrons libérés vont transiter via le circuit extérieur pour atteindre la cathode, qui est l'électrode positive, là où se fait la réaction de réduction :

$$M_2^{n+} + 2e^- \rightarrow M_2$$

M2 : étant l'espèce active de la cathode.

La réaction de l'oxydoréduction globale est la suivante :

$$M_1 + M_2^{n+} \rightarrow M_1^{n+} + M_2$$

III.4.2.5. Différents types de batteries :

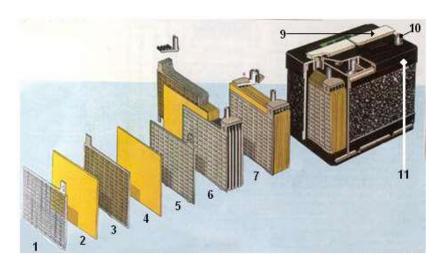
a) Batterie au Plomb-Acide:

Sa technologie est bien maîtrisée et presque entièrement recyclable. Elle présente l'avantage non négligeable de présenter le prix de revient le plus faible parmi tous les types de batteries connus. Elle joue, vu son ancienneté et sa grande diffusion le rôle d'étalon pour évaluer les caractéristiques des autres batteries. Son fonctionnement se base sur la réaction d'oxydoréduction suivante [45]:

décharge

$$PbO_2 + Pb + 2H_2SO_4 \stackrel{\leftarrow}{\rightarrow} PbSO_4 + 2H_2O$$

Charge


PbO₂ est l'électrode positive pôle (+), Pb l'électrode négative pôle (-) tant qu'en charge ou en décharge, son électrolyte est de l'acide sulfurique (H₂SO₄).

➤ Processus de décharge :

Lors de la décharge, le plomb de l'anode s'oxyde en perdant deux électrons tandis que celui de la cathode en gagne deux lors de sa réduction. L'hydrogène apparu à l'anode et l'oxygène produit à la cathode se recombinent en eau (H₂O).

> Processus de charge :

Lors de la charge ce sont les réactions inverses des précédentes qui apparaissent car celles-ci sont réversibles. L'eau est alors décomposée à chaque électrode, c'est-à dire que l'oxygène réagit au pôle positif avec le plomb tandis que l'hydrogène réagit avec l'acide au pôle négatif.

Figure II.8 : Schéma de la vue éclatée d'une batterie au plomb.[39]

1 : Grille. 6 : Faisceau négatif.

2 : Séparateur. 7 : Elément complet.

3 : Plaque positive 8 : Pont.

4 : Plaque négative 9 : Rampe de bouchons.

5 : Barrette. 10 : Borne. 11 : Bac.

Figure II.9: batteries acide/plomb.

Température de fonctionnement [°C]	$0 \rightarrow 45$ 170 $30 \rightarrow 40$	
Energie spécifique théorique [Wh/kg]		
Densité d'énergie [Wh/kg]		
Puissance spécifique (à 80% DOD) [W/kg]	60 → 130	
Temps de charge [h]	7 → 9	
Coefficient de surcharge admissible [%]	$5 \rightarrow 20$	
Rendement énergétique [%]	65 → 85	
Tension par cellule chargée [V]	2,1	

Figure II.10 : Caractéristiques des batteries au plomb.

b) Batterie Nickel - Cadmium:

Une batterie nickel-cadmium ou Ni-Cd est un accumulateur électrique rechargeable utilisant de l'hydroxyde de nickel et du cadmium comme électrodes.[43]

Figure II.11 : Batterie nickel-cadmium Ni-Cd.

Température de fonctionnement [°C]	0 → 50 236	
Energie spécifique théorique [Wh/kg]		
Densité d'énergie [Wh/kg]	45 → 65	
Puissance spécifique (à 80% DOD) [W/kg]	100 → 180	
Temps de charge [h]	5 → 8	
Coefficient de surcharge admissible [%]	10 → 15	
Rendement énergétique [%]	$70 \rightarrow 80$	
Tension par cellule chargée [V]	1,35	

Figure II.12 : Caractéristiques des batteries Ni-Cd.

La Batterie Nickel-Métal Hydrure (Ni-MH)

Un accumulateur nickel-hydrure métallique ou NiMH (de l'anglais nickel-métal hydride) est une batterie électrique rechargeable utilisant de l'hydrure métallique (composé permettant de stocker de l'hydrogène) et de l'Ox hydroxyde de nickel comme électrode.

Ce type de batteries (Ni-MH) est présent sur le marché depuis seulement quelques années. Elles présentent des caractéristiques très intéressantes, notamment en termes de densité de puissance et de densité d'énergie, comme le montre le tableau suivant.[43]

Figure II.13 : Batterie Ni-MH.

Température de fonctionnement [°C]	$0 \rightarrow 50$	
Energie spécifique théorique [Wh/kg]	300	
Densité d'énergie (Wh/kg)	55 → 80	
Densité d'énergie volumique [Wh/dm*]	140 → 160	
Puissance spécifique (à 80% DOD) [W/kg]	160 → 200	
Temps de charge [h]	6 → 12	
Coefficient de surcharge admissible [%]	5 → 12	
Rendement énergétique [%]	75 → 85	
Tension par cellule chargée [V]	1,2	

Figure II.14 : Caractéristiques des batteries Ni-MH.

c) Batterie Lithium-Ion (Li-Ion)

L'électrolyte est constitué d'une solution organique ou d'un polymère solide. La grande légèreté de ce métal autorise l'obtention de densité énergétique extrêmement élevées et la tension de cellule, une densité de puissance importante. Leur coût est 10 fois plus élevé que le Pb (600€/ kWh) et ils ne sont encore utilisés couramment que pour les applications de petites puissances. [44], [45]

Figure II.15 : batteries lithium-ion (Li-Ion).

Température de fonctionnement [°C]	ambiante 275	
Energie spécifique théorique [Wh/kg]		
Densité d'énergie [Wh/kg]	90 → 150	
Puissance spécifique (à 80% DOD) [W/kg]	150 → 300	
Temps de charge [h]	12 → 24	
Coefficient de surcharge admissible [%]	1 → 2	
Rendement énergétique [%]	85 → 95	
Tension par cellule chargée [V]	3,2	

Figure II.16 : Caractéristiques des batteries (Li-Ion)

IV. Conclusion

Le stockage de l'énergie se rapporte à la fourniture d'une quantité d'énergie pour une utilisation ultérieure. Les batteries solaires ont pour usage de stocker l'énergie photovoltaïque.

Dans ce chapitre nous avons pris par étude le stockage de l'énergie par ses différentes technologies, nous nous consacrons au stockage électrostatique et spécifiquement les batteries solaires.

Après avoir étudié les différents composants du système photovoltaïque, aussi la présentation du stockage de l'énergie, on passe dans le prochain chapitre à la modélisation d'un système photovoltaïque avec un stockage commandé.

Chapitre III:

Modélisation de la commande de la batterie dans un système photovoltaïque

Introduction:

La modélisation est largement utilisée dans le domaine photovoltaïque afin de déterminer les paramètres les plus importants pour le fonctionnement d'un système photovoltaïque. Elle permet en fait, de mieux comprendre le fonctionnement de ce système et donne des idées aux fabricants pour varier et adapter leurs méthodes de production afin d'améliorer les performances du produit.

Dans ce chapitre nous allons faire la modélisation électrique et mathématique du système photovoltaïque munie d'une commande de charge et la décharge de la batterie de stockage.

Partie I

I. Présentation de système :

Un GPV présente des caractéristiques I(V) non linéaires avec des PPM. Ces caractéristiques dépendent entre autre du niveau d'éclairement et de la température de la cellule. De plus, selon les caractéristiques de la charge sur laquelle le GPV débite, nous pouvons trouver un très fort écart entre la puissance potentielle du générateur et celle réellement transférée à la charge en mode connexion directe. Afin d'extraire à chaque instant le maximum de puissance disponible aux bornes du GPV et de la transférer à la charge, la technique utilisée classiquement est l'introduction d'un étage d'adaptation entre le GPV et la charge comme il est présenté sur la figure (III.1) [46]. La chaîne de conversion photovoltaïque sera optimisée à travers un convertisseur statique (DC/DC) commandé par une MPPT.

Les batteries solaires stockent l'énergie produite par les panneaux photovoltaïques afin d'assurer l'alimentation électrique en toutes circonstances (jour ou nuit ciel dégagé ou couvert) une batterie solaire peut être branché directement sur un panneau solaire mais ou risquent d'endommager la batterie si l'énergie électrique fournie par le PV n'est pas stable et si son niveau de charge dépasse les 90%. [43] Le niveau de charge des batteries solaires ne doit être ni trop haut ni trop bas. Des charges trop faibles ou trop importantes non régulées détériorent les batteries et limitent leur durée de vie.

C'est pour cela qu'il est vivement recommandé d'installer un régulateur entre le panneau solaire photovoltaïque et la batterie solaire (figure III.1)[43]. L'étage d'adaptation utilisé entre la batterie et la charge de type continue est un convertisseur statique

(convertisseur de puissance DC/DC). Cet étage joue le rôle d'interface entre les deux éléments en assurant à travers une action de contrôle [46].

Donc pour notre système on utilise le GPV comme source d'énergie, le Boost commandé par la MPPT pour l'étage d'adaptation, le Buck_boost comme étage d'interface entre la batterie et le DC bus.

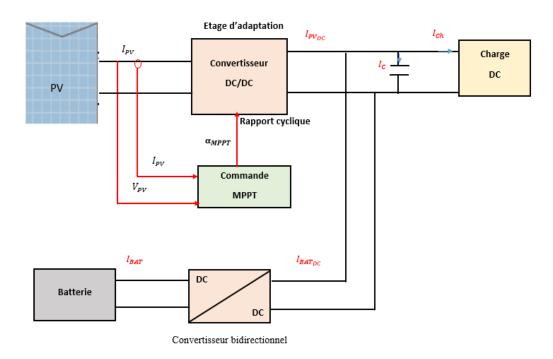


Figure III.1 : Schéma de principe de système PV avec stockage d'énergie.

II. Modélisation du générateur photovoltaïque (GPV) :

Le générateur photovoltaïque (GPV) présente une caractéristique courant/tension très fortement non linéaire qui résulte directement du comportement des jonctions semi-conductrices qui sont à la base de sa réalisation. Les études effectuées par les spécialistes des divers domaines d'application ont conduit au développement de nombreux modèles de générateurs.[15] Un générateur photovoltaïque est constitué de groupements série-parallèle de cellules photovoltaïques.

La figure (III.2) montre le schéma électrique équivalent commun de la cellule solaire photovoltaïque. Les caractéristiques électriques de cette cellule peuvent être modélisées par la superposition de la caractéristique d'une diode et un générateur de photo courant. La tension produite par la cellule photovoltaïque est réduite par la résistance série R_S du matériau et des contacts métalliques [47], une résistance shunt R_p , de valeur finie, rend compte des fuites de courant dues aux effets de bord [48].

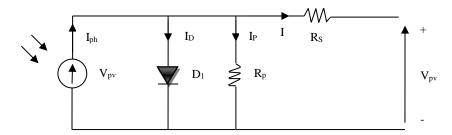


Figure III.2 : Modèle électrique de la cellule photovoltaïque.

L'expression du courant produit par une cellule photovoltaïque est donnée par l'équation suivante :

$$I = I_{ph} - I_s \left[exp\left(\left(\frac{qV + IR_s}{kT_c A} \right) - 1 \right) - \left(\frac{V + IR_s}{R_P} \right) \right]$$
(3.1)

Ou I_{ph} : est la photo courant, I_s : est le courant de saturation, q: est la charge de l'électron, $(q = 1.6.10^{-19} c)$, k: est le constant de Boltzmann $(k = 1.3.10^{-23} \text{ J/K})$, Tc: est la température effective de la cellule, A: est le facteur d'idéalité [49].

Soit un GPV constitué de Nbp branches en parallèles et chaque branche composée de Nms modules en série comportant à leur tour Ncs cellules en série [50]. Le fonctionnement de ce générateur est modélisé par l'expression analytique approchée suivante:

$$I = N_p I_{ph} - N_p I_s \left[exp \left(q \left(\frac{V}{N_S} + \frac{IR_S}{N_p} \right) \frac{1}{kT_c A} \right) - 1 - \left(\frac{N_p V}{N_S} + IR_S \right) \frac{1}{R_p} \right]$$
(3.2)

III. Principe de la recherche du point de puissance maximale (MPPT) :

Par définition, une commande MPPT (Maximum Power Point Tracking), associée à un étage intermédiaire d'adaptation, permet de faire fonctionner un générateur PV de façon à produire en permanence le maximum de sa puissance. Ainsi, quelque soient les conditions météorologiques (température et irradiation), et quelle que soit la tension de la batterie, la commande du convertisseur place le système au point de fonctionnement maximum [51].

La figure (III.3) représente une chaîne élémentaire de conversion photovoltaïque associée à une commande MPPT. Pour simplifier les conditions de fonctionnement de cette commande, une charge DC est choisie. Comme nous pouvons le voir sur cette chaîne, la commande MPPT est nécessairement associée à un quadripôle possédant des degrés de liberté qui permettent de pouvoir faire une adaptation entre le GPV et la charge. Dans le cas de la conversion solaire, le quadripôle peut être réalisé à l'aide d'un convertisseur DC-DC de telle

sorte que la puissance fournie par le GPV corresponde à la puissance maximale (P_{MAX}) qu'il génère et qu'elle puisse ensuite être transférée directement à la charge. [52]

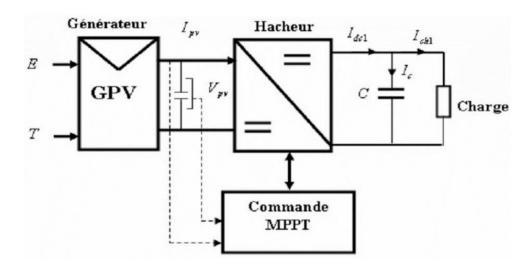


Figure III.3 : Schéma synoptique du système PV par une commande MPPT.

III.1. différentes techniques de MPPT:

En littérature on trouve fréquemment les techniques de maximisation de puissance suivantes [53]:

- ❖ Perturbation et observation. (P&O).
- ❖ La méthode incrémentation de la conductance.
- Méthode de capacité parasite.

Chacune de ces techniques à ces propres avantages et inconvénients du point de vue simplicité, efficacité et robustesse.

Dans notre travail, on se limite à la méthode de Perturbation et observation (P&O), qui est très simple à implanter, et de bon rendement.

III.1.1. Méthode perturbation et observation (P&O) :

Le principe de commande MPPT de type P&O consiste à perturber la tension du panneau photovoltaïque Vpv d'une faible amplitude autour de sa valeur initiale et d'analyser le comportement de la variation de puissance Ppv qui en résulte. Ainsi, comme l'illustre la figure (III.4), on peut déduire que si une incrémentation positive de la tension Vpv engendre un accroissement de la puissance Ppv, cela signifie que le point de fonctionnement de trouve à gauche du PPM. Un raisonnement similaire peut être effectué lorsque la tension décroît. A partir de ces diverses analyses sur les conséquences d'une variation de tension sur la

caractéristique Ppv (Vpv), il est alors facile de situer le point de fonctionnement par rapport au PPM, et de faire converger ce dernier vers le maximum de puissance à travers un ordre de commande approprié. [54]

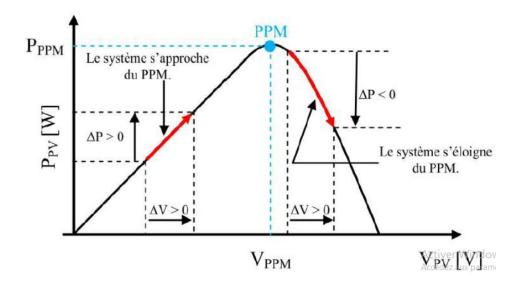


Figure III.4: Recherche du PPM par la méthode (P&O). [54]

La figure (III.5) montre l'organigramme de la méthode «P&O», tel qu'il doit être implémenté dans le microprocesseur de contrôle. D'après la figure (III.5) la tension et le courant V et I, sont mesurés pour calculer la puissance de sortie courante P(K) de la rangée. Cette valeur P(k) est comparée à la valeur P (k-1) de la dernière mesure. Si la puissance de sortie a augmenté, la perturbation continuera dans la même direction. Si la puissance a diminué depuis la dernière mesure. La perturbation de la tension de sortie sera renversée en direction opposée du dernier cycle. [55] [56]

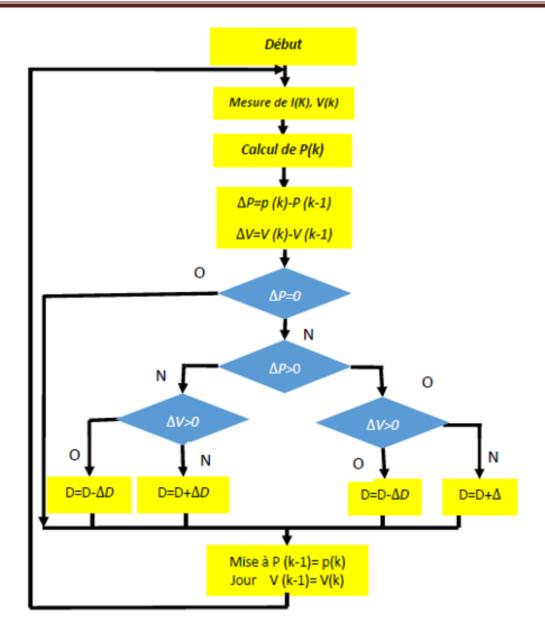


Figure III.5 : Algorithme de la méthode P&O. [57]

IV. Modélisation d'une batterie par un circuit électrique équivalent :

La cellule électrochimique de la batterie se comporte globalement comme une impédance sous une excitation donnée. On représente alors son fonctionnement par un circuit électrique formé de sources de tension, de résistances, de capacités et éventuellement d'inductances qui laissent passer le courant avec la même amplitude et la même phase que la vraie cellule sous cette excitation.[43]

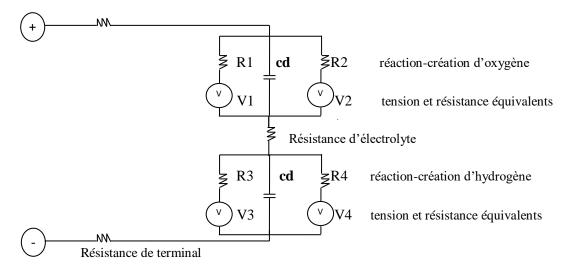


Figure III.6: Modèle électrique d'une batterie. [43]

IV.1. Modèles mathématiques des batteries :

On peut généraliser tous les modèles mathématiques de charge et décharge des batteries dans ces deux équations : [44]

• Model de charge (i*< 0)

Quand la puissance de générateur PV est plus grande que la charge, les batteries sont à l'état de charge peut être exprimé par l'équation suivant : [44]

$$f_c(it, i^*, i, Exp) = E_0 - K \cdot \frac{Q}{it + 0.1 \cdot Q} \cdot i^* - K \cdot \frac{Q}{Q - it} + it + f(s)$$
(3.3)

• Model de décharge (i* > 0)

Quand la demande de charge est plus grande que la puissance produite la batterie est dans un état de décharge peut être exprimé par l'équation suivant : [44]

$$f_d(it, i^*, i, Exp) = E_0 - K \cdot \frac{Q}{Q - it} \cdot i^* - K \cdot \frac{Q}{Q - it} + it + f(s)$$
 (3.4)

Avec:

 f_d : Equation de décharge.

 f_c : Equation de charge.

f(s): Equation caractéristique pour chaque type de batterie.

Exp: Zone exponentielle dynamique en V.

 E_0 : Constant de voltage de la batterie en V.

K: Constante de la polarisation en Ah^{-1} .

Q: Capacité maximale de la batterie en Ah.

i*: Courant à basse fréquence en A.

i: Courant de batterie en A.

it: Capacité extraite en Ah.

V. Les convertisseurs DC-DC pour le système photovoltaïque :

V.1. Hacheur Boost:

Dans le cas du hacheur utilisé pour adapter la tension aux bornes du générateur PV, le transfert d'énergie s'effectue dans un seul sens, de la source (générateur PV) vers le bus continu (pour notre système c'est un Boost).

Le Boost est un convertisseur direct DC-DC. La source d'entrée est de type courant continu (inductance en série avec une source de tension) et la charge de sortie est de type tension continue (condensateur en parallèle avec la charge résistive).

L'interrupteur K peut être remplacé par un transistor puisque le courant est toujours positif et que les commutations doivent être commandées (au blocage et à l'amorçage) [58]. Connu aussi sous le nom de « Boost » ou hacheur parallèle ; son schéma de principe de base est celui de la figure (III.7). Son application typique est de convertir sa tension d'entrée en une tension de sortie supérieure [12].

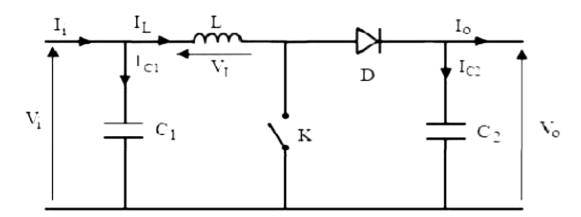


Figure III.7: Schéma électrique d'un hacheur Boost. [12].

V.1.1. Modèle mathématique équivalent :

Afin de pouvoir synthétiser les fonctions de le hacheur Boost à l'état d'équilibre, il est nécessaire de présenter les schémas équivalents du circuit à chaque position de l'interrupteur K. celui de la Figure (III.8) présente le circuit équivalent du Boost lorsque K est fermé c.-à-d. entre $[0, \alpha Te]$ [12].

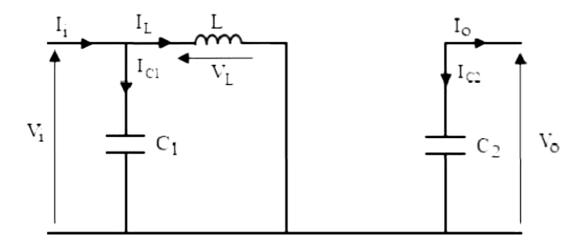


Figure III.8: Schéma électrique d'un hacheur Boost fermé. [12].

L'application des lois de Kirchhoff sur les circuits équivalents des deux phases de fonctionnement donnent les calculs suivants : [12].

$$I_{C2}(t) = C_2 \frac{dV0(t)}{dt} = -I_0(t)$$
(3.5)

$$I_{C1}(t) = C_1 \frac{dVi(t)}{dt} = I_i(t) - I_L(t)$$
(3.6)

$$V_L(t) = L\frac{dIL(t)}{dt} = V_i(t)$$
(3.7)

Pour l'état ouvert de l'interrupteur K, le circuit équivalent au fonctionnement du Boost est le suivant :

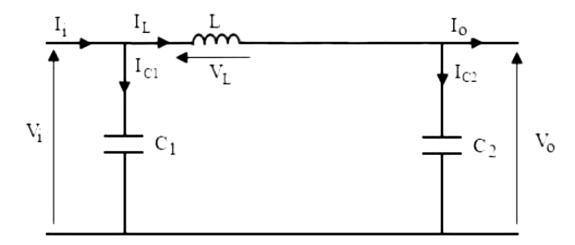


Figure III.9: Schéma électrique d'un hacheur Boost ouvert. [12].

$$I_{C2}(t) = C_2 \frac{dV_0(t)}{dt} = I_L(t) - I_0(t)$$
(3.8)

$$I_{C1}(t) = C_1 \frac{dVi(t)}{dt} = I_i(t) - I_L(t)$$
(3.9)

$$V_L(t) = L\frac{dIL(t)}{dt} = V_i(t) - V_0(t)$$
(3.10)

V.2. Hacheur Buck_boost:

Dans le cas du hacheur utilisé pour la charge/décharge des batteries, le courant électrique doit être réversible. Ainsi, pour réaliser le transfert d'énergie dans les deux sens, un hacheur Buck boost doit être associé.

L'étage de puissance d'un convertisseur Buck_boost est décrit à la figure (III.10) il est composé des transistors commutateurs S1 et S2, la capacité de sortie C, l'inductance L et la charge réelle R.

S1 est toujours désactivé dans le cas du mode convertisseur Buck, et le courant circule du DC bus vers la source **Bat** (batterie). En contrôlant S2, le convertisseur peut diminuer la tension V_{dc} pour charger la source **Bat** (la batterie).

Si le convertisseur fonctionne en mode Boost, le commutateur S2 est sur OFF et la diode dans S2 permet de circuler le courant dans une seule direction de la batterie vers le DC bus. En contrôlant le rapport cyclique de S1, le convertisseur peut augmenter la tension V_{bat} de la source **Bat** pour alimenter le DC bus [59].

En mode convertisseur abaisseur, la tension de la source **Bat** est : [59].

$$V_{bat} = \frac{V_{dc}}{\alpha_b} \tag{3.11}$$

Donc on peut contrôler La tension de la batterie avec le contrôle du rapport cyclique α_b du convertisseur.

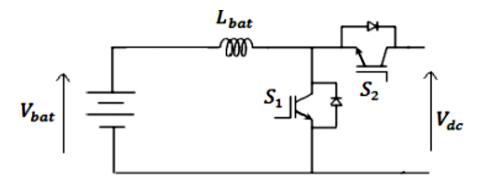


Figure III.10 : Le modèle de circuit Buck_boost. [60]

Partie II:

I. Schéma de contrôle proposé du système d'énergie PV :

Le rôle du régulateur dans une installation photovoltaïque est très important. [12] Les convertisseurs DC/DC sont contrôle par des régulateurs PI. Ils comportent une action proportionnelle qui sert à régler la rapidité avec laquelle la régulation doit avoir lieu et une action intégrale qui sert à éliminer l'erreur statique entre la grandeur régulée et sa propre consigne.

La figure (III.11) présente le schéma de contrôle de la tension V_{dc} de Bus continu (DC bus), le courant de référence $I_{dc-ref} = I_{bat-ref}$ est obtenue à partir de régulateur PI. Cette valeur est utilisée pour la boucle de régulation de la batterie.

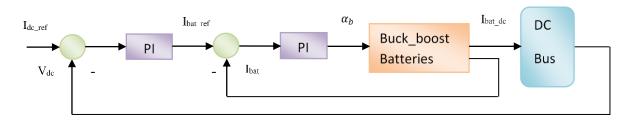
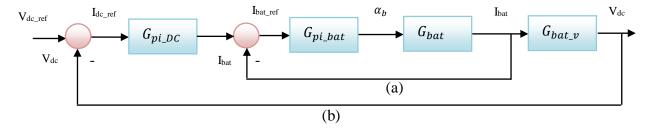



Figure III.11 : Schéma de commande utilisant la structure PI.

II. Régulateur de Bus continu (DC bus) :

Il est nécessaire de régler la tension DC bus par la distribution de courant de référence $I_{bat-ref}$. La tension du bus continu Vdc est influencée par les variations du courant de sortie du convertisseur DC/DC Ipv qui est l'image des changements du rayonnement solaire (température, ensoleillement).

La boucle de régulation de convertisseur Buck_boost ainsi le schéma bloc de système complet sont illustrés sur la figure (III.12).

Figure III.12 : Schéma de bloc de fonction de transfert de la batterie (a) et système complet (b).

D'où on aura:

La fonction de transfert de contrôle du courant de la batterie exprimée par :

$$G_{bat}(t) = \frac{I_{bat}}{\alpha_{bat}} = V_b \frac{C_S + 2}{RL_b C S^2 + L_b S + (1 - \alpha_b)^2}$$
(3.12)

La fonction de transfert de régulateur de la courante batterie est donnée comme suit :

$$G_{pi_bat}(s) = \frac{\alpha_{bat}}{I_{bat_ref}} = K_{p_bat} + \frac{K_{i_bat}}{S}$$
(3.13)

Nous avons la fonction de transfert de courant batterie par rapport à la tension de sortie donnée par :

$$G_{bat_v} = \frac{V_{dc}}{I_{bat}} = \frac{R(1 - \alpha_b) \left(-\frac{L_b}{R(1 - \alpha_b)^2}\right) s + 1}{RC_s + 2}$$
(3.14)

Alors l'équation (3.15) présente la fonction de transfert de régulateur PI de système d'énergie PV :

$$G_{pi_dc} = K_{p_dc} + \frac{\kappa_{i_dc}}{S} \tag{3.15}$$

Où C: est le condensateur du bus DC, R: est la résistance du DC bus, L_b : l'inductance du convertisseur DC/DC de la batterie. V_b : La tension de la batterie. α_{bat} : Le rapport cyclique de la commande du convertisseur DC/DC de la batterie.

La boucle de régulation du convertisseur DC/DC de la batterie est illustrée sur la Fig. (III.13) (a).

III. Commande de la batterie :

Dans notre travail on a utilisé le hacheur Buck_boost pour commander et optimiser la charge/décharge de la batterie, comme l'indique la figure (III.11).

Pour protéger la batterie contre les circonstances de l'énergie électrique fournie par le GPV, il est vivement recommandé d'installer un régulateur entre la batterie et la charge. Cet étage joue le rôle d'interface entre les deux éléments en assurant à travers une action de contrôle figure (III.13).

Figure III.13 : Boucle de régulation PI de la batterie.

Pour le calcul des paramètres K_i , K_p du régulateur on a utilisé la méthode de placement de pôles :

III.1. Calcul des paramètres K_{p-bat} et K_{i-bat} :

La méthode de placement de pôles :

Nous avons la fonction de transfert on boucle fermée de convertisseur Buck_boost de la batterie présentée par :

$$G_{bat}(s) = V_b \frac{c_{s+2}}{RL_b c_s^2 + L_b s + (1 - \alpha_b)^2}$$
(3.16)

La fonction de transfert du régulateur PI de la boucle de régulation de batterie est donnée par :

$$G_{pi}(s) = K_{p_bat} + \frac{K_{i_bat}}{s}$$
 (3.17)

L'équation caractéristique du système en boucle fermée est :

$$1 + G_{bat}(s)G_{pi_bat}(s) = 0 (3.18)$$

Par remplacement des équations ((3.16) et (3.17)) dans l'équation (3.18), on obtient :

$$1 + V_b \frac{c_{s+2}}{RL_b c_s^2 + L_b s + (1 - D_b)^2} \cdot K_{p_bat} + \frac{K_{i_bat}}{s} = 0$$
(3.19)

La fonction de transfert en boucle fermée, peut être mise sous la forme de celle d'un modèle de troisième ordre sa fonction exprimée par : [59]

$$(s + \alpha\omega_0)(s^2 + 2\varepsilon\omega_0 s + \omega_0^2) = 0 \tag{3.20}$$

A partir des équations (3.19), (3.20) on a déterminé les paramètres K_{i-bat} , K_{p-bat} :

$$K_{p-bat} = \frac{2\varepsilon\omega_0 + \alpha\omega_0 - L_b}{V_bC} \tag{3.21}$$

$$K_{i-bat} = \frac{\alpha \omega_0^3}{2V_b} \tag{3.22}$$

III.2. Les paramètres K_{p-dc} et K_{i_dc} .

Par similairement on a suivi la même méthode précédente pour calculer les paramètres K_{p-dc} et K_{i_dc} .

$$K_{i_dc} = \frac{\omega_0^2 \omega_1^2}{\alpha \omega_0^3} - 2V_b \tag{3.23}$$

$$K_{p-dc} = \frac{(RL_b - 1)R(1 - \alpha)^2}{L_b[\omega_0(2\varepsilon + \alpha) - 1]}$$
(3.24)

Conclusion

Dans ce chapitre nous avons présenté premièrement les modèles mathématiques et électriques pour les éléments constituants notre système d'étude ; le GPV, la MPPT, les deux types de convertisseurs (le Boost et le Buck_boost) et la batterie. Alors la deuxième partie est destinée pour le modèle de commande et de contrôle de la batterie utilisant la structure PI; nous avons décrit ; l'importance, le principe, les schémas blocs et le calcul des fonctions de transferts et des paramètres de régulateur PI utilisés lors de cette modélisation.

Avec le biais de ce chapitre on arrive au stade de la simulation et le tirage des résultats pour cette modélisation.

Chapitre IV:

Simulation et résultats

I. Introduction:

La simulation est un outil puissant pour l'évaluation des performances théoriques d'un système. En effet, ce dernier peut être testé sous des conditions facilement contrôlables et ses performances peuvent être aisément surveillées. La procédure de simulation lie les deux principales parties de la modélisation du système. Elle est indépendante de la technologie utilisée et permet de varier largement les différents paramètres. [61]

Ce chapitre décrit les résultats de simulation par logiciel MATLAB/SIMULINK d'un système constitué d'un GPV avec hacheur Boost adapté par la commande MPPT, un étage de commande de stockage dans la batterie avec hacheur Buck-Boost et une charge DC.

II. L'outil MATLAB/SIMULINK:

MATLAB fait également partie d'un ensemble d'outils intégrés au traitement du signal. En complément du noyau de calcul MATLAB. L'environnement comprend des modules optionnels qui sont parfaitement intégrés à l'ensemble :

- Une vaste gamme de bibliothèques de fonctions spécialisées (Toolboxes).
- Simulink. Un environnement puissant de modélisation basée sur les schémas-blocs et de simulation des systèmes dynamiques linéaires et non linéaires.
- Des bibliothèques de blocs simulation spécialisés (Blocksets).
- D'autres modules dont un compilateur. Un générateur de code C. un accélérateur.
- Un ensemble d'outils intégrés dédiés au traitement du signal : le DSP workshop.

Pour effectuer notre simulation nous avons utilisé SIMULINK. Le SIMULINK est une plate-forme de simulation multi-domaine et de modélisation des systèmes dynamiques contenant des blocs de modélisation qui permettent le design précis, la simulation, l'implémentation et le contrôle de systèmes de communications et de traitement du signal.

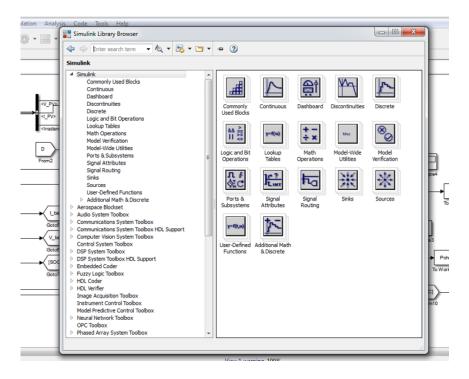


Figure IV.1: Bibliothèque SIMULINK.

III. Simulation des résultats :

La simulation sur SIMULINK s'effectue en deux étapes : le système à étudier est défini par un modèle mathématique représenté par sa fonction de transfert. Puis ce dernier est introduit dans ce programme sous forme de blocs ce qui constitue la première étape. Alors l'étape suivante consiste à l'analyse du comportement du système précédemment défini.

Pour la simulation de notre système modélisé au chapitre 3, les valeurs des paramètres K_p et K_i du régulateur PI sont présentés dans le tableau 1.

Tableau IV.1: Paramètres du régulateur PI.[61]

n	K _{p_DC}	K_{i_DC}	$\mathbf{K}_{\mathrm{p_bat}}$	$\mathbf{K_{i_bat}}$
Placement des pôles	1.62	674	0.22	800

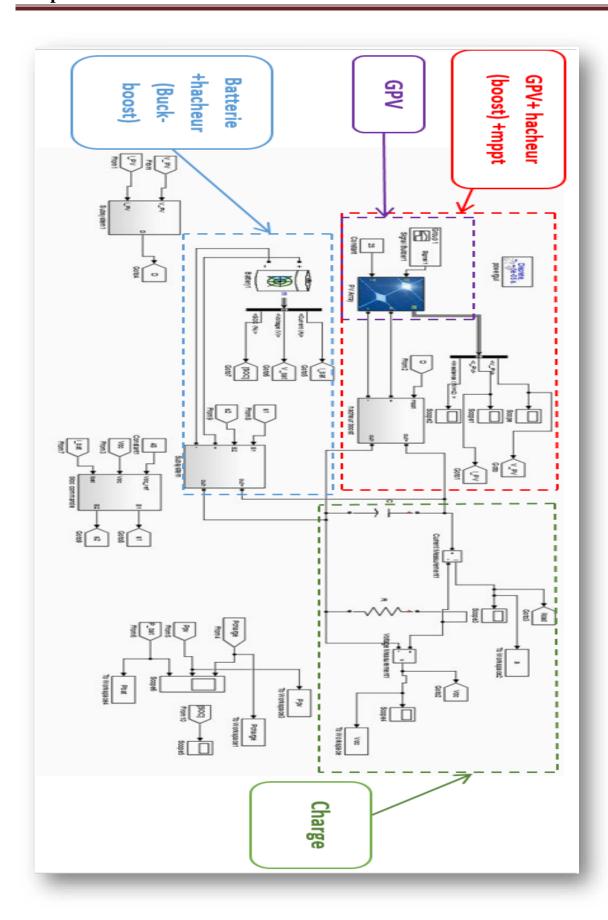


Figure IV.2 : Schéma bloc du système global.

IV. Caractéristiques de la simulation :

IV.1. Caractéristiques d'un GPV:

Pour cette simulation, la température est gardée constante à 25°C. Seul l'éclairement varie comme on peut le voir dans la Figure (IV.3).

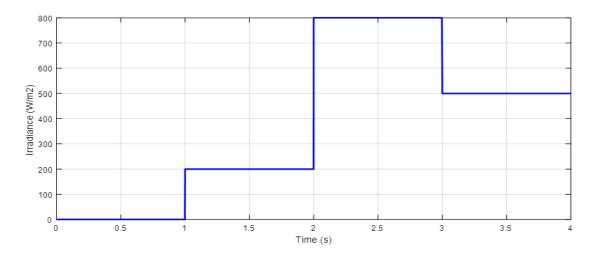


Figure IV.3 : Eclairement de GPV.

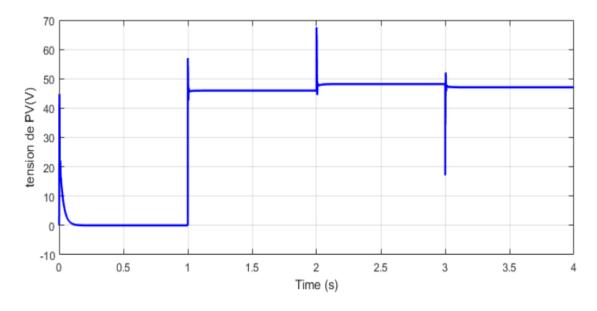


Figure IV.4 : Caractéristique de la tension V(t) du GPV.

La figure (IV.4) représente l'évolution de la tension en fonction du temps pour le générateur photovoltaïque.

De 0 à 1s ; V_{pv} =0V et dans l'intervalle temporel de 1 à 4s ; la tension est constante V_{pv} =48V, elle présente V_{ref} .

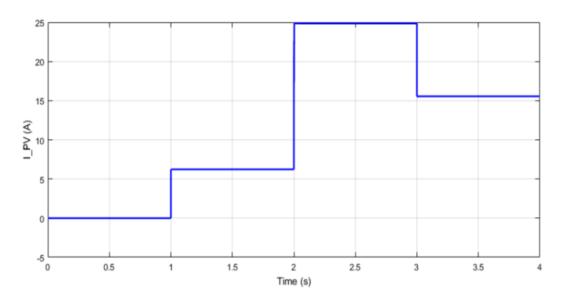
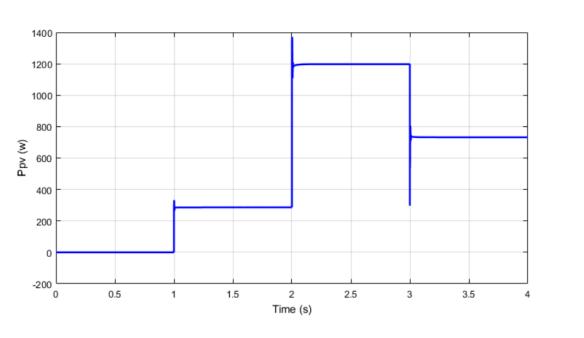
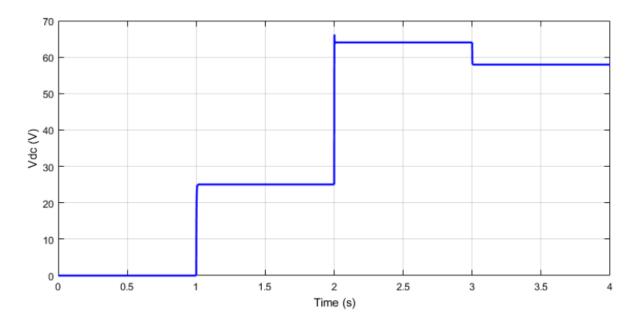


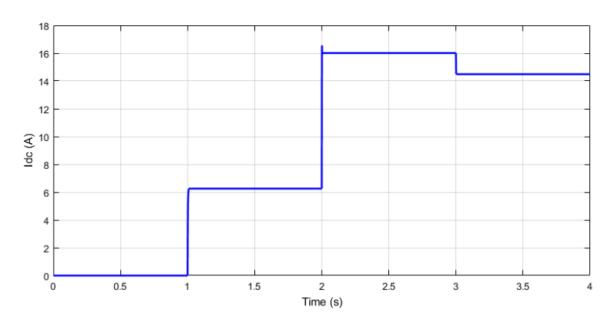
Figure IV.5 : Caractéristique du courant I(t) du GPV.

La figure (IV.5) présente l'évolution du courant en fonction du temps pour le générateur photovoltaïque, la courbe est variable. Il suit les changements d'éclairement.




Figure IV.6 : Caractéristique de la puissance P(t) du GPV.

Pour la figure (IV.6), la courbe présente l'évolution de la puissance en fonction du temps pour le générateur photovoltaïque, on remarque que la courbe est variable selon les champs, elle suit l'état du signal d'entrée.


IV.2. Caractéristiques du GPV avec l'hacheur Boost et la commande MPPT :

Pour une évaluation des performances du système photovoltaïque menu de la commande MPPT du type P&O, nous allons simuler le fonctionnement de l'ensemble (GPV, hacheur, charge et MPPT), pour les paramètres souvent : 4 cellules parallèles et 2 séries,

$$V_0 = 48\text{V}, \text{ C} = 440\text{e}^{-6}\text{F}, \text{ R} = 32\Omega, L_{pv} = 10\text{e}^{-3}\text{H}$$

Figure IV.7 : Caractéristique de la tension V(t) de la charge.

Figure IV.8 : Caractéristique du courant I(t) de la charge.

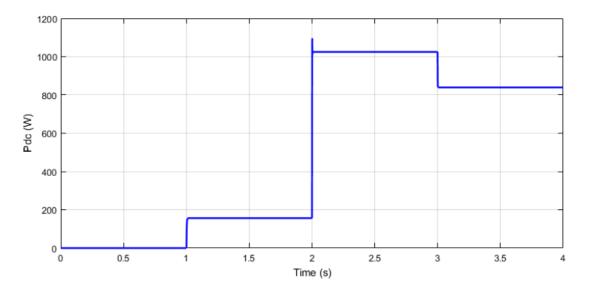


Figure IV.9 : Caractéristique de la puissance P(t) de la charge.

Les résultats des figures (IV.7) (IV.8) et (IV.9), montrent que ; l'hacheur élévateur et la commande MPPT effectuent correctement leurs rôles à travers l'évolution des grandeurs tensions et courant.

L'hacheur élévateur fournie une tension à sa sortie supérieure à celle fournie par le GPV. Et la commande MPPT adapte le GPV à la charge donc nous avons un transfert de puissance maximale fournie par le GPV.

IV.3. Caractéristiques de la batterie :

Pour la simulation du système global avec batterie nous avons utilisé les paramètres suivent : L_b = 2 e⁻³H, α_b =0.5.

Figure IV.10 : Caractéristique de la tension V(t) de la batterie

La tension de la batterie augmente lorsque la batterie est en charge, diminue quand la batterie se décharge et reste constante lorsque le courant est constant, comme il est illustré dans la figure (IV.10).

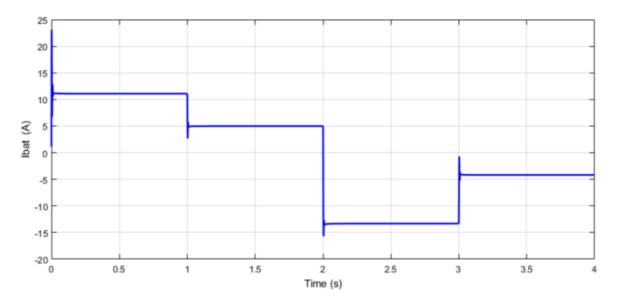


Figure IV.11 : Caractéristique de courant I(t) de la batterie.

La figure (IV.11) présente le courant de la batterie avec leurs références. On peut distinguer un bon suivi de consignes des courants et une rapidité notable, ce qui prouve l'efficacité des régulateurs robustes incorporés.

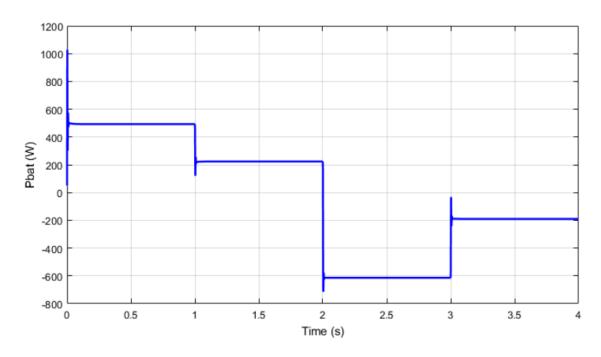


Figure IV.12 : Caractéristique de la puissance P(t) de la batterie.

La figure (IV.12), représente l'évolution de la puissance en fonction du temps pour la batterie, on remarque que la courbe est variable et proportionnelle à la courbe de puissance du GPV.

IV.4. Caractéristiques de la charge pour le système global :

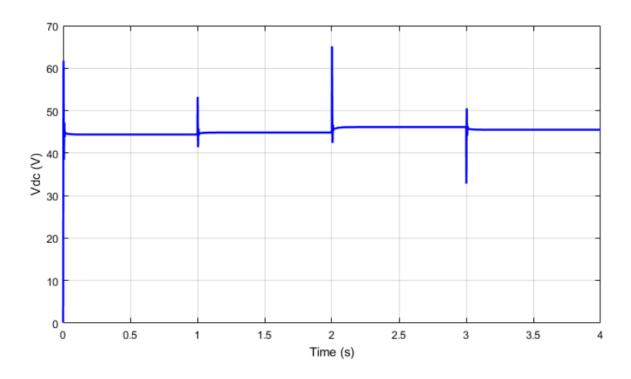


Figure IV.13 : Caractéristique de la tension V(t) de la charge.

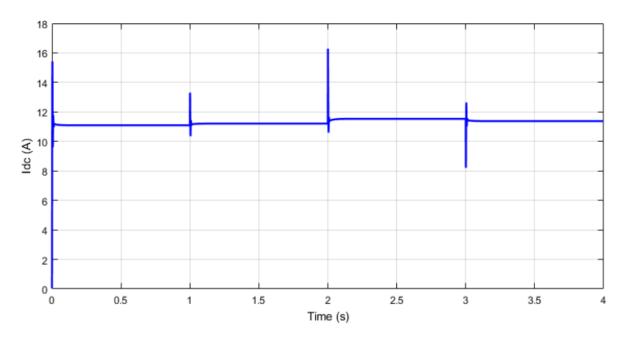
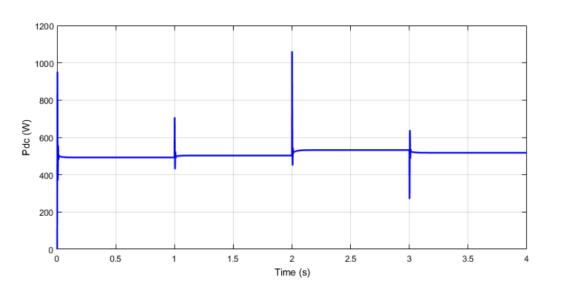



Figure IV.14 : Caractéristique de courant I(t) de la charge.

Figure IV.15 : Caractéristique de la puissance P(t) de la charge.

Les Figures (IV.13), (IV.14), (IV.15), représentent l'évolution de la tension, le courant et la puissance en fonction du temps pour la charge, on remarque que la courbe est constante.

IV.5. Effet de la batterie sur la charge :

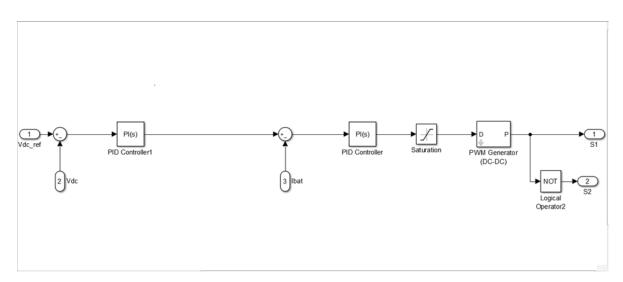


Figure IV.16 : Schéma bloc de commande de la batterie.

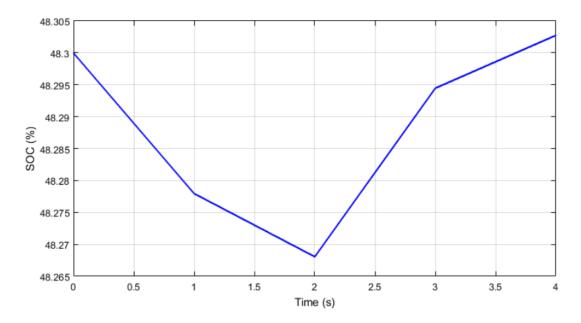
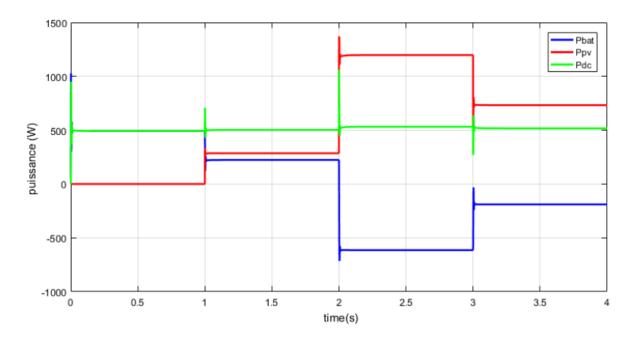



Figure IV.17 : L'état de charge de la batterie.

La figure (IV.17) présente l'état de charge de la batterie. On constate bien que l'état de charge augmente en cas de charge et diminue en cas de décharge.

Figure IV.18 : La variation des puissances P(t).

D'après la Figure (IV.18) on constate que :

❖ De 0 à 1s: P_{bat} =500W, P_{pv} =0W, P_{dc} =500 W, la puissance fournit par le GPV et inférieurs à celui demandé par la charge ($P_{PV} < P_{dc}$) donc la batterie fonctionne en mode décharge.

- ❖ De 1 à 2s : P_{bat} =240W P_{pv} =270 W P_{dc} =500 W, la puissance fournit par le GPV et inférieurs à celui demandé par la charge (P_{pv} < P_{dc}) donc, la batterie fonctionne en mode décharge.
- ❖ De 2 à 3s: P_{bat} = -600 W, P_{pv} =1200W, P_{dc} =510W, on a la puissance fournit par le GPV et supérieur à celui demandé par la charge ($P_{pv} > P_{dc}$) donc la batterie fonctionne en mode charge.
- ❖ De 3 à 4s: P_{bat} =-200W, P_{pv} =720 W, P_{dc} =500 W, on a la puissance fournit par le GPV et supérieur à celui demandé par la charge $(P_{pv} > P_{dc})$ donc la batterie fonctionne en mode charge.
- ❖ Le stock de surplus de puissance, est remarqué dans l'intervalle, de 2 à 3s.

V. Conclusion:

Ce chapitre a été est consacré à la présentation des résultats de la simulation pour un système PV qui est constitué d'un générateur photovoltaïque et avec un système stockage d'énergie avec batterie

La stratégie proposée est la régulation de la tension du DC bus (la charge) malgré la variation de l'énergie fournie par le générateur photovoltaïque avec l'ajout d'un système de stockage présenté par la batterie commandée selon les besoins de la charge.

Les résultats de simulations ont montré le bon fonctionnement du système étudié. La batterie va servir à compenser le manque au niveau de la charge dans le cas où le GPV ne satisfait pas cette dernière.

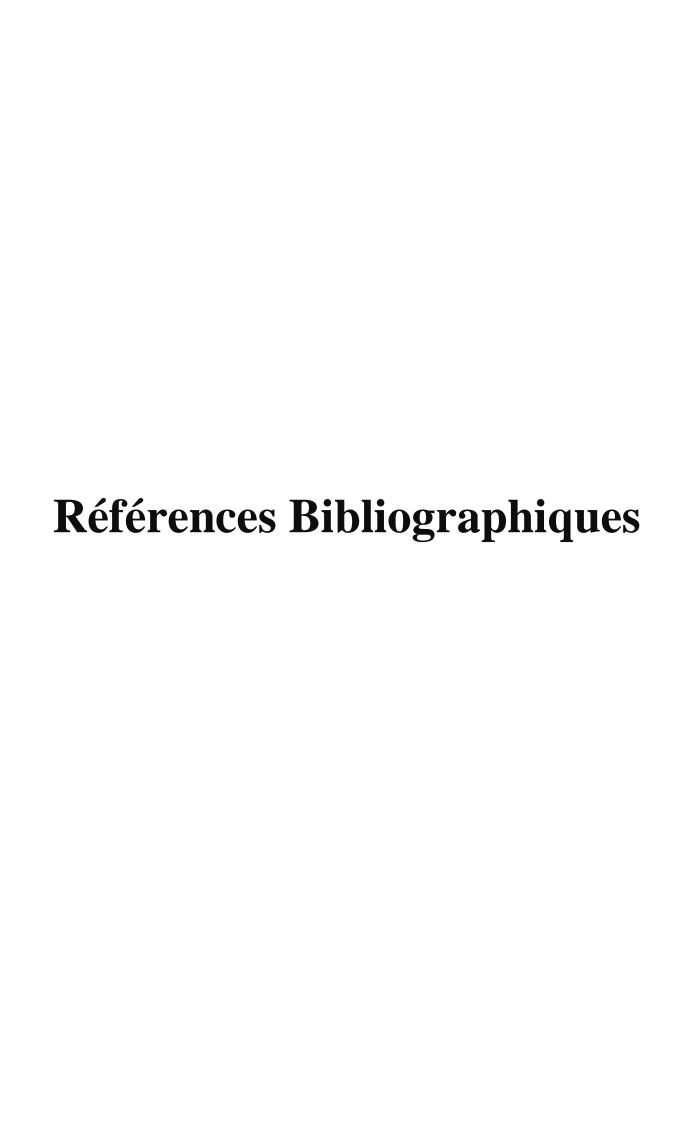
Conclusion générale

Conclusion générale

Le stockage de l'énergie dans les systèmes photovoltaïque est généralement assuré par des batteries et cela pour ses différents avantages. La batterie est le principal élément dans un système photovoltaïque, pour transite l'énergie électrique fournie par le générateur.

Dans ce travail, nous avons présenté les résultats obtenus lors de la simulation d'un système photovoltaïque couplé à une batterie de stockage assurant une disponibilité d'énergie électrique stable pour la charge. Ce système fonctionne à sa puissance optimale avec l'utilisation d'un convertisseur DC/DC commandé par MPPT et munie d'une commande de charge et la décharge de la batterie de stockage à travers un régulateur PI.

Dans ce travail, nous avons présenté premièrement les modèles mathématiques et électriques pour les éléments constituants notre système d'étude ; le GPV, la MPPT, les deux types de convertisseurs (le Boost et le Buck_boost) et la batterie. Alors la deuxième partie est destinée pour le modèle de commande et de contrôle de la batterie utilisant la structure PI. Nous avons décrit l'importance et le principe de fonctionnement du régulateur PI et le rôle de ce régulateur dans une installation photovoltaïque ainsi les schémas blocs et le calcul des fonctions de transferts et des paramètres de régulateur PI utilisés lors de cette modélisation. Et finalement on a fait l'association du Système PV -Batterie avec régulateur PI.


La stratégie proposée est la régulation de la tension du DC bus (la charge) malgré la variation de l'énergie fournie par le générateur photovoltaïque avec l'ajout d'un système de stockage présenté par la batterie commandée selon les besoins de la charge.

D'après les résultats obtenus lors de la simulation, on remarque :

- Les résultats de simulations ont montré le bon fonctionnement du système étudié.
- Le convertisseur DC-DC et la commande MPPT effectuent correctement leur rôle. Le convertisseur fournit dans les conditions optimales une tension à sa sortie supérieure à celle fournie par le générateur PV.
- La commande MPPT adapte le générateur PV à la charge par le transfert de la puissance maximale fournie par le générateur PV.
- La commande MPPT amélioré significativement les performances des installations photovoltaïques.

Conclusion générale

- Le régulateur solaire est la pièce maitresse d'un système photovoltaïque autonome, il assure un meilleur rendement de l'exploitation de l'énergie solaire. Il adapte bien le rôle de contrôler le changement d'énergie entre la batterie et la charge, donc il assure la sécurité de la batterie.
- Le rôle de régulateur PI dans une installation PV est de protégé la batterie et augmenter sa durée de vie.
- La batterie va servir à compenser le manque au niveau de la charge dans le cas où le GPV ne satisfait pas cette dernière.

Références Bibliographiques

- [1] International energy agency (IEA), "Renewable energy into the mainstream", IEA Renewable Energy Working Party, 2003.
- [2] https://opera-energie.com/energie-solaire/, 2021 05/2022
- [3] Slama Fateh M. 2011. Modélisation d'un système multi générateurs photovoltaïques interconnectés au réseau électrique. Mémoire de Magister, Université Ferhat Abbes-Sétif UFAS (ALGERIE).
- [4] El Hamel L et Ghodbane S .2020. Modélisation et simulation d'un système photovoltaïque optimisé par les algorithmes MPPT. Mémoire de Master, Université Kasdi Merbah Ouargla, .
- [5] Zerrouki Z et Bereksi Reguig R. 2017. Dimensionnement d'un système photovoltaïque autonome. Mémoire De Master, Université Abou-Bekr Belkaid Tlemcen, P1.
- [6] Belkbir K et chaabi S. 2017. conception et réalisation d'un suiveur de soleil à basz d'une carte Arduino UNO. Mémoire De Master, université Mammeri de Tizi-Ouzou, P5.
- [7] M. Iqbal. An Introduction to Solar Radiation. Academic Press Canada, Ontario, Canada, 1983.
- [8] Labouret A et Cumunel P et Braun J-P. Cellules Solaires Les Bases De L'énergie Photovoltaïque. Dunod, Paris 2001.
- [9] Chibi Z. 2016. Effet du refroidissement sur les performances des panneaux PV. Mémoire De Master, L'université De Tlemcen.
- [10] Mohammed El Amine HA. 2019. Etude et réalisation d'un système de production d'énergie électrique par des panneaux photovoltaïques. Mémoire de Master, Centre Universitaire Belhadj Bouchaib d'Ain-Temouchent.
- [11] Ministry of Energy http://www.energy.gov.dz/francais/index.php?page=potentiels
- [12] https://bu.univ-ouargla.dz/master/pdf/BENSACI-Wafa.pdf?idmemoire=146, 05/2022
- [13] Zaamta S. 2008. Réalisation d'un régulateur solaire à base de Microcontrôleur pour le contrôle de l'état de charge et la protection des Accumulateurs. Mémoire De Magister, Centre Universités Larbi Ben M'hidi Oum El Bouaghi.

- [14] Angel M et Pastor C. 2006. conception et réalisation de modules photovoltaïques électroniques .Thèse de doctorat, de l'Institut National des sciences Appliquées de Toulouse, septembre.
- [15] Bouguerra T. 2014. Optimisation d'un système photovoltaïque Application en continu et en alternatif. Mémoire De Magister, Université Mentouri De Constantine 1.
- [16] Mayouf S. 2016. Modélisation et simulation d'un système photovoltaïque connecté au réseau électrique avec une commande vectorielle. Mémoire de Master, Université Mohamed Boudiaf M'sila.
- [17] Abid A et Bechlagem Y. 2017. Etude et dimensionnement d'un convertisseur SEPIC pour une application photovoltaïque. Mémoire de Master, Université Abou Baker Belkaid De Tlemcen.
- [18] Installer Des Systèmes photovoltaïques, Guide pratique concis.
- [19] Bendjamaa I. 2012. Modélisation et commande d'un système De stockage photovoltaïque. Mémoire de Magister, Université Abou-Bakr Belkaid –Tlemcen.
- [20] Loulou A. 2017. Électronique de puissance et commande dans le système photovoltaïque connectes au réseau. Mémoire de Master ,Université Université Badji Mokhtar -Annaba.
- [21] Guedaouria H. 2017. Dimensionnement d'un système photovoltaïque pour Alimenter le laboratoire LPDS au sien de l'université de Béchar. Mémoire de Master, Université Tahri Mohammed Bechar.
- [22] Madani M. 2018. Implémentation d'un algorithme MPPT dans une FPGA on utilisant la carte ML605. Mémoire de Master, Université Mohamed Boudiaf MSILA.
- [23] Tairi Y et Namane A .2020. Conception et simulation d'un chargeur solaire pour batterie li-ion. Mémoire de Master, Universite Kasdi Merbah Ouargla.
- [24] Assem H. 2014. (Le régulateur de charge et de contrôle dans un système Photovoltaïque Autonome). Attachée de Recherche, Division Energie solaire Photovoltaïque CDER Recherche e et développement.
- [25] Hamdi A. 2018. Conception et dimensionnement d'un système Photovoltaïque pour habitation et pompage. Mémoire Master, Réseau électrique.

- [26] Thévenard D And Ross M « validation and Verification of Component Models and System Models for the PV », CETC-internal report 2003-035, Canada, 2003.
- [27] Zaaboub F. 2017.étude et simulation d'un générateur photovoltaïque connecté ou réseau électrique et doté d'un FAP. Mémoire De Master. Université Larbi Ben M'hidi Oum El Bouaghi.
- [28] Mémoire sur la Contribution de l'énergie photovoltaïque dans la performance Énergétique de l'habitat à haute qualité énergétique en Algérie.

http://bu.univ-chlef.dz/doc num.php?explnum id=445

- [29] <u>https://www.vattenfall.fr/le-mag-energie/electricite/toutes-les-techniques-pour-produirede-l-electricite</u>
- [30] https://www.cder.dz/download/jnv_ 1.pdf_05/2022
- [31] Le groupe EDF dans la transition énergétique ». Dossier de Presse du 18 avril 2013. https://www.edf.fr/sites/default/files/contrib/groupe-edf/espaces-dedies/espacemedias/ dp/dp_edf_groupe_transition_energetique.pdf (08-06-2021)
- [32] Verneuil-en-Halatte, 2015. Note relative à la valorisation d'anciennes mines et carrières en Stations de Transfert d'Energie par Pompage (STEP) dans le contexte de la Transition Energétique. 13P
- [33] CATHERINE, P.J., JEAN-FABRICE, B.2013. Le stockage massif de l'énergie. Ed: Panorama, 10p.
- [34] https://www.connaissancedesenergies.org/fiche-pedagogique/stockage-de-l-energie. 14/5/2021. 10:11 h. 06/2022
- [35] Groune A. 2014.étude d'un stockage thermique mixte (chaleur sensible et chaleur latent). Mémoire De Master, Université De Blida.
- [36] Er-Rbib H. 2015. Conception et simulation du fonctionnement d'une unité de stockage/déstockage d'électricité renouvelable sur méthane de synthèse au moyen d'un co-électrolyseur à haute température réversible : Approches stationnaire et dynamique. Thèse Doctorat, l'École nationale supérieure des mines de Paris.
- [37] Bridier L .2016. Modélisation et optimisation d'un système de stockage couple à une production électrique renouvelable intermittent. Thèse de Docteur, De L'université De La Reunion.

- [38] Linden D. Handbook of Batteries and Fuel Cells McGraw-Hill, New York.
- [39] Behir B.E et Baker Y. 2017. Etude expérimentale d'un système hybride photovoltaïqueéolien avec des batteries de stockage. Mémoire De Master, Université Echahid Hamma Lakhdar d'El-Oued.
- [40] https://thegolfclub.info/related/inside-automotive-battery.html 06/2022
- [41] <u>https://energie-developpement.blogspot.com/2011/12/optimiser-la-duree-devie-des-batteries.html</u> 06/2022
- [42] Titraoui B et Boudissa F. 2021. Modélisation et simulation d'une batterie à usage solaire photovoltaïque. Mémoire de Master, Universite Mohamed Boudiaf M'sila.
- [43] Tarfaya Y et Siad H .2019. Réglage et stabilisation de la tension d'une batterie dans un système PV. Mémoire De Master, Université Badji Mokhtar Annaba.
- [44] http://biblio.univ-annaba.dz/ingeniorat/wp-content/uploads/2018/10/Zendah-Ramzi.pdf
 http://biblio.univ-annaba.dz/ingeniorat/wp-content/uploads/2018/10/Zendah-Ramzi.pdf
- [45] http://www.plaisance-pratique.com/IMG/pdf/nba_batteries_tubulaires.pdf . 06/2022
- [46] Belerbi M .2015. Contribution à l'étude d'un générateur solaire pour site autonome. Thèse De Doctorat, Es-sciences, Université Mohamed Boudiaf-Oran.
- [47] Simoes and F. Farret, Renewable Energy Systems, Pub. CRC Press, ISBN 0849320313, (11 mai 2004) Langue: Anglais Relié: 384 pages
- [48] Cherif A 1997. Modélisation Dynamique et Dimensionnement des Systèmes Photovoltaïques. Thèse Doctorale, ENIT, Tunis.
- [49] Mendalek N et Al-Haddad K in: Photovoltaic system modeling and simulation, IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, 2017, pp. 1522–1527, https://doi.org/10.1109/ICIT.2017.7915592. 06/2022
- [50] Simoes M and Farret F, Renewable Energy Systems, Pub. CRC Press, ISBN0849320313,2004• Langue : Anglais Relié : 384 pages
- [51] Boucheritte W. 2013.Convertisseurs multi niveaux dans les systèmes PV Connectés au réseau. Mémoire de Magister, en Electrotechnique, Université Mohamed Khider, Biskra.

- [52] Cabal C. 2008. Optimisation énergétique de l'étage d'adaptation électronique dédié à la conversion photovoltaïque. Thèse De Doctorat, Université Toulouse Iii Paul Sabatier U.F.R. Physique Chimie Automatique.
- [53] Mayouf S. 2016. Modélisation et simulation d'un système photovoltaïque connecté au réseau électrique avec une commande vectorielle. Mémoire De Master, Université Mohamed Boudiaf M'sila.
- [54] Bhatnagar Pet Nema R.K. 2013. Maximum Power Point Tracking Control Techniques: State-Of-The-Art in Photovoltaic Applications. Renewable and Sustainable Energy Reviews, vol. 23, p. 224-241.
- [55] Knopf H. 1999. Analysis, Simulation and Maximum of Evaluation Power Point Tracking (MPPT) Methods for a Solar Powered Vehicle. Master Of Science In Electrical And Computer Engineering, Portland State University.
- [56] Fadat J. Chaîne de Conversion d'Energie Photovoltaïque Commande MPPT', La Revue 3EI, N°43, Décembre 2005
- [57] Tahraoui I et Halil A. 2017. Dimensionnement et Etude d'une installation photovoltaïque pour une habitation domestique. Mémoire De Master, Université Abou Bekr Belkaid De Tlemcen.
- [58] https://bu.univouargla.dz/master/pdf/HANANOU_ROUABAH. pdf?idmemoire=1009. <a href="https://bu.univouargla.dz/master/pdf/HANANOU_ROUABAH. pdf?idmemoire=1009. <a href="https://bu.univouargla.dz/master/pdf/HANANOU_ROUABAH. pdf?idmemoire=1009. <a href="https://bu.univouargla.dz/master/pdf/HANANOU_ROUABAH. pdf?idmemoire=1009. <a href="https://bu.univouargla.dz/master/pdf/HANANOU_ROUABAH. pdf?idmemoire=1009. pdf?idmemoire=1009. pdf.//bu.univouargla.dz/master/pdf/HANANOU. pdf.//bu.univouargla.dz/master/pdf/HANANOU. <a
- [59] Guentri. H Et Allaoui.T Et Mekki .M Et Den .M .2021. POWER Management And Control Of A PHOTOVOLTAIC System With Hybrid Battery-Supercapacitor Energy Storage BASED ON HEURISTICS METHODS. Journal of Energy Storage 39 (2021) 102578. Journal of Energy Storage 39 (2021) 102578
- [60] Vechiu I. 2005.Modélisation Et Analyse De L'intégration Des Energies Renouvelables Dans Un Réseau Autonome. Thèse De Doctorat, De L'université Du Havre.
- [61] Saadi S. 2010. Effet Des Paramètres Opérationnels Sur Les Performances D'un Capteur Solaire Plan. Thèse de Magistère en physique, Université Mentouri De Constantine.
- [62] Dossier technique "Eolienne et photovoltaïque".

Résumé :

Dans ce travail, nous avons présenté la modélisation de la commande de l'état de charge d'une batterie couplé avec un système photovoltaïque. Nous avons utilisé le GPV comme source d'énergie, le Boost commandé par la MPPT pour l'étage d'adaptation, le Buck_boost comme étage d'interface entre la batterie et le DC bus. En assurant le contrôle de l'état de stockage de la batterie à travers un régulateur PI.

Par le biais de simulation sous le logiciel MATLAB/SIMULINK, nous avons validé notre model. Les résultats obtenus montrent clairement le bon fonctionnement du système étudié :

- ➤ La commande MPPT adapte le générateur PV à la charge transfert de la puissance maximale fournie par le générateur PV.
- ➤ La batterie va servir à compenser le manque au niveau de la charge dans le cas où le GPV ne satisfait pas cette dernière.
- Le régulateur solaire est la pièce maitresse d'un système photovoltaïque autonome, il assure un meilleur rendement de l'exploitation de l'énergie solaire. Il adapte bien le rôle de contrôler le changement d'énergie entre la batterie et la charge, donc il assure la sécurité de la batterie.

Mots clés : Photovoltaïque, GPV, Convertisseur Boost et Buck_boost, Commande MPPT, régulateur PI, Batterie.

Abstract:

In this work, we presented the modeling of the state of charge control of a battery coupled with a photovoltaic system. We use the GPV as the energy source, the Boost controlled by the MPPT for the adaptation stage, the Buck_boost as the interface stage between the battery and the DC bus. By controlling the storage state of the battery through a PI regulator.

Through simulation under MATLAB/SIMULINK software, we validated our model. The results obtained clearly show the proper functioning of the system studied:

- ➤ The MPPT control adapts the PV generator to the transfer load of the maximum power supplied by the PV generator.
- ➤ The battery will be used to compensate for the lack of charge in the event that the GPV does not satisfy the latter.
- The solar regulator is the centerpiece of an autonomous photovoltaic system, it ensures a better efficiency of the exploitation of solar energy. It fits well the role of controlling the energy change between battery and load, so it ensures battery safety.

Key words: Photovoltaic, GPV, Converter boost and Buck_boost, MPPT, PI regulator, Battery.

ملخص

في هذا العمل قدمنا نمذجة حالة التحكم في الشحن للبطارية الى جانب النظام الكهروضوئي نستخدم GPV كمصدر للطاقة، ويتم التحكم في التعزيز بواسطة MPPT لمرحلة التكيف، وBuck Boost كمرحلة واجهة بين البطارية وناقل التيار المستمر من خلال التحكم في حالة تخزين البطارية من خلال منظم PI

-يقوم عنصر التحكم مع MPPT بتكييف المولد الكهروضوئي مع حمل نقل الطاقة القصوى التي يوفرها المولد الكهروضوئي

-سيتم استخدام البطارية لتعويض نقص الشحن في حالة عدم إرضاء للأخير

-منظم الطاقة الشمسية هو حجر الزاوية في النظام الكهروضوئي المستقل فهو يضمن كفاءة افضل في استغلال الطاقة الشمسية يتناسب بشكل جيد مع دور التحكم في تغيير الطاقة بين البطارية و الحمل لذالك فهو يضمن سلامة البطارية.

الكلمات المفتاحية

المعدل البطارية المولد الكهروضوئي. المحول الرافع المحول الخافض الرافع.