

 الجمهوريـة الجزائـريـة الديمقراطيـة الشعبيـة
République Algérienne Démocratique et Populaire

 وزارة التعليــم العالـي والبحـث العلمـي
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

No Réf :……………

Centre Universitaire

 Abd Elhafid Boussouf Mila

Institut des Sciences et Technologie Département de Mathématiques et Informatique

Mémoire préparé en vue de l’obtention du diplôme de

Master

 En : Informatique

Spécialité: Sciences et Technologies de l’Information et de la Communication (STIC)

Préparé par : Brichen DiaeDdine

 Soutenue devant le jury
 Encadré par : Dib Abderrahim. MAA C.U.Abd Elhafid Boussouf

 Président : Samir Selmane. MAA C.U.Abd Elhafid Boussouf

 Examinateur : Djaaboub Salim. MCB C.U.Abd Elhafid Boussouf

Année Universitaire : 2021/2022

Development of a video game using

multi-agent modelling

Acknowledgements

Above of all, I thank Almighty God for his help and guidance in doing this

work

the first person I would like to thank is my framer Mr. ∗Dib Abderrahim∗

I would also like to thank my dear parents, for all their sacrifices, their support,and

their prayers for me.

I won’t forget my brother and sister also for being there for me.

my warmest thanks go to all the teachers who followed me during my five years

of studies at the university.

Finally, I would like to thank all those who have contributed in any way

to the realization of this work.

Abstract

The last decade has seen Artificial Intelligence (AI) seep into the game

development industry, Artificial intelligence is used in video games to create

believable characters that challenge the player and enrich the playing experi-

ence. The adventure genre is one of the types of games where it is fundamental

to have non-player characters with the ability to perceive the environment,

detect some of the player character’s actions and react to them with astute

strategies.

The goal of this project was to develop a game with enemy characters that

would cooperate to defeat the player. In the final game, the enemies patrol the

game’s world trying to locate the player character. The findings of an enemy

are immediately communicated to the rest of agents, and the player character

is chased and attacked by the enemies after being spotted. Agents pursue the

player character and use close combat moves.

The 3d game objects was developed with the Blender software, The game

was developed with the Unreal Engine 4 game engine. The reasoning and

decision making of enemies was modelled using behaviour trees. The imple-

mented system makes agents capable of perceiving visual and auditory stimuli

and communicating information to other agents, who compare it with their

own knowledge to take independent decisions.

The whole set of enemies form an artificial intelligence-based multi-agent

system and cooperate to achieve the shared goal of defeating the player in the

shortest time possible. The ability of the numerous enemies to spot the player

character and detect sounds of players.Unlike them, player try struggle to out

of the perception system, and Avoid contact with them.

 ملخص

(إلى صناعة تطوير الألعاب ، ويستخدم AIشهد العقد الماضي تسرب الذكاء الاصطناعي)
الذكاء الاصطناعي في ألعاب الفيديو لإنشاء شخصيات يمكن تصديقها تتحدى اللاعب وتثري تجربة
اللعب. نوع المغامرة هو أحد أنواع الألعاب حيث من الأساسي أن يكون لديك شخصيات غير لاعب

ت شخصية اللاعب والرد عليها باستراتيجيات لديها القدرة على إدراك البيئة ، واكتشاف بعض تصرفا
 ذكية.

تتعاون لهزيمة ال يمكنهم اءعدلاا تمثل شخصيات تحتوي تطوير لعبةهو الهدف من هذا المشروع
، يقوم الأعداء بدوريات في عالم اللعبة في محاولة لتحديد شخصية النهائيةاللاعب. في اللعبة

ى بقية العملاء ، ويتم ملاحقة شخصية على الفور إل توفرها عند اللاعب. يتم إبلاغ نتائج العدو
. يتابع العملاء شخصية اللاعب ويستخدمون همن قبل الأعداء بعد أن يتم رصد هاللاعب ومهاجمت

 حركات قتالية قريبة.

تم تطوير اللعبة باستخدام و . Blenderتم تطوير كائنات اللعبة ثلاثية الأبعاد باستخدام برنامج
 . تم تصميم التفكير واتخاذ القرار للأعداء باستخدام أشجار السلوكUnreal Engine 4محرك اللعبة

يجعل النظام المنفذ الوكلاء قادرين على إدراك المحفزات البصرية والسمعية ونقل المعلومات إلى حيث
 الوكلاء الآخرين ، الذين يقارنونها بمعرفتهم لاتخاذ قرارات مستقلة.

ا متعدد العوامل قائم ا على الذكاء الاصطناعي تشكل المجموعة الكاملة من الأعداء نظام
 ةر دق ستخدامبا تعاون لتحقيق الهدف المشترك المتمثل في هزيمة اللاعب في أقصر وقت ممكنالو

. على عكسهم ، يحاول اللاعب الكفاح للخروج من نظام على اكتشاف شخصية اللاعبالأعداء
 بهم. الإدراك ، وتجنب الاتصال

Résumé

La dernière décennie a vu l’intelligence artificielle (IA) s’infiltrer dans l’industrie du

développement de jeux. L’intelligence artificielle est utilisée dans les jeux vidéo pour créer

des personnages crédibles qui défient le joueur et enrichissent l’expérience de jeu. Le genre

aventure est l’un des types de jeux où il est fondamental d’avoir des personnages non-

joueurs capables de percevoir l’environnement, de détecter certaines actions du personnage

joueur et d’y réagir avec des stratégies astucieuses.

Le but de ce projet était de développer un jeu avec des personnages ennemis qui

coopéreraient pour vaincre le joueur. Dans le jeu final, les ennemis patrouillent dans

le monde du jeu en essayant de localiser le personnage du joueur. Les découvertes d’un

ennemi sont immédiatement communiquées au reste des agents, et le personnage du joueur

est poursuivi et attaqué par les ennemis après avoir été repéré. Les agents poursuivent le

personnage du joueur et utilisent des mouvements de combat rapproché.

Les objets de jeu 3D ont été développés avec le logiciel Blender, Le jeu a été développé

avec le moteur de jeu Unreal Engine 4. Le raisonnement et la prise de décision des

ennemis ont été modélisés à l’aide d’arbres de comportement. Le système mis en œuvre

rend les agents capables de percevoir des stimuli visuels et auditifs et de communiquer

des informations à d’autres agents, qui les comparent à leurs propres connaissances pour

prendre des décisions indépendantes.

L’ensemble des ennemis forme un système multi-agents basé sur l’intelligence artifi-

cielle et coopère pour atteindre l’objectif commun de vaincre le joueur dans les plus brefs

délais. La capacité des nombreux ennemis à repérer le personnage du joueur et à détecter

les sons des joueurs. Contrairement à eux, le joueur essaie de lutter pour sortir du système

de perception et évite tout contact avec eux .

Contents

List of Figures iv

General Introduction 1

1 Game development 3

1.1 Introduction . 3

1.2 Game types summary . 4

1.3 Varieties of player arrangements . 7

1.4 The game development process . 9

1.4.1 Concept . 10

1.4.2 Pre-production . 10

1.4.2.1 The game design document (GDD) 11

1.4.2.2 Prototyping . 12

1.4.3 Production . 13

1.4.3.1 Production milestones . 13

1.4.3.2 Key game development roles 15

1.4.4 Post-Production . 18

1.5 Conclusion . 19

2 Artificial intelligence in Game development 20

2.1 Introduction . 20

2.2 AI In Games . 21

2.3 Game Agents . 23

2.3.1 Sensory . 23

2.3.1.1 Sensing . 23

2.3.1.2 Vision . 23

2.3.1.3 Hearing . 24

2.3.2 Thinking . 24

2.3.3 Acting . 24

2.3.3.1 Communication . 25

2.3.3.2 Reaction Times . 25

2.3.3.3 Search . 25

2.3.4 Learning and Remembering . 25

i

CONTENTS

2.4 Multi-Agent system . 26

2.5 Behavior Tree . 27

2.5.1 Behavior tree terminology . 28

2.5.1.1 Sequence : . 28

2.5.1.2 Fallback : . 29

2.5.1.3 Parallel : . 29

2.5.1.4 Decorator : . 30

2.5.1.5 Execution node : . 30

2.6 Common AI Techniques . 30

2.6.1 Finite State Machines . 30

2.6.1.1 The basics of Finite State Machines 31

2.6.2 Blackboard Architecture . 31

2.6.3 A* Pathfinding . 32

2.6.4 Genetic Algorithms . 32

2.6.5 Filtered Randomness . 32

2.6.6 Emergent Behavior . 33

2.6.7 Neural Networks . 34

2.6.8 Reinforcement Learning . 34

2.7 Behavior trees vs. finite-state machines (FSM) 34

2.8 Conclusion . 35

3 System conception 36

3.1 Introduction . 36

3.2 The basic structure of the game engine . 36

3.2.1 System (Game system) . 37

3.2.2 Resources . 37

3.2.3 Game model . 37

3.2.4 Upload and Save . 37

3.2.5 Graphics . 38

3.2.6 User input . 38

3.2.7 Sound and particle system . 38

3.2.8 Artificial intelligence (AI) . 38

3.2.9 Network listening and sending . 38

3.2.10 Hardware . 39

3.3 The general structure of the system . 39

3.3.1 Concept Map . 39

3.3.2 General Architecture . 41

3.3.2.1 HUD . 41

3.3.2.2 Graphics . 42

3.3.2.3 Sound and particle system 42

3.3.2.4 Level . 42

3.3.3 AI Architecture . 42

3.3.3.1 Game World / Environment : 43

3.3.3.2 Agent : . 43

ii

CONTENTS

3.3.3.3 External Algorithms : . 43

3.4 Clarification of technical needs . 43

3.5 The detail structure of the system . 45

3.5.1 Scenarios of the game . 46

3.5.2 Conception of the artificial intelligence-based multi-agent system . . 47

3.5.2.1 Conception of the agents’ individual reasoning and decision-

making . 47

3.5.2.2 Conception of Multi-agent system analysis: communica-

tion between agents . 50

3.6 Conclusion . 51

4 System implementation 52

4.1 Introduction . 52

4.2 Development languages used . 52

4.2.1 C++ . 52

4.2.2 C# . 53

4.3 Development tools . 54

4.3.1 Sourcetree . 54

4.3.2 Blender . 54

4.3.3 Quixel Mixer . 55

4.3.4 Visual Studio . 55

4.3.5 Unreal Engine . 56

4.4 Implementation of the characters’ abilities and interactions with the world 57

4.5 Implementation of the AI based multi-agent system 59

4.5.1 the agents’ individual reasoning and decision-making 59

4.5.1.1 EQS . 62

4.5.2 Multi-agent system analysis: communication between agents 64

4.6 Implementation of the in-game user interface 65

4.6.1 Main menu . 65

4.6.2 Pause menu . 65

4.6.3 Dead menu . 66

4.6.4 Win menu . 66

4.6.5 Main character HUD . 67

4.6.6 Weapon HUD . 68

4.7 Implementation of other features to obtain the final game 69

4.7.1 3D modeling . 69

4.7.1.1 University model . 69

4.7.1.2 Characters models . 70

4.7.2 Animation . 72

4.8 Conclusion . 73

General conclusion 74

Bibliography 76

iii

List of Figures

1.1 Varieties of player arrangements . 8

1.2 The game development process . 9

1.3 Assassin’s Creed IV Black Flag Concept Art by Ivan Koritarev 11

1.4 Free assets with full environment project in unreal engine 4 13

2.1 An example of a Multi-Agent System for decision support[49] 27

2.2 Overview of behavior tree nodes. 28

2.3 Sequence node. 29

2.4 Fallback node. 29

2.5 Parallel node. 29

2.6 Decorator node. 30

3.1 The basic structure of the game engine program 36

3.2 General Architecture of the game . 41

3.3 The AI architecture . 42

3.4 The game production pipeline architecture 44

3.5 Game system simplified class diagram -upper half- 45

3.6 Game system simplified class diagram -lower half- 46

3.7 Representation of the first type of behavior tree for enemy characters . . . 48

3.8 Representation of the second type of behavior tree for enemy characters . . 49

3.9 Representation of the third type of behavior tree for enemy characters . . . 50

3.10 Representation of the Multi-agent system 51

4.1 C++ logo . 53

4.2 C# logo . 53

4.3 Sourcetree logo . 54

4.4 Blender logo . 55

4.5 Quixel Mixer logo . 55

4.6 Visual Studio logo . 56

4.7 Unreal Engine logo . 56

4.8 Detail movement system for the main character 57

4.9 A part of the movement system of the main character 58

iv

LIST OF FIGURES

4.10 Implementation of the first type of behaviour tree for enemy characters, as

seen inside Unreal Engine’s behaviour tree editor 59

4.11 Implementation of the second type of behaviour tree for enemy characters . 60

4.12 Implementation of the third type of behaviour tree for enemy characters

(Drone) . 60

4.13 The first type of enemy characters . 61

4.14 The second type of enemy characters . 61

4.15 The third type of enemy characters (Drone) 62

4.16 simple form for an Environment Query System 63

4.17 complex environmental query system used by the enemy (drone) 63

4.18 Implementation of the communication system of giving orders to agents to

attack . 64

4.19 Implementation of the communication system to give orders to agents to

withdraw to their centers (Drone) . 64

4.20 Implementation of the Main Menu . 65

4.21 Implementation of the Pause Menu . 66

4.22 Implementation of the Dead Menu . 66

4.23 Implementation of the Win Menu . 67

4.24 Implementation of the Main Character UI (HUD) 67

4.25 The main character UI in real time gameplay 68

4.26 Implementation of the weapons Widget UI 68

4.27 Overview of the university design stages 69

4.28 The university level design . 70

4.29 The university level design (side part) . 70

4.30 The Main character . 71

4.31 The enemy character . 71

4.32 The Drone character . 71

4.33 game design model . 72

4.34 Character animation . 72

4.35 Drone animation . 73

4.36 Project X . 73

v

List of abbreviations and acronyms

AI Artificial Intelligence

MAS Multi-Agent Systems

BT Behavior Tree

FSM Finite State Machines

GA Genetic Algorithms

QA Quality Assurance

EQS Environment Query System

GDD Game Design Document

RL Reinforcement Learning

NPC Non Player Character

HUD Heads-Up Display

GUI Graphical User Interface

PBR Physically Based Rendering

UE Unreal Engine

vi

General introduction

Game evolution/design is the procedure of producing a video game. Game evolution

has evolved in recent years. No longer does making a game involve writing simple lines

of code by an average programmer.

Now it requires a team of specialists in disciplines such as Fine art, Graphics Model-

ing and Design, Software Programming, Music, Network Programming, AI Programming,

and so on. Games have protracted happened to be an accepted field of Artificial intelli-

gence(AI) research, which is for a respectable motive. They are problematic nevertheless

stress-free to validate, hence making it feasible to establish novel AI techniques, compute

in what way they are functioning, and display that machines are qualified of extraor-

dinary usually alleged to necessitate cleverness exclusive of placing person breathes or

property at jeopardy AI is the field within Computer Science that seeks to explain and to

emulate some or all aspects of human intelligence through mechanical or computational

processes. Included among these aspects of intelligence are the ability to interact with

the environment through sensory means and the ability to make decisions in unforeseen

circumstances without human intervention. Typical AI research areas include game play-

ing, natural language understanding, and synthesis, computer vision, problem-solving,

learning, and robotics.

Over the years, there has been an increase in the need for AI in Game Development.

Implementing AI in a game will give the users the illusion that they are playing intelligent

agents. From the definition of intelligent agents in Artificial Intelligence, we can say an

intelligent agent is anything that can perceive/observe its immediate environment and

take action concerning its observation, hence we can say an intelligent gaming agent is

capable of learning/observing what goes on in the gaming environment and also act on

its observation.This research study focuses majorly on how AI is implemented in Game

Development and it was implemented using C++ language.

Problem

The enemy system is considered one of the most sensitive systems in the game because

the interaction of enemies with the player reflects the extent of the fun or boredom within

the game. Whereas, the more realistic the interaction, the greater the challenge within

the game, and therefore various ways to play. The problem at hand is how to create a

realistic, effective, enjoyable, and scalable enemy system.

1

Objectives

The objective of this project is to develop a game with an AI-based multi-agent system

that would represent the behavior of enemies. Planned development tasks should be

within the expected timescale.

Organize thesis

This thesis is divided into four chapters:

The first chapter: “Game Development”, Bibliographical research that includes

an overview of the basic theoretical and applied concepts of game development.

The second chapter: “ Artificial Intelligence In Game Development ”, Artificial

intelligence in games and the various (AI) techniques used in game development.

The third chapter: “ System conception ”, Describes the architecture of the system

to be implemented

The fourth chapter: “ System Implementation ”, It shows the tools and program-

ming languages used in creating the game and displays the final results.

2

Chapter 1
Game development

1.1 Introduction

With the speedy development of computer technology, the importance of software

program engineering in our everyday lives is increasing. It impacts each element of our

lives today, such as working, living, learning, and education. A new and famous mode

of enjoyment and a vital generation of software program video games, that have ended

up becoming accepted by human beings of all ages. In today’s culture, the generation is

without difficulty reachable and has ended up extra convenient; increasingly more human

beings want to play video games and also are turning into prompted to layout their

very own video games. [1] defined “game is a software application in which one or more

players make decisions by controlling game objects and resources, in the pursuit of its

goal”. video games are software programs established on hardware gadgets and online

game consoles, computers, handheld gadgets, and Personal Digital Assistants (PDAs)[2].

Software video games have now end up a international innovative industry, however, due

to the multidisciplinary games required, their improvement is a completely complicated

task[4].

The multidisciplinary nature of the strategies that integrate sound, art, manipulate

systems, synthetic intelligence (AI), and human factors, additionally, make the software

program recreation improvement exercise unique from conventional software program im-

provement. However, regardless of the excessive complexity of the software program

engineering improvement process, the games enterprise is making billions of bucks in in-

come and growing many hours of fun . The software program recreation marketplace at

some stage in the sector has grown through over 7–8 % yearly and has reached income of

around $5.5 billion in 2015 . Newzoo Game Market has additionally suggested that the

sector-huge virtual recreation marketplace will reach $113 billion through 2018.

The creation of any game involves cross-functional brigades including designers, soft-

ware inventors, musicians, scriptwriters, and numerous others. Also, Entertainment Soft-

ware Association reports stressed the rearmost trends in the software game industry.

Thus, game development careers have presently come largely grueling, dynamic, creative,

and profitable . The capability to handle complex development tasks and achieve prof-

itability doesn’t be by chance, but rather a common set of good practices must be espoused

3

Chapter 1 – Game development

to achieve these pretensions. The game assiduity can follow the good and proven practices

of traditional software engineering, but only a clear understanding of these processes can

enhance the complex game development engineering process.

1.2 Game types summary

Utmost ultramodern video games can be assigned to a particular genre, or classified as

a hybrid of two or more genres. These genres have come about over the years, frequently

as a result of trial and error, but more frequently as an evolution.[6] The following is a

description of some important genres and the games that either introduced or popularized

them.

Platformer The original platform games involved the character running and jump-

ing on a side-scrolling playing field. While the definition has been expanded now to include

3D playing fields, the genre is still fairly true to its roots. Some of the most famous plat-

formers have been Super Mario Bros, Crash Bandicoot, Sonic Mania, Cuphead, and It

Takes Two.[1]

First-Person Shooter The first-person shooter is an action game that places the

player ”behind the eyes’ of the game character. In this game, the player can wield a

variety of weapons and fight enemies by shooting them. [1]This genre is famous for games

like Wolfen stein 3D, Doom, call of duty, and battlefield.

Action The action game is the superset of many other genres. First-person shoot-

ers, combat simulations, fighting games, even platform games are all parts of the action

genre.[6] Games in the action genre are typified by fast-paced combat and movement.

Some of the old examples of video games such as Spacewar, Pong, and Space Invaders

defined the genre and also was the cause of his success.

Adventure In the adventure game genre, there have been two important subgenres:

the text-based adventure and the graphical adventure. For text-based breakouts, one

needs to look no further than Zork by Infocom. On the graphical adventure side, one of

the series that defined the genre was the King’s Quest series from Roberta Williams at

Sierra.

Action-Adventure Action-adventure games are similar to adventure games but

incorporate action elements. Nintendo’s The Legend of Zelda was the first breakout hit of

the genre, but there have been many more since.[1] Recent games like Control, Assassin’s

Creed, and Resident Evil continue the tradition of action with strong puzzle-solving.

Fighting In fighting games, the player fights other players or the computer(AI).

These games originated in the arcades, where players could signify their intent to challenge

one another by placing quarters on the top of the cabinet. Super Smash Bros is one of

4

Chapter 1 – Game development

the most famous games in the genre, allowing players to fight side by side. Tekken, Street

Fighter, and Mortal Kombat are two of the most famous fighting games in which players

choose characters and fight against each other (called a versus fighter).[2][1]

Real-Time Strategy (RTS) In a typical Real-Time Strategy (RTS), the goal is

for the player to collect resources, build an army, and control his units to attack the

enemy. The action in these games is fairly fast-paced and because of the continuous play,

strategic decisions must be made quickly. While The Ancient Art of War in 1984’s and

Herzog Zwei in 1989’s were early examples of the genre, the games that popularized it

were Westwood’s Dune 2 and Command and Conquer, and Blizzard Warcraft.

Turn-Based Strategy These games are similar to real-time strategy games (indeed,

they were the precursors to them), but the players take turns in which they make their

moves. For example, almost all board games (like Chess and Checkers) are turn-based.

In the era of the RTS, turn-based games are less frequently made, but there are some

notable games in the genre, X-COM, namely Civilization, Master of Orion, and. Jagged

Alliance.

Stealth Stealth games (sometimes called sneakers) are characterized by their focus

on subterfuge and their planned-out, deliberate gameplay. They are by and large similar

to first-person or third-person shooters but are less action-oriented and more methodical.

The first stealth game was the original Metal Gear in 1987, but other notable stealth

games include the Thief series, the Metal Gear series, and the Splinter Cell series.

Role-Playing Game (RPG) The video game version of pen and paper games

like Dungeons & Dragons differs from its tabletop counterpart generally in its ability to

create a world that doesn’t require imagination. Most differentiations from the system

are hybrids with other genres. Some of the most famous RPGs to grace computer and

TV screens are the Final Fantasy series, the Baldur’s Gate series, and Wasteland.[1]

Massively Multiplayer Online Role-Playing Game (MMORPG) The MMORPG

or MMO is a role-playing game set in a persistent virtual world populated by thousands

of players simultaneously connected over the Internet. The MMO was predated by text-

based games called Multi-User Dungeons/Dimensions (MUDs), but in modern times it is

largely graphical. In the games, the player is represented by a character called an avatar.

The first accident MMO was Meridian 59 in 1996. The first current implementation,

however, was Ultima Online in 1997. World of Warcraft is currently the king of the genre

with more than 117 million subscribers.

Serious The serious game genre has emerged in the past years as a cheaper and more

entertaining way of teaching real-world events or processes to adults. These video games

are generally privately funded for particular uses, with the U.S. authorities and clinical

experts being the biggest customers. For example, games builders can expand education

simulators quite cheaply, even by infusing the simulation with leisure fees. [2] The laugh

5

Chapter 1 – Game development

fee is essential in order that customers are stimulated to replay the sport regularly and

for that reason come be higher trained The Game Developers Conference has recognized

the strong interest in serious games and in 2004 added a two-day Serious Games Summit

as part of its annual event, focusing on ”the intersection of games, learning, policy, and

management.” [GDC][1].

Simulation Simulation games are based on the simulation of a system. This system

may be whatever from the workings and economic system of the railroads (which includes

in Railroad Tycoon) to a fight state of affairs in which the participant controls huge moves

of troops or maybe single fighter craft. SimCity is one of the breakout simulation games,

allowing you to micro-manage a city. Wing Commander and X-Wing are two of the

defining space combat simulation games. Microsoft Flight Simulator is one of the most

famous airplanes simulation games. IIn current years, The Sims is one of the extra famous

video games withinside the genre, with its complicated simulation of human lifestyles and

social interactions.

Racing Racing games involve competing in a race in vehicles ranging from race cars

to motorcycles to go-karts. This style is has a touch specific from others in that the

video games basically try and re-create as best they could a real-world activity. The first

appearance of this type of racing game was Pole Position from Atari. [1][2][6]

Sports The sports activities sport style covers a myriad of video games that simulate

the sporting experience. As with racing video games, sports activities video games are

in the main try to re-create the complicated interactions in an actual sport. Some games

series adopt this style like John Madden Football and Tiger Woods Golf.

Rhythm Rhythm games gauge a player’s success based on his ability to trigger

the controls in time to the beat of the music. Some video games, along with Konami s

Dance Dance Revolution (DDR), require the participant to step on ground pads in time

to music, even as Nintendo’s Donkey Konga for the Nintendo GameCube comes with a

specialized bongo drum controller—even though now no longer all rhythm video games

require specialized controllers. For example, PaRappa the Rapper seems because the

first sizable rhythm game, performed on the PlayStation in 1996, and it most effectively

required the usual controller. Currently, the Guitar Hero and Rock Band franchises are

answerable for the exceptional reputation of this form of the game.

Puzzle Puzzle video games integrate factors of sample matching, logic, strategy, and

luck—frequently with a time element. Tetris is the most famous puzzle game ever and

serves as a first-rate instance of the style with its frenetic pattern-matching action.[6]

Mini-Games Mini-games are commonly short, easy video games that exist inside a

bigger conventional game. They are now and again used as praise for finishing a venture

or unlocked via way of means of coming across a secret. Alternately, the bigger game may

be a skinny veil for a set of mini-video games, as withinside the Mario Party collection

6

Chapter 1 – Game development

or the Wario Ware collection. The Wario Ware collection is a unique account that every

tide carries extra than one hundred video games, with each lasting only several seconds

or minutes. Many video games on the Internet used for marketing functions may also be

defined as mini-video games.

Traditional Traditional video games encompass automated variations of card video

games and board video games. The first conventional game applied on a laptop display

screen changed into Noughts and Crosses (tic-tac-toe) via way of means of A. S. Dou-

glas at the University of Cambridge in 1952. Throughout the years, chess has long been

a staple of conventional video games, with Chessmaster being the maximum diagnosed

collection. In 1988, Interplay advanced Battle Chess, which changed into simply regular

chess, however, whilst every piece took another, there has been a unique (and regularly

humorous) animation of the ”battle.” Sierra’s Hoyle collection is one of the maximum

devoted efforts to deliver conventional video games to a computer format, with its trust-

worthy translations of the card, board, word, table, and puzzle games[2].

Educational Educational video games are designed to teach grade-school ideas to

children and teens in a wonderful manner. notable educational game was Oregon Trail, at

the beginning, designed in 1971 for teletype machines at Carleton College, however made

famous withinside the Eighties and Ninetiesby a version running on Apple computers

systems in public schools. Other incredible video games on this style encompass the

Carmen Sandiego collection and Mavis Beacon Teaches Typing.[1]

Survival Horror Survival horror is a subgenre of action-adventure and first-person

shooter games. Typically, they contain exploring deserted homes or cities wherein nu-

merous monsters and undead creatures lurk. The survival factors are focused on in no

way giving the participant pretty sufficient bullets or health, as a result growing the ten-

sion. The horror issue defines the topic and pacing, generally directing the participant

to discover quiet places, deserted, bloodstained hallways until a monster comes crashing

through a window, or a seemingly lifeless corpse begins to stir. Players are often started

and can become visibly shaken from the experience, much like a good horror movie. Alone

in the Dark is recognized as the first in the genre in 1992, Resident Evil popularized the

”survival horror” and Set standards for later games in 1996. [6]

1.3 Varieties of player arrangements

In narrative arts (literature, theater, movies, etc.), various types of quarrel, related

to dramatic struggle, are categorized—man vs. man, man vs. nature, etc. In games,

these narrative conflicts can still exist. At a far more specific level, games offer all sorts

of other kinds of conflict such as different styles of fighting within a single game. So the

word ”conflict” can get overloaded quickly. We will use player arrangement for those

configurations of player conflict (Figure 1). In the book Game Design Workshop, Tracy

Fullerton uses the term interaction patterns and adapts a scheme that offers a nice illus-

tration of the various forms these game conflicts can take.The following are some typical

7

Chapter 1 – Game development

player arrangements:

- Single-player—player contends with the game system.

- Player vs. player—two players contend with each other.

- Multilateral competition—three or more players contend with each other.

- Team competition—two groups compete with each other.

- Multilateral team competition—three or more groups compete.

- Unilateral competition—two or more players compete with one player.

- Multiple individual vs. game—multiple players compete against the system.

- Cooperative—two or more cooperate against the game system. .

Figure 1.1: Varieties of player arrangements

8

Chapter 1 – Game development

1.4 The game development process

One of the main studiousness in the game development process is that developers

need to follow best practices and procedures from the software engineering discipline to

develop good quality games. The game development process comprises four main phases:

concept, pre-production, production, and post-production. It consists of various activities

such as synopsis, scriptwriting, background research, visualization and concept art, level

and interaction design, animation, programming, media editing, integration, testing, and

publishing.[6] Software games are also characterized based on the category into which

they fall, which is called the genre of the game(We talked about it before). Each genre

has its requirements which must be taken into consideration during the pre-production

phase. For this reason, software game development is considered a complex process that

involves multidisciplinary collaborative team efforts and processes (including modeling

(3D/2D art), sound, gameplay, artificial intelligence, control systems, human factors ..etc)

to develop a creative product. Fundamentally, game development is a form of the software

development process with several additional requirements such as creative design, artistic

aspects, and visual presentation[10].

Software game development additionally necessitates a number of skills that encompass

project management, design, improvement, and asset creation. It additionally consists of

group contributors from heterogeneous Specialties, [4]e.g., game designers, artists, pro-

grammers, and software program builders. Knowledge of great practices for recreation

development may be very essential and has come to be decisive in maintaining the in-

crease of the software program recreation industry. Finally, this information will assist

creation making accurate game development selections at the proper time. Achievement

of these key elements from a developer’s angle will make contributions to the knowledge

of the contemporary development method The ensuing outcomes will assist programmers

to enhance the game development method[7].

Figure 1.2: The game development process

.

9

Chapter 1 – Game development

1.4.1 Concept

The unique concept is only an easy concept for what the game may be about. For

instance, an easy game idea may be to make a futuristic 3-d avenue racing sport with

hovercrafts with a placing corresponding to the cutting-edge import tuner avenue racing

scene of modern-day international. It also can be some thing as easy as making an

action/adventure game where you’re controlling a ninja.

The games concept also can begin as in reality trying to make a follow-up or sequel

to an current title, a sport primarily based totally on current non-gaming characters,

stories, or franchises - from different mediums along with tv, comedian books, board

games, movies, folklore, or history - or a sport it is supposed to simulate some real-world

experience, along with the case with sports, flight, or riding simulations. In those cases,

the genesis of the sport’s improvement can in reality be the agency determining that it

desires to make a game that simulates the real-lifestyles[4].

1.4.2 Pre-production

This is in which each project begins. Essentially, pre-production defines what the

game is about, why it needs to be made, and what it’s going to take to make it.

You would possibly have the first-rate concept for a kind of game, a tale you need

to carry to life, or you could need to construct one which leverages a positive kind of

technology (e.g. VR, a brand new controller, or console). This stage can take a week to a

year, relying on the challenge type, resources, and budget available, and normally takes as

much as 20% of the overall manufacturing time. At this point, the group is pretty small.

There can be a manufacturer, programmers, an idea artist (or if you’re a one-individual

operation, you’ll be doing most of it!)[11].

the video game producer manufacturer handles the commercial things, in particular

the financials. They control the price range and use advertising techniques to promote

the product. A concept artist units the tone for the challenge early on through growing

paintings and sketches. These early visuals assist shape the language of the sport, giving

all of us operating at the challenge a visible manual to the general appearance and feel.

10

Chapter 1 – Game development

Figure 1.3: Assassin’s Creed IV Black Flag Concept Art by Ivan Koritarev

.

A concept artist sets the tone for the project early on by developing artwork and

sketches. These early visuals help highlight the features of the game, this giving everyone

working on the project a visual guide to the general look and feel.

The information collected in this stage of pre-production forms the basis of the Game

Design Document (GDD)[11].

1.4.2.1 The game design document (GDD)

The creation of the game design document is an essential step in the pre-production

phase of the game, withinside the pre-production segment of the game, being answerable

for guiding the project’s scope (and as a result the complete production and improve-

ment and testing of the game). A bad game design document may also end result in

characteristic creep, and as a consequence, delays and losing milestones may occur.

Although there may be no general manner to construct build a game design document,

Schuytema [Schuytema 2008] states that this report must have a complete description

of the game in all its aspects, so that the development group can construct it. While

describing the items, and characters in the game, it has to be documented not only what

they do, but additionally what they affect, how they have interacted, and their function

and conduct in the game. Despite the efforts to make the report pretty complete, the

11

Chapter 1 – Game development

report nevertheless might also additionally change. However, one has to examine the

dangers of adjustments and if the time limits can nevertheless be met. the GDD includes

such things as:

- The concept or idea.

- Genre.

- Story and characters.

- Core game mechanics.

- Gameplay.

- Level and world design.

- Art and/or sketches.

- Monetization strategy.

This document is later translated to a Product Backlog within the production phase, for

little games it should be optional, translating the wants directly as a Product Backlog.

this could save time for the team as they are going quickly to the production, however

might also increase risks of feature creep or not a really entertaining game.

A GDD keeps the development team work organized, helps determine potential risks,

and lets you see ahead of time who you may need to hire/outsource to so as to bring your

project to life. Your game idea could seem fairly straightforward, however, once you lay it

get into a GDD, you’ll notice how big and resource-heavy your project is. Another reason

to have a GDD is .

It is to help promote and finance the game. Potential investors will want to see a solid

plan before investing. Finally, GDD will help market the product once it is ready for

release[11].

1.4.2.2 Prototyping

A game prototype is a raw test that checks the functionality, user experience, gameplay

mechanics, and art direction.

Prototyping happens in pre-production to check whether or not or not the game plan

can work, and if it’s worthy to pursue. several ideas don’t create it past this stage. The

team will usually begin with paper styles to test theories and total many of the nuances

of a game or a series of systems quickly, simply, and value effectively. The aim is to make

a prototype up and running ASAP to test if the ideas work and if the game is as fun as

you had hoped. Prototyping may also reveal surprising challenges, that may doubtless

change the whole course of the project. It’s necessary to possess others to check your

prototype too, as a result of things that are obvious to you, might not be to others.

Placeholder assets are wont to save time and money. These low-quality assets substi-

tute for things like weapons and props throughout the first testing phase, and if approved,

they’re replaced with final, high-quality versions later on[11].Placeholder assets will be

purchased or found at no cost online at intervals in game development software. They’re

usually pretty basic shapes, however, may also be a touch a lot of advanced.

12

Chapter 1 – Game development

(a) Asset Collection (b) Environment

Figure 1.4: Free assets with full environment project in unreal engine 4

1.4.3 Production

Once the pre-production section is complete and the general game project was final-

ized, the development enters the game production phase, and a currently larger of produc-

ers, designers, artists, and programmers are usually brought into the mix. Production is

the longest stage of the process, Ranging anywhere from 1 to 5 years or more, production

is where the game starts to take shape, The story is refined, assets (characters, creatures,

props, and environments) are created, the foundations of play are set, levels and worlds

are built, code is written, and more. but initial ideas don’t continually translate thus

well in reality, so because the job is done, the game is continually tested and perfected.

Since gamers expect game graphics to be movie-quality, 75-90% of a game’s budget goes

to artwork. Production milestones There are a variety of milestones to complete the game

development process.

1.4.3.1 Production milestones

There are a variety of milestones to complete the game development process.

Prototype : This is the initial take a look at the game (which happens in pre-

production and is described thoroughly above), Some games can never go beyond this

phase.

First playable : The first testable version, whereas it’s still aloof from the final

product, placeholders are replaced with higher-quality assets and the art design is added.

Vertical slice : A vertical slice is a fully playable sample demo that can be accus-

tomed to pitching your game to studios or investors. starting from simply some minutes

up to an hour, a vertical slice provides first-hand expertise of the game.

Pre-alpha : Most content is developed in the Pre-alpha phase. At this point of

points in the development of the game, some important decisions must be made. Content

may be cut or new items will need to be added to improve gameplay.

13

Chapter 1 – Game development

Alpha : The definition of the alpha stage varies from developer to developer; how-

ever, in general, it always means the game’s ”functionality” is essentially complete. This

usually interprets to all or any of the specified options of the look having been imple-

mented, however not all essentially operating specifically within the desired manner. From

the beginning of development to succeed in the alpha stage is the longest part of the event

cycle. this can be usually wherever some slippage can occur as features take longer to

implement than planned, or the chosen technology either doesn’t deliver the mandatory

needs or demands additional work to bring to the expected state.

Beta : The beta stage effectively happens once all of the options that were delivered

throughout the alpha stage are currently operating and bolted down so no core practicality

at this stage is changed. Since all of the planned gameplay mechanics and technological

features are implemented, the testing department is essentially disbursement its time

making an attempt to ”break” the game and providing minor gameplay tweaking feedback

on areas comparable to issue settings, scoring, or points systems, then forth. throughout

the beta, the ultimate sound effects, musical score, voice talent, and localization are all

extra and completed, with constant testing and feedback from QA to make sure that

every one content is up to the required customary and within the right places[11].

These tasks are typically handled throughout beta merely thanks to the developers

having the ability to focus a lot on content-driven problems over the technical tasks that

dominate alpha. throughout the beta, the press and public are going to be given more data

regarding the game in the kind of in-depth ”hands-on” features, and because the game

nears completion, preview reports. For laptop titles that include an internet part (and

even for a few console games), it’s turning into more and more common for developers to

unharness reduced content ”beta test” builds of their game for controlled public testing.

This facilitates nailing down hardware compatibility problems distinctive to laptop titles

and provides the event team real shopper feedback to supplement that provided by QA.

Public beta tests can even help developers see their content during a real-world setting

that’s not possible to recreate altogether however the biggest company QA departments.

Factors comparable to stress testing are often viewed with the acceptable action to re-

pair issues or issues before release. it’s also throughout beta that games are below the

most important threat of being leaked lawlessly to the public.[9] Usually, this happens

through an enclosed company leak (e.g., by unscrupulous freelance QA testers) or through

scalawag journalists and generally even hardware partners. In most cases, developers and

publishers have internal procedures to assist try and forestall this, comparable to digi-

tal watermarking, though there are still varied unauthorized releases of beta code each

quarter, typically on the best profile titles.[12]

Gold master : The gold master is named as when the gold-colored recordable discs

were originally used to send final mastering assets to the publisher for mass duplication.

it’s at this final development stage for computer titles that replicate protection is another,

installation computer code is integrated, and device drivers are added to the game.

Once all of the essential bugs are far away from the game and everyone party agrees

that the necessities of the beta definition have been met, the game is asserted a gold

14

Chapter 1 – Game development

candidate and is shipped for duplication. it’s sometimes at now that work is finalized on

a particular demo for magazine cowl mounts and online distribution, though more and

more groups are building specific demo content and previews into the initial schedule and

value breakdown, particularly within the case of console developers, thanks to the lead

times on magazines.

1.4.3.2 Key game development roles

Game dev roles can vary reckoning on the size and sort of studio. These are a number

of the common positions you’ll find.

Project manager : The project manager makes certain the game development

process runs smoothly, milestones are met, risks are anticipated/mitigated, and team

members do what they’re supposed to. they’re usually the center of communication

between the dev and design teams and executives. Project managers are exceptionally

organized and should have glorious communication skills.

Game developers / programmers : Game software engineers facilitate developing

games by turning style ideas into code to make playable games. Programmers are usually

software system engineers or laptop scientists with a robust programming background,

and a mixture of creativity, mathematics skills, and patience to success code ideas into

interactive visuals and sounds. They make sure the game runs smoothly. There are many

different aspects of programming, including:

- Building a custom base engine for the game (optional).

- Scripting functions, events, interactions.

- making physics (e.g. gravity variations during a game set in space).

- Developing and creating 3D graphic renders.

- Simulating AI in opponents.

- Adding sound effects, and voice-overs.

- Implementing game logic and mechanics.

- making the program.

- Writing code specific to joysticks, keyboard, mice.

- creating it attainable for players to contend or work via local area networks or the net.

- Developing custom tools. Cross-platform porting code.

- Implementing algorithms, addressing memory needs, and caching issues.

- Identify and fix bugs.

In larger studios, we’ll find specialists dedicated just to AI programming for the game,

or programmers who solely work on the user interface. the game programmer (simple

programmer) makes bout USD 60,000 per year[11], however, a senior or lead programmer

will earn far more than USD 100,000 per year.

Game designers : A game designer is the creative engine of the game, and usually

a cross between a author with artist, with information of programming. the game design

production section involves making compelling stories, characters, goals, rules, and chal-

lenges that drive interactions with different characters, users, or objects. Designers is also

15

Chapter 1 – Game development

accountable for:

- Developing the storyline, character back-stories, and dialogue.

- Developing gameplay, rules, and also the classification system.

- Determining the level of difficulty.

- Building environments, ledges, obstacles, and objects.

- Level and world design.

- Programming/scripting.

- Digital written material.

the common game designer pay is USD 64,000, whereas a lead will build in more than

USD 94,000 (depending on experience, location, size of studio, and industry). Senior and

technical designers could exceed this range.

Level designers : A video game level designer is responsible for creating fun and

interesting levels. Their job is to keep the player focused on moving through the game

and achieving their goal or mission Clearly and simply while minimizing the potential for

confusion.

With games becoming a lot more complex than they used to be, it’s common for large

studios to find game designers dedicated only to the design level. Depending on the type

of game and whether it’s based on actual events (such as a World War II battle), they may

need to learn all about a certain period of history and research actual locations to make

sure the level is realistic and believable. If the game is adapted from a book or movie,

they will need to read/watch the original and look for clues. If the world is completely

fictional, they will need to use their creativity and draw inspiration from the concept of

art presented.

Then using a level editor (software used to design levels and maps), they build levels,

stages, or missions. Their job can also include things like planning start and exit locations,

locating hidden tunnels and passages, places where interactions or dialogue will occur,

monster spawn points, starting points where certain actions will occur, and much more.

Level designers are responsible for identifying and fixing errors, such as players falling

out of bounds or getting stuck and unable to get out. The challenge with video games

is that once the game is released, it is out of the designer’s hands. The player can

interact with the world in unexpected ways, highlighting errors that went unnoticed during

development.

The level will likely see several versions before it becomes final.

A level designer can earn an average of USD 57,000 depending on the studio and

location. Experienced or experienced designers can command a much higher salary.

Game artists : Game artists will include concept artists, animators, 3D modelers,

and FX artists. This cluster is answerable for transferring color, movement, and life to

the game. whereas the concept artist is usually active throughout pre-production once

coming up with the initial look (usually in 2D), it’s going to be brought back later within

the game development method if new components are added or the course of the game is

changed. A 3D concept artist (which can be a similar artist) uses digital sculpting and

16

Chapter 1 – Game development

texturing software like Blender, ZBrush, Maya, Quixel Mixer , Gimp, and Photoshop to

form 3D props, assets, and environments[11].

3D modelers : A professional 3D creator could be a sculptor or a technician. he’s

a creative person and an engineer. He should worry about the form, expressiveness, and

style, as well the topology, and potency of vertex count. though there are several ways

and kinds of modeling, in play nowadays polygon modeling is king[1].

animators : An animator within the games business is predominately a personality

animator since moving and talking characters are normally required in most game genres.

The animation of the many different styles of characters is a kind that takes a lot of time

and follows to perfect, therefore creating character animation a lot of specialization.[8] As

competent game animators, it’s their job to grasp the means behind an expression and the

way to get the body displayed and moving to accurately or stylistically convey the action

for playback in real-time. Associate in Nursing animator ought to even be knowledgeable

in anatomy, since making likely motion requires Associate in the Nursing understanding

of the underlying mechanism, like rotating joints and bulging muscles. Character work

may be a large order and usually requires seasoned animators. Moreover, because the

spoken language goes, you are doing get what you obtain once a game company is in

search of tough talent[3].

visual effects artists (FX): The role of an FX effects artist is arguably one of the

foremost difficult of the art jobs in games. It demands technical savvy, a way of animation

and timing, a grasp of physics, a deep understanding of the game engine, additionally the

ability to color textures of natural phenomena. Effects also need a general understanding

of adjacent disciplines that you just can act with, as well as scripting, code, animation,

prop modeling, and rigging. the results artist will bring a game engine and frame rate to

its knees quicker than anyone else by filling the screen with smoke. FX effects can also

be one of the most rewarding art jobs[1].

Audio engineers / sounddesigners / composers : Modern game projects need a

whole crew of audio professionals to induce the duty done well. Music supervisors, sound

designers, audio directors, voice actors, implementers, audio software package engineers,

casting agents, musical organization contractors, dedicated music executives, and more.

manufacturing audio for games takes ability and data of music and sound so theand

also the tools concerned in making those elements.[8] making and producing sensible

music could be a craft that takes years to hone. an equivalent are often aforementioned

for excellent sound design. The role of the producer is to ensure the simplest talent is

functioning on the project—and therefore he ought to have level of familiarity with what’s

concerned in game audio production[5].

QA (quality assurance) / video game testers : The role and methodology

of QA checking vary from company to company; most developers don’t have full-time

”in-house” QA departments and think about numerous self-moderated ways in which of

17

Chapter 1 – Game development

bug-fixing their code, typically going most of the deficiency or noncritical minor bugs to

the QA departments of their publisher to select up throughout the beta stage. throughout

the beta stage and thru to the completion of the project, the game will be under constant

test from the publisher’s QA department (or increasingly by dedicated ”professional”

test teams at testing service outsourcing companies). Most feedback given to the team

can come back in the sort of gameplay flaws, issue issues, and technical bugs about

graphics, sound, or hardware incompatibility, the latter of that being notably necessary

for computer product[3].

For developers of console products admire the Microsoft Xbox and Sony PlayStation

systems, there’ll be an extra layer of QA at the platform holder’ location (sometimes

in many totally different countries) wherever further guideline or technical demand list

(TRC) testing is applied to confirm the game adheres to the varied internal control stan-

dards that platform holder has place into place. The testing procedures for console prod-

ucts are abundant tighter than developing for the other platform, since mending is harder

thanks to restricted on-line connectivity, whereas computer developers are often forced to

go away minor bugs to repair till when launch, safe within the data that they’ll forever

patch the matter later.[8] this is often often through with an extra transfer from a support

web site or specialist online game sites and magazine cowl disks. The timeline for platform

TRC testing varies slightly, however Sony final approval (or submission as it’ referred to)

takes between 4 to 6 weeks to complete, with a further 2 to 4 weeks supplementary if the

game ”fails” submission and desires to be fastened/sent back. The producer and also the

publisher’ external producer will act because the buffer between QA and the development

team to confirm they’re not flooded with haphazard bug reports. Most corporations use

bug-tracking programs, machine-driven spreadsheets, or Oracle info systems to manage

and range bug feedback from QA. Key team members will have periodic bug update con-

ferences to ensure that fixed bugs are being off from the project and the reports from QA

are that specialize in the forthwith necessary areas.[1]

1.4.4 Post-Production

The final stage of a game’s development is the post-production stage. This begins

once the game is taken into account ”feature complete” and every one of the codes has

been written associated art has been completed. this can be when an alpha version of the

game is made and is provided to the game’ take a look at the department to bang away

at and notice bugs and major flaws within the game that requires to be modified whether

or not by the artists or programmers.

Once all of the bugs and major flaws are known and addressed, a beta version of the

game is then created and another time sent to take a look at the department to be picked

through with a fine-tooth comb. this can be wherever the hardcore testing is completed

and every single bug notwithstanding however major or minor is documented and tried to

be fixed, with the most important ”A” sort bugs the highest priority with the ”B’”, ”C’”

and fewer important bugs self-addressed as time or company policy might once developing

a title for any of the consoles by corporations comparable to Microsoft, Nintendo or Sony,

this is additionally the stage where the testers should confirm that the game abides by all

18

Chapter 1 – Game development

of the ”standards” that are determined by the manufacturer of the console that has got to

be followed so as for the game to be approved for release. Includes elements comparable

to the ”B” button should continue to be used menusgames developed for the Microsoft

Xbox and therefore the ”A” button always has to be used to advance.

Once all of the bugs are mounted and every one of the standards has been determined

to be met, a final version of the game is created and, within the case of the consoles,

is distributed to the console maker to urge take a look at and approved for unharness

on the system in If bugs are found or approval isn’t met, the assembly team can fix

all of the issues in question, place it through their test department again to make sure

that everything was mounted and zip new was broken, and so another time submit it for

approval.

All that’s left to try and do once the game is approved by the console manufacturer or

simply ”finished” by the developer within the case of laptop games, is for the game to be

factory-made and so distributed to stores wherever you’ll be able to quit and get them[4].

1.5 Conclusion

Based on what we see later, there are multiple phases within a game production, each

with its own goals and set of objectives. Additionally, it was investigated what each phase

would be focused on and when each phase would be considered complete. This led to the

indication that the most time-consuming and thus the most uncertain phase would be

the production and the team size could potentially vary greatly depending on the game

concept as well, although the team size or economical limitations could, in reverse, help

shape the game concept. Moreover, some team members could potentially be part of two

departments simultaneously and need to be updated on both while still maintaining a

clear overview.

Having gotten a better understanding of the production phases, the next point of

interest would be to focus on the game development process and looking into work en-

gagement there were several types of management methodologies. However, not all would

be equally fit for running a game production as a game production tends to involve a lot

of changing requirements.

19

Chapter 2
Artificial intelligence in Game development

2.1 Introduction

It may seem unexpected, but the history of AI began long before computers. Even

the ancient Greeks suspected the existence of intelligence machines. A famous example

is the bronze giant Talos, who protected the city of Crete from invaders. In , René

Descartes wrote about thinking automata, believing animals were unlike machines that

could replicate themselves using rollers, pistons, and cams. However, the heart of this

story begins in 1931, when the Austrian logician, mathematician, and philosopher Kurt

Gödel showed that all true statements in first-order logic are differentiable. On the other

hand, this is not true for higher-order logic. , in which some true (or false) statements are

not provable. This made first-order logic a good candidate for automating derived logical

consequences.

In 1937 Alan Turing, an English computer scientist, mathematician, logician, crypt-

analyst, philosopher, and theoretical biologist, pointed out some of the limitations of

”intelligent machines” with the stopping problem: It is not possible to predict a priori

whether a program will stop, when not running. This has many consequences in theoret-

ical computer science. However, the fundamental step came thirteen years later, in 1950,

when Alan Turing wrote his famous article ” Computing Machinery and Intelligence ”,

in which he talked about the imitation game better known today as ” The Turing Test

”: a way to the definition of what an intelligent machine is. From the late 1950s to the

early 1980s, much AI research was devoted to “symbol systems”. These are based on two

components: a knowledge base made up of symbols and a reasoning algorithm that uses

reasoning to manipulate these symbols to extend the knowledge base itself.

During this period, many brilliant minds made significant advances. A name worth

mentioning is McCarthy, who organized a conference at Dartmouth College in 1956 where

the term ”artificial intelligence” was first coined. Two years later he invented the high-

level programming language LISP, in which the first self-modifying programs were written.

Other notable results include Gelernter’s Geometry Theorem Prover from 1959, Newell

and Simon’s General Problem Solver (GPS) from 1961, and Weizenbaum’s famous Eliza

chatbot, which became the first software to have a natural language conversation in 1966.

20

Chapter 2 – Artificial intelligence in Game development

The apotheosis of symbolic systems finally came in 1972 with the invention of PROLOG

by the French scientist Alain Colmerauer.

Symbolic Systems gave rise to many AI techniques that are still used in games, such

as B. Whiteboard architectures, pathfinding, decision trees, state machines, and direction

algorithms. The compromise of these systems is between knowledge and search. The

more knowledge you have, the less you need to search, and the faster you can search,

the less knowledge you need. This was even proved mathematically by Wolpert and

Macready in 1997. In the early 1990s, token systems became inadequate as they proved

difficult to scale to larger problems. Additionally, some philosophical arguments have

been advanced against it, arguing that symbolic systems are an incompatible model for

organic intelligence. As a result, old and new technologies inspired by biology have been

developed. With the success of Nettalk in 1986, a program for reading aloud, and the

publication of the book Parallel Distributed Processing by Rumelhart and McClelland that

same year, the old neural networks were swept off the shelf. In fact, ”back-propagation”

algorithms have been rediscovered as they allow a neural network (NN) to learn.

in terms of games, the quality of the experience depends on whether the game presents

a good challenge to the player. One way to present a good challenge is to offer computer

opponents, or sometimes even allies, that are capable of playing the game intelligently. In

most cases, this is not a trivial problem to solve, but fortunately, there is an entire field

of study that can help us ou—artificial intelligence (or AI for short). AI describes the

intelligence embodied in any manufactured device. If we design a character or opponent in

a video game that acts on its own, it is generally accredited with possessing AI. Human-

level AI is the stuff of dreams and science fiction. How do you take the accumulated

common sense and expertise of a human and distill it into a computer? Unfortunately,

this problem is currently unsolved, and it will likely be decades before we get a close

understanding of what it truly entails. Since general human-level intelligence is currently

impossible to re-create, researchers chip away from dozens of different angles by solving

much simpler problems. By sufficiently narrowing down the domain of an AI problem, it

becomes possible to create behavior that is reasonable and believable, especially in the

realm of video games[1].

2.2 AI In Games

AI in video games is very different from most other AI applications like military

defense, robotics, or data mining. The main distinction concerns the goals. The goal of

an AI programmer is to create fun and challenging opponents while the product is being

shipped. in time. These goals have the following five implications:

The AI must be intelligent but intentionally flawed :

- Opponents must be challenging.

- Opponents must keep the game fun and entertaining.

- The opponents must lose to the player in a challenging and fun way.

21

Chapter 2 – Artificial intelligence in Game development

The AI must not have any undesirable weaknesses :

- There shouldn’t be ”golden paths” to beating the same way every time.

- AI shouldn’t fail miserably or look stupid.

The AI must function within the game’s CPU and memory limitations :

- Most games are real-time games and their AIs need to react in real-time.

- Game AI rarely gets more than 10-20 percent of the frame time.

The AI should be configurable by game designers/players :

- Designers need to be able to adjust the difficulty, customize AI, and sometimes script

specific interactions.

- If the game is expandable, players can modify or customize the AI.

The AI must not stop broadcasting the game :

- Experimental techniques should be tested early in the development cycle during pre-

production.

- The AI techniques used must not endanger the game.

- If AI is given the freedom to evolve or change, it must be testable to ensure it will not

degrade when released to millions of consumers[1].

These requirements shape the perception of game developers in the field of AI. An

important difference is that the game’s AI doesn’t have to solve a problem perfectly, only

to the satisfaction of the player. For example, pathfinding may require the AI to calculate

a path through a room full of people. There are search algorithms to find the shortest

or cheapest route, but perfection is not generally a requirement for games. By relaxing

the standards for many problems, shortcut decisions can be made that either make the

problem manageable in real-time or result in large computational savings.

Another consequence of game-specific AI is that the AI has access to perfect knowledge.

For example, a given opponent doesn’t have to feel the world the way a physical robot

would. The game world is entirely in the computer and the AI has the luxury of doing its

analysis on these completely accurate representations. Much of robotics research focuses

on problems of visual recognition and mechanical movement, both of which are rightly

ignored in games. When designing game AI, game designers should think hard about

making the AI configurable.

Rather than creating a perfect standalone character or opponent, the goal is to create

a highly customizable AI that can be tweaked based on difficulty and individual attributes

like aggressiveness or accuracy. [13]By creating a slightly more general AI that can be

customized, game design experts can balance and tweak the game to ensure the game is

fun. Finally, an important consideration is that the product must be shipped on time.

Experimental AI techniques are exciting and intriguing, but they have the potential to

unnecessarily jeopardize the project. Therefore, new AI techniques should be tested early

in the development cycle. I promise everything being assembled three months before

shipping is just not acceptable.

22

Chapter 2 – Artificial intelligence in Game development

2.3 Game Agents

In most games, the goal of the AI is to create an intelligent agent, sometimes called

a non-player character (NPC). This agent acts as an opponent, ally, or neutral entity in

the game world. Since most game AI focuses on the agent, it is very useful to examine

game AI from this perspective. An agent has three key steps that it continuously goes

through.The stages are commonly referred to as the sensory-thinking-acting cycle. In

addition to these three steps, there is an optional learning or remembering step that can

also take place during this loop. In practice, most game agents don’t take that extra step,

but that’s slowly changing due to the added challenge and replayability that comes with

it[13].

2.3.1 Sensory

2.3.1.1 Sensing

The game agent must have information about the current state of the world to make

good decisions and act accordingly. Since the game world is presented entirely within the

program, perfect information about the state of the world is available at all times. This

means that there is no uncertainty about the world. The world provides the game agent

with accurate information about the existence, location, and status of any opponent,

barrier, or object[13] .

Unfortunately, while all this rich information is available, it can be expensive or diffi-

cult. for useful and relevant information. The game agent can always consult the game

world representation to locate the player or other enemies, but most players would con-

sider this cheating. Therefore, it is necessary to give the game’s agent certain limitations

in terms of what he can feel. For example, it may seem obvious, but game agents shouldn’t

be able to see through walls in general. Gaming agents generally have human limitations.

They are limited to only knowing about events or entities that they have seen, heard, or

perhaps told them. by other agents. Therefore, there is a need to model how an agent

should be able to see the world, hear the world, and communicate with other agents[23].

2.3.1.2 Vision

When modeling agent vision, it is important that the game engine provide fast methods

for determining the visibility of objects. While game AI typically isn’t very CPU intensive,

visibility testing can be enormously expensive. Therefore, it is often limited to particular

agents and performed only periodically[13].

Vision usually starts with obtaining a list of pertinent game objects. For example, the

agent might ask for a list of all enemies. Since agents are not concerned with most game

objects that populate a world, it would be wasteful to consider every object in the game

database. Once this pared-down list is constructed, a vector from the game agent to each

game object is calculated.[25] This object vector is then processed in the following ways

to determine if the agent can see the game object. The order of these steps is important

to minimize processing.

23

Chapter 2 – Artificial intelligence in Game development

2.3.1.3 Hearing

An interesting twist on agent awareness is allowing an agent to sense through hearing.

For example, if the player tiptoes past a sleeping enemy, the enemy may not notice.

However, if the player walks past the same enemy, the enemy can hear the sound. and

wake up. If the player starts shooting their gun wildly, agents who cannot see the player

may rush to the crime scene because they heard gunfire from that location[13].

Hearing is most commonly modeled through event-based notifications. For example,

if the player performs an action that causes noise, the game calculates where that noise

might travel and informs the agents within that area. Instead of carrying out complex

calculations of the sound reflection about the environment, this is usually achieved by

simply calculating the distance together with the delimited areas. If a noise emanates

within Area B and can be heard up to 10 meters away, all agents within Area B and 10

meters will be notified. This eliminates any computationally intensive sound modeling.[14]

2.3.2 Thinking

Once an agent has gathered information about the world through their senses, the

information can be evaluated and a decision made. This mindset is at the core of what

most people consider real AI, and it can be as simple or as sophisticated as needed. In

general, there are two ways an agent decides games. The first is that the agent relies

on pre-coded expertise, typically built via if-then rules, introducing randomness to make

agents less predictable.[13] The second is that the agent uses a search algorithm to find a

near-optimal solution.

2.3.3 Acting

Until now, the game agent’s perception and thought processes were invisible to the

player. Only in the action step can the player witness the intelligence of the agent.

Hence, this is a very important step for the agent to execute the chosen decisions. and

communicate their decisions to the player (if this improves the game and the player’s

perception of the agent). In other words, if the agent is brilliant and the player never

notices, the effort of making the agent smart was wasted.[13] There are numerous agent

actions in the game. Some common ones are changing location, playing an animation,

playing a sound effect, picking up an item, talking to the player, and firing a weapon.

The skill and subtlety with which the agent performs these actions affect the player’s

opinion of the agent’s intelligence. This places a tremendous strain on the variety and

aesthetic quality of the animations, sound effects, and dialogue created for the agent.

The agent can only express their intelligence in terms of the vocabulary these artistic

resources provide. On matchdays, agents had very little animation to deal with. As

3D games appeared, the agent’s repertoire expanded from several dozen animations to

hundreds and thousands. This complexity led to the need to handle animation selection

in a scalable way. Best practices in this area have brought the problem of animation

selection through data-driven design out of the code and right into the hands of game

designers and creators. It is important to pass the hidden work on to the player as it

24

Chapter 2 – Artificial intelligence in Game development

improves the game. For example, if the agent has concluded that he will inevitably die

soon, there may be nothing he can do to prevent that outcome. However, when the agent

just sits and dies, it looks pretty silly.

The result would be that the agent would use this information to pinch or yell ”Oh

no!” when he is dying. This way players don’t see a dumb agent getting killed; Instead,

they see an intelligent agent who understands the situation. Although the result is the

same, revealing intelligence greatly improves the agent and the game[14].

2.3.3.1 Communication

Many types of agents are expected to communicate with each other, so it can be

important to model the transfer of perceived knowledge between agents. Take the guards

for example. If a guard saw the player in a sensitive area, they could run away.[13]

and warn others. The other guards could use this information to make better decisions

themselves, such as deciding to hunt the player together, starting with the player’s last

known location. Similar to the mechanism of hearing, communication information will be

event-based. the form of notifications. When an agent has useful information and gets

within a certain distance of other agents, the information is sent directly to the other

agents. [49]

2.3.3.2 Reaction Times

When capturing the environment, it is important to build in artificial reaction times.

Agents should not be able to see, hear, or communicate immediately. For example, seeing

a guard take off at the exact moment the alarm sounds seems decidedly wrong. is made to

sound Because agents perceive the world instantly, simple timers can be used to simulate

reaction times. Typical reaction times for seeing and hearing can be on the order of a

quarter to half a second.Communication reaction times would be longer to model speaking

or gesturing between agents.

2.3.3.3 Search

Search is another technique commonly used to make smart decisions. The search uses

a search algorithm to discover a sequence of steps (a plan) that leads to a solution or

ideal state. Given the possible moves and the rules governing the moves, an algorithm

can explore the search space and find an optimal or near-optimal solution if one exists. In

games, fetch is most commonly used to plan where the agent should move next in many

games[13].

2.3.4 Learning and Remembering

learning and remembering together is an optional step in the Sensing-thinking-acting

cycle. Without it, the agent will never improve, never adapt to a specific player, and

never benefit from past events or information witnessed or shared with him. Interestingly,

learning and remembering aren’t necessarily important in many games, simply because

agents may not live long enough to benefit from what they’ve learned.[13]

25

Chapter 2 – Artificial intelligence in Game development

However, in games where the agent lasts longer than 30 seconds, there can be a

significant benefit when learning and retrieval are built-in. For game agents, learning is

the process of remembering specific outcomes and using them to generalize and predict

future outcomes. Typically this can be modeled using a statistical approach. By collecting

statistics about past events or outcomes, future decisions can use these probabilities. For

example, if the player is attacking from the left 80 percent of the time, the AI would

be smart to wait and prepare for that likely event Therefore, the AI was adapted to the

behavior of the player.[38]

Remembering can be as simple as noting the last place the player was seen with

that information during the thought cycle. By retaining some accounting information

about observed states, objects, or players, the agent can exploit earlier observations at

a later time. In order not to accumulate too much knowledge, these memories can fade

over time depending on how important they are. be a way to model selective memory

and forgetting. It is important to note that past knowledge does not always have to be

stored in the agent. Some types of knowledge can be stored directly in the world’s data

structures. (This refers to smart terrain) For example, if agents are constantly being

massacred in a certain location, that area can be marked as more dangerous. You could

think of it almost like the smell of death in a certain place. During the thought cycle,

path planning and tactical decisions may take this information into account and prefer to

avoid the area.[14]

2.4 Multi-Agent system

A multi-agent system (MAS) is a computerized system composed of multiple inter-

acting intelligent agents.[15] Multi-agent systems can solve problems that are difficult or

impossible for an individual agent or a monolithic system to solve.[16] Intelligence may in-

clude methodic, functional, procedural approaches, algorithmic search, or reinforcement

learning.[17][18] To create a multi-agent model, the smaller components that comprise

the system must be specified [19], These smaller components need to be fully modeled,

to become the agents that are at the heart of the modeling technique [19].

Each agent must be capable of making decisions (often dictated by a rule-set), and

these decisions may involve incomplete knowledge of its environment , The agents also

need to be able to receive information from their environments and depending on the type

of system being modeled, sometimes communicate with other agents , The environment

itself needs to be able to adjudicate the interactions between agents, but at no stage needs

to be able to determine the overall ramifications of these interactions. Instead, the overall

result will become apparent empirically, taking advantage of the emergent behavior of the

MSA to handle the complexity modeling [23].

The field of MAS is a well-established research domain in AI, which has an emphasis

on the resolution of problems by a society of agents. The distribution in several agents

is necessary because these problems can be complex or too large to be solved by a single

process, or even, they can need knowledge of several domains. MAS researchers look

for ’autonomy’ because the more autonomous the system is, the more efficient the task

distribution and execution, and the lower the computational load of the overall system.

26

Chapter 2 – Artificial intelligence in Game development

However, a MAS comprises the formalization of the coordination, hierarchical relation-

ships, and communication between agents. The MAS field is increasingly characterized by

the study, design, and implementation of societies of artificial agents. If the logic-based

and cognitive science approaches have contributed considerably to the development of

MAS, the inverse does not happen (the social sciences have been less influenced) [22].

Just in the economics and game theory area, there is a huge quantity of work in the M

AS field [21]. In these areas, MAS is essentially used by economists and game theorists to

study the evolution of cooperation from local interactions among self-interested agents.

Figure 2.1: An example of a Multi-Agent System for decision support[49]

2.5 Behavior Tree

There are several abstractions to help design complex behaviors for an autonomous

agent. Generally, these consist of a finite set of entities that map to particular behaviors

or operating modes within our system, e.g., “move forward”, “close gripper”, “blink the

warning lights”, “go to the charging station”. Each model class has some set of rules that

describe when an agent should execute each of these behaviors, and more importantly

how the agent should switch between them[34].

Behavior trees (BTs) are one such abstraction, which we will define by the following

characteristics:

They start at a root node and are designed to be traversed in a specific order until

a terminal state is reached (success or failure). Leaf nodes are executable behaviors:

Each leaf will do something, whether it’s a simple check or a complex action, and will

output a status (success, failure, or running). In other words, leaf nodes are where you

connect a BT to the lower-level code for your specific application. Internal nodes control

tree traversal: The internal (non-leaf) nodes of the tree will accept the resulting status

of their children and apply their own rules to dictate which node should be expanded

next[35]. Behavior trees actually began in the videogame industry to define behaviors for

NPCs :

Both Unreal Engine and Unity (two major forces in this space) have dedicated tools for

authoring BTs. This is no surprise, a big advantage of BTs is that they are easy to compose

27

Chapter 2 – Artificial intelligence in Game development

and modify, even at runtime. However, this sacrifices the ease of designing reactive

behaviors (for example, mode switches) compared to some of the other abstractions.

Since then, BTs have also made it into the robotics domain as robots have become

increasingly capable of doing more than simple repetitive tasks.

2.5.1 Behavior tree terminology

While the language is not standard across the literature and various software libraries,

We will largely follow the definitions in Behavior Trees in Robotics and AI. At a glance,

these are the types of nodes that make up behavior trees and how they are represented

graphically[35]:

Figure 2.2: Overview of behavior tree nodes.

Behavior trees execute in discrete update steps known as ticks. When a BT is ticked,

usually at some specified rate, its child nodes recursively tick based on how the tree is

constructed. After a node ticks, it returns a status to its parent, which can be Success,

Failure, or Running[47].

Execution nodes, which are leaves of the BT, can either be Action or Condition nodes.

The only difference is that condition nodes can only return Success or Failure within a

single tick, whereas action nodes can span multiple ticks and can return Running until

they reach a terminal state. Generally, condition nodes represent simple checks (e.g.,

“is the gripper open?”) while action nodes represent complex actions (e.g., “open the

door”).[35]

Control nodes are internal nodes and define how to traverse the BT given the status

of their children. Importantly, children of control nodes can be execution nodes or con-

trol nodes themselves. Sequence, Fallback, and Parallel nodes can have any number of

children, but differ in how they process said, children. Decorator nodes necessarily have

one child and modify its behavior with some custom-defined policy.[34]

2.5.1.1 Sequence :

Sequence nodes execute children in order until one child returns Failure or all children

returns Success.[35]

28

Chapter 2 – Artificial intelligence in Game development

Figure 2.3: Sequence node.

2.5.1.2 Fallback :

Fallback nodes execute children in order until one of them returns Success or all

children return Failure. These nodes are key in designing recovery behaviors for your

autonomous agents[35].

Figure 2.4: Fallback node.

2.5.1.3 Parallel :

Parallel nodes will execute all their children in “parallel”. This is in quotes because it’s

not true parallelism; at each tick, each child node will individually tick in order. Parallel

nodes return Success when at least M child nodes (between 1 and N) have succeeded, and

Failure when all child nodes have failed.

Figure 2.5: Parallel node.

29

Chapter 2 – Artificial intelligence in Game development

2.5.1.4 Decorator :

Decorator nodes modify a single child node with a custom policy. A decorator has

its own set of rules for changing the status of the “decorated node”. For example, an

“Invert” decorator will change Success to Failure, and vice-versa. While decorators can

add flexibility to your behavior tree arsenal, you should stick to standard control nodes and

common decorators as much as possible so others can easily understand your design.[35]

Figure 2.6: Decorator node.

2.5.1.5 Execution node :

Execution nodes are leaves of the behavior tree where tasks are executed.[47]

2.6 Common AI Techniques

The following survey of common AI techniques is designed to provide an executive

summary of the many tools that an AI programmer can wield. Since game AI is ap-

proached from so many diverse directions, a whirlwind tour of techniques is a good way

to familiarize oneself with the diverse landscape of available solutions. The next section

similarly provides a survey of promising AI techniques[25].

2.6.1 Finite State Machines

Finite State Machines (FSMs) are generally recognized as the most widely used soft-

ware pattern within game AI. This kind of popularity is no accident. Rather, FSMs are

widely used because they have some amazing properties. They are easy to program. ,

easy to understand, easy to debug, and completely general for any problem. They may

not always provide the best solution, but they always get the job done with minimal risk

to the project. However, FSMs also have a darker side. Many programmers view them

with suspicion as they tend to be created ad hoc with no consistent structure. They

also tend to get out of control as the development cycle progresses. This poor structure

coupled with growth makes many FSM implementations difficult to maintain and brittle.

However, for all their warts, FSMs remain the most compelling way to structure most

game AI implementations[20].

30

Chapter 2 – Artificial intelligence in Game development

2.6.1.1 The basics of Finite State Machines

Formally, a finite state machine is an abstract computational model consisting of a set

of states, an initial state, an input vocabulary, and a transition function that maps inputs

and current states to the next state. [24]The calculation starts from the initial state and

transitions to new states as inputs are received. The FSM can perform work within a

particular state, known as a Moore machine, or at transitions between states, known as

a Mealy machine. Game developers deviate from the strict definition of FSM in many

ways. First, the states themselves are used to define behaviors that contain code specific

to that state.[35]

For example, states can be behaviors such as walking, attacking, or fleeing. Second,

the single transition function is usually distributed across the states so that each state

knows exactly what will cause its transition to another state, which helps maintain the

relationship between the states. and easy-to-understand transitions. Third, the bound-

ary between Moore and Mealy machines is fluid, since work is often done both within a

state and during transitions. Fourth, when transitioning into a new state, it is extremely

common to exploit chance and randomness. For example, an agent might flee after being

attacked with a 10 percent chance. Fifth, extra state information not directly represented

in the FSM, such as agent health is often used as a deciding factor for some state transi-

tions. Since FSMs can elegantly capture the mental states or behaviors of an agent, they

are a natural choice for defining character AI[24].

2.6.2 Blackboard Architecture

A blackboard architecture is designed to solve a single complex problem by posting

it on a shared communication space, called the blackboard. Expert objects then look

at the blackboard and propose solutions. The solutions are given a relevance score, and

the highest-scoring solution (or partial solution) is applied.[27] This continues until the

problem is ”solved.”

Game Example: In games, the blackboard architecture can be expanded to facil-

itate cooperation among multiple agents. A problem, such as attacking a castle, can be

posted, and individual units can propose their role in the attack.

The volunteers are then scored, and the most appropriate ones are selected[26]. Al-

ternatively, the blackboard concept can be relaxed by using it strictly as a shared com-

munication space, letting the individual agents regulate any cooperation. In this scheme,

agents post their current activities and other agents can consult the blackboard to avoid

beginning redundant work. For example, if an alarm is sounded in a building and enemies

start rushing the player, it might be desirable for them to approach from different doors.

Each enemy can post the door through which it will eventually enter, thus encouraging

other enemies to choose alternate routes[27].

31

Chapter 2 – Artificial intelligence in Game development

2.6.3 A* Pathfinding

A* pathfinding (pronounced A-star) is an algorithm for finding the cheapest path

through an environment. Specifically, it is a directed search algorithm that exploits knowl-

edge about the destination to guide the search intelligently. By doing so, the processing

required to find a solution is minimized. Compared to other search algorithms,A* is the

fastest at finding the absolute cheapest path[28][29][30]. Note that if all movement has

the same traversal cost, the cheapest path is also the shortest path.

Game Example: The environment must first be represented by a data structure

that defines where movement is allowed[41]. A path is requested by defining a start

position and a goal position within that search space. When A* is run, it returns a list of

points, like a trail of breadcrumbs , that defines the path. A character or vehicle can then

use the points as guidelines to find its way to the goal. A* can be optimized for speed

[28][29][30], for aesthetics, and general applicability to other tasks.

2.6.4 Genetic Algorithms

A genetic algorithm (GA) is a technique for search and optimization that is based

on evolutionary principles. GAs represent a point within a search space using a chro-

mosome that is based on a handcrafted genetic code.[31] Each chromosome consists of a

string of genes that together encode its location in the search space. For example, the

parameters of an AI agent can be the genes and a particular combination of parameters

a chromosome. All combinations of parameters will represent the search space. By main-

taining a population of chromosomes, which are continually mated and mutated, a GA

can explore search spaces by testing different combinations of genes that seem to work

well.[32] A GA is usually left to evolve until it discovers a chromosome that represents a

point in the search space that is good enough. GAs outperform many other techniques

in search spaces that contain many optima and are controlled by only a small number of

parameters, which must be set by trial and errorcite [31].

Game Example: Genetic algorithms are very good at finding a solution in complex

or poorly understood search spaces. For example, your game might have a series of

settings for the AI, but because of interactions between the settings, it is unclear what

the best combination would be. In this case, a GA can be used to explore the search space

consisting of all combinations of settings to come up with a near-optimal combination[32].

This is typically done offline since the optimization process can be slow and because a

near-optimal solution is not guaranteed, meaning that the results might not improve

gameplay.

2.6.5 Filtered Randomness

Filtered randomness attempts to ensure that random decisions or events in a game

appear random to the players. This can be achieved by filtering the results of a random

number generator such that non-random-looking sequences are eliminated, yet statistical

32

Chapter 2 – Artificial intelligence in Game development

randomness is maintained. For example, if a coin is flipped eight times in a row and

turns up heads every time, a person might wonder if there was something wrong with the

coin. The odds of such an event occurring are only 0.4 percent, but in a sequence of 100

flips, either eight heads or eight tails in a row will likely be observed. When designing

a game for entertainment purposes, it is desirable for random elements to always appear

random to the players. The technique involves keeping a short history of past results

for each random decision that should be filtered. When a new decision is requested, a

random result is generated and compared to the history. If an undesirable pattern or

sequence is detected, the result is discarded and a new random result is generated. The

process is repeated until a suitable result is accepted. Surprisingly, reasonable statistical

randomness is maintained despite deliberate filtering[33].

Game Example: Simple randomness filtering is very common in games. For ex-

ample, if a character plays a random idle animation, often the game will ensure that the

same idle animation won’t be played twice in a row. However, filtering can be devised to

remove all peculiar sequences.

For example, if an enemy can randomly spawn from five different points, it would be

extremely undesirable for the enemy to spawn from the same point five times in a row.

It would also be undesirable for the enemy to randomly spawn in the counting sequence

12345 or favor one or two particular spawn points in the short term, like 12112121.

Although these sequences can arise by chance, they are neither intended nor anticipated

when the programmer wrote the code to choose a spawn point randomly. By detecting

and filtering undesirable patterns or sequences with simple rules[33], a particular random

decision can be guaranteed to always appear fair and balanced in the short term while

still maintaining good statistical randomness.

2.6.6 Emergent Behavior

Emergent behavior is behavior that wasn’t explicitly programmed, but instead emerges

from the interaction of several simpler behaviors. Many life forms use rather basic behavior

that, when viewed as a whole, can be perceived as being much more sophisticated. In

games, emergent behavior generally manifests itself as low-level simple rules that interact

to create interesting and complex behaviors.

Some examples of rules are seek food, seek similar creatures, avoid walls, and move

toward the light. While any one rule isn’t interesting by itself, unanticipated individual

or group behavior can emerge from the interaction of these rules.

Game Example: Locking is a classical example of emergent behavior, which results

in realistic movement of flocks of birds or schools offish[34].

However, emergent behavior in games is more commonly seen in city simulations, such

as the ambient life in the Grand Theft Auto series. The city’s inhabitants, composed

of pedestrians, cars, taxis, ambulences, and police, create complex behavior from the

interactions of agents using simple rules. Just like an ant colony exhibits large-scale

33

Chapter 2 – Artificial intelligence in Game development

behavior from the actions of individual ants, a city is a complex system that emerges

from the behavior of individual agents.[35]

2.6.7 Neural Networks

Neural networks are complex nonlinear functions that relate one or more input vari-

ables to an output variable. They are called neural networks because internally they

consist of a series of identical nonlinear processing elements (analogous to neurons) con-

nected in a network by weights (analogous to synapses). The form of the function that a

particular neural network represents is controlled by values associated with the weights of

the network. Neural networks can be trained to produce a particular function by showing

them examples of inputs and the outputs they should produce in response. This training

process consists of optimizing the network’s weight values, and several standard train-

ing algorithms are available for this purpose. Training most types of neural networks is

computationally intensive[36], however, making neural networks generally unsuitable for

in-game learning. Despite this, neural networks are extremely powerful and have found

some applications in the games industry.

Game Example: In games, neural networks have been used for steering racecars in

Colin McRae Rally 2.0 and the Forza series, and control and learning in the Creatures

series. Unfortunately, there are still relatively few applications of neural networks in

games, as very few game developers are actively experimenting with them[37].

2.6.8 Reinforcement Learning

Reinforcement learning (RL) is a powerful machine learning technique that allows a

computer to discover its own solutions to complex problems by trial and error. RL is

particularly useful when the effects of the AI’s actions in the game world are uncertain or

delayed. For example, when controlling physical models like steering an airplane or racing

a car, how should the controls be adjusted so that the airplane or car follows a particular

path and What sequences of actions should a real-time strategy AI perform to maximize

its chances of winning. By providing rewards and punishments at the appropriate times,

an RL-based AI can learn to solve a variety of difficult and complex problems.[38]

2.7 Behavior trees vs. finite-state machines (FSM)

In theory, it is possible to express anything as a BT, FSM, one of the other abstractions,

or as plain code. However, each model has its advantages and disadvantages in its intent

to aid design on a larger scale. Specific to BTs vs. FSMs, there is a tradeoff between

modularity and reactivity. Generally, BTs are easier to compose and modify while FSMs

have their strength in designing reactive behaviors.

34

Chapter 2 – Artificial intelligence in Game development

2.8 Conclusion

Game AI is distinctively different from many other related AI fields. The goal is to

create intelligent opponents, allies, and neutral characters that result in an engaging and

enjoyable experience for the player. Ultimately, the goal is not to beat the player, but

rather to lose in a fun and challenging way.

Most games are populated by agents who sense, think, and act independently. how-

ever, even a single opponent can be thought of as an agent. Advanced agents might also

learn and remember to present a deeper challenge. It is important to realize that whatever

an agent senses, thinks, or remembers, is completely invisible and inconsequential to the

player unless the agent can express the result through actions. An agent’s outward ap-

pearance through movement, manipulation, animation, and dialogue is critical to making

the agent appear intelligent. Typically, this requires tight integration and collaboration

with the people who generate the art assets.

One of the most enduring techniques for endowing intelligence on agents is the ubiq-

uitous finite-state machine. This simple computational model allows complex expertise

to be expressed in a simple, easy-to-understand manner that is also convenient to debug.

The actions and mindsets of an agent eloquently map to the states of an FSM, further

allowing for simple, yet effective modeling of behavior. With the many enhancements

developed for FSMs, it is easy to understand why they have become so universal within

AI game development.

Finally, there are dozens of common and promising techniques for adding intelligence

to games. Each game is unique and might require mixing and matching several different

techniques. There is no single solution, and the resulting design is highly dependent on

the exact requirements of the game. Therefore, a developer must become familiar with a

broad range of techniques to experiment and make intelligent implementation decisions.

35

Chapter 3
System conception

3.1 Introduction

My goal is to create a game that uses artificial intelligence, coordinated in this chapter

we will introduce the basic and advanced concepts of the game industry. Then using

Concept map we will collect raw system information. At this point, We will also outline

the system, as well as interact with the system and I’ll finish with a conclusion.

3.2 The basic structure of the game engine

The basic concepts of the game industry start with the basic structure of the game

engine program, in the sense of more precisely the game engine, which represents the

nucleus of the system and controls all the component parts of the game, To better un-

derstand game basic structures, we have to think of a game system. Imagine there are

various sub-parts that this system controls[50]. To picture this better, you can examine

the diagram below :

Figure 3.1: The basic structure of the game engine program

36

Chapter 3 – System conception

I will describe the various pieces that make up the game mechanics in the next few

sections below[50].

3.2.1 System (Game system)

As you can see in the diagram above, the game system takes on the following tasks:

- Handles the loading and saving of files.

- It then enables the intro animation to run using the audio and graphic elements.

- While the game interface is being used, user input ensures that the graphics and sound

parts work in harmony.

- Finally, the game system ensures that the graphics, sound, user input, AI and network

parts work in harmony in the game.

3.2.2 Resources

The Resources describe the necessary files for the game located on the hard disk.

- These resources contain configuration files that describe the default settings in which

the game will run.

- If available, it contains the video file for the intro that will be played when the game

first starts.

- Contains files where the user gets information about the game before the game begins.

- It contains the graphics, music and chapter information in the game, alongside every

other element the game will require to display audio and visual data to the player[50].

3.2.3 Game model

It includes the following:

- The game model is the state of the game graphics, music and text files loaded into

memory from the resource.

- Image files are stored in memory or in the texture memory of the video card.

- Section, score, etc. information is kept in variables and data structures within the game

model.

3.2.4 Upload and Save

This is the part that takes the graphics, music and other information from the source

and puts it into the memory (game model) and undertakes the process of saving it back

to the source in case of changes in scores, when the game is saved – or the save state – or

when the game is recorded.

- Upload: Configuration files, chapter files, image files, music and sound files, 3D model

files, video files, and help files.

- Save: Score files and other documents to be saved during the game.[50]

37

Chapter 3 – System conception

3.2.5 Graphics

This is the most important and hardest part of the game in our opinion. Because it

is impossible to have a game without visuals (unless you are creating an old school text-

based video game). This part is responsible for painting the screen and the following:

- Playing any video.

- Displaying the game interface.

- Viewing and displaying scores, help and configuration information.

Displaying the game’s own graphics and visual elements.

3.2.6 User input

A game without interaction would be like watching a movie. User Interaction is one

of the sines qua non of game mechanics that connects users to the game. The system

is constantly interacting with the user. Keyboards, mice, cameras, and so forth are all

capable of taking in user input. User input is the part of the game mechanic where we’re

going to use the hardware and equipment that lets the user interact with the game. User

input allows a player to:

- Use the Game Interface.

- Review Help Files.

- Review Score Files.

- Configure the system and game-related features.

- Control the user’s character in the game.

3.2.7 Sound and particle system

If you truly want to understand the importance of sound and music in a video game,

try turning off the sound while playing your favorite game. You will notice that the value

of the game drops significantly when there is no sound. To me, the value of the sound is

as valuable as the graphics of the game.

- Music playing in the background.

- Sound effects for collisions and movements.

3.2.8 Artificial intelligence (AI)

Let’s consider the intelligence level of the enemies in the game. The more humanoid

they look and the more intelligent the behavior, the more fun the game will be. It doesn’t

just have to be the enemy either. In an open world game, citizens passing by look at

their wristwatches, wipe the sweat on their foreheads in sunny weather, give way to you,

even argue with you, attack you when you treat animals badly, and so forth. All of these

elements can fall into the category of artificial intelligence.

3.2.9 Network listening and sending

Network listening and sending is the part of the game mechanic that allows the game to

be played by more than one person, also known as multiplayer or online play. In this part,

38

Chapter 3 – System conception

the parties send information to the game server and the information received by listening

to the server is updated in the game. Network listening and sending is responsible for:

- Establishing the Session: The players who will participate in the game agree on which

protocol and on which port they will communicate at first.

- Packet Delivery: The moves made in the game are sent to the server in packets. Then

the server distributes it to all parties after making the necessary change.

- Package Pickup: Simultaneously, the parties are aware of the changes made by listening

to the server and reflect this to the game.

[50]

3.2.10 Hardware

Gamers love the various elements of a game and are always looking for better graphics,

music, physics and artificial intelligence. For all of this to happen (and for games to get

more complex over time), one of two conditions must be met:

Software optimization should be practiced and new algorithms should be developed. Ap-

propriate equipment and hardware should be used, including increasing processing speed

and memory.

Today, new algorithms and code optimization discoveries progress much slower than the

speed at which new hardware develops. To combat this, instead of new algorithms, the

developer should focus on issues such as reusability, code openness, and code security

(encapsulation). To facilitate this, the hardware tries to increase the processor speed and

memory capacity as much as possible for these new requests.

Many different categories of hardware can fall into this section, including the following:

- Graphics cards.

- Processors.

- Motherboards.

- Sound cards.

- Monitors, speakers and other input devices.

3.3 The general structure of the system

The general structure of the system is a functional view of the system architecture.

By the concept map, We will be in constant contact with the system to define its limits,

and thus avoid straying too far from the real needs of the final video game.

In this part, we will define the basic pillars of the game with a simplified model, and

the part dedicated to artificial intelligence will be part of it, with the choice of the types of

agents that we will design. After defining the types of agents, we will choose an approved

model for building agents.

3.3.1 Concept Map

A concept map is a diagram that illustrates the relationship between concepts. It

is a graphical tool that is often used by graphic designers, engineers and architects to

39

Chapter 3 – System conception

structure and organize knowledge. Concept maps typically depict ideas and information

as circles or boxes, which are connected with labeled arrows in a hierarchical structure

that is downward-branching. The relationship between concepts can be articulated using

linking phrases such as “causes,” “requires,” or “contributes to.”

Concept map refers to a visual organizer that can enrich students’ understanding of

a new concept. It is similar to brainstorming and mind mapping, since it challenges

students to articulate the essential concepts or ideas. However, unlike brainstorming and

mind mapping, concept mapping defines how these essential components relate to each

other. It results in maps that are structured and complex, but also more informative.[51]

A concept map is a diagram that shows the relationships between different ideas. This

helps you understand how they’re connected.

Every concept map — whether it’s simple or complex — is made up of two key

elements:

Concepts : These are typically represented by circles, ovals, or boxes and are called

“nodes”.

Relationships : These are represented by arrows that connect the concepts, and

the arrows often include a connecting word or verb (but they don’t have to). These arrows

are called “cross-links”.[51]

40

Chapter 3 – System conception

3.3.2 General Architecture

The image below represents the basic model of the AI that represents the part framed

in red in the previous image:

Figure 3.2: General Architecture of the game

I divided the general structure of the game system into 4 main branches:

3.3.2.1 HUD

The HUD (heads-up display) or status bar is the method by which information is

visually relayed to the player as part of a game’s user interface. It takes its name from the

41

Chapter 3 – System conception

head-up displays used in modern aircraft. The HUD is frequently used to simultaneously

display several pieces of information including the main character’s health, items, and an

indication of game progression (such as score or level)[52].

3.3.2.2 Graphics

This section includes everything that is visible from materials, lighting, shadows, in-

cluding designs (all models are included in this part) and the creation of environments in

a general sense. This section contains the overall appearance of the game.

3.3.2.3 Sound and particle system

This section includes the sound system of the world and the characters, and the visual

effects system responsible for adding vitality to the game.

3.3.2.4 Level

It is considered the most important and complex part that includes several systems

that represent the game mechanics from the movement and combat system and AI systems

that represent the enemies in general and the interactive systems of the game. AI is the

important part of the level contains 3 types of agents::

- The first type, the less intelligent, does not have freedom of choice in movement.

- The second type (big robot) chooses random places for movement.

- The third type (the drone) uses a motion algorithm, which is an intelligent navigation

system.

3.3.3 AI Architecture

The image below represents the basic components of the game [53]:

Figure 3.3: The AI architecture

42

Chapter 3 – System conception

This architecture system is divided into 3 main branches:

3.3.3.1 Game World / Environment :

This part represents the environment in which AI interacts. Which contains the main

character who represents the target and the rest of the objects that are generally consid-

ered barriers, Add to that other physical factors such as gravity and others.

3.3.3.2 Agent :

It is divided into 4 main parts, each part has a special task, which is:

Perception : This part responsible for receiving information is by hearing, seeing,

feeling, and others. The information is filtered and presented to the other parts to do

their work.

Multi-Agent : This is the part responsible for communication between agents.

AI Grouping : It is the analytical part of the team where it develops strategies for

agents to follow.

Single-Agent : This part represents the individual intelligence of each agent who

is responsible for the individual decisions of the agent.

3.3.3.3 External Algorithms :

It is a set of algorithms that help an agent build and act upon decisions. Like algo-

rithms to find the shortest path to the goal. Any algorithm can be used provided that it

is effective for the system in particular.

3.4 Clarification of technical needs

After defining the general structure of the system, we need a model for determining

the path and the steps that must be followed to create the different parts of the game

system represented in the following model[54]:

43

Chapter 3 – System conception

Figure 3.4: The game production pipeline architecture

44

Chapter 3 – System conception

3.5 The detail structure of the system

In this section, a more detailed scheme of the system is presented that shows the

relationship between each part of the game :

Figure 3.5: Game system simplified class diagram -upper half-

45

Chapter 3 – System conception

Figure 3.6: Game system simplified class diagram -lower half-

To make a diagram showing how AI works, we need to follow a specific scenario.

3.5.1 Scenarios of the game

My scenario is composed of 04 parts:

46

Chapter 3 – System conception

Search and roaming : The agent roams and searches for the main character by

following pre-defined or randomly generated paths in the environment at this point the

agent is using his senses to detect the main character.

stalking : When the main character is revealed, the client is chased after him using

path-finding algorithms as well as avoiding barriers to achieve the desired goal.

Fighting : After reaching the target, the agent tries to eliminate the target using

the available weapons.

Communication : It represents the communication system between multiple agents.

3.5.2 Conception of the artificial intelligence-based multi-agent

system

the MAS is divided into two parts.

3.5.2.1 Conception of the agents’ individual reasoning and decision-making

The planning and decision-making of individual enemies are modeled using behavior

trees. All agents execute a copy of the same tree, but depending on their custom situation

and perception of the environment they take different decisions and actions. Section 1.1

introduces behavior trees and Shows the main components of the behavior tree. The

behavior tree of the game applies the three main situations or states described From

before: Search and roaming attempting to detect the player, stalking trying to reach the

player, Fighting to defeat the player, and doing tasks that are not directly connected with

the player at that moment (since there is no information about the player’s actions). In

the game, there are three types of enemies, each enemy has its intelligence represented in

the behavior tree, despite the great difference in the way each behavior tree works, the

method of making it remains subject to the same laws.

Each behavior tree is broken down into different subsets, depending on whether the

enemy can see the player character, whether they can’t but have some other information

that can be used to try to find the player character (any sound or visual stimulus that may

be related to the player and that has an estimated or exact source location), or whether no

relevant information about the player is available. This is checked by different decorator

nodes. (Decorator nodes are all shown in blue, but they do not all act the same way.

The mentioned ones are represented by a rhomboid shape, and they do not execute in a

preestablished moment.

Instead, they periodically check a conditional expression to ensure that it is true;

if not, they immediately abort the execution of their subtree and return false to the

decorator’s parent node. these nodes allow resetting the execution flow when something

requires changing from one of the logical states (the one in which the player character

is visible, the one in which they are not seen but there is some information that may

help to find them or the one in which no relevant information is available) to another

47

Chapter 3 – System conception

one. This can happen after one of the updates of the service that checks perceptions,

interruption related to hearing or communication is received. (service nodes are all shown

in green color), For example, if an agent has no information about the player, the tree will

be executing the idle subtree (e.g. patrolling in the random zone or patrolling regularly

between two points), but if the player character is suddenly seen by the agent (i.e.detected

by the periodically executing service node or enter the field of vision) the decorator that

requires to be idle with no information about the player stops being true, so the flow of

execution returns to the parent selector, which leads to entering the subtree that has the

condition of being able to see the player character, that leads to trying to chase him, and

upon reaching it the combat behavior tree activates to try to defeat the player. (All tasks

performed by the behavior tree represent by the tasks nodes and are all shown in pink

color).

Representation of the game behavior tree :

Figure 3.7: Representation of the first type of behavior tree for enemy characters

48

Chapter 3 – System conception

Figure 3.8: Representation of the second type of behavior tree for enemy characters

49

Chapter 3 – System conception

Figure 3.9: Representation of the third type of behavior tree for enemy characters

3.5.2.2 Conception of Multi-agent system analysis: communication between

agents

All the enemy characters in the game form a single MAS. The objective of both

individual agents and the system is to defeat the player character as fast as possible.

One type of enemy can send information to all other agents (They have to be under

his command) at any time: it should be thought of as radio communication between

machines. Enemies examine the information they have received from leaders and decide

how to use it: agents are independent, but they take into consideration What the leaders

say.

In our game, two types of information can be communicated, and they are all related

to the player’s character. as shown in Figure 3.10, the first one is the Order to attack

the main character when has just been seen, the orders updated with time, and the

approximate location from where the sender agent thinks that the character’s footsteps

have been heard or was it last seen, the second one is the Order to withdraw When losing

track of the main character Where all his followers must withdraw.

50

Chapter 3 – System conception

Figure 3.10: Representation of the Multi-agent system

3.6 Conclusion

In this chapter, We have given an overview of our game system, a game that uses a

MAS to control agents. We started by showing the infrastructure of the game engine which

is the key to understanding what We need, and then We detailed the general structure of

the system: the base of the game, its overall architecture, then the infrastructure of the

agent and MAS for the game AI system. Then put the stages We need to pass to end up

with an integrated game based on artificial intelligence.

51

Chapter 4
System implementation

4.1 Introduction

I have almost come to the end of the development process, and in this chapter, We

will make choices about programming. We start with the presentation of programming

languages, and the development tools used in our Game. Finally, We end with the pre-

sentation of the agent system of our final Game.

4.2 Development languages used

In order to develop a game, one must master a combination programming languages.

I will describe the various pieces that make up the game mechanics in the next few

sections below.

4.2.1 C++

Released in 1985, C++ is one of the best programming languages available. C++

is a highly optimized code that allows for greater memory management, a necessary

attribute of high-poly, and high-definition video games. C++ programming allows for

stylized gameplay and is a popular language for triple-A (AAA) titles, as well as indie

games. C++ language runs with most game engines, making it one of the most common

selections for game programmers.[55] Since C++ is a high-level language that will teach

you the basics of object-oriented programming (OOP), it’s a good idea to learn it. It is

also the language used to create console and Windows games. Also, it uses OpenGL or a

similar framework. C++ is a fast-compiling programming language. You also get a lot of

say in memory management. It has extensive libraries useful for designing and powering

complex graphics. There’s a lot of literature for you to study and learn from, because it’s

been the video game programmer’s language of choice for decades, and you’ll find online

communities ready and willing to answer your questions.[56]

It would be a lie if we said that C++ is easy to learn. It is difficult to learn compared

to other programming languages. However, it can be useful not only because C++ games

are easy to distribute on various platforms, but also because if you know C++ you can

52

Chapter 4 – System implementation

quickly learn C# and other object-oriented languages, including C and Java (even though

Java is not technically an OOP language). C++, C, Java, and C# are some of the most

actively used programming languages today.[56]

To summarize, learning C++ is a good choice if you want to create video games from

scratch for multiple platforms.

Figure 4.1: C++ logo

.

4.2.2 C#

Pronounced “C sharp” ,this popular programming language was released by Microsoft

in 2000. C# is a relatively easy programming language to learn and is often used

by smaller game studios. C# is another one of the main codes seen in popular game

engines.[55] The benefit of C# for video game development lies in the XNA framework.

This is a set of tools and workspaces by Microsoft that are particularly suitable for de-

veloping games on Xbox or Windows platforms.[56]

If you compare C++ and C#, you might consider this example: C++ is like a manual

transmission car; C#, on the other hand, is like an automatic transmission car. Let’s

consider the Unity game engine. If you use the Unity game engine, you have to code your

game scripts in C#. However, the core of this game engine was developed using C++

code.[56]

The platform you target, the game you want to make, the game engine you will use,

etc. will affect the language you choose. No matter, however, learning C# for game

development would be a great idea.[56]

Figure 4.2: C# logo

.

53

Chapter 4 – System implementation

4.3 Development tools

The general structure of the system is a functional view of the system architecture.

By the concept map, We will be in constant contact with the system to define its limits,

and thus avoid straying too far from the real needs of the final video game.

4.3.1 Sourcetree

Sourcetree is a free graphical user interface (GUI) desktop client that simplifies how

you interact with Git repositories so that you can fully concentrate on coding. Say goodbye

to the command line — this GUI makes it easy to visualize and manage your repositories.

It also integrates with Mercurial to ensure an efficient, consistent development process.

Visualize your work and execute push commands with a whole new level of confidence.

Even changing or discarding a file, a hunk, or an entire line is now simple.[57]

Figure 4.3: Sourcetree logo

.

4.3.2 Blender

Blender is a free and open-source 3D computer graphics software tool set used for cre-

ating animated films, visual effects, art, 3D-printed models, motion graphics, interactive

3D applications, virtual reality, and, formerly, video games. Blender’s features include 3D

modeling, UV mapping, texturing, digital drawing, raster graphics editing, rigging and

skinning, fluid and smoke simulation, particle simulation, soft body simulation, sculpting,

animation, match moving, rendering, motion graphics, video editing, and compositing.[58]

54

Chapter 4 – System implementation

Figure 4.4: Blender logo

.

4.3.3 Quixel Mixer

Quixel Mixer is primarily a texturing software that allows you to create and Utilize

Physically Based Rendering (PBR) materials. Its biggest advantage is it allows you to

procedurally create tileable textures and directly paint on 3d models utilizing a large free

library of materials and the Quixel Megascans library.[59]

Figure 4.5: Quixel Mixer logo

.

4.3.4 Visual Studio

Visual Studio, also known as Microsoft Visual Studio and VS, is an integrated de-

velopment environment (IDE) for Microsoft Windows. It is a tool for writing computer

programs, websites, web apps, and web services. It includes a code editor, debugger,

GUI design tool, and database schema designer, and supports most major revision con-

trol systems. It is available in both a free ”Community” edition and a paid commercial

version.[60]

55

Chapter 4 – System implementation

Figure 4.6: Visual Studio logo

.

4.3.5 Unreal Engine

Unreal Engine (UE) is a game engine developed by Epic Games, first showcased in the

1998 first-person shooter game Unreal. Initially developed for PC first-person shooters, it

has since been used in a variety of genres of three-dimensional (3D) games and has seen

adoption by other industries, most notably the film and television industry. Written in

C++, the Unreal Engine features a high degree of portability, supporting a wide range of

desktop, mobile, console, and virtual reality platforms.[61]

Figure 4.7: Unreal Engine logo

56

Chapter 4 – System implementation

.

4.4 Implementation of the characters’ abilities and

interactions with the world

To be able to move in the world and interact with other game elements, characters

use a set of components, which are the parts that make characters a functional whole.

A capsule component is the invisible root element of the character, and it defines the

base collision with the world. Its diameter and height values match the desired character

dimensions. A mesh component attached to the root capsule gives characters a physical

appearance and the ability to play different animations. A special type of Blueprint,

an Animation Blueprint, is responsible for toggling animations when the characters’ cir-

cumstances change (e.g. switching from an idle animation to a jumping one when the

character starts jumping).Figure 4.8 shows the state machine of the Animation Blueprint

used by the main character, Many conditions are tested to determine the exact animation

that is played on different bones of the character’s mesh in each state of the state machine.

For example, in the idle or running state, the legs are influenced by the current speed

of the character: an idle animation should be played when speed is zero, while a running

animation is a right choice when speed is high; the two animations are blended with

different weights depending on speed. If the character has a weapon, it is checked whether

the character is doing a specific action with it, to determine which animation should be

played.

Figure 4.8: Detail movement system for the main character

57

Chapter 4 – System implementation

Figure 4.9: A part of the movement system of the main character

Characters also have a movement component that allows them to move. Unreal Engine

has a type of movement component thought for anthropomorphic characters that allow to

easily configure how characters should move. Among the parameters that can be set, one

can find the maximum speed or the rotation rate of the character, for example. Other

values include the maximum height that single steps can have to allow the character

to go upstairs without the need of jumping. The ability to jump is precisely another

of the built-in features of the characters’ movement component, and parameters such

as the jump speed can be set. Crouching is supported as well. Despite of the built-in

characters’ capabilities, it is the programmer’s task to handle the animation transitions to

be coherent with the change in actions, checking conditions in the Animation Blueprint

(e.g. the transition to the jump animation in the state machine should only take place if

the character is physically jumping).

The player character’s physical movement is determined by the player’s input, e.g. the

character physically skates when the skate key or button is pressed (if the character is not

already dashed or in a situation where skating is not possible).

58

Chapter 4 – System implementation

4.5 Implementation of the AI based multi-agent sys-

tem

4.5.1 the agents’ individual reasoning and decision-making

In this part We will create the behavior trees that were designed in the previous

chapter:

Figure 4.10: Implementation of the first type of behaviour tree for enemy characters, as

seen inside Unreal Engine’s behaviour tree editor

59

Chapter 4 – System implementation

Figure 4.11: Implementation of the second type of behaviour tree for enemy characters

Figure 4.12: Implementation of the third type of behaviour tree for enemy characters

(Drone)

60

Chapter 4 – System implementation

This is an overview of enemies with the behavior tree system.

Figure 4.13: The first type of enemy characters

Figure 4.14: The second type of enemy characters

61

Chapter 4 – System implementation

Figure 4.15: The third type of enemy characters (Drone)

4.5.1.1 EQS

The Environment Query System (EQS) is a feature within the AI system in Unreal

Engine 4 (UE4) that is used to collect data from the environment. Within EQS, you can

ask questions about the data collected through a variety of different Tests which produces

an Item that best fits the type of question asked.

An EQS Query can be called from a Behavior Tree and used to make decisions on

how to proceed based on the results of your Tests. EQS Queries are primarily made

up of Generators (which are used to produce the locations or Actors that will be tested

and weighted) and Contexts (which are used as a frame of reference for any Tests or

Generators). EQS Queries can be used to instruct AI characters to find the best possible

location that will provide a line of sight to a player in order to attack, the nearest health

or ammo pickup, or where the closest cover point (among other possibilities). [62]

62

Chapter 4 – System implementation

Figure 4.16: simple form for an Environment Query System

EQS algorithm of this game The use of the environmental query system gives the

way enemies move more dynamic by discovering and bypassing barriers and moving in

precise places.

Figure 4.17: complex environmental query system used by the enemy (drone)

63

Chapter 4 – System implementation

Where barriers such as walls and characters are defined and these places are ignored,

places behind models are ignored and considered outside the calculation of the EQS

algorithm.

4.5.2 Multi-agent system analysis: communication between agents

the communication system is a class of BT Task node (execution nod), so in this part,

orders are issued from the commander to the subordinates to begin the attack on the main

character, this class starts executing when the perception system of the enemy detects

the main character.

Figure 4.18: Implementation of the communication system of giving orders to agents to

attack

On the other hand, orders are issued from the commander to the subordinates to

withdraw from the battlefield and everyone returns to their position, and this class begins

to be implemented when the enemy’s perception system loses the main character (the

main character moves out the perception system).

Figure 4.19: Implementation of the communication system to give orders to agents to

withdraw to their centers (Drone)

64

Chapter 4 – System implementation

4.6 Implementation of the in-game user interface

The user interface (UI) that is seen while playing the game is also called Heads Up

Display (HUD). The elements that form it were designed using Unreal Motion Graphics

(UMG), the engine’s tool for creating widgets and other UI elements.

4.6.1 Main menu

The main menu HUD contains a simple widget containing buttons, play to start the

game, settings for cheng the quality of the game, and quit for ending the game.

Figure 4.20: Implementation of the Main Menu

4.6.2 Pause menu

The pause menu HUD contains a simple widget containing buttons, resume resuming

the game, save for saving, load For Load the last saved settings of the game, and main

menu for return to the main menu.

65

Chapter 4 – System implementation

Figure 4.21: Implementation of the Pause Menu

4.6.3 Dead menu

The dead menu HUD Appears When defeated, the same interface as menu interfaces.

Figure 4.22: Implementation of the Dead Menu

4.6.4 Win menu

The winning menu HUD Appears When one winning the game:

66

Chapter 4 – System implementation

Figure 4.23: Implementation of the Win Menu

4.6.5 Main character HUD

The main character HUD contains a health bar composed of a progress bar, that is

updated when the player character receives damage. Plus a Coin counter in the bottom

left and an ammo counter in the bottom right.

Figure 4.24: Implementation of the Main Character UI (HUD)

67

Chapter 4 – System implementation

Figure 4.25: The main character UI in real time gameplay

4.6.6 Weapon HUD

The Weapon HUD is a simple widget, that shows when the main character interacts

with the weapons that contain information about the weapon like name and the type.

Figure 4.26: Implementation of the weapons Widget UI

68

Chapter 4 – System implementation

4.7 Implementation of other features to obtain the

final game

Programming can be considered the most important part in the view of the game

developer, but the consumer’s view of the game is dominated by the external appearance

of the game, so this aspect must be taken care of.

4.7.1 3D modeling

4.7.1.1 University model

Since the project is a graduation project, it was necessary to add a touch to the

university, so We designed the university in realistic details, especially the part in which

We studied :

(a) prototyping the university
(b) Model parts design

(c) early stage of design

(d) Late stage of design

Figure 4.27: Overview of the university design stages

69

Chapter 4 – System implementation

Figure 4.28: The university level design

Figure 4.29: The university level design (side part)

4.7.1.2 Characters models

These are some of the modeled characters:

70

Chapter 4 – System implementation

(a) 3d design in blender

(b) final result in unreal engine 4

Figure 4.30: The Main character

(a) 3d design in blender
(b) final result in unreal engine 4

Figure 4.31: The enemy character

Figure 4.32: The Drone character

71

Chapter 4 – System implementation

Figure 4.33: game design model

4.7.2 Animation

These are some of animations:

Figure 4.34: Character animation

72

Chapter 4 – System implementation

Figure 4.35: Drone animation

Figure 4.36: Project X

4.8 Conclusion

In this chapter, We have illustrated the details of the implementation of our multi-

agent game system, We have cited the development tools that we used for the realization

of our work. Then, We presented different parts of the system with detailed explanations

of functionalities in the system.

73

General conclusion

Conclusion :

The objective of this project was to develop a game with an artificial intelligence-based

multi-agent system that would model the behavior of enemies, and we have come close

to achieving this goal. All the tasks to be accomplished, Almost completed and within

the expected time frame, despite the difficulties encountered during the project comple-

tion stages. The motivation of the project’s developer was to learn how to design and

implement behavior trees to make non-player characters make decisions and execute ac-

tions inconsistent and realistic ways, as well as gain experience in game development and

particularly in the implementation of game-oriented AI solutions, these objectives almost

accomplished.

Behavior trees proved to be very flexible during the development process: it was

easy to modify the structure of a tree to incorporate new character abilities and types

of decisions. The final game’s agents can detect characters and objects with vision and

hearing. The perceived stimuli used to obtain information that can potentially help them

achieve their goals by taking decisions and sharing their findings with other agents, who

compare the received information with their knowledge. In other games, however, the

reasoning capabilities of non-player characters are much more elaborate than in this game

project, and agents participate in complex cooperative strategies.

The interaction between the agents in the developed MAS is not very complex (it was

not necessary for the enemies’ objective of chasing and defeating the player), while other

games, such as some strategy games, have multi-agent systems in which agents interact

in many creative ways. Some games include non-player characters that instead of trying

to defeat the player has the objective of helping them to achieve their goals. It would be

interesting to model the way how these characters try to interpret the player’s intentions

(observing the player character’s actions) and suggest ways of achieving the shared goals:

it would require defining a human-machine communication system.

The gameplay of this game includes some interesting player abilities, such as carrying

weapons, and each weapon has a special fighting method, Adding health using health

items, and winning coins, In addition to a movement system that is considered complex

and scalable, in additional Fun fighting system and realistic graphics. This project was

focused on the design of visuals since a part of the university was designed and made this

design as a level in the game, taking into account the minute details of the university,

74

despite the weak capabilities of the device used.In addition, this is our first attempt at

creating a system of this complexity and magnitude.

75

Bibliography

[1] Rabin. Introduction to Game Development (2nd ed., Vol. 1). Course Technology

Cengage Learning.

[2] Rido Ramadan, Yani Widyani . Game development life cycle guidelines, Conference:

2013 International Conference on Advanced Computer Science and Information Sys-

tems (ICACSIS),DOI:10.1109/ICACSIS.2013.6761558

[3] Novak, J. (2011). Game Development Essentials: An Introduction (3rd ed., Vol. 1).

Cengage Learning.

[4] Ralph Edwards, ”The Game Production Pipeline: Concept to Completion”. [online]

(Jun 17, 2012) Available on : https://www.ign.com/articles/2006/03/16/the-game-

production-pipeline-concept-to-completion#! (Consulted the 23 january 2022).

[5] TIMMER, JUDITH, et al. “GAMES ARISING FROM INFINITE PRODUCTION

SITUATIONS.” International Game Theory Review, vol. 02, no. 01, 2000, pp.

97–105. Crossref, https://doi.org/10.1142/s0219198900000020.

[6] Chandler, H. M. (2013). The Game Production Handbook (3rd ed., Vol. 1). Jones &

Bartlett Publishers.

[7] by Eric Freedman,Engineering Queerness in the Game Development Pipeline,the in-

ternational journal of computer game research,volume 18 issue 3 December 2018

ISSN:1604-7982

[8] Aleem, S., Capretz, L.F., Ahmed, F. Game development software engineering process

life cycle: a systematic review. J Softw Eng Res Dev 4, 6 (2016).

[9] Devin Pickell, ”The 7 Stages of Game Development”. [online] (Apr 8, 2019) Available

on :https://www.g2.com/articles/stages-of-game-development (Consulted the 23 jan-

uary 2022).

[10] Saiqa Aleem, Luiz Fernando Capretz , Faheem Ahmed.Critical success factors to

improve the game development process from a developer’s perspective ,Journal of

Computer Science and Technology, 31(5):925-950, DOI: 10.007/s11390-016-1673-z,

Springer, September 2016.

76

[11] Nadia Stefyn, ”How video games are made: the game development process”. [online]

(05/09/2022) Available on :https://www.cgspectrum.com/blog/game-development-

process (Consulted the 23 january 2022).

[12] Scott Slatton, ”Game Development Pipeline and Technologies”. [online] (Apr

8, 2019) Available on :https://dev.to/scottslatton/game-development-pipeline-and-

technologies-h0b (Consulted the 23 january 2022).

[13] Dawson, Chad, ”Formations,” AI Game ProgrammingWisdom, Charles River Media,

2002.

[14] Fu, Dan, and Houlette, Ryan, ”Constructing a Decision Tree Based on Past Experi-

ence,” AI Game Programming Wisdom 2, Charles River Media, 2003.

[15] Hu, J.; Bhowmick, P.; Jang, I.; Arvin, F.; Lanzon, A., ”A Decentralized Cluster

Formation Containment Framework for Multirobot Systems” IEEE Transactions on

Robotics, 2021.

[16] Hu, J.; Turgut, A.; Lennox, B.; Arvin, F., ”Robust Formation Coordination of Robot

Swarms with Nonlinear Dynamics and Unknown Disturbances: Design and Experi-

ments” IEEE Transactions on Circuits and Systems II: Express Briefs, 2021.

[17] Hu, J.; Bhowmick, P.; Lanzon, A., ”Group Coordinated Control of Networked Mobile

Robots with Applications to Object Transportation” IEEE Transactions on Vehicular

Technology, 2021.

[18] Wiering, M. A. (2000). ”Multi-agent reinforcement learning for traffic light con-

trol”. Machine Learning: Proceedings of the Seventeenth International Conference

(Icml’2000): 1151–1158. hdl:1874/20827.

[19] K.P., Sycara, Multiagent Systems, AI Magazine, vol. 19, no. 2, pp. 79-92, 1998.

[20] Gillies, M. (2009). Learning Finite-State Machine Controllers From Motion Capture

Data. IEEE Transactions on Computational Intelligence and AI in Games.

[21] C. Castelfranchi and R. Conte. Understanding the effects of norms in social groups

through simulation. In G. N. Gilbert and R. Conte, editors, Artificial Societies: the

computer simulation of social life, pages 252-267. UCL Press, London, 1995.

[22] R. Conte, N. Gilbert, and J. S. Sichman. Mas and social simulation: A suitable com-

mitment. In J. Sichman, R. Conte, and N. Gilbert, editors, International Workshop

on Multi-Agent Based Simulation - MABS, volume 1534 of Lecture Notes in Artificial

Intelligence, pages 1-9, Berlin, 1998. Springer - Verlag.

[23] E. Hurwitz and T. Marwala, “Learning to bluff: A multi-agent approach“, IEEE

International Conference on Systems, Man and Cybernetics, Montreal, Canada, (ac-

cepted)

[24] Brooks, Rodney, ”How to Build Complete Creatures Rather than Isolated Cognitive

Simulators,” Architectures for Intelligence, Lawrence Erlbaum Associates, Fall 1989.

77

[25] Isla, Damian, ”Handling Complexity in the Halo 2 AI,” Game Developer Conference

2005.

[26] Isla, Damian, and Blumberg, Bruce, ”Blackboard Architectures,” AI Game Program-

ming Wisdom, Charles River Media, 2002.

[27] Orkin, Jeff, ”Simple Techniques for Coordinated Behavior,” AI Game Programming

Wisdom 2, Charles River Media, 2003.

[28] Cain02l Cain, Timothy, ”Practical Optimizations for A* Path Generation,” AI Game

Programming Wisdom, Charles River Media, 2002.

[29] Higgins, Dan, ”How to Achieve Lightning-Fast A*,” AI Game Programming Wisdom,

Charles River Media, 2002.

[30] Rabin, Steve, ”A* Speed Optimizations,” Game Programming Gems, Charles River

Media, 2000.

[31] Schmitt, J., & Kostler, H. (2016). A multi-objective genetic algorithm for simulating

optimal fights in StarCraft II. 2016 IEEE Conference on Computational Intelligence

and Games (CIG).

[32] Sweetser, Penny, ”How to Build Evolutionary Algorithms for Games,” AI Game

Programming Wisdom 2, Charles River Media, 2003.

[33] OrkinRabin, Steve, ”Filtered Randomness for AI Decisions and Game Logic,” AI

Game Programming Wisdom 2, Charles River Media, 2003.

[34] Reynolds, Craig, ”Flocks, Herds, and Schools: A Distributed Behavioral Model,”

Computer Graphics, 21(4) (SIGGRAPH ’87 Conference Proceedings).

[35] Sebastian Castro, ”Introduction to behavior trees” [online] (August 17, 2021)

Available on :https://robohub.org/introduction-to-behavior-trees/ (Consulted the 10

April 2022).

[36] Bazzan, A. L. C. (2012). Coordinating many agents in stochastic games. The 2012

International Joint Conference on Neural Networks (IJCNN).

[37] Weibing, L., Xianjia, W., & Binbin, H. (2009). Evolutionary Markov Games Based

on Neural Network. Lecture Notes in Computer Science.

[38] Laslier, J.-F., & Walliser, B. (2005). A reinforcement learning process in extensive

form games. International Journal of Game Theory.

[39] Alt, Greg, and King, Kristin, ”A Dynamic Reputation System Based on Event

Knowledge,” AI Game Programming Wisdom, Charles River Media, 2002.

[40] Brockington, Mark, ”Building A Reputation System: Hatred, Forgiveness, and Sur-

render in Neverwinter Nights,” Massively Multiplayer Game Development, Charles

River Media, 2003.

78

[41] Cain, Timothy, ”Practical Optimizations for A* Path Generation,” AI Game Pro-

gramming Wisdom, Charles River Media, 2002.

[42] Evans, Richard, ”Varieties ofLearning,” AI Game Programming Wisdom, Charles

River Media, 2002.

[43] Gibson, James, The Ecological Approach to Visual Perception, Lawrence Erlbaum

Assoc, 1987.

[44] Grimani, Mario, ”Wall Building for RTS Games,” AI Game Programming Wisdom

2, Charles River Media, 2003.

[45] Hargrove, Chris, ”Simplified Animation Selection,” AI Game Programming Wisdom

2, Charles River Media, 2003.

[46] Hargrove, Chris, ”Pluggable Animations,” AI Game Programming Wisdom 2,

Charles River Media, 2003.

[47] Ji, L. X.,& Ma, J. H. (2014). Research on the Behavior of Intelligent Role in Computer

Games Based on Behavior Tree. Applied Mechanics and Materials.

[48] Tozour, Paul, ”Search Space Representations,” AI Game Programming Wisdom 2,

Charles River Media, 2003.

[49] Elhadi Shakshukia, Malcolm Reidb ,Multi-Agent System Applications in Health-

care: Current Technology and Future Roadmap - Scientific Figure on ResearchGate.

Available from: https://www.researchgate.net/figure/An-example-of-a-Multi-Agent-

System-for-decision-support-6 fig1 277727183 (accessed 20 May, 2022)

[50] Fatih Küçükkarakurt, Game Programming Fundamentals. [online] (August 25,

2021) Available on : https://www.developer.com/languages/game-programming-

fundamentals/ (Consulted the 20 April 2022).

[51] Kat Boogaard, What is a concept map. [online] (March 29, 2021) Available on :

https://miro.com/blog/what-is-concept-map/ (Consulted the 20 April 2022).

[52] Pluralsight , Designing a HUD That Works for Your Game. [online] (March 5, 2014)

Available on : https://www.pluralsight.com/blog/film-games/designing-a-hud-that-

works-for-your-game?exp=2 (Consulted the 20 April 2022).

[53] Sapio, F. (2019). Hands-on artificial intelligence with Unreal Engine: Everything you

want to know about game Ai using blueprints or C++. Packt.

[54] Reinhold Preiner, Content Creation for a 3D Game with Maya

and Unity 3D - Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net/publication/267417785 Content Creation for a 3D Game

with Maya and Unity 3D (accessed 5 May, 2022).

79

[55] the MasterClass staff ,Gaming 101: Guide to Video Game Programming Languages.

[online] (Nov 8, 2020) Available on : https://www.masterclass.com/articles/guide-

to-video-game-programming-languages#7-video-game-programming-languages

(Consulted the 20 Mai 2022).

[56] Fatih Küçükkarakurt ,Game Programming Fundamentalss. [online] (August 25,

2021) Available on : https://www.developer.com/languages/game-programming-

fundamentals/ (Consulted the 20 Mai 2022).

[57] Fatih Küçükkarakurt ,Sourcetree A GUI for Git and Mercurial that

is easy for beginners and powerful for experts. [online] Available on :

https://www.globallogic.com/services/offerings/atlassian/products/sourcetree/

(Consulted the 20 Mai 2022).

[58] blender team ,about blender. [online] Available on : https://www.blender.org/about/

(Consulted the 20 Mai 2022).

[59] Wayne Maxwell ,What is Quixel Mixer and Why You Should Give it a Go. [on-

line] (October 9, 2021) Available on : https://www.developer.com/languages/game-

programming-fundamentals/ (Consulted the 20 Mai 2022).

[60] Computer Hope ,Visual Studio. [online] (06/07/2019) Available on :

https://www.computerhope.com/jargon/v/visual-studio.htm (Consulted the 20

Mai 2022).

[61] UE Team ,Unreal Engine 5 Documentation. [online] Available on :

https://docs.unrealengine.com/5.0/en-US/ (Consulted the 20 Mai 2022).

[62] UE Team ,Environment Query System. [online] Avail-

able on : https://docs.unrealengine.com/4.27/en-

US/InteractiveExperiences/ArtificialIntelligence/EQS/ (Consulted the 20 Mai

2022).

80

	List of Figures
	General Introduction
	Game development
	Introduction
	Game types summary
	Varieties of player arrangements
	 The game development process
	Concept
	Pre-production
	The game design document (GDD)
	Prototyping

	Production
	Production milestones
	Key game development roles

	Post-Production

	Conclusion

	Artificial intelligence in Game development
	Introduction
	AI In Games
	Game Agents
	Sensory
	Sensing
	Vision
	Hearing

	Thinking
	Acting
	Communication
	Reaction Times
	Search

	Learning and Remembering

	Multi-Agent system
	Behavior Tree
	Behavior tree terminology
	Sequence :
	Fallback :
	Parallel :
	Decorator :
	Execution node :

	Common AI Techniques
	 Finite State Machines
	The basics of Finite State Machines

	Blackboard Architecture
	A* Pathfinding
	Genetic Algorithms
	Filtered Randomness
	Emergent Behavior
	Neural Networks
	Reinforcement Learning

	Behavior trees vs. finite-state machines (FSM)
	Conclusion

	System conception
	Introduction
	The basic structure of the game engine
	System (Game system)
	Resources
	Game model
	Upload and Save
	Graphics
	User input
	Sound and particle system
	Artificial intelligence (AI)
	Network listening and sending
	Hardware

	The general structure of the system
	Concept Map
	General Architecture
	HUD
	Graphics
	Sound and particle system
	Level

	AI Architecture
	Game World / Environment :
	Agent :
	External Algorithms :

	 Clarification of technical needs
	 The detail structure of the system
	Scenarios of the game
	Conception of the artificial intelligence-based multi-agent system
	Conception of the agents’ individual reasoning and decision-making
	Conception of Multi-agent system analysis: communication between agents

	 Conclusion

	System implementation
	Introduction
	Development languages used
	C++
	C#

	Development tools
	Sourcetree
	Blender
	Quixel Mixer
	Visual Studio
	Unreal Engine

	Implementation of the characters’ abilities and interactions with the world
	Implementation of the AI based multi-agent system
	the agents’ individual reasoning and decision-making
	EQS

	Multi-agent system analysis: communication between agents

	Implementation of the in-game user interface
	Main menu
	Pause menu
	Dead menu
	Win menu
	Main character HUD
	Weapon HUD

	Implementation of other features to obtain the final game
	3D modeling
	University model
	Characters models

	Animation

	Conclusion

	General conclusion
	Bibliography

