0]

=

) Al Rl 4 0 5al) Ay sgandl
République Algérienne Démocratique et Populaire
alad) Cianll g lad) aulatil) 3)5

Ministére de I’Enseignement Supérieur et de la Recherche Scientifique

Centre Universitaire
Abd Elhafid Boussouf Mila

Institut des Sciences et Technologie Département de Mathématiques et Informatique

Meémoire préparé en vue de ’obtention du diplome de
Master

En : Informatique
Spécialité: Sciences et Technologies de I’Information et de la Communication (STIC)

Development of a video game using
multi-agent modelling

Prépare par : Brichen DiaeDdine

Soutenue devant le jury
Encadré par : Dib Abderrahim. MAA C.U.Abd Elhafid Boussouf
Président : Samir Selmane. MAA C.U.Abd Elhafid Boussouf
Examinateur : Djaaboub Salim. MCB C.U.Abd Elhafid Boussouf

Année Universitaire : 2021/2022

d
D)
D)
D)
D)
D)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
d
D)
d
D)
d
D)
d
D)
})
})
;
;
})
})
})
})
d
D)
D)
9
D)
b)
D)
b)
D)
b)
D)
b)
D)
b)
D)
D)

e

X

Acknowledgements

Above of all, I thank Almighty God for his help and guidance in doing this
work

the first person I would like to thank is my framer Mr. *xDib Abderrahimsx

I would also like to thank my dear parents, for all their sacrifices, their support,and
their prayers for me.

I won’t forget my brother and sister also for being there for me.
my warmest thanks go to all the teachers who followed me during my five years

of studies at the university.

Finally, I would like to thank all those who have contributed in any way

to the realization of this work.

Abstract

The last decade has seen Artificial Intelligence (AI) seep into the game
development industry, Artificial intelligence is used in video games to create
believable characters that challenge the player and enrich the playing experi-
ence. The adventure genre is one of the types of games where it is fundamental
to have non-player characters with the ability to perceive the environment,
detect some of the player character’s actions and react to them with astute
strategies.

The goal of this project was to develop a game with enemy characters that
would cooperate to defeat the player. In the final game, the enemies patrol the
game’s world trying to locate the player character. The findings of an enemy
are immediately communicated to the rest of agents, and the player character
is chased and attacked by the enemies after being spotted. Agents pursue the
player character and use close combat moves.

The 3d game objects was developed with the Blender software, The game
was developed with the Unreal Engine 4 game engine. The reasoning and
decision making of enemies was modelled using behaviour trees. The imple-
mented system makes agents capable of perceiving visual and auditory stimuli
and communicating information to other agents, who compare it with their
own knowledge to take independent decisions.

The whole set of enemies form an artificial intelligence-based multi-agent
system and cooperate to achieve the shared goal of defeating the player in the
shortest time possible. The ability of the numerous enemies to spot the player
character and detect sounds of players.Unlike them, player try struggle to out
of the perception system, and Avoid contact with them.

uadla

sy ¢ Ol gk delia) (Al) e lilaal) e8I Gy oaalal) Siell 2
Lt (g e (an Lt (Ko Glaadd olady gadl) Qlall 3 elilaial) (IS
eV e liadd dal (56 o ulad) e un Gl plel aal g8 Braliall ggi L qaall
Claslinh lede 3l e dpadd Gl sl Gy GLES)y ¢)) e 5yl gl
LAS3

Larjel sl agiay ehac) Jids iluadids (ggind Luad piski g8 ggsdall 138 (e Cangl
dpads yaatl Alglae 8 daall) Alle 8 Ciliygn laeYl ash ¢ Aflell duall G e
padd Aaadle gy ¢ eDlaal) Ay) ol e g die gaall il § 30 A L cae D)
Osadions e Baadd Slaall aly o) & o 2 ¢laeY) U (e diealgay e

A A IS

pladials Lualll gk 23 5 . Blender zaliy aladiuly aleY) 4806 Luall) IS gk
Ssldl ol aladials elaeSU hall Masly Sl aanad 23 .Unreal Engine 4 dualll ¢lyas
) leslaal) Jiig dananlly dpad) sl ol Ao)08 SIS il allail) Jaag Cus
cAlEine) AATY agidyear Lgighla (Al ¢ AT IS

LVl €Y e Ll Jalgal) saxie Gl elael) (e ALl de sanall (S35
B8 alasials (Kee iy yeadl 6 e daja 8 Jidiall @il Cangl gaiatl slailly
allai (ge gl LSl e D Jlag ¢ agee e e dmdds alis) e slacY)

cog Jlat¥) indg ¢ &)yl

Résumé

La derniere décennie a vu l'intelligence artificielle (IA) s’infiltrer dans I'industrie du
développement de jeux. L’intelligence artificielle est utilisée dans les jeux vidéo pour créer
des personnages crédibles qui défient le joueur et enrichissent ’expérience de jeu. Le genre
aventure est I'un des types de jeux ou il est fondamental d’avoir des personnages non-
joueurs capables de percevoir I’environnement, de détecter certaines actions du personnage
joueur et d’y réagir avec des stratégies astucieuses.

Le but de ce projet était de développer un jeu avec des personnages ennemis qui
coopéreraient pour vaincre le joueur. Dans le jeu final, les ennemis patrouillent dans
le monde du jeu en essayant de localiser le personnage du joueur. Les découvertes d'un
ennemi sont immédiatement communiquées au reste des agents, et le personnage du joueur
est poursuivi et attaqué par les ennemis apres avoir été repéré. Les agents poursuivent le
personnage du joueur et utilisent des mouvements de combat rapproché.

Les objets de jeu 3D ont été développés avec le logiciel Blender, Le jeu a été développé
avec le moteur de jeu Unreal Engine 4. Le raisonnement et la prise de décision des
ennemis ont été modélisés a 1’aide d’arbres de comportement. Le systeme mis en ceuvre
rend les agents capables de percevoir des stimuli visuels et auditifs et de communiquer
des informations a d’autres agents, qui les comparent a leurs propres connaissances pour
prendre des décisions indépendantes.

L’ensemble des ennemis forme un systéeme multi-agents basé sur l'intelligence artifi-
cielle et coopere pour atteindre ’objectif commun de vaincre le joueur dans les plus brefs
délais. La capacité des nombreux ennemis a repérer le personnage du joueur et a détecter
les sons des joueurs. Contrairement a eux, le joueur essaie de lutter pour sortir du systeme
de perception et évite tout contact avec eux .

Contents

[List of Figures|

|General Introduction|

[1 Game development|

(1.2 Game types summary |o

(1.3 Varieties of player arrangements|

(1.4 The game development process|.

M41

Concept |.

M4

Pre-production| oo

[1.4.2.1 The game design document (GDD)|
(1.4.2.2 Prototyping|

.43 Production]

2.1 Introduction|
2 Alln Games|
2.3 Game Agents|
[2.3.1 Sensory|l
[2.3.1.1 Sensing|

312 WVisionl

2.3.1.3 Hearingl,

[2.3.2 Thinking|.
[2.3.3 Acting|
2.3.3.1 Communication|.

2332 Reaction Times

2333 Searchl

[2.3.4 Learning and Remembering |

iv

CONTENTS

2.4 Multi-Agent system|. L 26
2.5 Behavior Ireel 27
[2.5.1 Behavior tree terminology| L. 28
[2.5.1.1 Sequence :|. 28

2512 Fallbackdo 29

2513 Parallel: 29

2514 Decorator: 30

2515 Executionmnoded Lo 30

2.6 Common Al Techniques| 30
2.6.1 Finite State Machines|.o 30
2.6.1.1 The basics of Finite State Machines. 31

2.6.2 Blackboard Architecturel.o 0oL 31
[2.6.3 A* Pathfinding |. 32
[2.6.4 Genetic Algorithms | o000 32
2.6.5 Filtered Randomness] L. 32
[2.6.6 Emergent Behavior|. L. 33
2.6.7 Neural Networksl 34
[2.6.8 Reinforcement Learning | 34

[2.7 Behavior trees vs. finite-state machines (FSM)|. 34
2.8 Conclusion| 35
[3 System conception| 36
3.1 Introduction| 36
[3.2 The basic structure of the game engine |. 36
[3.2.1 System (Game system)| 37
[3.22 Resources 37
.23 Gamemodel] o 37
[3.2.4 Upload and Savel 37
[3.2.5 Graphics| 38
[3.2.6 Userinput| 38
[3.2.7 Sound and particle system | 000 38
13.2.8 Artificial intelligence (A) | Lo 38
[3.2.9 Network listening and sending | 38
(3.2.10 Hardware| 39

[3.3 'The general structure of the system| 39
[3.3.1 Concept Map| 39
B.3.2 General Architecturel o000 41
3321 HUDI. 41

[3.3.2.2 Graphics 42

[3.3.2.3 Sound and particle system | 42

3324 Tevell. 42

8.3.3 Al Architecturelo 42
[3.3.3.1 Game World / Environment & 43

[3.3.3.2 Agent:| 43

il

CONTENTS

[3.3.3.3 External Algorithms:| 43

3.4 Clarification of technical needs|. 43
[3.5 The detail structure of the system | 45
[3.5.1 Scenarios of the game | 0L 46

[3.5.2 Conception of the artificial intelligence-based multi-agent system|. . 47

[3.5.2.1 Conception of the agents’ individual reasoning and decision- |

| making| 47
[3.5.2.2 Conception of Multi-agent system analysis: communica- [

[tion between agents| 50
.6 Conclusion|. 51

[4 System implementation| 52
4.1 Introduction| 52
4.2 Development languages used|o 52
4.2.1 CH41 . e 52

4.2.2 CH | . . o e 53

4.3 Development tools| o 54
4.3.1 Sourcetree] 54

432 Blender| 54

[4.3.3 Quixel Mixer| 59

4.3.4 Visual Studiol 55

[4.3.5 Unreal Enginel o0 56

4.4 Implementation of the characters” abilities and interactions with the world| 57
4.5 Implementation of the Al based multi-agent system| 59
[4.5.1 the agents’ individual reasoning and decision-makingl 59

A5.1.1 EQS| 62

[4.5.2 Multi-agent system analysis: communication between agents| 64

[4.6 Implementation of the in-game user interfacel 65
4.6.1 Main menul 65

4.6.2 Pausemenul 65

463 Deadmenul 66

o4 Winmenulo 66

4.6.5 Main character HUDI 67

[4.6.6 Weapon HUD| 68

4.7 Implementation of other teatures to obtain the final game|. 69
[4.7.1 3D modeling|. L 69

[4.7.1.1 University model|, 69

4.7.1.2 Characters models| 70

472 Animationl 72

4.8 Conclusion| e 73
|General conclusion| 74
(Bibliography| 76

il

List of Figures

(1.1 Varieties of player arrangements|

(1.2 The game development process|
(1.3 Assassin’s Creed IV Black Flag Concept Art by Ivan Koritarev|.
(1.4 Free assets with full environment project in unreal engine 4{.

2.1 An example of a Multi-Agent System for decision support[49]|.
2.2 _Overview of behavior tree nodes)

[2.3 Sequence node.|

[3.1 'T'he basic structure of the game engine program|

[3.2 General Architecture of the gamel

[3.4 The game production pipeline architecture|

[3.5 Game system simplified class diagram -upper halt-|.

[3.6 Game system simplified class diagram -lower halt{

[3.7 Representation of the first type of behavior tree for enemy characters . . .

[3.8 Representation of the second type of behavior tree for enemy characters| . .

[3.9 Representation of the third type of behavior tree for enemy characters|. . .

[3.10 Representation of the Multi-agent system|.

4.1 C++logol
4.2 CHTogol

4.3 Sourcetree logol
4.4 Blender logo|
4.5 Quixel Mixer logo|
4.6 Visual Studio logo|
(4.7 Unreal Engine logo| o oo

4.8 Detail movement system for the main character|

4.9 A part of the movement system of the main character|.

v

LIST OF FIGURES

[4.10 Implementation of the first type of behaviour tree for enemy characters, as [

seen 1nside Unreal Engine’s behaviour tree editor| 59

[4.11 Implementation of the second type of behaviour tree for enemy characters|. 60

[4.12 Implementation ot the third type ot behaviour tree for enemy characters |

(Drone)| 60
[4.13 'The first type of enemy characters|. 61
[4.14 The second type of enemy characters| 61
.15 The third type of enemy characters (Drone)| 62
[4.16 simple form for an Environment Query System|. 63
14.17 complex environmental query system used by the enemy (drone) 63

[4.18 Implementation of the communication system of giving orders to agents to |
attack |o 64
[4.19 Implementation of the communication system to give orders to agents to [

| withdraw to their centers (Drone)| 64
[4.20 Implementation of the Main Menu|. 65
[4.21 Implementation of the Pause Menu| 66
[4.22 Implementation of the Dead Menu| 66
[4.23 Implementation of the Win Menu| 67
14.24 Implementation of the Main Character Ul (HUD)[. 67
[4.25 The main character Ul in real time gameplay| 68
[4.26 Implementation of the weapons Widget Ull 68
[4.27 Overview of the university design stages| 69
[4.28 The university level design | 70
14.29 The university level design (side part) | 70
4.30 The Main character| Lo o 71
[4.31 The enemy character| 71
[4.32 The Drone characterl 71
[4.33 game design modell Lo 72
4.34 Character animationl 72
4.35 Drone animation] L Lo 73
[4.36 Project X'| 73

List of abbreviations and acronyms

AT Artificial Intelligence

MAS Multi-Agent Systems

BT Behavior Tree

FSM Finite State Machines

GA Genetic Algorithms

QA Quality Assurance

EQS Environment Query System
GDD Game Design Document
RL Reinforcement Learning
NPC Non Player Character
HUD Heads-Up Display

GUI Graphical User Interface
PBR Physically Based Rendering

UE Unreal Engine

vi

(zeneral introduction

Game evolution/design is the procedure of producing a video game. Game evolution
has evolved in recent years. No longer does making a game involve writing simple lines
of code by an average programmer.

Now it requires a team of specialists in disciplines such as Fine art, Graphics Model-
ing and Design, Software Programming, Music, Network Programming, Al Programming,
and so on. Games have protracted happened to be an accepted field of Artificial intelli-
gence(Al) research, which is for a respectable motive. They are problematic nevertheless
stress-free to validate, hence making it feasible to establish novel AI techniques, compute
in what way they are functioning, and display that machines are qualified of extraor-
dinary usually alleged to necessitate cleverness exclusive of placing person breathes or
property at jeopardy Al is the field within Computer Science that seeks to explain and to
emulate some or all aspects of human intelligence through mechanical or computational
processes. Included among these aspects of intelligence are the ability to interact with
the environment through sensory means and the ability to make decisions in unforeseen
circumstances without human intervention. Typical Al research areas include game play-
ing, natural language understanding, and synthesis, computer vision, problem-solving,
learning, and robotics.

Over the years, there has been an increase in the need for Al in Game Development.
Implementing Al in a game will give the users the illusion that they are playing intelligent
agents. From the definition of intelligent agents in Artificial Intelligence, we can say an
intelligent agent is anything that can perceive/observe its immediate environment and
take action concerning its observation, hence we can say an intelligent gaming agent is
capable of learning/observing what goes on in the gaming environment and also act on
its observation.This research study focuses majorly on how Al is implemented in Game
Development and it was implemented using C++4 language.

Problem

The enemy system is considered one of the most sensitive systems in the game because
the interaction of enemies with the player reflects the extent of the fun or boredom within
the game. Whereas, the more realistic the interaction, the greater the challenge within
the game, and therefore various ways to play. The problem at hand is how to create a
realistic, effective, enjoyable, and scalable enemy system.

Objectives

The objective of this project is to develop a game with an Al-based multi-agent system
that would represent the behavior of enemies. Planned development tasks should be
within the expected timescale.

Organize thesis

This thesis is divided into four chapters:

The first chapter: “Game Development”, Bibliographical research that includes
an overview of the basic theoretical and applied concepts of game development.

The second chapter: “ Artificial Intelligence In Game Development 7, Artificial
intelligence in games and the various (AI) techniques used in game development.

The third chapter: “ System conception ”, Describes the architecture of the system
to be implemented

The fourth chapter: “ System Implementation ”, It shows the tools and program-
ming languages used in creating the game and displays the final results.

Chapter

Game development

1.1 Introduction

With the speedy development of computer technology, the importance of software
program engineering in our everyday lives is increasing. It impacts each element of our
lives today, such as working, living, learning, and education. A new and famous mode
of enjoyment and a vital generation of software program video games, that have ended
up becoming accepted by human beings of all ages. In today’s culture, the generation is
without difficulty reachable and has ended up extra convenient; increasingly more human
beings want to play video games and also are turning into prompted to layout their
very own video games. [1] defined “game is a software application in which one or more
players make decisions by controlling game objects and resources, in the pursuit of its
goal”. video games are software programs established on hardware gadgets and online
game consoles, computers, handheld gadgets, and Personal Digital Assistants (PDAs)[2].
Software video games have now end up a international innovative industry, however, due
to the multidisciplinary games required, their improvement is a completely complicated
task[4].

The multidisciplinary nature of the strategies that integrate sound, art, manipulate
systems, synthetic intelligence (AI), and human factors, additionally, make the software
program recreation improvement exercise unique from conventional software program im-
provement. However, regardless of the excessive complexity of the software program
engineering improvement process, the games enterprise is making billions of bucks in in-
come and growing many hours of fun . The software program recreation marketplace at
some stage in the sector has grown through over 7-8 % yearly and has reached income of
around $5.5 billion in 2015 . Newzoo Game Market has additionally suggested that the
sector-huge virtual recreation marketplace will reach $113 billion through 2018.

The creation of any game involves cross-functional brigades including designers, soft-
ware inventors, musicians, scriptwriters, and numerous others. Also, Entertainment Soft-
ware Association reports stressed the rearmost trends in the software game industry.
Thus, game development careers have presently come largely grueling, dynamic, creative,
and profitable . The capability to handle complex development tasks and achieve prof-
itability doesn’t be by chance, but rather a common set of good practices must be espoused

Chapter 1 — Game development

to achieve these pretensions. The game assiduity can follow the good and proven practices
of traditional software engineering, but only a clear understanding of these processes can
enhance the complex game development engineering process.

1.2 (ame types summary

Utmost ultramodern video games can be assigned to a particular genre, or classified as
a hybrid of two or more genres. These genres have come about over the years, frequently
as a result of trial and error, but more frequently as an evolution.[6] The following is a
description of some important genres and the games that either introduced or popularized
them.

Platformer The original platform games involved the character running and jump-
ing on a side-scrolling playing field. While the definition has been expanded now to include
3D playing fields, the genre is still fairly true to its roots. Some of the most famous plat-
formers have been Super Mario Bros, Crash Bandicoot, Sonic Mania, Cuphead, and It
Takes Two.[I]

First-Person Shooter The first-person shooter is an action game that places the
player "behind the eyes’ of the game character. In this game, the player can wield a
variety of weapons and fight enemies by shooting them. [I[This genre is famous for games
like Wolfen stein 3D, Doom, call of duty, and battlefield.

Action The action game is the superset of many other genres. First-person shoot-
ers, combat simulations, fighting games, even platform games are all parts of the action
genre.[6] Games in the action genre are typified by fast-paced combat and movement.
Some of the old examples of video games such as Spacewar, Pong, and Space Invaders
defined the genre and also was the cause of his success.

Adventure In the adventure game genre, there have been two important subgenres:
the text-based adventure and the graphical adventure. For text-based breakouts, one
needs to look no further than Zork by Infocom. On the graphical adventure side, one of
the series that defined the genre was the King’s Quest series from Roberta Williams at
Sierra.

Action-Adventure Action-adventure games are similar to adventure games but
incorporate action elements. Nintendo’s The Legend of Zelda was the first breakout hit of
the genre, but there have been many more since.[I] Recent games like Control, Assassin’s
Creed, and Resident Evil continue the tradition of action with strong puzzle-solving.

Fighting In fighting games, the player fights other players or the computer(Al).
These games originated in the arcades, where players could signify their intent to challenge
one another by placing quarters on the top of the cabinet. Super Smash Bros is one of

Chapter 1 — Game development

the most famous games in the genre, allowing players to fight side by side. Tekken, Street
Fighter, and Mortal Kombat are two of the most famous fighting games in which players
choose characters and fight against each other (called a versus fighter).[2][I]

Real-Time Strategy (RTS) In a typical Real-Time Strategy (RTS), the goal is
for the player to collect resources, build an army, and control his units to attack the
enemy. The action in these games is fairly fast-paced and because of the continuous play;,
strategic decisions must be made quickly. While The Ancient Art of War in 1984’s and
Herzog Zwei in 1989’s were early examples of the genre, the games that popularized it
were Westwood’s Dune 2 and Command and Conquer, and Blizzard Warcraft.

Turn-Based Strategy These games are similar to real-time strategy games (indeed,
they were the precursors to them), but the players take turns in which they make their
moves. For example, almost all board games (like Chess and Checkers) are turn-based.
In the era of the RTS, turn-based games are less frequently made, but there are some
notable games in the genre, X-COM, namely Civilization, Master of Orion, and. Jagged
Alliance.

Stealth Stealth games (sometimes called sneakers) are characterized by their focus
on subterfuge and their planned-out, deliberate gameplay. They are by and large similar
to first-person or third-person shooters but are less action-oriented and more methodical.
The first stealth game was the original Metal Gear in 1987, but other notable stealth
games include the Thief series, the Metal Gear series, and the Splinter Cell series.

Role-Playing Game (RPG) The video game version of pen and paper games
like Dungeons & Dragons differs from its tabletop counterpart generally in its ability to
create a world that doesn’t require imagination. Most differentiations from the system
are hybrids with other genres. Some of the most famous RPGs to grace computer and
TV screens are the Final Fantasy series, the Baldur’s Gate series, and Wasteland.[I]

Massively Multiplayer Online Role-Playing Game (MMORPG) The MMORPG

or MMO is a role-playing game set in a persistent virtual world populated by thousands
of players simultaneously connected over the Internet. The MMO was predated by text-
based games called Multi-User Dungeons/Dimensions (MUDs), but in modern times it is
largely graphical. In the games, the player is represented by a character called an avatar.
The first accident MMO was Meridian 59 in 1996. The first current implementation,
however, was Ultima Online in 1997. World of Warcraft is currently the king of the genre
with more than 117 million subscribers.

Serious The serious game genre has emerged in the past years as a cheaper and more
entertaining way of teaching real-world events or processes to adults. These video games
are generally privately funded for particular uses, with the U.S. authorities and clinical
experts being the biggest customers. For example, games builders can expand education
simulators quite cheaply, even by infusing the simulation with leisure fees. [2] The laugh

Chapter 1 — Game development

fee is essential in order that customers are stimulated to replay the sport regularly and
for that reason come be higher trained The Game Developers Conference has recognized
the strong interest in serious games and in 2004 added a two-day Serious Games Summit
as part of its annual event, focusing on "the intersection of games, learning, policy, and
management.” [GDC][I].

Simulation Simulation games are based on the simulation of a system. This system
may be whatever from the workings and economic system of the railroads (which includes
in Railroad Tycoon) to a fight state of affairs in which the participant controls huge moves
of troops or maybe single fighter craft. SimCity is one of the breakout simulation games,
allowing you to micro-manage a city. Wing Commander and X-Wing are two of the
defining space combat simulation games. Microsoft Flight Simulator is one of the most
famous airplanes simulation games. IIn current years, The Sims is one of the extra famous
video games withinside the genre, with its complicated simulation of human lifestyles and
social interactions.

Racing Racing games involve competing in a race in vehicles ranging from race cars
to motorcycles to go-karts. This style is has a touch specific from others in that the
video games basically try and re-create as best they could a real-world activity. The first
appearance of this type of racing game was Pole Position from Atari. [1][2][0]

Sports The sports activities sport style covers a myriad of video games that simulate
the sporting experience. As with racing video games, sports activities video games are
in the main try to re-create the complicated interactions in an actual sport. Some games
series adopt this style like John Madden Football and Tiger Woods Golf.

Rhythm Rhythm games gauge a player’s success based on his ability to trigger
the controls in time to the beat of the music. Some video games, along with Konami s
Dance Dance Revolution (DDR), require the participant to step on ground pads in time
to music, even as Nintendo’s Donkey Konga for the Nintendo GameCube comes with a
specialized bongo drum controller—even though now no longer all rhythm video games
require specialized controllers. For example, PaRappa the Rapper seems because the
first sizable rhythm game, performed on the PlayStation in 1996, and it most effectively
required the usual controller. Currently, the Guitar Hero and Rock Band franchises are
answerable for the exceptional reputation of this form of the game.

Puzzle Puzzle video games integrate factors of sample matching, logic, strategy, and
luck—frequently with a time element. Tetris is the most famous puzzle game ever and
serves as a first-rate instance of the style with its frenetic pattern-matching action. 6]

Mini-Games Mini-games are commonly short, easy video games that exist inside a
bigger conventional game. They are now and again used as praise for finishing a venture
or unlocked via way of means of coming across a secret. Alternately, the bigger game may
be a skinny veil for a set of mini-video games, as withinside the Mario Party collection

Chapter 1 — Game development

or the Wario Ware collection. The Wario Ware collection is a unique account that every
tide carries extra than one hundred video games, with each lasting only several seconds
or minutes. Many video games on the Internet used for marketing functions may also be
defined as mini-video games.

Traditional Traditional video games encompass automated variations of card video
games and board video games. The first conventional game applied on a laptop display
screen changed into Noughts and Crosses (tic-tac-toe) via way of means of A. S. Dou-
glas at the University of Cambridge in 1952. Throughout the years, chess has long been
a staple of conventional video games, with Chessmaster being the maximum diagnosed
collection. In 1988, Interplay advanced Battle Chess, which changed into simply regular
chess, however, whilst every piece took another, there has been a unique (and regularly
humorous) animation of the "battle.” Sierra’s Hoyle collection is one of the maximum
devoted efforts to deliver conventional video games to a computer format, with its trust-
worthy translations of the card, board, word, table, and puzzle games|2].

Educational FEducational video games are designed to teach grade-school ideas to
children and teens in a wonderful manner. notable educational game was Oregon Trail, at
the beginning, designed in 1971 for teletype machines at Carleton College, however made
famous withinside the Eighties and Ninetiesby a version running on Apple computers
systems in public schools. Other incredible video games on this style encompass the
Carmen Sandiego collection and Mavis Beacon Teaches Typing.[1]

Survival Horror Survival horror is a subgenre of action-adventure and first-person
shooter games. Typically, they contain exploring deserted homes or cities wherein nu-
merous monsters and undead creatures lurk. The survival factors are focused on in no
way giving the participant pretty sufficient bullets or health, as a result growing the ten-
sion. The horror issue defines the topic and pacing, generally directing the participant
to discover quiet places, deserted, bloodstained hallways until a monster comes crashing
through a window, or a seemingly lifeless corpse begins to stir. Players are often started
and can become visibly shaken from the experience, much like a good horror movie. Alone
in the Dark is recognized as the first in the genre in 1992, Resident Evil popularized the
?survival horror” and Set standards for later games in 1996. [0]

1.3 Varieties of player arrangements

In narrative arts (literature, theater, movies, etc.), various types of quarrel, related
to dramatic struggle, are categorized—man vs. man, man vs. nature, etc. In games,
these narrative conflicts can still exist. At a far more specific level, games offer all sorts
of other kinds of conflict such as different styles of fighting within a single game. So the
word ”conflict” can get overloaded quickly. We will use player arrangement for those
configurations of player conflict (Figure 1). In the book Game Design Workshop, Tracy
Fullerton uses the term interaction patterns and adapts a scheme that offers a nice illus-
tration of the various forms these game conflicts can take.The following are some typical

Chapter 1 — Game development

player arrangements:

- Single-player—player contends with the game system.

- Player vs. player—two players contend with each other.

- Multilateral competition—three or more players contend with each other.

- Team competition—two groups compete with each other.

- Multilateral team competition—three or more groups compete.

- Unilateral competition—two or more players compete with one player.

- Multiple individual vs. game—multiple players compete against the system.

- Cooperative—two or more cooperate against the game system. .

4 AY4 {’E) ()

=i || 3 ﬁﬁ; . ﬁﬁ~

Am—)

Unilateral Multilateral Multiple individual Multilateral team
L competition JAR competition JAR vs. game J competition -
4 N[/ N\

1 || —w Eﬂaﬁu
q Player vs. player P kTeam competitionj q Single-player) Cooperatlve

Figure 1.1: Varieties of player arrangements

Chapter 1 — Game development

1.4 The game development process

One of the main studiousness in the game development process is that developers
need to follow best practices and procedures from the software engineering discipline to
develop good quality games. The game development process comprises four main phases:
concept, pre-production, production, and post-production. It consists of various activities
such as synopsis, scriptwriting, background research, visualization and concept art, level
and interaction design, animation, programming, media editing, integration, testing, and
publishing.[6] Software games are also characterized based on the category into which
they fall, which is called the genre of the game(We talked about it before). Each genre
has its requirements which must be taken into consideration during the pre-production
phase. For this reason, software game development is considered a complex process that
involves multidisciplinary collaborative team efforts and processes (including modeling
(3D/2D art), sound, gameplay, artificial intelligence, control systems, human factors ..etc)
to develop a creative product. Fundamentally, game development is a form of the software
development process with several additional requirements such as creative design, artistic
aspects, and visual presentation[10].

Software game development additionally necessitates a number of skills that encompass
project management, design, improvement, and asset creation. It additionally consists of
group contributors from heterogeneous Specialties, [4]e.g., game designers, artists, pro-
grammers, and software program builders. Knowledge of great practices for recreation
development may be very essential and has come to be decisive in maintaining the in-
crease of the software program recreation industry. Finally, this information will assist
creation making accurate game development selections at the proper time. Achievement
of these key elements from a developer’s angle will make contributions to the knowledge
of the contemporary development method The ensuing outcomes will assist programmers
to enhance the game development method][7].

~ -

Figure 1.2: The game development process

Chapter 1 — Game development

1.4.1 Concept

The unique concept is only an easy concept for what the game may be about. For
instance, an easy game idea may be to make a futuristic 3-d avenue racing sport with
hovercrafts with a placing corresponding to the cutting-edge import tuner avenue racing
scene of modern-day international. It also can be some thing as easy as making an
action/adventure game where you're controlling a ninja.

The games concept also can begin as in reality trying to make a follow-up or sequel
to an current title, a sport primarily based totally on current non-gaming characters,
stories, or franchises - from different mediums along with tv, comedian books, board
games, movies, folklore, or history - or a sport it is supposed to simulate some real-world
experience, along with the case with sports, flight, or riding simulations. In those cases,
the genesis of the sport’s improvement can in reality be the agency determining that it
desires to make a game that simulates the real-lifestyles[4].

1.4.2 Pre-production

This is in which each project begins. Essentially, pre-production defines what the
game is about, why it needs to be made, and what it’s going to take to make it.

You would possibly have the first-rate concept for a kind of game, a tale you need
to carry to life, or you could need to construct one which leverages a positive kind of
technology (e.g. VR, a brand new controller, or console). This stage can take a week to a
year, relying on the challenge type, resources, and budget available, and normally takes as
much as 20% of the overall manufacturing time. At this point, the group is pretty small.
There can be a manufacturer, programmers, an idea artist (or if you’re a one-individual
operation, you'll be doing most of it!)[11].

the video game producer manufacturer handles the commercial things, in particular
the financials. They control the price range and use advertising techniques to promote
the product. A concept artist units the tone for the challenge early on through growing
paintings and sketches. These early visuals assist shape the language of the sport, giving
all of us operating at the challenge a visible manual to the general appearance and feel.

10

Chapter 1 — Game development

Figure 1.3: Assassin’s Creed IV Black Flag Concept Art by Ivan Koritarev

A concept artist sets the tone for the project early on by developing artwork and
sketches. These early visuals help highlight the features of the game, this giving everyone
working on the project a visual guide to the general look and feel.

The information collected in this stage of pre-production forms the basis of the Game
Design Document (GDD)[LI].

1.4.2.1 The game design document (GDD)

The creation of the game design document is an essential step in the pre-production
phase of the game, withinside the pre-production segment of the game, being answerable
for guiding the project’s scope (and as a result the complete production and improve-
ment and testing of the game). A bad game design document may also end result in
characteristic creep, and as a consequence, delays and losing milestones may occur.

Although there may be no general manner to construct build a game design document,
Schuytema [Schuytema 2008| states that this report must have a complete description
of the game in all its aspects, so that the development group can construct it. While
describing the items, and characters in the game, it has to be documented not only what
they do, but additionally what they affect, how they have interacted, and their function
and conduct in the game. Despite the efforts to make the report pretty complete, the

11

Chapter 1 — Game development

report nevertheless might also additionally change. However, one has to examine the
dangers of adjustments and if the time limits can nevertheless be met. the GDD includes
such things as:

- The concept or idea.

- Genre.

- Story and characters.

- Core game mechanics.

- Gameplay.

- Level and world design.

- Art and/or sketches.

- Monetization strategy.

This document is later translated to a Product Backlog within the production phase, for
little games it should be optional, translating the wants directly as a Product Backlog.
this could save time for the team as they are going quickly to the production, however
might also increase risks of feature creep or not a really entertaining game.

A GDD keeps the development team work organized, helps determine potential risks,
and lets you see ahead of time who you may need to hire/outsource to so as to bring your
project to life. Your game idea could seem fairly straightforward, however, once you lay it
get into a GDD, you'll notice how big and resource-heavy your project is. Another reason
to have a GDD is .

It is to help promote and finance the game. Potential investors will want to see a solid
plan before investing. Finally, GDD will help market the product once it is ready for
release[11].

1.4.2.2 Prototyping

A game prototype is a raw test that checks the functionality, user experience, gameplay
mechanics, and art direction.

Prototyping happens in pre-production to check whether or not or not the game plan
can work, and if it’s worthy to pursue. several ideas don’t create it past this stage. The
team will usually begin with paper styles to test theories and total many of the nuances
of a game or a series of systems quickly, simply, and value effectively. The aim is to make
a prototype up and running ASAP to test if the ideas work and if the game is as fun as
you had hoped. Prototyping may also reveal surprising challenges, that may doubtless
change the whole course of the project. It’s necessary to possess others to check your
prototype too, as a result of things that are obvious to you, might not be to others.

Placeholder assets are wont to save time and money. These low-quality assets substi-
tute for things like weapons and props throughout the first testing phase, and if approved,
they’re replaced with final, high-quality versions later on[I1].Placeholder assets will be
purchased or found at no cost online at intervals in game development software. They’re
usually pretty basic shapes, however, may also be a touch a lot of advanced.

12

Chapter 1 — Game development

(a) Asset Collection (b) Environment

Figure 1.4: Free assets with full environment project in unreal engine 4

1.4.3 Production

Once the pre-production section is complete and the general game project was final-
ized, the development enters the game production phase, and a currently larger of produc-
ers, designers, artists, and programmers are usually brought into the mix. Production is
the longest stage of the process, Ranging anywhere from 1 to 5 years or more, production
is where the game starts to take shape, The story is refined, assets (characters, creatures,
props, and environments) are created, the foundations of play are set, levels and worlds
are built, code is written, and more. but initial ideas don’t continually translate thus
well in reality, so because the job is done, the game is continually tested and perfected.
Since gamers expect game graphics to be movie-quality, 75-90% of a game’s budget goes
to artwork. Production milestones There are a variety of milestones to complete the game
development process.

1.4.3.1 Production milestones
There are a variety of milestones to complete the game development process.
Prototype : This is the initial take a look at the game (which happens in pre-

production and is described thoroughly above), Some games can never go beyond this
phase.

First playable : The first testable version, whereas it’s still aloof from the final
product, placeholders are replaced with higher-quality assets and the art design is added.

Vertical slice : A vertical slice is a fully playable sample demo that can be accus-
tomed to pitching your game to studios or investors. starting from simply some minutes
up to an hour, a vertical slice provides first-hand expertise of the game.

Pre-alpha : Most content is developed in the Pre-alpha phase. At this point of

points in the development of the game, some important decisions must be made. Content
may be cut or new items will need to be added to improve gameplay.

13

Chapter 1 — Game development

Alpha : The definition of the alpha stage varies from developer to developer; how-
ever, in general, it always means the game’s ”functionality” is essentially complete. This
usually interprets to all or any of the specified options of the look having been imple-
mented, however not all essentially operating specifically within the desired manner. From
the beginning of development to succeed in the alpha stage is the longest part of the event
cycle. this can be usually wherever some slippage can occur as features take longer to
implement than planned, or the chosen technology either doesn’t deliver the mandatory
needs or demands additional work to bring to the expected state.

Beta : The beta stage effectively happens once all of the options that were delivered
throughout the alpha stage are currently operating and bolted down so no core practicality
at this stage is changed. Since all of the planned gameplay mechanics and technological
features are implemented, the testing department is essentially disbursement its time
making an attempt to ”break” the game and providing minor gameplay tweaking feedback
on areas comparable to issue settings, scoring, or points systems, then forth. throughout
the beta, the ultimate sound effects, musical score, voice talent, and localization are all
extra and completed, with constant testing and feedback from QA to make sure that
every one content is up to the required customary and within the right places[11].

These tasks are typically handled throughout beta merely thanks to the developers
having the ability to focus a lot on content-driven problems over the technical tasks that
dominate alpha. throughout the beta, the press and public are going to be given more data
regarding the game in the kind of in-depth "hands-on” features, and because the game
nears completion, preview reports. For laptop titles that include an internet part (and
even for a few console games), it’s turning into more and more common for developers to
unharness reduced content ”beta test” builds of their game for controlled public testing.
This facilitates nailing down hardware compatibility problems distinctive to laptop titles
and provides the event team real shopper feedback to supplement that provided by QA.

Public beta tests can even help developers see their content during a real-world setting
that’s not possible to recreate altogether however the biggest company QA departments.
Factors comparable to stress testing are often viewed with the acceptable action to re-
pair issues or issues before release. it’s also throughout beta that games are below the
most important threat of being leaked lawlessly to the public.[9] Usually, this happens
through an enclosed company leak (e.g., by unscrupulous freelance QA testers) or through
scalawag journalists and generally even hardware partners. In most cases, developers and
publishers have internal procedures to assist try and forestall this, comparable to digi-
tal watermarking, though there are still varied unauthorized releases of beta code each
quarter, typically on the best profile titles.[12]

Gold master : The gold master is named as when the gold-colored recordable discs
were originally used to send final mastering assets to the publisher for mass duplication.
it’s at this final development stage for computer titles that replicate protection is another,
installation computer code is integrated, and device drivers are added to the game.

Once all of the essential bugs are far away from the game and everyone party agrees
that the necessities of the beta definition have been met, the game is asserted a gold

14

Chapter 1 — Game development

candidate and is shipped for duplication. it’s sometimes at now that work is finalized on
a particular demo for magazine cowl mounts and online distribution, though more and
more groups are building specific demo content and previews into the initial schedule and
value breakdown, particularly within the case of console developers, thanks to the lead
times on magazines.

1.4.3.2 Key game development roles

Game dev roles can vary reckoning on the size and sort of studio. These are a number
of the common positions you’ll find.

Project manager : The project manager makes certain the game development
process runs smoothly, milestones are met, risks are anticipated/mitigated, and team
members do what they’re supposed to. they’re usually the center of communication
between the dev and design teams and executives. Project managers are exceptionally
organized and should have glorious communication skills.

Game developers / programmers : Game software engineers facilitate developing
games by turning style ideas into code to make playable games. Programmers are usually
software system engineers or laptop scientists with a robust programming background,
and a mixture of creativity, mathematics skills, and patience to success code ideas into
interactive visuals and sounds. They make sure the game runs smoothly. There are many
different aspects of programming, including:

- Building a custom base engine for the game (optional).

- Scripting functions, events, interactions.

- making physics (e.g. gravity variations during a game set in space).

- Developing and creating 3D graphic renders.

- Simulating Al in opponents.

- Adding sound effects, and voice-overs.

- Implementing game logic and mechanics.

- making the program.

- Writing code specific to joysticks, keyboard, mice.

- creating it attainable for players to contend or work via local area networks or the net.
- Developing custom tools. Cross-platform porting code.

- Implementing algorithms, addressing memory needs, and caching issues.

- Identify and fix bugs.

In larger studios, we’ll find specialists dedicated just to Al programming for the game,
or programmers who solely work on the user interface. the game programmer (simple
programmer) makes bout USD 60,000 per year[I1], however, a senior or lead programmer
will earn far more than USD 100,000 per year.

Game designers : A game designer is the creative engine of the game, and usually
a cross between a author with artist, with information of programming. the game design
production section involves making compelling stories, characters, goals, rules, and chal-
lenges that drive interactions with different characters, users, or objects. Designers is also

15

Chapter 1 — Game development

accountable for:

- Developing the storyline, character back-stories, and dialogue.

- Developing gameplay, rules, and also the classification system.

- Determining the level of difficulty.

- Building environments, ledges, obstacles, and objects.

- Level and world design.

- Programming/scripting.

- Digital written material.

the common game designer pay is USD 64,000, whereas a lead will build in more than
USD 94,000 (depending on experience, location, size of studio, and industry). Senior and
technical designers could exceed this range.

Level designers : A video game level designer is responsible for creating fun and
interesting levels. Their job is to keep the player focused on moving through the game
and achieving their goal or mission Clearly and simply while minimizing the potential for
confusion.

With games becoming a lot more complex than they used to be, it’s common for large
studios to find game designers dedicated only to the design level. Depending on the type
of game and whether it’s based on actual events (such as a World War II battle), they may
need to learn all about a certain period of history and research actual locations to make
sure the level is realistic and believable. If the game is adapted from a book or movie,
they will need to read/watch the original and look for clues. If the world is completely
fictional, they will need to use their creativity and draw inspiration from the concept of
art presented.

Then using a level editor (software used to design levels and maps), they build levels,
stages, or missions. Their job can also include things like planning start and exit locations,
locating hidden tunnels and passages, places where interactions or dialogue will occur,
monster spawn points, starting points where certain actions will occur, and much more.

Level designers are responsible for identifying and fixing errors, such as players falling
out of bounds or getting stuck and unable to get out. The challenge with video games
is that once the game is released, it is out of the designer’s hands. The player can
interact with the world in unexpected ways, highlighting errors that went unnoticed during
development.

The level will likely see several versions before it becomes final.

A level designer can earn an average of USD 57,000 depending on the studio and
location. Experienced or experienced designers can command a much higher salary.

Game artists : Game artists will include concept artists, animators, 3D modelers,
and FX artists. This cluster is answerable for transferring color, movement, and life to
the game. whereas the concept artist is usually active throughout pre-production once
coming up with the initial look (usually in 2D), it’s going to be brought back later within
the game development method if new components are added or the course of the game is
changed. A 3D concept artist (which can be a similar artist) uses digital sculpting and

16

Chapter 1 — Game development

texturing software like Blender, ZBrush, Maya, Quixel Mixer , Gimp, and Photoshop to
form 3D props, assets, and environments|[11].

3D modelers : A professional 3D creator could be a sculptor or a technician. he’s
a creative person and an engineer. He should worry about the form, expressiveness, and
style, as well the topology, and potency of vertex count. though there are several ways
and kinds of modeling, in play nowadays polygon modeling is king[1].

animators : An animator within the games business is predominately a personality
animator since moving and talking characters are normally required in most game genres.
The animation of the many different styles of characters is a kind that takes a lot of time
and follows to perfect, therefore creating character animation a lot of specialization.[§] As
competent game animators, it’s their job to grasp the means behind an expression and the
way to get the body displayed and moving to accurately or stylistically convey the action
for playback in real-time. Associate in Nursing animator ought to even be knowledgeable
in anatomy, since making likely motion requires Associate in the Nursing understanding
of the underlying mechanism, like rotating joints and bulging muscles. Character work
may be a large order and usually requires seasoned animators. Moreover, because the
spoken language goes, you are doing get what you obtain once a game company is in
search of tough talent[3].

visual effects artists (FX): The role of an FX effects artist is arguably one of the
foremost difficult of the art jobs in games. It demands technical savvy, a way of animation
and timing, a grasp of physics, a deep understanding of the game engine, additionally the
ability to color textures of natural phenomena. Effects also need a general understanding
of adjacent disciplines that you just can act with, as well as scripting, code, animation,
prop modeling, and rigging. the results artist will bring a game engine and frame rate to
its knees quicker than anyone else by filling the screen with smoke. FX effects can also
be one of the most rewarding art jobs[I].

Audio engineers / sounddesigners / composers : Modern game projects need a
whole crew of audio professionals to induce the duty done well. Music supervisors, sound
designers, audio directors, voice actors, implementers, audio software package engineers,
casting agents, musical organization contractors, dedicated music executives, and more.
manufacturing audio for games takes ability and data of music and sound so theand
also the tools concerned in making those elements.[8] making and producing sensible
music could be a craft that takes years to hone. an equivalent are often aforementioned
for excellent sound design. The role of the producer is to ensure the simplest talent is
functioning on the project—and therefore he ought to have level of familiarity with what’s
concerned in game audio production[5].

QA (quality assurance) / video game testers : The role and methodology

of QA checking vary from company to company; most developers don’t have full-time
”in-house” QA departments and think about numerous self-moderated ways in which of

17

Chapter 1 — Game development

bug-fixing their code, typically going most of the deficiency or noncritical minor bugs to
the QA departments of their publisher to select up throughout the beta stage. throughout
the beta stage and thru to the completion of the project, the game will be under constant
test from the publisher’'s QA department (or increasingly by dedicated ”professional”
test teams at testing service outsourcing companies). Most feedback given to the team
can come back in the sort of gameplay flaws, issue issues, and technical bugs about
graphics, sound, or hardware incompatibility, the latter of that being notably necessary
for computer product[3].

For developers of console products admire the Microsoft Xbox and Sony PlayStation
systems, there’ll be an extra layer of QA at the platform holder’ location (sometimes
in many totally different countries) wherever further guideline or technical demand list
(TRC) testing is applied to confirm the game adheres to the varied internal control stan-
dards that platform holder has place into place. The testing procedures for console prod-
ucts are abundant tighter than developing for the other platform, since mending is harder
thanks to restricted on-line connectivity, whereas computer developers are often forced to
go away minor bugs to repair till when launch, safe within the data that they’ll forever
patch the matter later.[8] this is often often through with an extra transfer from a support
web site or specialist online game sites and magazine cowl disks. The timeline for platform
TRC testing varies slightly, however Sony final approval (or submission as it’ referred to)
takes between 4 to 6 weeks to complete, with a further 2 to 4 weeks supplementary if the
game "fails” submission and desires to be fastened/sent back. The producer and also the
publisher’ external producer will act because the buffer between QA and the development
team to confirm they’re not flooded with haphazard bug reports. Most corporations use
bug-tracking programs, machine-driven spreadsheets, or Oracle info systems to manage
and range bug feedback from QA. Key team members will have periodic bug update con-
ferences to ensure that fixed bugs are being off from the project and the reports from QA
are that specialize in the forthwith necessary areas.[I]

1.4.4 Post-Production

The final stage of a game’s development is the post-production stage. This begins
once the game is taken into account ”feature complete” and every one of the codes has
been written associated art has been completed. this can be when an alpha version of the
game is made and is provided to the game’ take a look at the department to bang away
at and notice bugs and major flaws within the game that requires to be modified whether
or not by the artists or programmers.

Once all of the bugs and major flaws are known and addressed, a beta version of the
game is then created and another time sent to take a look at the department to be picked
through with a fine-tooth comb. this can be wherever the hardcore testing is completed
and every single bug notwithstanding however major or minor is documented and tried to
be fixed, with the most important ”A” sort bugs the highest priority with the "B, 7C"”
and fewer important bugs self-addressed as time or company policy might once developing
a title for any of the consoles by corporations comparable to Microsoft, Nintendo or Sony,
this is additionally the stage where the testers should confirm that the game abides by all

18

Chapter 1 — Game development

of the "standards” that are determined by the manufacturer of the console that has got to
be followed so as for the game to be approved for release. Includes elements comparable
to the "B” button should continue to be used menusgames developed for the Microsoft
Xbox and therefore the ” A” button always has to be used to advance.

Once all of the bugs are mounted and every one of the standards has been determined
to be met, a final version of the game is created and, within the case of the consoles,
is distributed to the console maker to urge take a look at and approved for unharness
on the system in If bugs are found or approval isn’t met, the assembly team can fix
all of the issues in question, place it through their test department again to make sure
that everything was mounted and zip new was broken, and so another time submit it for
approval.

All that’s left to try and do once the game is approved by the console manufacturer or
simply "finished” by the developer within the case of laptop games, is for the game to be
factory-made and so distributed to stores wherever you’ll be able to quit and get them[4].

1.5 Conclusion

Based on what we see later, there are multiple phases within a game production, each
with its own goals and set of objectives. Additionally, it was investigated what each phase
would be focused on and when each phase would be considered complete. This led to the
indication that the most time-consuming and thus the most uncertain phase would be
the production and the team size could potentially vary greatly depending on the game
concept as well, although the team size or economical limitations could, in reverse, help
shape the game concept. Moreover, some team members could potentially be part of two
departments simultaneously and need to be updated on both while still maintaining a
clear overview.

Having gotten a better understanding of the production phases, the next point of
interest would be to focus on the game development process and looking into work en-
gagement there were several types of management methodologies. However, not all would
be equally fit for running a game production as a game production tends to involve a lot
of changing requirements.

19

Chapter

Artificial intelligence in Game development

2.1 Introduction

It may seem unexpected, but the history of AI began long before computers. Even
the ancient Greeks suspected the existence of intelligence machines. A famous example
is the bronze giant Talos, who protected the city of Crete from invaders. In , René
Descartes wrote about thinking automata, believing animals were unlike machines that
could replicate themselves using rollers, pistons, and cams. However, the heart of this
story begins in 1931, when the Austrian logician, mathematician, and philosopher Kurt
Godel showed that all true statements in first-order logic are differentiable. On the other
hand, this is not true for higher-order logic. , in which some true (or false) statements are
not provable. This made first-order logic a good candidate for automating derived logical
consequences.

In 1937 Alan Turing, an English computer scientist, mathematician, logician, crypt-
analyst, philosopher, and theoretical biologist, pointed out some of the limitations of
"intelligent machines” with the stopping problem: It is not possible to predict a priori
whether a program will stop, when not running. This has many consequences in theoret-
ical computer science. However, the fundamental step came thirteen years later, in 1950,
when Alan Turing wrote his famous article 7 Computing Machinery and Intelligence 7,
in which he talked about the imitation game better known today as ” The Turing Test
”: a way to the definition of what an intelligent machine is. From the late 1950s to the
early 1980s, much Al research was devoted to “symbol systems”. These are based on two
components: a knowledge base made up of symbols and a reasoning algorithm that uses
reasoning to manipulate these symbols to extend the knowledge base itself.

During this period, many brilliant minds made significant advances. A name worth
mentioning is McCarthy, who organized a conference at Dartmouth College in 1956 where
the term ”artificial intelligence” was first coined. Two years later he invented the high-
level programming language LISP, in which the first self-modifying programs were written.
Other notable results include Gelernter’s Geometry Theorem Prover from 1959, Newell
and Simon’s General Problem Solver (GPS) from 1961, and Weizenbaum’s famous Eliza
chatbot, which became the first software to have a natural language conversation in 1966.

20

Chapter 2 — Artificial intelligence in Game development

The apotheosis of symbolic systems finally came in 1972 with the invention of PROLOG
by the French scientist Alain Colmerauer.

Symbolic Systems gave rise to many Al techniques that are still used in games, such
as B. Whiteboard architectures, pathfinding, decision trees, state machines, and direction
algorithms. The compromise of these systems is between knowledge and search. The
more knowledge you have, the less you need to search, and the faster you can search,
the less knowledge you need. This was even proved mathematically by Wolpert and
Macready in 1997. In the early 1990s, token systems became inadequate as they proved
difficult to scale to larger problems. Additionally, some philosophical arguments have
been advanced against it, arguing that symbolic systems are an incompatible model for
organic intelligence. As a result, old and new technologies inspired by biology have been
developed. With the success of Nettalk in 1986, a program for reading aloud, and the
publication of the book Parallel Distributed Processing by Rumelhart and McClelland that
same year, the old neural networks were swept off the shelf. In fact, "back-propagation”
algorithms have been rediscovered as they allow a neural network (NN) to learn.

in terms of games, the quality of the experience depends on whether the game presents
a good challenge to the player. One way to present a good challenge is to offer computer
opponents, or sometimes even allies, that are capable of playing the game intelligently. In
most cases, this is not a trivial problem to solve, but fortunately, there is an entire field
of study that can help us ou—artificial intelligence (or AI for short). Al describes the
intelligence embodied in any manufactured device. If we design a character or opponent in
a video game that acts on its own, it is generally accredited with possessing AI. Human-
level Al is the stuff of dreams and science fiction. How do you take the accumulated
common sense and expertise of a human and distill it into a computer? Unfortunately,
this problem is currently unsolved, and it will likely be decades before we get a close
understanding of what it truly entails. Since general human-level intelligence is currently
impossible to re-create, researchers chip away from dozens of different angles by solving
much simpler problems. By sufficiently narrowing down the domain of an Al problem, it
becomes possible to create behavior that is reasonable and believable, especially in the
realm of video games[1].

2.2 Al In Games

Al in video games is very different from most other Al applications like military
defense, robotics, or data mining. The main distinction concerns the goals. The goal of
an Al programmer is to create fun and challenging opponents while the product is being
shipped. in time. These goals have the following five implications:

The AI must be intelligent but intentionally flawed
- Opponents must be challenging.
- Opponents must keep the game fun and entertaining.
- The opponents must lose to the player in a challenging and fun way.

21

Chapter 2 — Artificial intelligence in Game development

The AI must not have any undesirable weaknesses
- There shouldn’t be ”golden paths” to beating the same way every time.
- Al shouldn’t fail miserably or look stupid.

The AI must function within the game’s CPU and memory limitations
- Most games are real-time games and their Als need to react in real-time.
- Game Al rarely gets more than 10-20 percent of the frame time.

The AI should be configurable by game designers/players
- Designers need to be able to adjust the difficulty, customize Al, and sometimes script
specific interactions.
- If the game is expandable, players can modify or customize the Al.

The AI must not stop broadcasting the game
- Experimental techniques should be tested early in the development cycle during pre-
production.

- The AI techniques used must not endanger the game.
- If Al is given the freedom to evolve or change, it must be testable to ensure it will not
degrade when released to millions of consumers[I].

These requirements shape the perception of game developers in the field of AI. An
important difference is that the game’s Al doesn’t have to solve a problem perfectly, only
to the satisfaction of the player. For example, pathfinding may require the Al to calculate
a path through a room full of people. There are search algorithms to find the shortest
or cheapest route, but perfection is not generally a requirement for games. By relaxing
the standards for many problems, shortcut decisions can be made that either make the
problem manageable in real-time or result in large computational savings.

Another consequence of game-specific Al is that the Al has access to perfect knowledge.
For example, a given opponent doesn’t have to feel the world the way a physical robot
would. The game world is entirely in the computer and the AI has the luxury of doing its
analysis on these completely accurate representations. Much of robotics research focuses
on problems of visual recognition and mechanical movement, both of which are rightly
ignored in games. When designing game Al, game designers should think hard about
making the Al configurable.

Rather than creating a perfect standalone character or opponent, the goal is to create
a highly customizable Al that can be tweaked based on difficulty and individual attributes
like aggressiveness or accuracy. [13]|By creating a slightly more general Al that can be
customized, game design experts can balance and tweak the game to ensure the game is
fun. Finally, an important consideration is that the product must be shipped on time.
Experimental Al techniques are exciting and intriguing, but they have the potential to
unnecessarily jeopardize the project. Therefore, new Al techniques should be tested early
in the development cycle. I promise everything being assembled three months before
shipping is just not acceptable.

22

Chapter 2 — Artificial intelligence in Game development

2.3 Game Agents

In most games, the goal of the Al is to create an intelligent agent, sometimes called
a non-player character (NPC). This agent acts as an opponent, ally, or neutral entity in
the game world. Since most game Al focuses on the agent, it is very useful to examine
game Al from this perspective. An agent has three key steps that it continuously goes
through.The stages are commonly referred to as the sensory-thinking-acting cycle. In
addition to these three steps, there is an optional learning or remembering step that can
also take place during this loop. In practice, most game agents don’t take that extra step,
but that’s slowly changing due to the added challenge and replayability that comes with
it[13].

2.3.1 Sensory

2.3.1.1 Sensing

The game agent must have information about the current state of the world to make
good decisions and act accordingly. Since the game world is presented entirely within the
program, perfect information about the state of the world is available at all times. This
means that there is no uncertainty about the world. The world provides the game agent
with accurate information about the existence, location, and status of any opponent,
barrier, or object[13] .

Unfortunately, while all this rich information is available, it can be expensive or diffi-
cult. for useful and relevant information. The game agent can always consult the game
world representation to locate the player or other enemies, but most players would con-
sider this cheating. Therefore, it is necessary to give the game’s agent certain limitations
in terms of what he can feel. For example, it may seem obvious, but game agents shouldn’t
be able to see through walls in general. Gaming agents generally have human limitations.
They are limited to only knowing about events or entities that they have seen, heard, or
perhaps told them. by other agents. Therefore, there is a need to model how an agent
should be able to see the world, hear the world, and communicate with other agents[23].

2.3.1.2 Vision

When modeling agent vision, it is important that the game engine provide fast methods
for determining the visibility of objects. While game Al typically isn’t very CPU intensive,
visibility testing can be enormously expensive. Therefore, it is often limited to particular
agents and performed only periodically[13].

Vision usually starts with obtaining a list of pertinent game objects. For example, the
agent might ask for a list of all enemies. Since agents are not concerned with most game
objects that populate a world, it would be wasteful to consider every object in the game
database. Once this pared-down list is constructed, a vector from the game agent to each
game object is calculated.[25] This object vector is then processed in the following ways
to determine if the agent can see the game object. The order of these steps is important
to minimize processing.

23

Chapter 2 — Artificial intelligence in Game development

2.3.1.3 Hearing

An interesting twist on agent awareness is allowing an agent to sense through hearing.
For example, if the player tiptoes past a sleeping enemy, the enemy may not notice.
However, if the player walks past the same enemy, the enemy can hear the sound. and
wake up. If the player starts shooting their gun wildly, agents who cannot see the player
may rush to the crime scene because they heard gunfire from that location[13].

Hearing is most commonly modeled through event-based notifications. For example,
if the player performs an action that causes noise, the game calculates where that noise
might travel and informs the agents within that area. Instead of carrying out complex
calculations of the sound reflection about the environment, this is usually achieved by
simply calculating the distance together with the delimited areas. If a noise emanates
within Area B and can be heard up to 10 meters away, all agents within Area B and 10
meters will be notified. This eliminates any computationally intensive sound modeling. [14]

2.3.2 Thinking

Once an agent has gathered information about the world through their senses, the
information can be evaluated and a decision made. This mindset is at the core of what
most people consider real Al, and it can be as simple or as sophisticated as needed. In
general, there are two ways an agent decides games. The first is that the agent relies
on pre-coded expertise, typically built via if-then rules, introducing randomness to make
agents less predictable.[I3] The second is that the agent uses a search algorithm to find a
near-optimal solution.

2.3.3 Acting

Until now, the game agent’s perception and thought processes were invisible to the
player. Only in the action step can the player witness the intelligence of the agent.
Hence, this is a very important step for the agent to execute the chosen decisions. and
communicate their decisions to the player (if this improves the game and the player’s
perception of the agent). In other words, if the agent is brilliant and the player never
notices, the effort of making the agent smart was wasted.[I3] There are numerous agent
actions in the game. Some common ones are changing location, playing an animation,
playing a sound effect, picking up an item, talking to the player, and firing a weapon.

The skill and subtlety with which the agent performs these actions affect the player’s
opinion of the agent’s intelligence. This places a tremendous strain on the variety and
aesthetic quality of the animations, sound effects, and dialogue created for the agent.
The agent can only express their intelligence in terms of the vocabulary these artistic
resources provide. On matchdays, agents had very little animation to deal with. As
3D games appeared, the agent’s repertoire expanded from several dozen animations to
hundreds and thousands. This complexity led to the need to handle animation selection
in a scalable way. Best practices in this area have brought the problem of animation
selection through data-driven design out of the code and right into the hands of game
designers and creators. It is important to pass the hidden work on to the player as it

24

Chapter 2 — Artificial intelligence in Game development

improves the game. For example, if the agent has concluded that he will inevitably die
soon, there may be nothing he can do to prevent that outcome. However, when the agent
just sits and dies, it looks pretty silly.

The result would be that the agent would use this information to pinch or yell ”Oh
no!” when he is dying. This way players don’t see a dumb agent getting killed; Instead,
they see an intelligent agent who understands the situation. Although the result is the
same, revealing intelligence greatly improves the agent and the game[14].

2.3.3.1 Communication

Many types of agents are expected to communicate with each other, so it can be
important to model the transfer of perceived knowledge between agents. Take the guards
for example. If a guard saw the player in a sensitive area, they could run away.[13]
and warn others. The other guards could use this information to make better decisions
themselves, such as deciding to hunt the player together, starting with the player’s last
known location. Similar to the mechanism of hearing, communication information will be
event-based. the form of notifications. When an agent has useful information and gets
within a certain distance of other agents, the information is sent directly to the other
agents. [49]

2.3.3.2 Reaction Times

When capturing the environment, it is important to build in artificial reaction times.
Agents should not be able to see, hear, or communicate immediately. For example, seeing
a guard take off at the exact moment the alarm sounds seems decidedly wrong. is made to
sound Because agents perceive the world instantly, simple timers can be used to simulate
reaction times. Typical reaction times for seeing and hearing can be on the order of a
quarter to half a second.Communication reaction times would be longer to model speaking
or gesturing between agents.

2.3.3.3 Search

Search is another technique commonly used to make smart decisions. The search uses
a search algorithm to discover a sequence of steps (a plan) that leads to a solution or
ideal state. Given the possible moves and the rules governing the moves, an algorithm
can explore the search space and find an optimal or near-optimal solution if one exists. In
games, fetch is most commonly used to plan where the agent should move next in many
games[13].

2.3.4 Learning and Remembering

learning and remembering together is an optional step in the Sensing-thinking-acting
cycle. Without it, the agent will never improve, never adapt to a specific player, and
never benefit from past events or information witnessed or shared with him. Interestingly,
learning and remembering aren’t necessarily important in many games, simply because
agents may not live long enough to benefit from what they’ve learned.[13]

25

Chapter 2 — Artificial intelligence in Game development

However, in games where the agent lasts longer than 30 seconds, there can be a
significant benefit when learning and retrieval are built-in. For game agents, learning is
the process of remembering specific outcomes and using them to generalize and predict
future outcomes. Typically this can be modeled using a statistical approach. By collecting
statistics about past events or outcomes, future decisions can use these probabilities. For
example, if the player is attacking from the left 80 percent of the time, the AI would
be smart to wait and prepare for that likely event Therefore, the Al was adapted to the
behavior of the player.[3§]

Remembering can be as simple as noting the last place the player was seen with
that information during the thought cycle. By retaining some accounting information
about observed states, objects, or players, the agent can exploit earlier observations at
a later time. In order not to accumulate too much knowledge, these memories can fade
over time depending on how important they are. be a way to model selective memory
and forgetting. It is important to note that past knowledge does not always have to be
stored in the agent. Some types of knowledge can be stored directly in the world’s data
structures. (This refers to smart terrain) For example, if agents are constantly being
massacred in a certain location, that area can be marked as more dangerous. You could
think of it almost like the smell of death in a certain place. During the thought cycle,
path planning and tactical decisions may take this information into account and prefer to
avoid the area.[14]

2.4 Multi-Agent system

A multi-agent system (MAS) is a computerized system composed of multiple inter-
acting intelligent agents.[I5] Multi-agent systems can solve problems that are difficult or
impossible for an individual agent or a monolithic system to solve.[16] Intelligence may in-
clude methodic, functional, procedural approaches, algorithmic search, or reinforcement
learning.[I7][I8] To create a multi-agent model, the smaller components that comprise
the system must be specified [19], These smaller components need to be fully modeled,
to become the agents that are at the heart of the modeling technique [19].

Each agent must be capable of making decisions (often dictated by a rule-set), and
these decisions may involve incomplete knowledge of its environment , The agents also
need to be able to receive information from their environments and depending on the type
of system being modeled, sometimes communicate with other agents , The environment
itself needs to be able to adjudicate the interactions between agents, but at no stage needs
to be able to determine the overall ramifications of these interactions. Instead, the overall
result will become apparent empirically, taking advantage of the emergent behavior of the
MSA to handle the complexity modeling [23].

The field of MAS is a well-established research domain in Al, which has an emphasis
on the resolution of problems by a society of agents. The distribution in several agents
is necessary because these problems can be complex or too large to be solved by a single
process, or even, they can need knowledge of several domains. MAS researchers look
for "autonomy’ because the more autonomous the system is, the more efficient the task
distribution and execution, and the lower the computational load of the overall system.

26

Chapter 2 — Artificial intelligence in Game development

However, a MAS comprises the formalization of the coordination, hierarchical relation-
ships, and communication between agents. The MAS field is increasingly characterized by
the study, design, and implementation of societies of artificial agents. If the logic-based
and cognitive science approaches have contributed considerably to the development of
MAS, the inverse does not happen (the social sciences have been less influenced) [22].
Just in the economics and game theory area, there is a huge quantity of work in the M
AS field [21]. In these areas, MAS is essentially used by economists and game theorists to
study the evolution of cooperation from local interactions among self-interested agents.

Task Manager

Agent 0 —

Agent 1 —_—

Information Pool

n

Agent 2 —_—

- 1
Communicator «<——] 1

Controller —_—

Figure 2.1: An example of a Multi-Agent System for decision support[49]

2.5 Behavior Tree

There are several abstractions to help design complex behaviors for an autonomous
agent. Generally, these consist of a finite set of entities that map to particular behaviors
or operating modes within our system, e.g., “move forward”, “close gripper”, “blink the
warning lights”, “go to the charging station”. Each model class has some set of rules that
describe when an agent should execute each of these behaviors, and more importantly
how the agent should switch between them[34].

Behavior trees (BTs) are one such abstraction, which we will define by the following
characteristics:

They start at a root node and are designed to be traversed in a specific order until
a terminal state is reached (success or failure). Leaf nodes are executable behaviors:
Each leaf will do something, whether it’s a simple check or a complex action, and will
output a status (success, failure, or running). In other words, leaf nodes are where you
connect a BT to the lower-level code for your specific application. Internal nodes control
tree traversal: The internal (non-leaf) nodes of the tree will accept the resulting status
of their children and apply their own rules to dictate which node should be expanded
next[35]. Behavior trees actually began in the videogame industry to define behaviors for
NPCs :

Both Unreal Engine and Unity (two major forces in this space) have dedicated tools for
authoring BTs. This is no surprise, a big advantage of BT's is that they are easy to compose

27

Chapter 2 — Artificial intelligence in Game development

and modify, even at runtime. However, this sacrifices the ease of designing reactive
behaviors (for example, mode switches) compared to some of the other abstractions.

Since then, BTs have also made it into the robotics domain as robots have become
increasingly capable of doing more than simple repetitive tasks.

2.5.1 Behavior tree terminology

While the language is not standard across the literature and various software libraries,
We will largely follow the definitions in Behavior Trees in Robotics and Al. At a glance,
these are the types of nodes that make up behavior trees and how they are represented
graphically[35]:

Sequence Fallback Parallel Decorator

Control
Nodes

2 —>

/ \ VAVEEAN
Eﬁ;&gfn Action

Figure 2.2: Overview of behavior tree nodes.

Behavior trees execute in discrete update steps known as ticks. When a BT is ticked,
usually at some specified rate, its child nodes recursively tick based on how the tree is
constructed. After a node ticks, it returns a status to its parent, which can be Success,
Failure, or Running[47].

Execution nodes, which are leaves of the BT, can either be Action or Condition nodes.
The only difference is that condition nodes can only return Success or Failure within a
single tick, whereas action nodes can span multiple ticks and can return Running until
they reach a terminal state. Generally, condition nodes represent simple checks (e.g.,
“is the gripper open?”) while action nodes represent complex actions (e.g., “open the
door”).[35]

Control nodes are internal nodes and define how to traverse the BT given the status
of their children. Importantly, children of control nodes can be execution nodes or con-
trol nodes themselves. Sequence, Fallback, and Parallel nodes can have any number of
children, but differ in how they process said, children. Decorator nodes necessarily have
one child and modify its behavior with some custom-defined policy.[34]

2.5.1.1 Sequence :

Sequence nodes execute children in order until one child returns Failure or all children
returns Success. [35]

28

Chapter 2 — Artificial intelligence in Game development

Sequence
Child1 | | Child2 ChildN

Figure 2.3: Sequence node.

2.5.1.2 Fallback :

Fallback nodes execute children in order until one of them returns Success or all
children return Failure. These nodes are key in designing recovery behaviors for your

autonomous agents[35].

Fallback

//\

Child1 Child2 ChildN

Figure 2.4: Fallback node.

2.5.1.3 Parallel :

Parallel nodes will execute all their children in “parallel”. This is in quotes because it’s
not true parallelism; at each tick, each child node will individually tick in order. Parallel
nodes return Success when at least M child nodes (between 1 and N) have succeeded, and
Failure when all child nodes have failed.

Parallel
Child1 | | Child2 ChildN

Figure 2.5: Parallel node.

29

Chapter 2 — Artificial intelligence in Game development

2.5.1.4 Decorator :

Decorator nodes modify a single child node with a custom policy. A decorator has
its own set of rules for changing the status of the “decorated node”. For example, an
“Invert” decorator will change Success to Failure, and vice-versa. While decorators can
add flexibility to your behavior tree arsenal, you should stick to standard control nodes and
common decorators as much as possible so others can easily understand your design.[35]

Decorator

Common policies:
Invert

Repeat / Retry
Timeout

Force Failure
Success Is Failure

Policy

-
-
-
-
-
-

Child

Figure 2.6: Decorator node.

2.5.1.5 Execution node :

Execution nodes are leaves of the behavior tree where tasks are executed.[47]

2.6 Common Al Techniques

The following survey of common Al techniques is designed to provide an executive
summary of the many tools that an Al programmer can wield. Since game Al is ap-
proached from so many diverse directions, a whirlwind tour of techniques is a good way
to familiarize oneself with the diverse landscape of available solutions. The next section
similarly provides a survey of promising Al techniques[25].

2.6.1 Finite State Machines

Finite State Machines (FSMs) are generally recognized as the most widely used soft-
ware pattern within game AI. This kind of popularity is no accident. Rather, FSMs are
widely used because they have some amazing properties. They are easy to program. |,
easy to understand, easy to debug, and completely general for any problem. They may
not always provide the best solution, but they always get the job done with minimal risk
to the project. However, FSMs also have a darker side. Many programmers view them
with suspicion as they tend to be created ad hoc with no consistent structure. They
also tend to get out of control as the development cycle progresses. This poor structure
coupled with growth makes many FSM implementations difficult to maintain and brittle.
However, for all their warts, FSMs remain the most compelling way to structure most
game Al implementations[20].

30

Chapter 2 — Artificial intelligence in Game development

2.6.1.1 The basics of Finite State Machines

Formally, a finite state machine is an abstract computational model consisting of a set
of states, an initial state, an input vocabulary, and a transition function that maps inputs
and current states to the next state. [24]The calculation starts from the initial state and
transitions to new states as inputs are received. The FSM can perform work within a
particular state, known as a Moore machine, or at transitions between states, known as
a Mealy machine. Game developers deviate from the strict definition of FSM in many
ways. First, the states themselves are used to define behaviors that contain code specific
to that state.[35]

For example, states can be behaviors such as walking, attacking, or fleeing. Second,
the single transition function is usually distributed across the states so that each state
knows exactly what will cause its transition to another state, which helps maintain the
relationship between the states. and easy-to-understand transitions. Third, the bound-
ary between Moore and Mealy machines is fluid, since work is often done both within a
state and during transitions. Fourth, when transitioning into a new state, it is extremely
common to exploit chance and randomness. For example, an agent might flee after being
attacked with a 10 percent chance. Fifth, extra state information not directly represented
in the FSM, such as agent health is often used as a deciding factor for some state transi-
tions. Since FSMs can elegantly capture the mental states or behaviors of an agent, they
are a natural choice for defining character AI[24].

2.6.2 Blackboard Architecture

A blackboard architecture is designed to solve a single complex problem by posting
it on a shared communication space, called the blackboard. Expert objects then look
at the blackboard and propose solutions. The solutions are given a relevance score, and
the highest-scoring solution (or partial solution) is applied.[27] This continues until the
problem is ”solved.”

Game Example: In games, the blackboard architecture can be expanded to facil-
itate cooperation among multiple agents. A problem, such as attacking a castle, can be
posted, and individual units can propose their role in the attack.

The volunteers are then scored, and the most appropriate ones are selected[26]. Al-
ternatively, the blackboard concept can be relaxed by using it strictly as a shared com-
munication space, letting the individual agents regulate any cooperation. In this scheme,
agents post their current activities and other agents can consult the blackboard to avoid
beginning redundant work. For example, if an alarm is sounded in a building and enemies
start rushing the player, it might be desirable for them to approach from different doors.
Each enemy can post the door through which it will eventually enter, thus encouraging
other enemies to choose alternate routes[27].

31

Chapter 2 — Artificial intelligence in Game development

2.6.3 A* Pathfinding

A* pathfinding (pronounced A-star) is an algorithm for finding the cheapest path
through an environment. Specifically, it is a directed search algorithm that exploits knowl-
edge about the destination to guide the search intelligently. By doing so, the processing
required to find a solution is minimized. Compared to other search algorithms,A* is the
fastest at finding the absolute cheapest path[28][29][30]. Note that if all movement has
the same traversal cost, the cheapest path is also the shortest path.

Game Example: The environment must first be represented by a data structure
that defines where movement is allowed[41]. A path is requested by defining a start
position and a goal position within that search space. When A* is run, it returns a list of
points, like a trail of breadcrumbs , that defines the path. A character or vehicle can then
use the points as guidelines to find its way to the goal. A* can be optimized for speed
[28][29][30], for aesthetics, and general applicability to other tasks.

2.6.4 Genetic Algorithms

A genetic algorithm (GA) is a technique for search and optimization that is based
on evolutionary principles. GAs represent a point within a search space using a chro-
mosome that is based on a handcrafted genetic code.[31] Each chromosome consists of a
string of genes that together encode its location in the search space. For example, the
parameters of an Al agent can be the genes and a particular combination of parameters
a chromosome. All combinations of parameters will represent the search space. By main-
taining a population of chromosomes, which are continually mated and mutated, a GA
can explore search spaces by testing different combinations of genes that seem to work
well.[32] A GA is usually left to evolve until it discovers a chromosome that represents a
point in the search space that is good enough. GAs outperform many other techniques
in search spaces that contain many optima and are controlled by only a small number of
parameters, which must be set by trial and errorcite [31].

Game Example: Genetic algorithms are very good at finding a solution in complex
or poorly understood search spaces. For example, your game might have a series of
settings for the AI, but because of interactions between the settings, it is unclear what
the best combination would be. In this case, a GA can be used to explore the search space
consisting of all combinations of settings to come up with a near-optimal combination[32].
This is typically done offline since the optimization process can be slow and because a
near-optimal solution is not guaranteed, meaning that the results might not improve
gameplay.

2.6.5 Filtered Randomness

Filtered randomness attempts to ensure that random decisions or events in a game
appear random to the players. This can be achieved by filtering the results of a random
number generator such that non-random-looking sequences are eliminated, yet statistical

32

Chapter 2 — Artificial intelligence in Game development

randomness is maintained. For example, if a coin is flipped eight times in a row and
turns up heads every time, a person might wonder if there was something wrong with the
coin. The odds of such an event occurring are only 0.4 percent, but in a sequence of 100
flips, either eight heads or eight tails in a row will likely be observed. When designing
a game for entertainment purposes, it is desirable for random elements to always appear
random to the players. The technique involves keeping a short history of past results
for each random decision that should be filtered. When a new decision is requested, a
random result is generated and compared to the history. If an undesirable pattern or
sequence is detected, the result is discarded and a new random result is generated. The
process is repeated until a suitable result is accepted. Surprisingly, reasonable statistical
randomness is maintained despite deliberate filtering[33].

Game Example: Simple randomness filtering is very common in games. For ex-
ample, if a character plays a random idle animation, often the game will ensure that the
same idle animation won’t be played twice in a row. However, filtering can be devised to
remove all peculiar sequences.

For example, if an enemy can randomly spawn from five different points, it would be
extremely undesirable for the enemy to spawn from the same point five times in a row.
It would also be undesirable for the enemy to randomly spawn in the counting sequence
12345 or favor one or two particular spawn points in the short term, like 12112121.
Although these sequences can arise by chance, they are neither intended nor anticipated
when the programmer wrote the code to choose a spawn point randomly. By detecting
and filtering undesirable patterns or sequences with simple rules[33], a particular random
decision can be guaranteed to always appear fair and balanced in the short term while
still maintaining good statistical randomness.

2.6.6 Emergent Behavior

Emergent behavior is behavior that wasn’t explicitly programmed, but instead emerges
from the interaction of several simpler behaviors. Many life forms use rather basic behavior
that, when viewed as a whole, can be perceived as being much more sophisticated. In
games, emergent behavior generally manifests itself as low-level simple rules that interact
to create interesting and complex behaviors.

Some examples of rules are seek food, seek similar creatures, avoid walls, and move
toward the light. While any one rule isn’t interesting by itself, unanticipated individual
or group behavior can emerge from the interaction of these rules.

Game Example: Locking is a classical example of emergent behavior, which results
in realistic movement of flocks of birds or schools offish[34].

However, emergent behavior in games is more commonly seen in city simulations, such
as the ambient life in the Grand Theft Auto series. The city’s inhabitants, composed
of pedestrians, cars, taxis, ambulences, and police, create complex behavior from the
interactions of agents using simple rules. Just like an ant colony exhibits large-scale

33

Chapter 2 — Artificial intelligence in Game development

behavior from the actions of individual ants, a city is a complex system that emerges
from the behavior of individual agents.[35]

2.6.7 Neural Networks

Neural networks are complex nonlinear functions that relate one or more input vari-
ables to an output variable. They are called neural networks because internally they
consist of a series of identical nonlinear processing elements (analogous to neurons) con-
nected in a network by weights (analogous to synapses). The form of the function that a
particular neural network represents is controlled by values associated with the weights of
the network. Neural networks can be trained to produce a particular function by showing
them examples of inputs and the outputs they should produce in response. This training
process consists of optimizing the network’s weight values, and several standard train-
ing algorithms are available for this purpose. Training most types of neural networks is
computationally intensive[36], however, making neural networks generally unsuitable for
in-game learning. Despite this, neural networks are extremely powerful and have found
some applications in the games industry.

Game Example: In games, neural networks have been used for steering racecars in
Colin McRae Rally 2.0 and the Forza series, and control and learning in the Creatures
series. Unfortunately, there are still relatively few applications of neural networks in
games, as very few game developers are actively experimenting with them[37].

2.6.8 Reinforcement Learning

Reinforcement learning (RL) is a powerful machine learning technique that allows a
computer to discover its own solutions to complex problems by trial and error. RL is
particularly useful when the effects of the AI’s actions in the game world are uncertain or
delayed. For example, when controlling physical models like steering an airplane or racing
a car, how should the controls be adjusted so that the airplane or car follows a particular
path and What sequences of actions should a real-time strategy Al perform to maximize
its chances of winning. By providing rewards and punishments at the appropriate times,
an RL-based Al can learn to solve a variety of difficult and complex problems.[3§]

2.7 Behavior trees vs. finite-state machines (FSM)

In theory, it is possible to express anything as a BT, FSM, one of the other abstractions,
or as plain code. However, each model has its advantages and disadvantages in its intent
to aid design on a larger scale. Specific to BTs vs. FSMs, there is a tradeoff between
modularity and reactivity. Generally, BTs are easier to compose and modify while FSMs
have their strength in designing reactive behaviors.

34

Chapter 2 — Artificial intelligence in Game development

2.8 Conclusion

Game Al is distinctively different from many other related Al fields. The goal is to
create intelligent opponents, allies, and neutral characters that result in an engaging and
enjoyable experience for the player. Ultimately, the goal is not to beat the player, but
rather to lose in a fun and challenging way.

Most games are populated by agents who sense, think, and act independently. how-
ever, even a single opponent can be thought of as an agent. Advanced agents might also
learn and remember to present a deeper challenge. It is important to realize that whatever
an agent senses, thinks, or remembers, is completely invisible and inconsequential to the
player unless the agent can express the result through actions. An agent’s outward ap-
pearance through movement, manipulation, animation, and dialogue is critical to making
the agent appear intelligent. Typically, this requires tight integration and collaboration
with the people who generate the art assets.

One of the most enduring techniques for endowing intelligence on agents is the ubiqg-
uitous finite-state machine. This simple computational model allows complex expertise
to be expressed in a simple, easy-to-understand manner that is also convenient to debug.
The actions and mindsets of an agent eloquently map to the states of an FSM, further
allowing for simple, yet effective modeling of behavior. With the many enhancements
developed for FSMs, it is easy to understand why they have become so universal within
AT game development.

Finally, there are dozens of common and promising techniques for adding intelligence
to games. Each game is unique and might require mixing and matching several different
techniques. There is no single solution, and the resulting design is highly dependent on
the exact requirements of the game. Therefore, a developer must become familiar with a
broad range of techniques to experiment and make intelligent implementation decisions.

35

Chapter

System conception

3.1 Introduction

My goal is to create a game that uses artificial intelligence, coordinated in this chapter
we will introduce the basic and advanced concepts of the game industry. Then using
Concept map we will collect raw system information. At this point, We will also outline
the system, as well as interact with the system and I'll finish with a conclusion.

3.2 The basic structure of the game engine

The basic concepts of the game industry start with the basic structure of the game
engine program, in the sense of more precisely the game engine, which represents the
nucleus of the system and controls all the component parts of the game, To better un-
derstand game basic structures, we have to think of a game system. Imagine there are
various sub-parts that this system controls[50]. To picture this better, you can examine
the diagram below :

Resources

Game Model (in memory) Upload and

Save

Network
Listening and
Sending

Sound and

Graphics .
2 Particle system

User Input

Figure 3.1: The basic structure of the game engine program

36

Chapter 3 — System conception

I will describe the various pieces that make up the game mechanics in the next few
sections below[50)].

3.2.1 System (Game system)

As you can see in the diagram above, the game system takes on the following tasks:
- Handles the loading and saving of files.
- It then enables the intro animation to run using the audio and graphic elements.
- While the game interface is being used, user input ensures that the graphics and sound
parts work in harmony.
- Finally, the game system ensures that the graphics, sound, user input, Al and network
parts work in harmony in the game.

3.2.2 Resources

The Resources describe the necessary files for the game located on the hard disk.
- These resources contain configuration files that describe the default settings in which
the game will run.
- If available, it contains the video file for the intro that will be played when the game
first starts.
- Contains files where the user gets information about the game before the game begins.
- It contains the graphics, music and chapter information in the game, alongside every
other element the game will require to display audio and visual data to the player[50].

3.2.3 Game model

It includes the following:
- The game model is the state of the game graphics, music and text files loaded into
memory from the resource.
- Image files are stored in memory or in the texture memory of the video card.
- Section, score, etc. information is kept in variables and data structures within the game
model.

3.2.4 Upload and Save

This is the part that takes the graphics, music and other information from the source
and puts it into the memory (game model) and undertakes the process of saving it back
to the source in case of changes in scores, when the game is saved — or the save state — or
when the game is recorded.

- Upload: Configuration files, chapter files, image files, music and sound files, 3D model
files, video files, and help files.
- Save: Score files and other documents to be saved during the game.[50]

37

Chapter 3 — System conception

3.2.5 Graphics

This is the most important and hardest part of the game in our opinion. Because it
is impossible to have a game without visuals (unless you are creating an old school text-
based video game). This part is responsible for painting the screen and the following:

- Playing any video.

- Displaying the game interface.

- Viewing and displaying scores, help and configuration information.
Displaying the game’s own graphics and visual elements.

3.2.6 User input

A game without interaction would be like watching a movie. User Interaction is one
of the sines qua non of game mechanics that connects users to the game. The system
is constantly interacting with the user. Keyboards, mice, cameras, and so forth are all
capable of taking in user input. User input is the part of the game mechanic where we’re
going to use the hardware and equipment that lets the user interact with the game. User
input allows a player to:

- Use the Game Interface.

- Review Help Files.

- Review Score Files.

- Configure the system and game-related features.
- Control the user’s character in the game.

3.2.7 Sound and particle system

If you truly want to understand the importance of sound and music in a video game,
try turning off the sound while playing your favorite game. You will notice that the value
of the game drops significantly when there is no sound. To me, the value of the sound is
as valuable as the graphics of the game.

- Music playing in the background.
- Sound effects for collisions and movements.

3.2.8 Artificial intelligence (AI)

Let’s consider the intelligence level of the enemies in the game. The more humanoid
they look and the more intelligent the behavior, the more fun the game will be. It doesn’t
just have to be the enemy either. In an open world game, citizens passing by look at
their wristwatches, wipe the sweat on their foreheads in sunny weather, give way to you,
even argue with you, attack you when you treat animals badly, and so forth. All of these
elements can fall into the category of artificial intelligence.

3.2.9 Network listening and sending

Network listening and sending is the part of the game mechanic that allows the game to
be played by more than one person, also known as multiplayer or online play. In this part,

38

Chapter 3 — System conception

the parties send information to the game server and the information received by listening
to the server is updated in the game. Network listening and sending is responsible for:

- Establishing the Session: The players who will participate in the game agree on which
protocol and on which port they will communicate at first.

- Packet Delivery: The moves made in the game are sent to the server in packets. Then
the server distributes it to all parties after making the necessary change.

- Package Pickup: Simultaneously, the parties are aware of the changes made by listening
to the server and reflect this to the game.

[50]

3.2.10 Hardware

Gamers love the various elements of a game and are always looking for better graphics,
music, physics and artificial intelligence. For all of this to happen (and for games to get
more complex over time), one of two conditions must be met:

Software optimization should be practiced and new algorithms should be developed. Ap-
propriate equipment and hardware should be used, including increasing processing speed
and memory.

Today, new algorithms and code optimization discoveries progress much slower than the
speed at which new hardware develops. To combat this, instead of new algorithms, the
developer should focus on issues such as reusability, code openness, and code security
(encapsulation). To facilitate this, the hardware tries to increase the processor speed and
memory capacity as much as possible for these new requests.

Many different categories of hardware can fall into this section, including the following;:
- Graphics cards.

- Processors.

- Motherboards.

- Sound cards.

- Monitors, speakers and other input devices.

3.3 The general structure of the system

The general structure of the system is a functional view of the system architecture.
By the concept map, We will be in constant contact with the system to define its limits,
and thus avoid straying too far from the real needs of the final video game.

In this part, we will define the basic pillars of the game with a simplified model, and
the part dedicated to artificial intelligence will be part of it, with the choice of the types of
agents that we will design. After defining the types of agents, we will choose an approved
model for building agents.

3.3.1 Concept Map

A concept map is a diagram that illustrates the relationship between concepts. It
is a graphical tool that is often used by graphic designers, engineers and architects to

39

Chapter 3 — System conception

structure and organize knowledge. Concept maps typically depict ideas and information
as circles or boxes, which are connected with labeled arrows in a hierarchical structure
that is downward-branching. The relationship between concepts can be articulated using

7

linking phrases such as “causes,” “requires,” or “contributes to.”

Concept map refers to a visual organizer that can enrich students’ understanding of
a new concept. It is similar to brainstorming and mind mapping, since it challenges
students to articulate the essential concepts or ideas. However, unlike brainstorming and
mind mapping, concept mapping defines how these essential components relate to each
other. It results in maps that are structured and complex, but also more informative. [51]
A concept map is a diagram that shows the relationships between different ideas. This
helps you understand how they’re connected.

Every concept map — whether it’s simple or complex — is made up of two key

elements:

Concepts : These are typically represented by circles, ovals, or boxes and are called
“nodes”.

Relationships : These are represented by arrows that connect the concepts, and

the arrows often include a connecting word or verb (but they don’t have to). These arrows
are called “cross-links”.[51]

40

Chapter 3 — System conception

3.3.2 General Architecture

The image below represents the basic model of the Al that represents the part framed
in red in the previous image:

Save | Load system

mult agents systems

Al System

Figure 3.2: General Architecture of the game

I divided the general structure of the game system into 4 main branches:

3.3.2.1 HUD

The HUD (heads-up display) or status bar is the method by which information is
visually relayed to the player as part of a game’s user interface. It takes its name from the

41

Chapter 3 — System conception

head-up displays used in modern aircraft. The HUD is frequently used to simultaneously
display several pieces of information including the main character’s health, items, and an
indication of game progression (such as score or level)[52].

3.3.2.2 Graphics

This section includes everything that is visible from materials, lighting, shadows, in-
cluding designs (all models are included in this part) and the creation of environments in
a general sense. This section contains the overall appearance of the game.

3.3.2.3 Sound and particle system

This section includes the sound system of the world and the characters, and the visual
effects system responsible for adding vitality to the game.

3.3.2.4 Level

It is considered the most important and complex part that includes several systems
that represent the game mechanics from the movement and combat system and Al systems
that represent the enemies in general and the interactive systems of the game. Al is the
important part of the level contains 3 types of agents::

- The first type, the less intelligent, does not have freedom of choice in movement.
- The second type (big robot) chooses random places for movement.
- The third type (the drone) uses a motion algorithm, which is an intelligent navigation

System.

3.3.3 Al Architecture

The image below represents the basic components of the game [53]:

Agent

Perception Multi-Agent
R — Social
Game World / Environment Al Grouping]
Geometry B — Strategy
Physics
—Sensing——> Perception module
Animation Single-Agent
Planing
™ Decision Making |«——Mode of——» PathFinding
Movement ~——Mode of——- Motion
Acting J

Figure 3.3: The Al architecture

42

Chapter 3 — System conception

This architecture system is divided into 3 main branches:

3.3.3.1 Game World / Environment :

This part represents the environment in which Al interacts. Which contains the main
character who represents the target and the rest of the objects that are generally consid-
ered barriers, Add to that other physical factors such as gravity and others.

3.3.3.2 Agent :

It is divided into 4 main parts, each part has a special task, which is:

Perception : This part responsible for receiving information is by hearing, seeing,
feeling, and others. The information is filtered and presented to the other parts to do
their work.

Multi-Agent : This is the part responsible for communication between agents.

AI Grouping : [t is the analytical part of the team where it develops strategies for
agents to follow.

Single-Agent : This part represents the individual intelligence of each agent who
is responsible for the individual decisions of the agent.

3.3.3.3 External Algorithms :

It is a set of algorithms that help an agent build and act upon decisions. Like algo-
rithms to find the shortest path to the goal. Any algorithm can be used provided that it
is effective for the system in particular.

3.4 Clarification of technical needs

After defining the general structure of the system, we need a model for determining
the path and the steps that must be followed to create the different parts of the game
system represented in the following model[54]:

43

Chapter 3 — System conception

Concept Phase

Game Concept

Level Concept

p— Concept Art
Low P_O Iy Import as referances:
Modeling
UV Layout
High Poly Sculpting
Modeling
Texturing Level Design
Rigging
Lightmaps
Animation
Sounds Asset Import
Effects
Scripting
Shader
Release

Figure 3.4: The game production pipeline architecture

44

Chapter 3 — System conception

3.5

The detail structure of the system

In this section, a more detailed scheme of the system is presented that shows the

relationship between each part of the game :

1 Pause_Menu
G0 f
r
1
Robot HUD Overlay BP
Resume()
ShowlHides Save()
Load()
b Main_Menu()
HealthBar() 1
Ammo() N
Coins()
ShowlHides Dead_Menu
L
Load()
Main_Menu()
1
ShowHides
&> Main_Menu « L 1
1
Level
Play) 1
Settings() 1 v
1 Quit()
Low()
Medium()
High()
Ultra()
RobotSaveGame
Health -float
1 | MaxHealth :float
Save Load Data. P Coins :int32
Location :FVector
Rotation :FRotator
ItemStorage SwordWeapon :FString

WeaponMap :TMap<FString,
TSubclassOf<class AWeapon>>

Load Item By name

GunWeapon :FString
PlayerName :FString
Userindex :uint32

N

ShowlHides

ShowlHides

RobotPlayerController

RobotCharacter

HUDOverlayClass
‘TSubclassOf<class UUserWidget>
HUDOverlay :UUserWidget
WPauseMenu :TSubclassOf<class
UUserWidget>

PauseMenu :UUserWidget
WDeadMenu :TSubclassOf<class |1
UUserWidget>

DeadMenu :UUserWidget*
bPauseMenuVisible :bool
bool bDeadMenuVisible :hool
bool bHUDVisible :hool

desplayPauseMenu();
removePauseMenu();
togglePauseMenu();
desplayDeadMenu();
removeDeadMenu();
toggleDeadMenu();
desplayHUDY();
removeHUD();
toggleHUD();

RobotAnimInstance

ARohotCharacter* robotCharacter;
Speed :float

blsInAir :hool n
blsAccelerating :hool
movementOffsetYaw :float
lastMovementOffsetYaw float
blsAiming :bool

pitch float

bisDashing :bool

UpdateAnimation(float DeltaTime)

BulletHitinterface

BulletHit(FHitResult HitResult)

Enemy

weapon : USkeletalMeshComponent
ImpactParticles :UParticleSystem
ImpactSound :USoundCue

Health :float

MaxHealth :float
HealthBarDisplayTime :float
HealthBarTimer :FTimerHandle
bisDie :hool

Controlle

=

-

Animate

i

bTogglePause :hool
springArm :USpringArmComponent
camera :UCameraComponent
baseTurnRate :float
baseLookUpRate :float
cameraDefaultFOV :float
cameraZoomedFOV :float
cameraDefaultY :float
cameraDefaultZ :float
cameraZoomedY :float
cameraZoomed? :float
hipTurnRate :float
hipLoockUpRate :float
aimingTurnRate :float
aimingLoockUpRate :float
mouseHipTurnRate :float
mouseHipLoockUpRate :float
mouseAimingTumRate :float
mouseAimingLoockUpRate :float
interpSpeed :float
cameraCurrentFOV :float
cameraCurrentY :float
cameraCurrentZ :float
rotationSpeed :float
jumpVelocity float
airControlle :float

bisAiming :bool

fireSound :USoundCue
bisDash :hool

dashDistance :float
dashMontage :UAnimMontage
weaponEquipped :AWeapon
defaultWeaponEquipped
‘TSubclassOf<AWeapon>
muzzleFlash :UParticleSystem
fireMontage :UAnimMontage
swordCombatMontage
:UAnimMontage

fireHitParticl :UParticleSystem
beamParticl :UParticleSystem
bFireButtonPressed :hool
bFire :hool

autoFireRate :float
autoFireTimer :FTimerHandle
swordAttackCount :int
bAttacking :bool

weapon_gun :AWeapon
gunMesh :USkeletalMeshComponent
weapon_sword :AWeapon
swordMesh
‘USkeletalMeshComponent
equipWeaponPressed
bShuoldTraceltem :hool
overlappeditemCount :int8
itemOverlapWith :Altem
AmmoMap :TMap<EAmmoType, int32>
StartingOneShutAmmo :int32
movementStatus :EMovementStatus
maxStamina :float
minStamina :float
runingSpeed :float
sprintingSpeed :float
bShiftKeyPressed :float

coins :int32

Health :float

MaxHealth :float

Figure 3.5: Game system simplified class diagram -upper half-

45

Dors

KeyCollision :UBoxComponent

PlatForms

PatrolPoint :FVector
PatrolPoint2 :FVector

Item

ItemMesh
:USkeletalMeshComponent
collisionBox :UBoxComponent
collisionSphere
:USphereComponent
pickUpWidget :UWidgetComponent
itemName :FString

itemState :EltemState
Materiallndex :int32
DynamicMateriallnstance
‘UMateriallnstanceDynamic
Materiallnstance :UMateriallnstance

onSphereBeginOverlap(...)
onSphereEndOverlap(...)
EnableCustomDepth()
DisableCustomDepth()
DisableGlowMaterial()
EnableGlowMaterial()
SetitemProperties(EltemState State)
InitializeCustomDepth()
OnConstruction(const FTransform&
Transform)

A

Chapter 3 — System conception

BTTaskNode_FindRandomLocation

DestinationVector :FBlackboardKeySelector
Radius :float

UBTTaskNode_FindRandomLocation(const
FObjectinitializer& Objectinitializer =
FObjectinitializer.:Get()
EBTNodeResult:Type
ExecuteTask(UBehaviorTreeComponent&
OwnerComp,uint8* NodeMemory)

)

Uses

BTDecorator_CheckBoolVariable

BoolVariableToCheck :FBlackboardKeySelector
1

Enemy BehaviorTree

Enemy_health

HealthBar()

Runs

EnemyController

1
ShowlHides

HitMontage :UAnimMontage

bCanHitReact :bool

HitReactTimeMin :float

float HitReactTimeMax :float

BehaviorTree :UBehaviorTree*

PatrolPoint :FVector

PatrolPoint2 :FVector

EnemyController :AEnemyController

enemySphere :USphereComponent

bStunned :bool

StunChance :float

binAttackRange :bool

CombatRangeSphere

:USphereComponent

AttackMontage :UAnimMontage
aponSocket :FName

BlackboardComponent
{UBIackboardComponent
BehaviorTreeComponent
:UBehaviorTreeComponent

OnPossess(APavin' InPawn)

]

GetStaticDescription()

&=Us6S,

UBTDecorator CheckBoolVariable(const

<=
+

FObjectinitializer& Objectinitializer = 1
FObjectinitializer.:Get() ‘e

CalculateRawConditionValue(UBehaviorTreeComponent§

OwnerComp, uint8* NodeMemory)

Uses

BTService UpdateChasing

CanSeePlayerKey :FBlackboardKeySelector
PlayerKey :FBlackboardKeySelector
LastKnownPositionKey :FBlackboardKeySelector
PlayerClass :TSubclassOf<AActor>
bLastCanSeePlayer :bool

UBTService_UpdateChasing(const FObjectinitalizer&
Objectinitiaizer =FObjectinitalizer::Get()
OnBecomeRelevant(UBehaviorTreeComponent&
OwnerComp, uint8* NodeMemory)

D)

Controlle

—

AttackLFast :FName
weaponCollision :UBoxComponent
bCanAtiack :bool
AttackWaitTimer :FTimerHandle
AttackWaitTime :float
BaseDamage :float
DeathMontage :UAnimMontage*
bDying :bool

DeathTimer :FTimerHandle
DeathTime :float
interpToMainSpeed :float
binterpToMain :bool

robot :ARobotCharacter*

EnemyFAniminstance

Speed :float
Enemy :AEnemy n

UpdateAnimationProperties(float
DeltaTime)

Enemy_Shared Knowledg

MainCharacter : ARobotCharacter

Animate

Share and Check

hare KnOowled g

Figure 3.6: Game system simplified

ShowHealthBar()
ShowHealthBar_Implementation()
HideHealthBar()
PlayHitontage(FName Section,
float PlayRate = 1.0f)
ResetHitReactTimer()

void onSphereBeginOverlap()

void onSphereEndOverlap)

void OnWeaponOverlap()
ActivateWeapon()
DeactivateWeapon)
SetStunned(bool Stunned)
CombatRangeOverlap()
CombatRangeEndOverlap()
PlayAttackMontage(FName Section,
float PlayRate)
GetAttackSectionName()
ResetCanAtiack()
SpawnBlood(class
ARobotCharacter* Victim, FName
SocketName)

DoDamage(class ARobotCharacter*
Victim)
SetupPlayerinputComponent(class
UlnputComponentt
PlayerinputComponent)

Bullettit Implementation(FHitResult
HitResult)

TakeDamage()

Dief)

FinishDeath()

DestroyEnemy()
setinterpToMain(bool interp)
getlookAtRotationYaw{FVector
target)

MeleelmpactSound :USoundCue
BloodParticles :UParticleSystem
HitReactMontage :UAnimMontage
StunChance :float
HitReactTimeMin -float
HitReactTimeMaxfloat
DeathMontage :UAnimMontage
bDead :bool
interpToEnemySpeed :float
binterpToEnemy :bool

enemy :AEnemy

temStorage :TSubclassOf<class
AltemStorage>
TobotPlayerContoller
:ARobotPlayerController*
bESCDown :bool

Attackirun

moveForward(float value)
moveRight(float value)
turnAtRatefloat rate)
lookUpAtRate(float rate)

turn(float value)

lookUp(float value)
cameralnterp(float DeltaTime)
sensitivitykC()

AimingPressed()

AimingReleased()
fireButtonPressed()
fireButtonReleased)
dashButtonPressed)
dashButtonReleased()
startFireTimer()

autoFireReset()

aftack()

setlnterpToEnemy(bool interp)
getLookAtRotationYaw(FVector target)
getBeamEndLocation(..)
sethovementStatus(EMovementStatus
)
shiftKyePressed()
shiftKeyReleased()
TraceUnderCrosshairs(FHitResulté hit,
FVector& hitLocation)
spannDefaultWeapon()
equipWeapon()

DropGun()

DropSword()

dropButtonPressed()
dropButtonReleased()
InitializeAmmoNap()
WeaponHasAmmol)

swordCombo()

attackEnd()

Die()

FinishDeath()

Jump()
addOverlappeditemCount(int value)
traceTheltem()

TakeDamage(..)

PlayHitMontage(..)
ResettitReactTimer()

SaveGame)

LoadGame(bool setPosition)
ESCDown()

ESCUp(

animationRST()

Uses

-

Weapon

ThrowWeaponTime :float
bFalling :bool

Ammo int32
Damage :float

controller :AController
WeaponName :FString

WweapontStatus :EWeaponStatus

weaponCollision :UBoxComponent

onSphereBeginOverlap(.)
onSphereEndOverlap...
equip(class ARobotCharacter*
robo)
OnWeaponOverlap..
ActivateWeapon()
DeactivateWeapon()
StopFalling()
ThrowWeapon()
DecrementAmmo()
EnableCustomDepth)
DisableCustomDepth()
DisableGlowMaterial(
EnableGlowMaterial(

Guns

Swords

1

-

HUD_Fire_Cros

Image :Image
Show | Hides

pickUpWidget

Name :FString
Image :Image

ShowlHides

class diagram -lower half-

To make a diagram showing how AI works, we need to follow a specific scenario.

3.5.1 Scenarios of the game

My scenario is composed of 04 parts:

46

Chapter 3 — System conception

Search and roaming : The agent roams and searches for the main character by
following pre-defined or randomly generated paths in the environment at this point the
agent is using his senses to detect the main character.

stalking : When the main character is revealed, the client is chased after him using
path-finding algorithms as well as avoiding barriers to achieve the desired goal.

Fighting : After reaching the target, the agent tries to eliminate the target using
the available weapons.

Communication : It represents the communication system between multiple agents.

3.5.2 Conception of the artificial intelligence-based multi-agent

system

the MAS is divided into two parts.

3.5.2.1 Conception of the agents’ individual reasoning and decision-making

The planning and decision-making of individual enemies are modeled using behavior
trees. All agents execute a copy of the same tree, but depending on their custom situation
and perception of the environment they take different decisions and actions. Section 1.1
introduces behavior trees and Shows the main components of the behavior tree. The
behavior tree of the game applies the three main situations or states described From
before: Search and roaming attempting to detect the player, stalking trying to reach the
player, Fighting to defeat the player, and doing tasks that are not directly connected with
the player at that moment (since there is no information about the player’s actions). In
the game, there are three types of enemies, each enemy has its intelligence represented in
the behavior tree, despite the great difference in the way each behavior tree works, the
method of making it remains subject to the same laws.

Each behavior tree is broken down into different subsets, depending on whether the
enemy can see the player character, whether they can’t but have some other information
that can be used to try to find the player character (any sound or visual stimulus that may
be related to the player and that has an estimated or exact source location), or whether no
relevant information about the player is available. This is checked by different decorator
nodes. (Decorator nodes are all shown in blue, but they do not all act the same way.
The mentioned ones are represented by a rhomboid shape, and they do not execute in a
preestablished moment.

Instead, they periodically check a conditional expression to ensure that it is true;
if not, they immediately abort the execution of their subtree and return false to the
decorator’s parent node. these nodes allow resetting the execution flow when something
requires changing from one of the logical states (the one in which the player character
is visible, the one in which they are not seen but there is some information that may
help to find them or the one in which no relevant information is available) to another

47

Chapter 3 — System conception

one. This can happen after one of the updates of the service that checks perceptions,
interruption related to hearing or communication is received. (service nodes are all shown
in green color), For example, if an agent has no information about the player, the tree will
be executing the idle subtree (e.g. patrolling in the random zone or patrolling regularly
between two points), but if the player character is suddenly seen by the agent (i.e.detected
by the periodically executing service node or enter the field of vision) the decorator that
requires to be idle with no information about the player stops being true, so the flow of
execution returns to the parent selector, which leads to entering the subtree that has the
condition of being able to see the player character, that leads to trying to chase him, and
upon reaching it the combat behavior tree activates to try to defeat the player. (All tasks
performed by the behavior tree represent by the tasks nodes and are all shown in pink
color).

Representation of the game behavior tree

Selector

¥

¢

)Jl[k

‘ Sequence Sequence Sequence In Attack Ring

ain charactel

Is not Dead

Sequence
ain charactel
o -

Sequence

/

E-d

Figure 3.7: Representation of the first type of behavior tree for enemy characters

48

Chapter 3 — System conception

Communicationate (

Check Bool
Variable not set

Sequence

(,

Sequence

Check Bool
Variable

See the main
chatacter

\

Sequence

.

Figure 3.8: Representation of the second type of behavior tree for enemy characters

Sequence

49

Chapter 3 — System conception

heck the bool
value

See the main
chatacter | Sequence
Sequence | }
is
1 communication
start
- sequence

J

Start Communication (attack) End Communication (withdrawal)

This part represents the communication between agents

Figure 3.9: Representation of the third type of behavior tree for enemy characters

3.5.2.2 Conception of Multi-agent system analysis: communication between
agents

All the enemy characters in the game form a single MAS. The objective of both
individual agents and the system is to defeat the player character as fast as possible.
One type of enemy can send information to all other agents (They have to be under
his command) at any time: it should be thought of as radio communication between
machines. Enemies examine the information they have received from leaders and decide
how to use it: agents are independent, but they take into consideration What the leaders
say.

In our game, two types of information can be communicated, and they are all related
to the player’s character. as shown in Figure the first one is the Order to attack
the main character when has just been seen, the orders updated with time, and the
approximate location from where the sender agent thinks that the character’s footsteps
have been heard or was it last seen, the second one is the Order to withdraw When losing
track of the main character Where all his followers must withdraw.

20

Chapter 3 — System conception

Chief Agent System Drone controlling them

. Independent Agents
The first case :

of the parts of the diagram

Enemy
[Entering the perception system > \
] Drone Enemy
< - - I N / Enemy
Exit from the perception system]
\
O ey | R
Order to withdraw
\ \» Enemy
\
The second case : \ /—.—
\
\
AN
=~ o L

perception system :

Enemy character :

Main character :

OV

Figure 3.10: Representation of the Multi-agent system

3.6 Conclusion

In this chapter, We have given an overview of our game system, a game that uses a
MAS to control agents. We started by showing the infrastructure of the game engine which
is the key to understanding what We need, and then We detailed the general structure of
the system: the base of the game, its overall architecture, then the infrastructure of the
agent and MAS for the game Al system. Then put the stages We need to pass to end up
with an integrated game based on artificial intelligence.

ol

Chapter

System implementation

4.1 Introduction

I have almost come to the end of the development process, and in this chapter, We
will make choices about programming. We start with the presentation of programming
languages, and the development tools used in our Game. Finally, We end with the pre-
sentation of the agent system of our final Game.

4.2 Development languages used

In order to develop a game, one must master a combination programming languages.
I will describe the various pieces that make up the game mechanics in the next few
sections below.

4.2.1 CH+

Released in 1985, C++ is one of the best programming languages available. C++
is a highly optimized code that allows for greater memory management, a necessary
attribute of high-poly, and high-definition video games. C++ programming allows for
stylized gameplay and is a popular language for triple-A (AAA) titles, as well as indie
games. C++ language runs with most game engines, making it one of the most common
selections for game programmers.[55] Since C++ is a high-level language that will teach
you the basics of object-oriented programming (OOP), it’s a good idea to learn it. It is
also the language used to create console and Windows games. Also, it uses OpenGL or a
similar framework. C++ is a fast-compiling programming language. You also get a lot of
say in memory management. It has extensive libraries useful for designing and powering
complex graphics. There’s a lot of literature for you to study and learn from, because it’s
been the video game programmer’s language of choice for decades, and you’ll find online
communities ready and willing to answer your questions.[56]

It would be a lie if we said that C++ is easy to learn. It is difficult to learn compared
to other programming languages. However, it can be useful not only because C++ games
are easy to distribute on various platforms, but also because if you know C+4 you can

52

Chapter 4 — System implementation

quickly learn C# and other object-oriented languages, including C and Java (even though
Java is not technically an OOP language). C++, C, Java, and C# are some of the most
actively used programming languages today. [56]

To summarize, learning C++ is a good choice if you want to create video games from
scratch for multiple platforms.

Figure 4.1: C++ logo

4.2.2 CH#

Pronounced “C sharp” ,this popular programming language was released by Microsoft
in 2000. C# is a relatively easy programming language to learn and is often used
by smaller game studios. C# is another one of the main codes seen in popular game
engines. [55] The benefit of C# for video game development lies in the XNA framework.
This is a set of tools and workspaces by Microsoft that are particularly suitable for de-
veloping games on Xbox or Windows platforms.[56]

If you compare C++ and C#, you might consider this example: C++ is like a manual
transmission car; C+#, on the other hand, is like an automatic transmission car. Let’s
consider the Unity game engine. If you use the Unity game engine, you have to code your
game scripts in C#. However, the core of this game engine was developed using C++
code. [56]

The platform you target, the game you want to make, the game engine you will use,
etc. will affect the language you choose. No matter, however, learning C# for game
development would be a great idea.[56]

Figure 4.2: C# logo

53

Chapter 4 — System implementation

4.3 Development tools

The general structure of the system is a functional view of the system architecture.
By the concept map, We will be in constant contact with the system to define its limits,
and thus avoid straying too far from the real needs of the final video game.

4.3.1 Sourcetree

Sourcetree is a free graphical user interface (GUI) desktop client that simplifies how
you interact with Git repositories so that you can fully concentrate on coding. Say goodbye
to the command line — this GUI makes it easy to visualize and manage your repositories.
It also integrates with Mercurial to ensure an efficient, consistent development process.
Visualize your work and execute push commands with a whole new level of confidence.
Even changing or discarding a file, a hunk, or an entire line is now simple.[57]

Figure 4.3: Sourcetree logo

4.3.2 Blender

Blender is a free and open-source 3D computer graphics software tool set used for cre-
ating animated films, visual effects, art, 3D-printed models, motion graphics, interactive
3D applications, virtual reality, and, formerly, video games. Blender’s features include 3D
modeling, UV mapping, texturing, digital drawing, raster graphics editing, rigging and
skinning, fluid and smoke simulation, particle simulation, soft body simulation, sculpting,
animation, match moving, rendering, motion graphics, video editing, and compositing.[58]

o4

Chapter 4 — System implementation

Figure 4.4: Blender logo

4.3.3 Quixel Mixer

Quixel Mixer is primarily a texturing software that allows you to create and Utilize
Physically Based Rendering (PBR) materials. Its biggest advantage is it allows you to
procedurally create tileable textures and directly paint on 3d models utilizing a large free
library of materials and the Quixel Megascans library. [59]

Figure 4.5: Quixel Mixer logo

4.3.4 Visual Studio

Visual Studio, also known as Microsoft Visual Studio and VS, is an integrated de-
velopment environment (IDE) for Microsoft Windows. It is a tool for writing computer
programs, websites, web apps, and web services. It includes a code editor, debugger,
GUI design tool, and database schema designer, and supports most major revision con-
trol systems. It is available in both a free ”Community” edition and a paid commercial

version. [60)

%)

Chapter 4 — System implementation

Visual Studio

Figure 4.6: Visual Studio logo

4.3.5 Unreal Engine

Unreal Engine (UE) is a game engine developed by Epic Games, first showcased in the
1998 first-person shooter game Unreal. Initially developed for PC first-person shooters, it
has since been used in a variety of genres of three-dimensional (3D) games and has seen
adoption by other industries, most notably the film and television industry. Written in
C++, the Unreal Engine features a high degree of portability, supporting a wide range of
desktop, mobile, console, and virtual reality platforms.[61]

UNREAL

ENGINE

Figure 4.7: Unreal Engine logo

56

Chapter 4 — System implementation

4.4 Implementation of the characters’ abilities and

interactions with the world

To be able to move in the world and interact with other game elements, characters
use a set of components, which are the parts that make characters a functional whole.
A capsule component is the invisible root element of the character, and it defines the
base collision with the world. Its diameter and height values match the desired character
dimensions. A mesh component attached to the root capsule gives characters a physical
appearance and the ability to play different animations. A special type of Blueprint,
an Animation Blueprint, is responsible for toggling animations when the characters’ cir-
cumstances change (e.g. switching from an idle animation to a jumping one when the
character starts jumping).Figure shows the state machine of the Animation Blueprint
used by the main character, Many conditions are tested to determine the exact animation
that is played on different bones of the character’s mesh in each state of the state machine.

For example, in the idle or running state, the legs are influenced by the current speed
of the character: an idle animation should be played when speed is zero, while a running
animation is a right choice when speed is high; the two animations are blended with
different weights depending on speed. If the character has a weapon, it is checked whether
the character is doing a specific action with it, to determine which animation should be
played.

Gached Gronndl oComoetonnormal Enmacon)) Cached Weapon Erel theWaepenireEnmation);

Ground locomotion PRSI S — Use cached pose "Cached Locomotion’ Cached Weapon Fire
c d locomotion Locomotion | Shot DefaultSiot
P - o

DynamiqueLM
CachedDynamiquel M

y K

Blend EetweemGroundioeomotionsand Weaponfire)

Layered blend per bone
Use cached pose "Cached Weapon Fire” hed blend (ground and fire)

w-—':)

Use cached pose "Cached Locomation® /

Blend between thelgrotndNocomptionandifine) With stariaiming)

stant aiming

Use cached pose "CachedDynamiquel M ("Siot 'weaponFire" “Layered blend par bone

hed blend aiming with ground and fire

B

ed pose 'Cached start siming’

Add =l themontagenmitieend orexcuting)

{"Siot" combatsword" (SiorHtMainSior ("Slot MainDeathSlot'
Cached hip to aim’

P p— e) e

Figure 4.8: Detail movement system for the main character

57

Chapter 4 — System implementation

StopMovingL_1 StopMovingR_1

=

run_Sprinting

run_start

StopMovingL StopMovingR

Figure 4.9: A part of the movement system of the main character

Characters also have a movement component that allows them to move. Unreal Engine
has a type of movement component thought for anthropomorphic characters that allow to
easily configure how characters should move. Among the parameters that can be set, one
can find the maximum speed or the rotation rate of the character, for example. Other
values include the maximum height that single steps can have to allow the character
to go upstairs without the need of jumping. The ability to jump is precisely another
of the built-in features of the characters’ movement component, and parameters such
as the jump speed can be set. Crouching is supported as well. Despite of the built-in
characters’ capabilities, it is the programmer’s task to handle the animation transitions to
be coherent with the change in actions, checking conditions in the Animation Blueprint
(e.g. the transition to the jump animation in the state machine should only take place if
the character is physically jumping).

The player character’s physical movement is determined by the player’s input, e.g. the
character physically skates when the skate key or button is pressed (if the character is not
already dashed or in a situation where skating is not possible).

58

Chapter 4 — System implementation

4.5 Implementation of the AI based multi-agent sys-

tem

4.5.1 the agents’ individual reasoning and decision-making

In this part We will create the behavior trees that were designed in the previous
chapter:

}

Selector
tor

MamCharacteneadidothis:
L] Is Main Character Dead

s s Set i)
4y Sequence

i Sequen

patral|

) IsStunned
[J Is Target Set

] Is Main Character Dead

» Sequence

l «=+ Move To

MoveTo: Target

£ Wait =« BTTask_Attack

Wait:0.25 BTTask_Attack

Figure 4.10: Implementation of the first type of behaviour tree for enemy characters, as
seen inside Unreal Engine’s behaviour tree editor

59

Chapter 4 — System implementation

Salector

generaterandom | ocationiBEmoVement
=+ Move To
MoveTo: Player
i : [J Communication
nmunication is |s Not Set
] Blackboard Based Condition
gojtotargetandstartfighting, ST L
' Selector
Salector

e

L) see the main character 4 Sequence
Sequence iy Sequence

Check Bool Variable

22

eePlayeris Is Set o)

Character_State_Decorator /
5

Sequence 19
= £ Wait -+ Move To
Wait: 208 Wait: 208 MoveTo: Destination

‘g/ / - l \‘ 2 7
s v ¢] ® s . ¢ =+ Move To =« Find Random Location =¢ Find Random Location
=+ Move To £ Wait =« BTTask_Attack o3 Wait WeweTe: Destinaton "
MoveTo: Player Wait 0.5s BTTask_Attack Wait 20s

~=+ Move To

MoveTo: Playe

Figure 4.11: Implementation of the second type of behaviour tree for enemy characters

¥

a) Selector
Selector

<& UpdateChasing

Player Class: MAXCharacter C

gojtotargetand staighting,

Check Bool Variable

[l see the main character

i Sequence
el e

v

5
=¢ BTTask_Comunication
BTTask_C4 L

Everyonesnthegroupwithdraws:

£ Wait
& Wait:208
-+ Move To % Wait -+ Move To % Wait
MoveTo: Player Wat01s MoveTo: Player Wat01s

'

=v BTTask_Lost_Comunication
ton

Figure 4.12: Implementation of the third type of behaviour tree for enemy characters

(Drone)

Chapter 4 — System implementation

This is an overview of enemies with the behavior tree system.

Figure 4.13: The first type of enemy characters

CanSeePlaver irue

[CATEGORY: Behavior Tr

[CATEGORY: Per ception
green

Figure 4.14: The second type of enemy characters

Chapter 4 — System implementation

Figure 4.15: The third type of enemy characters (Drone)

4.5.1.1 EQS

The Environment Query System (EQS) is a feature within the AI system in Unreal
Engine 4 (UE4) that is used to collect data from the environment. Within EQS, you can
ask questions about the data collected through a variety of different Tests which produces
an Item that best fits the type of question asked.

An EQS Query can be called from a Behavior Tree and used to make decisions on
how to proceed based on the results of your Tests. EQS Queries are primarily made
up of Generators (which are used to produce the locations or Actors that will be tested
and weighted) and Contexts (which are used as a frame of reference for any Tests or
Generators). EQS Queries can be used to instruct Al characters to find the best possible
location that will provide a line of sight to a player in order to attack, the nearest health
or ammo pickup, or where the closest cover point (among other possibilities). [62]

62

Chapter 4 — System implementation

Figure 4.16: simple form for an Environment Query System

EQS algorithm of this game The use of the environmental query system gives the
way enemies move more dynamic by discovering and bypassing barriers and moving in

precise places.

Overlap(2)
Overl p‘l!.‘

2)
Overlap(2)
Overlap(2)
Overlag(z)
overlap(z)

Figure 4.17: complex environmental query system used by the enemy (drone)

63

Chapter 4 — System implementation

Where barriers such as walls and characters are defined and these places are ignored,
places behind models are ignored and considered outside the calculation of the EQS
algorithm.

4.5.2 Multi-agent system analysis: communication between agents

the communication system is a class of BT _Task node (execution nod), so in this part,
orders are issued from the commander to the subordinates to begin the attack on the main
character, this class starts executing when the perception system of the enemy detects
the main character.

F SetTagel ,
J GetPlayer Pawn -~ (% CastTo MRXCharacter ' SetBlackboard Value as Bool

Plyerindes [0] = »—> >
T GetContoller
Taget

J GetBlackboard

Target

Figure 4.18: Implementation of the communication system of giving orders to agents to
attack

On the other hand, orders are issued from the commander to the subordinates to
withdraw from the battlefield and everyone returns to their position, and this class begins
to be implemented when the enemy’s perception system loses the main character (the
main character moves out the perception system).

& Event Receive Execute Al

F Finish Execute

o TsetTaget _ FsetValueas Bool
 SetBlakboard Value as Bool

J GetPlayer Pawn
Playerindes [0] Rewanvke

Figure 4.19: Implementation of the communication system to give orders to agents to
withdraw to their centers (Drone)

64

Chapter 4 — System implementation

4.6 Implementation of the in-game user interface

The user interface (UI) that is seen while playing the game is also called Heads Up
Display (HUD). The elements that form it were designed using Unreal Motion Graphics
(UMG), the engine’s tool for creating widgets and other UI elements.

4.6.1 Main menu

The main menu HUD contains a simple widget containing buttons, play to start the
game, settings for cheng the quality of the game, and quit for ending the game.

- —

Settings

- Ouit

Copyright Brichen Dineddine 2022

Figure 4.20: Implementation of the Main Menu

4.6.2 Pause menu

The pause menu HUD contains a simple widget containing buttons, resume resuming
the game, save for saving, load For Load the last saved settings of the game, and main
menu for return to the main menu.

65

Chapter 4 — System implementation

Pause 1l

Resume

Save

L_oad

NMain Menu

Figure 4.21: Implementation of the Pause Menu

4.6.3 Dead menu

The dead menu HUD Appears When defeated, the same interface as menu interfaces.

-

" You Dead

NMain Venu

Copyright Brichen Diaeddine 2022

Figure 4.22: Implementation of the Dead Menu

4.6.4 Win menu

The winning menu HUD Appears When one winning the game:

66

Chapter 4 — System implementation

NMain Menu

Copyright Brichen Diaeddine 2022

Figure 4.23: Implementation of the Win Menu

4.6.5 Main character HUD

The main character HUD contains a health bar composed of a progress bar, that is
updated when the player character receives damage. Plus a Coin counter in the bottom
left and an ammo counter in the bottom right.

Figure 4.24: Implementation of the Main Character Ul (HUD)

Chapter 4 — System implementation

Figure 4.25: The main character Ul in real time gameplay

4.6.6 Weapon HUD

The Weapon HUD is a simple widget, that shows when the main character interacts
with the weapons that contain information about the weapon like name and the type.

Sy

e
e
sy I

= I i
— * k k k k X

Pick Up (E)

Figure 4.26: Implementation of the weapons Widget Ul

68

Chapter 4 — System implementation

4.7 Implementation of other features to obtain the

final game

Programming can be considered the most important part in the view of the game
developer, but the consumer’s view of the game is dominated by the external appearance
of the game, so this aspect must be taken care of.

4.7.1 3D modeling

4.7.1.1 University model

Since the project is a graduation project, it was necessary to add a touch to the
university, so We designed the university in realistic details, especially the part in which
We studied :

9 === s[e=]me
| - - o 4

(b) Model parts design

(d) Late stage of design

(c) early stage of design

Figure 4.27: Overview of the university design stages

69

Chapter 4 — System implementation

Figure 4.28: The university level design

Figure 4.29: The university level design (side part)

4.7.1.2 Characters models

These are some of the modeled characters:

70

Chapter 4 — System implementation

(a) 3d design in blender

(b) final result in unreal engine 4

Figure 4.30: The Main character

(a) 3d design in blender
(b) final result in unreal engine 4

Figure 4.31: The enemy character

0 0e8o v % Edit Mode

User Perspective
(66) obt:016

Figure 4.32: The Drone character

71

Chapter 4 — System implementation

Figure 4.33: game design model

4.7.2 Animation

These are some of animations:

I, Gobal v v

Figure 4.34: Character animation

Chapter 4 — System implementation

-~

i . B A
B - oA i
o RS A i |a
Nl ! ' : L ? R-§
— y . — S : --'-.' . .‘..
4N 4N : W

Figure 4.36: Project X

4.8 Conclusion

In this chapter, We have illustrated the details of the implementation of our multi-
agent game system, We have cited the development tools that we used for the realization
of our work. Then, We presented different parts of the system with detailed explanations
of functionalities in the system.

73

(zeneral conclusion

Conclusion

The objective of this project was to develop a game with an artificial intelligence-based
multi-agent system that would model the behavior of enemies, and we have come close
to achieving this goal. All the tasks to be accomplished, Almost completed and within
the expected time frame, despite the difficulties encountered during the project comple-
tion stages. The motivation of the project’s developer was to learn how to design and
implement behavior trees to make non-player characters make decisions and execute ac-
tions inconsistent and realistic ways, as well as gain experience in game development and
particularly in the implementation of game-oriented Al solutions, these objectives almost
accomplished.

Behavior trees proved to be very flexible during the development process: it was
easy to modify the structure of a tree to incorporate new character abilities and types
of decisions. The final game’s agents can detect characters and objects with vision and
hearing. The perceived stimuli used to obtain information that can potentially help them
achieve their goals by taking decisions and sharing their findings with other agents, who
compare the received information with their knowledge. In other games, however, the
reasoning capabilities of non-player characters are much more elaborate than in this game
project, and agents participate in complex cooperative strategies.

The interaction between the agents in the developed MAS is not very complex (it was
not necessary for the enemies’ objective of chasing and defeating the player), while other
games, such as some strategy games, have multi-agent systems in which agents interact
in many creative ways. Some games include non-player characters that instead of trying
to defeat the player has the objective of helping them to achieve their goals. It would be
interesting to model the way how these characters try to interpret the player’s intentions
(observing the player character’s actions) and suggest ways of achieving the shared goals:
it would require defining a human-machine communication system.

The gameplay of this game includes some interesting player abilities, such as carrying
weapons, and each weapon has a special fighting method, Adding health using health
items, and winning coins, In addition to a movement system that is considered complex
and scalable, in additional Fun fighting system and realistic graphics. This project was
focused on the design of visuals since a part of the university was designed and made this
design as a level in the game, taking into account the minute details of the university,

74

despite the weak capabilities of the device used.In addition, this is our first attempt at
creating a system of this complexity and magnitude.

75

Bibliography

1]

2]

[10]

Rabin. Introduction to Game Development (2nd ed., Vol. 1). Course Technology
Cengage Learning.

Rido Ramadan, Yani Widyani . Game development life cycle guidelines, Conference:
2013 International Conference on Advanced Computer Science and Information Sys-

tems (ICACSIS),DOI:10.1109/ICACSIS.2013.6761558

Novak, J. (2011). Game Development Essentials: An Introduction (3rd ed., Vol. 1).
Cengage Learning.

Ralph Edwards, ”The Game Production Pipeline: Concept to Completion”. [online]
(Jun 17, 2012) Available on : https://www.ign.com/articles/2006/03/16 /the-game-
production-pipeline-concept-to-completion#! (Consulted the 23 january 2022).

TIMMER, JUDITH, et al. “GAMES ARISING FROM INFINITE PRODUCTION
SITUATIONS.” International Game Theory Review, vol. 02, no. 01, 2000, pp.
97-105. Crossref, https://doi.org/10.1142/s0219198900000020.

Chandler, H. M. (2013). The Game Production Handbook (3rd ed., Vol. 1). Jones &
Bartlett Publishers.

by Eric Freedman,Engineering Queerness in the Game Development Pipeline,the in-
ternational journal of computer game research,volume 18 issue 3 December 2018

ISSN:1604-7982

Aleem, S., Capretz, L.F., Ahmed, F. Game development software engineering process
life cycle: a systematic review. J Softw Eng Res Dev 4, 6 (2016).

Devin Pickell, " The 7 Stages of Game Development”. [online] (Apr 8, 2019) Available
on :https://www.g2.com/articles/stages-of-game-development (Consulted the 23 jan-
uary 2022).

Saiqa Aleem, Luiz Fernando Capretz , Faheem Ahmed.Critical success factors to
improve the game development process from a developer’s perspective ,Journal of
Computer Science and Technology, 31(5):925-950, DOI: 10.007/s11390-016-1673-z,
Springer, September 2016.

76

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

22]

23]

[24]

Nadia Stefyn, "How video games are made: the game development process”. [online]
(05/09/2022) Available on :https://www.cgspectrum.com/blog/game-development-
process (Consulted the 23 january 2022).

Scott Slatton, ”Game Development Pipeline and Technologies”. [online] (Apr
8, 2019) Available on :https://dev.to/scottslatton/game-development-pipeline-and-
technologies-hOb (Consulted the 23 january 2022).

Dawson, Chad, ” Formations,” Al Game Programming Wisdom, Charles River Media,
2002.

Fu, Dan, and Houlette, Ryan, ” Constructing a Decision Tree Based on Past Experi-
ence,” Al Game Programming Wisdom 2, Charles River Media, 2003.

Hu, J.; Bhowmick, P.; Jang, I.; Arvin, F.; Lanzon, A., 7A Decentralized Cluster
Formation Containment Framework for Multirobot Systems” IEEE Transactions on
Robotics, 2021.

Hu, J.; Turgut, A.; Lennox, B.; Arvin, F., ”Robust Formation Coordination of Robot
Swarms with Nonlinear Dynamics and Unknown Disturbances: Design and Experi-
ments” [EEE Transactions on Circuits and Systems II: Express Briefs, 2021.

Hu, J.; Bhowmick, P.; Lanzon, A., ” Group Coordinated Control of Networked Mobile
Robots with Applications to Object Transportation” IEEE Transactions on Vehicular
Technology, 2021.

Wiering, M. A. (2000). ”Multi-agent reinforcement learning for traffic light con-
trol”. Machine Learning: Proceedings of the Seventeenth International Conference
(Ieml1’2000): 1151-1158. hdl:1874/20827.

K.P., Sycara, Multiagent Systems, AI Magazine, vol. 19, no. 2, pp. 79-92, 1998.

Gillies, M. (2009). Learning Finite-State Machine Controllers From Motion Capture
Data. IEEE Transactions on Computational Intelligence and Al in Games.

C. Castelfranchi and R. Conte. Understanding the effects of norms in social groups
through simulation. In G. N. Gilbert and R. Conte, editors, Artificial Societies: the
computer simulation of social life, pages 252-267. UCL Press, London, 1995.

R. Conte, N. Gilbert, and J. S. Sichman. Mas and social simulation: A suitable com-
mitment. In J. Sichman, R. Conte, and N. Gilbert, editors, International Workshop
on Multi-Agent Based Simulation - MABS, volume 1534 of Lecture Notes in Artificial
Intelligence, pages 1-9, Berlin, 1998. Springer - Verlag.

E. Hurwitz and T. Marwala, “Learning to bluff: A multi-agent approach®, IEEE
International Conference on Systems, Man and Cybernetics, Montreal, Canada, (ac-
cepted)

Brooks, Rodney, ”How to Build Complete Creatures Rather than Isolated Cognitive
Simulators,” Architectures for Intelligence, Lawrence Erlbaum Associates, Fall 1989.

7

[25]

[26]

[27]

28]

[29]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Isla, Damian, ”Handling Complexity in the Halo 2 AI,” Game Developer Conference
2005.

Isla, Damian, and Blumberg, Bruce, ”Blackboard Architectures,” Al Game Program-
ming Wisdom, Charles River Media, 2002.

Orkin, Jeff, ”Simple Techniques for Coordinated Behavior,” Al Game Programming
Wisdom 2, Charles River Media, 2003.

Cain02] Cain, Timothy, ” Practical Optimizations for A* Path Generation,” AI Game
Programming Wisdom, Charles River Media, 2002.

Higgins, Dan, "How to Achieve Lightning-Fast A*)” Al Game Programming Wisdom,
Charles River Media, 2002.

Rabin, Steve, ”A* Speed Optimizations,” Game Programming Gems, Charles River
Media, 2000.

Schmitt, J., & Kostler, H. (2016). A multi-objective genetic algorithm for simulating
optimal fights in StarCraft II. 2016 IEEE Conference on Computational Intelligence
and Games (CIG).

Sweetser, Penny, "How to Build Evolutionary Algorithms for Games,” Al Game
Programming Wisdom 2, Charles River Media, 2003.

OrkinRabin, Steve, ”Filtered Randomness for AI Decisions and Game Logic,” Al
Game Programming Wisdom 2, Charles River Media, 2003.

Reynolds, Craig, "Flocks, Herds, and Schools: A Distributed Behavioral Model,”
Computer Graphics, 21(4) (SIGGRAPH 87 Conference Proceedings).

Sebastian Castro, ”Introduction to behavior trees” [online] (August 17, 2021)
Available on :https://robohub.org/introduction-to-behavior-trees/ (Consulted the 10
April 2022).

Bazzan, A. L. C. (2012). Coordinating many agents in stochastic games. The 2012
International Joint Conference on Neural Networks (IJCNN).

Weibing, L., Xianjia, W., & Binbin, H. (2009). Evolutionary Markov Games Based
on Neural Network. Lecture Notes in Computer Science.

Laslier, J.-F., & Walliser, B. (2005). A reinforcement learning process in extensive
form games. International Journal of Game Theory.

Alt, Greg, and King, Kristin, A Dynamic Reputation System Based on Event
Knowledge,” AT Game Programming Wisdom, Charles River Media, 2002.

Brockington, Mark, ”Building A Reputation System: Hatred, Forgiveness, and Sur-
render in Neverwinter Nights,” Massively Multiplayer Game Development, Charles
River Media, 2003.

78

[41] Cain, Timothy, ”Practical Optimizations for A* Path Generation,” Al Game Pro-
gramming Wisdom, Charles River Media, 2002.

[42] Evans, Richard, ”Varieties ofLearning,” Al Game Programming Wisdom, Charles
River Media, 2002.

[43] Gibson, James, The Ecological Approach to Visual Perception, Lawrence Erlbaum
Assoc, 1987.

[44] Grimani, Mario, ”Wall Building for RTS Games,” Al Game Programming Wisdom
2, Charles River Media, 2003.

[45] Hargrove, Chris, ”Simplified Animation Selection,” AT Game Programming Wisdom
2, Charles River Media, 2003.

2

[46] Hargrove, Chris, ”"Pluggable Animations,” AI Game Programming Wisdom 2,

Charles River Media, 2003.

[47] Ji, L. X.,& Ma, J. H. (2014). Research on the Behavior of Intelligent Role in Computer
Games Based on Behavior Tree. Applied Mechanics and Materials.

[48] Tozour, Paul, ”Search Space Representations,” Al Game Programming Wisdom 2,
Charles River Media, 2003.

[49] Elhadi Shakshukia, Malcolm Reidb ,Multi-Agent System Applications in Health-
care: Current Technology and Future Roadmap - Scientific Figure on ResearchGate.
Available from: https://www.researchgate.net/figure/An-example-of-a-Multi-Agent-
System-for-decision-support-6_figl 277727183 (accessed 20 May, 2022)

[50] Fatih Kiigiikkkarakurt, Game Programming Fundamentals. [online] (August 25,
2021) Available on : https://www.developer.com/languages/game-programming-
fundamentals/ (Consulted the 20 April 2022).

[51] Kat Boogaard, What is a concept map. [online] (March 29, 2021) Available on :
https://miro.com/blog/what-is-concept-map/ (Consulted the 20 April 2022).

[52] Pluralsight , Designing a HUD That Works for Your Game. [online] (March 5, 2014)
Available on : https://www.pluralsight.com /blog/film-games/designing-a-hud-that-
works-for-your-game?exp=2 (Consulted the 20 April 2022).

[53] Sapio, F. (2019). Hands-on artificial intelligence with Unreal Engine: Everything you
want to know about game Ai using blueprints or C++. Packt.

[54] Reinhold Preiner, Content Creation for a 3D Game with Maya
and Unity 3D - Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net /publication/267417785_Content_Creation_for_a_3D_Game

_with_Maya_and_Unity_3D (accessed 5 May, 2022).

79

[55]

the MasterClass staff ,Gaming 101: Guide to Video Game Programming Languages.
[online] (Nov 8, 2020) Available on : https://www.masterclass.com/articles/guide-
to-video-game-programming-languages# 7-video-game-programming-languages
(Consulted the 20 Mai 2022).

Fatih Kiigiikkarakurt ,Game Programming Fundamentalss. [online] (August 25,
2021) Available on : https://www.developer.com/languages/game-programming-
fundamentals/ (Consulted the 20 Mai 2022).

Fatih Kiigiikkkarakurt ,Sourcetree A GUI for Git and Mercurial that
is easy for beginners and powerful for experts. [online] Available on

https://www.globallogic.com /services/offerings/atlassian/products/sourcetree/
(Consulted the 20 Mai 2022).

blender team ,about blender. [online] Available on : https://www.blender.org/about/
(Consulted the 20 Mai 2022).

Wayne Maxwell ;What is Quixel Mixer and Why You Should Give it a Go. [on-
line] (October 9, 2021) Available on : https://www.developer.com/languages/game-
programming-fundamentals/ (Consulted the 20 Mai 2022).

Computer Hope ,Visual Studio. [online] (06/07/2019) Available on
https://www.computerhope.com/jargon/v/visual-studio.htm (Consulted the 20
Mai 2022).

UE Team ,Unreal Engine 5 Documentation. [online] Available on
https://docs.unrealengine.com/5.0/en-US/ (Consulted the 20 Mai 2022).

UE Team ,Environment Query System. [online] Avail-
able on ; https://docs.unrealengine.com/4.27 /en-
US/InteractiveExperiences/Artificiallntelligence/EQS/ (Consulted the 20 Mai
2022).

80

	List of Figures
	General Introduction
	Game development
	Introduction
	Game types summary
	Varieties of player arrangements
	 The game development process
	Concept
	Pre-production
	The game design document (GDD)
	Prototyping

	Production
	Production milestones
	Key game development roles

	Post-Production

	Conclusion

	Artificial intelligence in Game development
	Introduction
	AI In Games
	Game Agents
	Sensory
	Sensing
	Vision
	Hearing

	Thinking
	Acting
	Communication
	Reaction Times
	Search

	Learning and Remembering

	Multi-Agent system
	Behavior Tree
	Behavior tree terminology
	Sequence :
	Fallback :
	Parallel :
	Decorator :
	Execution node :

	Common AI Techniques
	 Finite State Machines
	The basics of Finite State Machines

	Blackboard Architecture
	A* Pathfinding
	Genetic Algorithms
	Filtered Randomness
	Emergent Behavior
	Neural Networks
	Reinforcement Learning

	Behavior trees vs. finite-state machines (FSM)
	Conclusion

	System conception
	Introduction
	The basic structure of the game engine
	System (Game system)
	Resources
	Game model
	Upload and Save
	Graphics
	User input
	Sound and particle system
	Artificial intelligence (AI)
	Network listening and sending
	Hardware

	The general structure of the system
	Concept Map
	General Architecture
	HUD
	Graphics
	Sound and particle system
	Level

	AI Architecture
	Game World / Environment :
	Agent :
	External Algorithms :

	 Clarification of technical needs
	 The detail structure of the system
	Scenarios of the game
	Conception of the artificial intelligence-based multi-agent system
	Conception of the agents’ individual reasoning and decision-making
	Conception of Multi-agent system analysis: communication between agents

	 Conclusion

	System implementation
	Introduction
	Development languages used
	C++
	C#

	Development tools
	Sourcetree
	Blender
	Quixel Mixer
	Visual Studio
	Unreal Engine

	Implementation of the characters’ abilities and interactions with the world
	Implementation of the AI based multi-agent system
	the agents’ individual reasoning and decision-making
	EQS

	Multi-agent system analysis: communication between agents

	Implementation of the in-game user interface
	Main menu
	Pause menu
	Dead menu
	Win menu
	Main character HUD
	Weapon HUD

	Implementation of other features to obtain the final game
	3D modeling
	University model
	Characters models

	Animation

	Conclusion

	General conclusion
	Bibliography

